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Abstract

In this paper we discuss the approximation of the spectrum of the Steklov eigenvalue problem,
by using the well known Hybrid High-Order (HHO) method. The analysis developed in this work is
partially based on the existing literature about the HHO method for the Laplacian eigenvalue prob-
lem. As usual with HHO methods, we are able to eliminate the volume unknowns, by introducing a
suitable discrete solver operator. This allows us to numerically solve on the skeleton of the mesh, re-
ducing the computational cost. The a priori error analysis lets us to prove optimal convergence rates
for the eigenvalues and the eigenfunctions, when the latter are smooth enough. Numerical examples
that confirm our theoretical findings are provided.

Keywords: Steklov eigenvalue problem; Hybrid high-order method; a priori error analysis; Polytopal
meshes.

1 Introduction

The Steklov eigenvalue problem arises in a multitude of mathematical and engineering contexts, such as
in the dynamic of liquids in moving containers, known as the sloshing problem [28]. We can also mention
the mechanical oscillators immersed in a viscous fluid [37], and the vibration modes of a structure in
contact with an incompressible fluid [9].

The importance of the numerical solution of the Steklov problem is clear from the literature, where
various conforming Finite Element approaches are documented at least since the end of the seventies:
one of the earliest works is found in [10]; more recent FEM approaches are found for example in [6] and
[32]. In the last few years however, interest has shifted on nonconforming and hybrid discretizations of
the Steklov eigenvalue problem HDG [34]

Hybrid methods were introduced to mitigate the high number of unknowns generated by the classical
Discontinuous Galerkin (DG) method, while retaining its advantages like full polyhedral support and
arbitrary polynomial order. Very informally, hybrid methods define some element-local problem in each
mesh element and subsequently couple them via face unknowns only: in this way one obtains a global
problem posed in terms of face-based unknowns only, contrary to DG which yields a global problem
posed in terms of cell-based unknowns. Since unknowns of the global problem are face-based, this class
of methods is also known as Discontinuous Skeletal (DS) methods.

A recent development in the family of Discontinuous Skeletal methods is the Hybrid High-Order
method (HHO in the following) [27, 26]. The main features of HHO are the approximation of the
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solution with arbitrary order polynomials, support for fully polyhedral meshes and easy hp-refinement.
In addition, HHO methods are constructed independently from the geometric dimension and the element
shape, allowing fully generic [18] software implementations. In HHO the unknowns are placed both in
the cells and on the faces of the mesh, in order to approximate a pair including the primal variable in the
cells and its trace on the skeleton. In particular, these unknowns are used by (i) a reconstruction operator,
which reconstructs a high-order field in the cell and (ii) by a stabilization operator, which weakly enforces
in each mesh cell the matching of the traces of the cell functions with the face unknowns. These two
operators are then combined in a local bilinear form which, after local static condensation, is assembled
into a global problem posed only on the face unknowns.

HHO methods have been used extensively mainly in the context of computational mechanics, for
example solid mechanics [1, 2, 3], contact problems [16], obstacle problems [19] and fluid mechanics
[15, 11]. Recent applications include acoustic time-dependent wave problems[12, 13], magnetostatics
[17], and time-harmonic Maxwell equations [20]. In addition, HHO has been used for the solution of
elliptic eigenvalue problems in [14].

Bridges and unifying viewpoints between HHO and other DS methods have progressively emerged.
One of the most important connections was established in [22], where HHO methods were embedded in
the Hybrid Discontinuous Galerkin (HDG) framework [23, 24]. Differently from HHO, HDG approxi-
mates a triple including the primal variable, its trace and the dual variable, in addition the analysis of the
two methods relies on different theoretical ingredients. Weak Galerkin [40] (WG) methods were bridged
to HDG in [21] and therefore they are also closely related to HHO. HHO and WG were developed inde-
pendently, but they share the common point of view of combining a reconstruction (called weak gradient
in WG) and a stabilization. HHO however employs a more sophisticated stabilization which allows
to achieve higher convergence rates. In [22], also a connection to the nonconforming Virtual Element
Method [7] was established.

In this work we are interested in devising an HHO method to solve the Steklov eigenvalue problem.
The rest of the paper is organized as follows. In Section 2 we introduce the Steklov eigenvalue problem,
discussing its primal variational formulation at continuous level. Moreover, a relationship among the
referred eigenvalues and the spectrum of the so-called “solver operator”, are established. Next, the
HHO framework is described in Section 3, deducing the corresponding discrete scheme for the Steklov
eigenvalue problem. Adapting ideas from a previous HHO work [14], we are able to find a finite-rank
linear solver operator, establishing similar relationships among the spectrum of the operator and the
eigenvalues of Steklov model. The convergence properties of the developed HHO method are discussed
in Section 4. Several numerical examples are shown in Section 5, whose results are in agreement with
our theoretical analysis.

2 Eigenvalue model problem

Let Ω be a bounded and simply connected domain in Rd, d ∈ {2, 3}, with Lipschitz continuous boundary
Γ := ∂Ω. We allow that Γ = ΓS ∪ ΓN ∪ ΓR, with ΓS, ΓN, ΓR being disjoint open subsets of ∂Ω and
|ΓS|, |ΓR| > 0. By n we denote the unit outward normal to Γ. We are interested in the mixed Steklov
eigenvalue problem: Find eingenpair (λ, u) such that


−∆u = 0 in Ω ,

∇u · n = λu on ΓS ,

∇u · n = 0 on ΓN ,

∇u · n+ αu = 0 on ΓR ,

(1)
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where α is a positive constant function. With the aim of deriving a coercive primal variational formula-
tion, we rewrite the first boundary condition in (1) as

∇u · n+ u = (λ+ 1)u on ΓS . (2)

Remark 2.1 In the present case performing the shift is not strictly necessary. However, we consider it
in order to give a final theoretical remark later.

Then, it is not difficult to deduce the weak formulation: Find the eigenpair (λ, u) ∈ R × H1(Ω), such
that

(∇u,∇v)0,Ω + (αu, v)0,ΓR + (u, v)0,ΓS = (λ+ 1) (u, v)0,ΓS ∀ v ∈ H1(Ω) . (3)

This allows us to introduce the solver operator K : L2(ΓS)→ L2(ΓS), such that for a given g ∈ L2(ΓS),
K(g) := γ(z(g))|ΓS , where γ denotes the usual trace operator from H1(Ω) onto H1/2(Γ), and z(g) ∈
H1(Ω) is the unique solution of the so-called source problem:

a(z(g), v) = (g, v)0,ΓS ∀ v ∈ H1(Ω) , (4)

where a : H1(Ω)×H1(Ω)→ R is the bilinear form given by

a(w, v) := (∇w,∇v)0,Ω + (αw, v)0,ΓR + (w, v)0,ΓS ∀w, v ∈ H1(Ω) .

It is not difficult to prove that a is symmetric, bounded and coercive on H1(Ω). For the latter property,
we take into account the Generalized Poincaré inequality. As a consequence, we now are interested in
solving the eigenvalue problem: Find the eigenpair (µ, z) ∈ C × L2(ΓS) such that K(z) = µ z. We
recall the following result, that relates the eigenvalue pairs of (2) and K.

Lemma 2.1 The operator K is compact, self-adjoint, and if (λ, u) is a eigenpair of (1), then(
1

λ+1 , γ(u)|ΓS

)
is an eigenpair of K. Moreover, the eigenvalues of (1) are positive, isolated and diverge

to infinity.

Proof. The proof follows the ideas given in the proofs of Lemmas 2.1 and 2.2 in [34]. We omit further
details. �

3 The HHO method for the eigenvalue problem

We introduce a shape-regular polytopal mesh family S := {Th}h>0, in the sense described in [25]. As
expected, each element Th of S is a partition of Ω made of non-overlapping polytopal elements. By
Fint
h we denote the collection of interior faces inherited by Th, and by F∂Ω

h we represent the collection
of boundary faces. Then, the skeleton induced by Th is denoted by Fh = Fint

h ∪ F∂Ω
h . In addition, we

decomposed F∂Ω
h as the non-overlapping union FS

h ∪ FN
h ∪ FR

h , where for j ∈ {S, N, R}, F jh represents
the collection of boundary faces lying on Γj . Moreover, for any ∅ 6= A ⊂ Rd, with d ∈ {2, 3},
hA := diam(A). On the other hand, given T ∈ Th, we set FT := {F ∈ Fh : F ⊂ ∂T} as the
collection of boundary faces of element T . For each F ∈ T , nTF denotes the unit normal to F pointing
out of T . Finally, the mesh size of Th is defined as h := maxT∈Th hT .
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For any integer k ≥ 0 and r ∈ {d − 1, d}, Pkr (S) denotes the space of real-valued polynomials of
total degree at most k on the r-dimensional affine manifold S ⊆ Rd. We introduce the local discrete
HHO approximation space

Uk
T :=

vT := (vT , (vF )F∈FT ) ∈ Pkd (T )×
∏
F∈FT

Pkd−1(F )

 .

In addition, the global discrete HHO approximation space is given by

Uk
h :=

vh :=
(

(vT )T∈Th , (vF )F∈Fh

)
∈
∏
T∈Th

Pkd (T )×
∏
F∈Fh

Pkd−1(F )

 .

Next, we introduce the standard seminorm on Uk
T

|||vT |||21,T := ||∇vT ||20,T + |vT |20,FT , ∀vT ∈ Uk
T , (5)

where |vT |20,FT :=
∑
F∈FT

h−1
T ||vF − vT ||

2
0,F . This allows us to define the usual seminorm on Uk

h

|||vh|||21,h :=
∑
T∈Th

|||vT |||21,T , ∀vh ∈ Uk
h . (6)

Now, given vh :=
(

(vT )T∈Th , (vF )F∈Fh

)
∈ Uk

h, by vh we denote the function belonging to L2(Ω),

such that ∀T ∈ Th : vh|T := vT . In addition, by γh(vh) we represent the discrete trace of vh on F∂Ω
h ,

such that ∀F ∈ F∂Ω
h : γh(vh)|F := vF .

Then, it is not difficult to check that the map: || · ||h : Uk
h → R, such that ∀vh ∈ Uk

h : ||vh||2h :=
|||vh|||21,h + ||γh(vh)||20,ΓS

+ ||α1/2γh(vh)||20,ΓR
, defines a norm on Uk

h.
In order to devise the HHO method, a local reconstruction operator and a suitable local stabilization

operator are needed. Given any T ∈ Th, we introduce the local reconstruction operator pk+1
T : Uk

T →
Pk+1
d (T ) such that for each vT := (vT , (vF )F∈FT ) ∈ Uk

T , we have{
(∇pk+1

T (vT ),∇w)T = (∇vT ,∇w)T +
∑

F∈FT (∇w · nTF , vF − vT )F ∀w ∈ Pk+1
d (T )

(pk+1
T (vT )− vT , 1)T = 0 .

In addition, we set the global reconstruction operator pk+1
h : Uk

h → P
k+1
d (Th), such that ∀T ∈ Th :

∀vh ∈ Uk
h : pk+1

h (vh)|T := pk+1
T (vT ).

The local stabilization operator Sk∂T : Uk
T → Pk+1

d−1 (FT ) is given such that for each vT := (vT , (vF )F∈FT ) ∈
Uk
T , we have

Sk∂T (vT ) := Πk
∂T (v∂T − pk+1

T (vT )|∂T ) − Πk
T (vT − pk+1

T (vT ))|∂T ,

with Πk
T and Πk

∂T representing the usual L2-orthogonal projectors from L1(T ) onto Pkd (T ) and from
L1(∂T ) onto Pkd−1(FT ), respectively. We also introduce the global stabilization operator sh : Uk

h ×
Uk
h → R, given by

∀vh,wh ∈ Uk
h : sh(vh,wh) :=

∑
T∈Th

(τ∂TS
k
∂T (vT ), Sk∂T (wT ))∂T ,
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with τ∂T ∈ P0(FT ) such that ∀F ∈ FT : τ∂T |F = η h−1
T , and η > 0 at our disposal. Usually, η := 1.

Now, we introduce, for each T ∈ Th, the local HHO bilinear form âT : Uk
T × Uk

T → R, such that
for any vT ,wT ∈ Uk

T

âT (vT ,wT ) := (∇pk+1
T (vT ),∇pk+1

T (wT ))T + (τ∂TS
k
∂T (vT ), Sk∂T (wT ))∂T

+
∑

F∈∂T∩ΓR

(α vF , wF )F +
∑

F∈∂T∩ΓS

(vF , wF )F .

Furthermore, we set the global bilinear form âh : Uk
h ×Uk

h → R as

âh(vh,wh) :=
∑
T∈Th

âT (vT ,wT ) ∀vh,wh ∈ Uk
h .

The next result will be useful.

Lemma 3.1 There exists a positive constant β, independent of h, such that

âh(vh,wh) ≤ β−1||vh||h ||wh||h ∀vh,wh ∈ Uk
h .

âh(vh,vh) ≥ β ||vh||2h ∀vh ∈ Uk
h .

Proof. It follows similar ideas to the proof of Proposition 2.13 in [25]. We omit further details. �

3.1 HHO scheme for the source problem

Given g ∈ L2(ΓS), find uh ∈ Uk
h such that âh(uh,wh) =

∑
F∈FS

h

(g, wF )F , ∀wh ∈ Uk
h.

This discrete problem can be written as the following symmetric linear system:(
AT T AT F
AFT AFF

) (
XT
XF

)
=

(
0
gF

)
,

where XT collects the unknowns associated to the mesh cells, while XF contains the corresponding
unknowns to the mesh faces. SinceAT T results to be block-diagonal and non singular, we can eliminate
XT (Schur’s complement), leading to an equivalent linear system inXF , which reads:

(AFF −AFTA−1
T TAT F )XF = gF .

3.2 HHO scheme for the Steklov eigenvalue problem

It reads as: Find (λh,uh) ∈ R+ ×Uk
h, such that

âh(uh,wh) = (λh + 1)
∑
F∈FS

h

(uF , wF )F ∀uh ∈ Uk
h . (7)

The scheme, in matrix form, can be written as:(
AT T AT F
AFT AFF

) (
XT
XF

)
= (λh + 1)

(
0 0
0 BFF

)(
XT
XF

)
,

which, after eliminatingXT as before, we have to solve the generalized eigenvalue problem:

(AFF −AFTA−1
T TAT F )XF = (λh + 1)BFF XF .
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3.3 HHO solver

We consider the cell HHO solver operator K̂h : L2(ΓS)→ Uk
h, so that

âh(K̂h(g),wh) =
∑
F∈FS

h

(g, wF )F ∀wh ∈ Uk
h . (8)

However, sinceUk
h is not a subspace of L2(ΓS), K̂h is not suitable for the analysis of the approximation

of our eigenvalue problem. To overcome this situation, we aim to build a local face HHO solver operator
KFS : L2(ΓS)→ Pkd−1(FS

h) ⊆ L2(ΓS). To this end, we adapt the ideas given in [14]. First, we introduce
the operator ZT : Pkd−1(Fh) → Pkd (Th), so that, for any vF ∈ Pkd−1(Fh), ZT (vF ) ∈ Pkd (Th) is the
unique solution of

âh((ZT (vF ), vF ), (wh, 0)) = 0 ∀wh ∈ Pkd (Th) . (9)

We also define the operator Z†T : Pkd−1(Fh)→ Pkd (Th), so that

âh((wh, 0), (Z†T (vF ), vF )) = 0 ∀wh ∈ Pkd (Th) , (10)

We remark that since âh is symmetric, ZT = Z†T . Now, we introduce the bilinear form aF : Pkd−1(Fh)×
Pkd−1(Fh)→ R, given by

aF (vF , wF ) := âh((ZT (vF ), vF ), (Z†T (wF ), wF )) ∀ vF , wF ∈ Pkd−1(Fh) . (11)

Next, we define the solver operator KF : L2(ΓS)→ Pkd−1(Fh) ⊆ L2(Γ), such that for any ψ ∈ L2(ΓS),
KF (ψ) ∈ Pkd−1(Fh) is the unique element that satisfies

aF (KF (ψ), wF ) = (ψ,wF )FS
h
∀wF ∈ Pkd−1(Fh) . (12)

Finally, we set KFS : L2(ΓS) → Pkd−1(FS
h) ⊆ L2(ΓS), given for each ψ ∈ L2(ΓS), by KFS(ψ) :=

KF (ψ)|ΓS .

Lemma 3.2 There holds

∀ g ∈ L2(ΓS) : K̂h(g) =
(

(ZT ◦KF )(g),KF (g)
)
. (13)

Proof. Let g ∈ L2(ΓS) be fixed. Next, uF := KF (g) ∈ Pkd−1(Fh) is such that

aF (uF , wF ) = (g, wF )FS
h
∀wF ∈ Pkd−1(Fh) .

Now, we set uT := (ZT ◦KF )(g) = ZT (uF ) ∈ Pkd (Th). It remains to verify that uh := (uT , uF ) ∈ Uk
h

satisfies the source problem

âh(uh,wh) =
∑
F∈FS

h

(g, wF )F ∀wh ∈ Uk
h . (14)

Given wh := (wT , wF ) ∈ Uk
h fixed, we decompose it as wh = xh + y

h
, where xh := (0T , wF ) ∈ Uk

h

and y
h

:= (wT , 0F ) ∈ Uk
h. Now, taking xh, we have

âh(uh,xh) = âh((uT , uF )(0, wF ))

= âh((ZT (uF ), uF )(0, wF )) + âh((ZT (uF ), uF ), (Z†T (wF ), 0))︸ ︷︷ ︸
=0

= âh((ZT (uF ), uF ), (Z†T (wF ), wF ))

= aF (uF , wF ) = (g, wF )FS
h
.
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On the other hand, and taking into account (9), we have

âh(uh,yh) = âh((uT , uF ), (wT , 0F )) = 0 ,

and we conclude that âh(uh,wh) = (g, wF )FS
h
, ∀wh ∈ Uk

h. Finally, (13) has been established, by the
uniqueness of the solution, and we end the proof. �

Remark 3.1 We notice that (λh + 1,uh) ∈ R+ × Uk
h, with uh := (uT , uF ), is an eigenpair of (7) if

and only if uT = ZT (uF ), and (λh, uF ) ∈ R+ × Pkd−1(F) verifies

aF (uF , wF ) = (λh + 1) (uF , wF )FS
h
∀wF ∈ Pkd−1(F) . (15)

This is equivalent to say that (µh, uF ) ∈ R+×Pkd−1(F), with µh = 1
λh+1 , is an eigenpair of the discrete

solver KF .

Lemma 3.3 The operator KFS : L2(ΓS) → Pkd−1(FS
h) ⊆ L2(ΓS), is self-adjoint and positive. More-

over, if (λh, uF ) ∈ R+ × Pkd−1(F) satisfies (15), then
(

1
λh+1 , uF |FS

)
is an eigenpair of KFS .

Proof. We first let ψ,ϕ ∈ L2(ΓS) be fixed. Then, there holds

aF (KF (ψ), wF ) = (ψ,wF )FS
h
∀wF ∈ Pkd−1(F) . (16)

aF (KF (ϕ), vF ) = (ϕ, vF )FS
h
∀ vF ∈ Pkd−1(F) . (17)

Now, choosing wF := KF (ϕ) and vF := KF (ψ), and taking into account the symmetry of aF , we
deduce

(ψ,KFS(ϕ))FS
h

= (ψ,KF (ϕ))FS
h

= (ϕ,KF (ψ))FS
h

= (ϕ,KFS(ψ))FS
h

= (KFS(ψ), ϕ)FS
h
.

The latter ensures that KFS is self-adjoint. On the other hand, taking wF := KF (ψ) in (16), results

(ψ,KFS(ψ))FS
h

= (ψ,KF (ψ))FS
h

= aF (KF (ψ),KF (ψ)) .

Then, recalling that aF is symmetric and elliptic, we infer that KF0 is positive.
Next, we consider (λh, uF ) ∈ R+×Pkd−1(F), that satisfies (15), and setKFS(uF |FS) = zF |ΓS , with

zF := KF (uF ). Then

aF (zF , wF ) = (uF , wF )FS
h
∀wF ∈ Pkd−1(F) . (18)

Comparing (18) and (15), we obtain

uF = (λh + 1)zF ⇒ KFS(uF |FS) =
1

λh + 1
uF |FS .

�

Lemma 3.4 There exists C > 0, independent of h, such that

∀ g ∈ L2(ΓS) : ||K̂h(g)||h ≤ C ||g||0,ΓS . (19)

7



Proof. Let g ∈ L2(ΓS) be fixed, and set K̂h(g) := uh = (uT , uF ) ∈ Uk
h, such that âh(K̂h(g),vh) =

(g, vF )FS
h
, for all vh = (vT , vF ) ∈ Uk

h. Then, we have

β ||K̂h(g)||2h ≤ âh(K̂h(g), K̂h(g)) = (g, uF )FS
h
≤ ||g||0,ΓS ||uF ||0,ΓS .

On the other hand,

||uF ||0,ΓS ≤ ||uF ||0,Γh = ||γh(uh)||0,Γ ≤ Ctr ||uh||h .

after invoking a well known HHO trace inequality (we refer to Lemma 5.1 in the Appendix). Finally, we
end the proof. �

REGULARITY ASSUMPTION: In what follows, we assume that given g ∈ L2(ΓS), the solution
u(g) of the source problem (4) that defines g, belongs to H1+t(Ω), for some t ∈ (0, t0). In addition,
there exists C > 0, independent of h, such that ||u(g)||1+t,Ω ≤ C ||g||0,ΓS .

This holds, for example, for a polygonal domain Ω ⊆ R2 (cf. Corollary 3.1 in [33]). We also remark
that t0 = 1/2 when ΓS = Γ or ΓR = ∅ (cf. Theorem 4 in [39]).

Lemma 3.5 There exists C > 0, independent of h, such that

||K̂h(g)− Îkh(u)||h ≤ C hs ||K(g)||1/2+s,ΓS
, (20)

for all s ∈ [t, k + 1], and all g ∈ L2(ΓS) such that u ∈ H1+s(Ω), with u satisfying K(g) = γ(u)|ΓS .
Here, t is the corresponding smoothness index from the elliptic regularity theory.

Proof. We invoke the Third Strang’s Lemma (cf. Lemma A.7 in [25]), to obtain

||K̂h(g)− Îkh(u)||h ≤ C sup

wh ∈ Uk
h

||wh||h = 1

|Eh(u;wh)| ,

where the consistency term Eh(u; ·) is defined as

Eh(u;wh) := âh(Î
k
h(u),wh)− (g, wF )FS

h
∀wh ∈ Uk

h .

It is known that

Eh(u;wh) =
∑
T∈Th

(
∇pk+1

T IkT (u)−∇u,∇wT
)
T

+
∑
F∈FT

(∇pk+1
T IkT (u) · n−∇u · n, wF − wT )F

+ sh(IkT (u),wh) .

Finally, the result is obtained after applying suitable Cauchy-Schwarz, and the approximation properties
of pk+1

T IkT , IkT and sh. We omit further details. �

4 A priori error analysis

We set L := L2(ΓS).

Lemma 4.1 There exists C > 0, independent of h, such that

sup
(ψ,ϕ)∈L×L

|((K −KFS)(ψ), ϕ)L| ≤ C hmin{k+1,t+1/2} ||ψ||L ||ϕ||L , (21)

with t being the corresponding smoothness index from the elliptic regularity theory. As a consequence,
we have ||K −KFS ||L(L), as h goes to 0.
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Proof. First, we let ψ,ϕ ∈ L be fixed. Denoting by u the exact solution of source problem (4) with
g := ψ, and recalling that K(ψ) = u on ΓS and âh is symmetric, we notice that

âh(Î
k
h(u), K̂h(ϕ)) = âh(K̂h(ϕ), Î

k
h(u)) = (ϕ, πkFhu)L = (πkFh(K(ψ)), ϕ)L .

Then, we derive

((K −KFS)(ψ), ϕ)L = (K(ψ), ϕ)L − (KF0(ψ), ϕ)L = (K(ψ), ϕ)L − (ϕ,KF (ψ))L

= (K(ψ), ϕ)L − aF (KF (ϕ),KF (ψ))

= (K(ψ), ϕ)L − aF (KF (ψ),KF (ϕ))

= (K(ψ), ϕ)L − âh(K̂h(ψ), K̂h(ϕ))

= (K(ψ), ϕ)L − âh(Î
k
h(u), K̂h(ϕ)) + âh(Î

k
h(u)− K̂h(ψ), K̂h(ϕ))

= (K(ψ)− πkFh(K(ψ)), ϕ)L︸ ︷︷ ︸
=:I1

+ âh(Î
k
h(u)− K̂h(ψ), K̂h(ϕ))︸ ︷︷ ︸

=:I2

. (22)

Next, we proceed to bound I1 and I2.
BOUNDING I1: First, we let F ∈ FS

h be fixed, and set TF ∈ Th such that F is one its faces. We notice
that

u− πkFu = (u− πkTF u)− πkF (u− πkTF u) .

Next, by applying Cauchy-Schwarz inequality and invoking standard approximation properties, we get

|I1| ≤ ||K(ψ)− πkFh(K(ψ)||L ||ϕ||L ≤ C h1/2 ||ψ||L ||ϕ||L .

BOUNDING I2: Invoking the boundedness of âh (cf. Lemma 3.1), we obtain

|I2| ≤ β−1 ||Îkh(u)− K̂h(ψ)||h ||K̂h(ϕ)||h .

Now, thanks to Lemmas 3.5 and 3.4, as well as the REGULARITY ASSUMPTION, we derive

|I2| ≤ β−1 C̃ hmin{k+1,t+1/2} ||ψ||L ||ϕ||L .

Finally, using these bounds for I1 and I2, we conclude the proof. �
In what follows we give a description of the main results on the spectral approximation of compact

operators in Hilbert spaces. Let σ(K) be the spectrum of the compact operatorK, and let µ ∈ σ(K)\{0}
be a nonzero eigenvalue of K. Let β ∈ Z+ be the ascent of µ, i.e., the smallest positive integer β such
that Ker(µ I −K)β = Ker(µ I −K)β+1, where I denotes the identity operator. We also define

Gµ := Ker(µ I −K)β , G∗µ := Ker(µ I −K∗)β ,

and m := dim(Gµ), which is known as the algebraic multiplicity of µ. We recall that m ≥ β. Now, we
assume that there exist s ∈ [t, k + 1] and Cs > 0, such that

∀ψ ∈ Gµ : ||ψ||1/2+s,ΓS
+ ||u(ψ)||1+s,Ω ≤ Cs ||ψ||L , (23)

∀ϕ ∈ G∗µ : ||ϕ||1/2+s,ΓS
+ ||u(ϕ)||1+s,Ω ≤ Cs ||ϕ||L . (24)
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Remark 4.1 If s = t, functions in Gµ and G∗µ do not provide additional smoothness with respect to
that resulting from the elliptic regularity theory. It is known that usually, functions in Gµ and G∗µ are
smoother, and one has s > t. The case s = k + 1 leads to optimar error estimates.

Next result gives us useful bounds.

Lemma 4.2 There exists C > 0, independent of h, such that

sup
(ψ,ϕ)∈Gµ×L

|((K −KFS)(ψ), ϕ)L| ≤ C hs ||ψ||L ||ϕ||L , (25)

with s ∈ [t, k + 1] being the smoothness index corresponding to the elements in Gµ. As a consequence,
we have

||(K −KFS)|Gµ ||L(Gµ,L) ≤ C hs . (26)

Proof. We let (ψ,ϕ) ∈ Gµ × L be fixed. As before, our aim is to bound each term on the right hand side
in (22). Taking into account (23), we deduce

|I1| ≤ C hmin{k+1,s+1/2}||u(ψ)||1+s,Ω ||ϕ||L ≤ C Cs hmin{k+1,s+1/2} ||ψ||L ||ϕ||L .

Similarly, we obtain, after invoking Lemma 3.4

|I2| ≤ β−1 C̃ Cs h
min{k+1,s+1/2} ||ψ||L ||ϕ||L .

We omit further details. �

Lemma 4.3 There exists C > 0, independent of h, such that

sup
(ψ,ϕ)∈Gµ×G∗µ

|((K −KFS)(ψ), ϕ)L| ≤ C h2s ||ψ||L ||ϕ||L , (27)

with s ∈ [t, k + 1] being the smoothness index corresponding to the elements of Gµ and G∗µ.

Proof. We let (ψ,ϕ) ∈ Gµ × G∗µ be fixed. The starting point is the identity (22). In this case, we can
take advantage of the smoothness of both ψ and ϕ, to find sharper bounds of I1 and I2. In the case of
I1, we notice that

I1 = (K(ψ)− πkFh(K(ψ)), ϕ)L = (K(ψ)− πkFh(K(ψ)), ϕ− πkFh(ϕ))L

⇒ |I1| ≤ C h2 min{k+1,s+1/2}||K(ψ)||s+1/2,ΓS
||ϕ||s+1/2,ΓS

≤ C C2
s h

2 min{k+1,s+1/2}||ψ||L ||ϕ||L ,

after invoking (23).
Next, we bound I2, considering the smoothness of both ψ and ϕ, too. To this end, we have

I2 = âh(Î
k
h(u)− K̂h(ψ), K̂h(ϕ))

= âh(Î
k
h(u(ψ))− K̂h(ψ), Î

k
h(u(ϕ))) + âh(Î

k
h(u)− K̂h(ψ), K̂h(ϕ)− Îkh(u(ϕ)))

= âh(Î
k
h(u(ψ)), Î

k
h(u(ϕ)))− âh(K̂h(ψ), Î

k
h(u(ϕ))) + âh(Î

k
h(u)− K̂h(ψ), K̂h(ϕ)− Îkh(u(ϕ))) .

We notice that

−âh(K̂h(ψ), Î
k
h(u(ϕ))) = − (ψ, πkF0

h
(u(ϕ)))L = (ψ, u(ϕ)− πkF0

h
(u(ϕ)))L − (ψ, u(ϕ))L

= (ψ − πkF0
h
(ψ), u(ϕ)− πkF0

h
(u(ϕ)))L − a(u(ψ), u(ϕ)) ,

10



which allows us to establish

I2 = (ψ − πkF0
h
(ψ), u(ϕ)− πkF0

h
(u(ϕ)))L

+ âh(Î
k
h(u(ψ)), Î

k
h(u(ϕ)))− a(u(ψ), u(ϕ))

+ âh(Î
k
h(u(ψ))− K̂h(ψ), K̂h(ϕ)− Îkh(u(ϕ)))

= I2,1 + I2,2 + I2,3 .

Now, we bound each of the three summands referred above. First, we invoke approximation theory, (23)
and (24), to obtain

|I2,1| ≤ C C2
t h

2 min{k+1,s+1/2} ||ψ||L ||ϕ||L .

Next, to bound I2,3, we take into account the boundedness of âh, and apply Lemma 3.4. As a result, we
derive

|I2,3| ≤ C h2 min{k+1,s+1/2} ||K(ψ)||s+1/2,ΓS
||K(ϕ)||s+1/2,ΓS

≤ C C2
s h

2 min{k+1,s+1/2} ||ψ||L ||ϕ||L .

It is the turn of bounding I2,2. We notice that

I2,2 =
∑
T∈Th

(∇pk+1
T Î

k
T (u(ψ))),∇pk+1

T Î
k
T (u(ϕ)))T − (∇u(ψ),∇u(ϕ))T

+ sh(Î
k
h(u(ψ)), Î

k
h(u(ϕ)))

+
∑
F∈FR

h

α (πkF (u(ψ))− u(ψ), u(ϕ)− πkF (u(ϕ)))F

+
∑
F∈FS

h

(πkF (u(ψ))− u(ψ), u(ϕ)− πkF (u(ϕ)))F

= I2,2,1 + I2,2,2 + I2,2,3 + I2,2,4 .

At this point, we take advantage that∇pk+1
T Î

k
T corresponds to the elliptic projector. Then we have

I2,2,1 = −
∑
T∈Th

(∇(u(ψ)− pk+1
T Î

k
T (u(ϕ)),∇(u(ψ)− pk+1

T Î
k
T (u(ϕ))))T .

Invoking Cauchy-Schwarz inequality and the approximation properties of the elliptic projector, we de-
duce that

|I2,2,1| ≤ C h2s ||u(ψ)||s+1/2,ΓS
||u(ϕ)||s+1/2,ΓS

≤ C C2
s h

2s ||ψ||L ||ϕ||L .

On the other hand, applying the consistency property of sh, we obtain

|I2,2,2| ≤ s
1/2
h (Î

k
h(u(ψ)), Î

k
h(u(ψ))) s

1/2
h (Î

k
h(u(ϕ)), Î

k
h(u(ϕ))) ≤ C C2

s h
2s ||ψ||L ||ϕ||L .

To bound I2,2,3 and I2,2,4, we apply Cauchy-Schwarz inequality and the approximation properties of L2

orthogonal projector, to establish

|I2,2,3| ≤ αC C2
s h

2s ||ψ||L ||ϕ||L ,
|I2,2,4| ≤ C C2

s h
2s ||ψ||L ||ϕ||L .

11



Finally, we collect the above estimates and conclude the proof. �
Now, we are in position to establish the main results of the current work. To this aim, we let µ ∈

σ(K)\{0} with ascent ε and algebraic multiplicity m. Since K is a self-adjoint operator, we have ε = 1.
Thanks to the convergence result from Lemma 4.1, KF0 admits m eigenvalues {µh,j}mj=1, so that each
one of them converges to µ as h→ 0.

Theorem 4.1 (Error estimate on eigenvalues and eigenfunctions in L) Assume that there is s ∈ [t, k+
1] so that there hold the smoothness properties (23) and (24), where t > 0 is the smoothnes index result-
ing from the elliptic regularity theory. Then there is C > 0, independent of h, but depending on µ, the
mesh regularity, the polynomial degree k and the domain Ω, such that

max
1≤j≤m

|µ− µh,j |+ |µ− µ̂h| ≤ C h2s , (28)

where µ̂h :=
1

m

m∑
j=1

µh,j is the very well known arithmetic mean. Moreover, let vF ,j ∈ Pkd−1(FS
h) be a

unit vector belonging to Ker(µh,jI −KFS). Then, there is a unit vector vj ∈ Ker(µ I −K) ⊆ Gµ, such
that

||vj − vF ,j ||L ≤ C hs . (29)

Proof. (28) is a straightforward consequence of Lemmas 4.2, 4.3, with Theorems 7.2 and 7.3 in [8].
Similarly, invoking Theorem 7.4 in [8] and taking into consideration Lemma 4.2, we conclude (29). �

Remark 4.2 Since the eigenvalues λ and λh associated to (3) and (7), respectively, are such that λ =
µ−1 − 1 and λh = µ−1

h − 1, we infer that the same estimate as (28) holds true for the error between λ
and λh.

Corollary 4.1 Under the same assumptions and notations as considered in Theorem 4.1, but dropping
the index j from the eigenfunction vj and the approximate eigenfunction vF ,j . Then, setting vh :=
(ZT (vF ), vF ) ∈ Uk

h, there exists C > 0, independent of the mesh size, such that

âh(vh − Î
k
h(v),vh − Î

k
h(v)) ≤ C h2s . (30)

As a consequence, we have

||∇(v − pk+1
h (vh))||20,Ω ≤ C h2s . (31)

Proof. We notice that

(λh + 1)(vF , v)L = (λh + 1)(vF , π
k
F (v))L = aF (vF , π

k
F (v))

= âh((ZT (vF ), vF ), (Z†T (πkF (v)), πkF (v)))

= âh((ZT (vF ), vF ), (Z†T (πkF (v)), πkF (v)))

+ âh((ZT (vF ), vF ), (πkT (v)− Z†T (πkF (v)), 0F ))︸ ︷︷ ︸
=0

= âh(vh, Î
k
h(v)) .
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In what follows, we consider that v and vF are normalized in the sense ||v||L = ||vF ||L = 1. Next, we

set Jv := âh(Î
k
h(v), Î

k
h(v))− a(v, v). Then, we deduce that

âh(vh − Î
k
h(v),vh − Î

k
h(v)) = âh(vh,vh)− 2 âh(vh, Î

k
h(v)) + âh(Î

k
h(v), Î

k
h(v))

= (λh + 1)
(
||vF ||2L − 2 (vF , v)L + ||v||2L

)
− (λh − λ)||v||2L + Jv

= (λh + 1) ||vF − v||2L − λh + λ+ Jv . (32)

Jv is bounded in analogous way as I2,2 in the proof of Lemma 4.3 Then, after invoking Theorem 4.1, to
bound the first two terms in (32), we derive (30). On the other hand, we notice that

||∇(v − pk+1
h (vh))||0,Ω ≤ ||∇h(v − pk+1

h (Î
k
h(v)))||0,Ω + ||∇h pk+1

h (Î
k
h(v))− vh))||0,Ω

≤ ||∇h(v − pk+1
h (Î

k
h(v)))||0,Ω + âh(vh − Î

k
h(v),vh − Î

k
h(v))1/2 .

Therefore, (31) is obtained after taking into account the approximation property of elliptic projector
pk+1
h (Î

k
h(v)) (cf. Theorem 1.48 in [25]) and (30). �

Remark 4.3 We realize from Corollary 4.1 that if s = k + 1, then we obtain the expected rates of
superconvergence in this context: order hk+1 for the eigenfunctions in the H1-seminorm, and h2(k+1)

for the eigenvalues.

Remark 4.4 The case ΓR = ∅ can be covered by the described analysis, under certain appropriate
adjustments. In this case, the resulting variational formulation is written as (3), with α = 0. It is
known that 0 is an eigenvalue, with associated eigenspace G0 := P0

d(Ω). The rest of eigenvalues form a
positive increasing sequence of real numbers, finite-multiplicity, isolated, that diverges to infinity. Their
corresponding eigenspaces lie in H1+r(Ω), for some r ≥ 1/2 (cf. Lemma 2.2 (ii) in [35]).

Remark 4.5 The current analysis can be adapted to cover the fully mixed Steklov eigenvalue problem:
Find eingenpair (λ, u) such that 

−∆u = 0 in Ω

u = 0 on ΓD

∇u · n = λu on ΓS

∇u · n = 0 on ΓN

∇u · n+ αu = 0 on ΓR ,

(33)

where α is a non-negative constant function, and {ΓD,ΓS,ΓN,ΓR} is a partition of the boundary Γ := ∂Ω
with |ΓD|, |ΓS| > 0. In this case, it is not necessary to rewrite the boundary condition on ΓS as (2), and
we can block the HHO approximation of the trace on each edge F lying on ΓD as usual (and fixed to be
0, for test and trial spaces).

5 Numerical examples

The proposed numerical method was implemented in the open-source DiSk++ numerical library (https:
//github.com/wareHHOuse/diskpp) [18], which allows fast prototyping of discontinuous meth-
ods for PDEs. The discrete eigenvalue problem is solved using the FEAST algorithm [38, 31, 36] and
using MUMPS [4, 5] as the underlying linear solver.

Concerning the variant (1) of the Steklov problem, we will present the results of HHO running on the
test cases proposed in [34] (all with ΓD = ∅). Differently from [34] however, in addition to the cartesian
meshes we will consider triangular and regular hexagonal tiling meshes in the 2D case (see Figure 1). In
the 3D case we will consider tetrahedral meshes.
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(a) Triangular (b) Cartesian (c) Hexagonal tiling

Figure 1: 2D polytopal meshes: triangular, cartesian, regular hexagonal tiling

5.1 Test 1: Sloshing problem

As in [34], our first test case is a sloshing problem [29], for which the analytical solution is known. In
the 2D case, the problem setting and the corresponding analytical solution are given next{

Ω := (0, 1)2 , ΓS := {(x, y) | 0 ≤ x ≤ 1, y = 1} , ΓD = ΓR := ∅ , ΓN := ∂Ω \ ΓS ,

λn = nπtanh(nπ) , un(x, y) = cos(nπx)cosh(nπy) , n ∈ Z+
0 .

We tested the convergence of our method for k ∈ {0, 1, 2} on a sequence of triangular and cartesian
meshes, in addition we tested the method also on a regular hexagonal tiling sequence of meshes from the
FVCA5 benchmark [30]. The error and the convergence rate for the first four lowest positive eigenvalues
is reported in Table 1 for triangles, in Table 2 for quadrangles and in Table 3 for regular hexagonal
tiling. In all the cases we observe the optimal rate predicted by the theoretical results. We notice that the
convergence rate of the first eigenvalue for the case k=2 is limited by the floating-point roundoff error.

|λ1 − λ1,h| |λ2 − λ2,h| |λ3 − λ3,h| |λ4 − λ4,h|
h/
√

2 Error Rate Error Rate Error Rate Error Rate
0.125 1.96E-02 1.60E-01 5.36E-01 1.25E+00

0.0625 4.91E-03 2.00 4.03E-02 1.99 1.36E-01 1.98 3.21E-01 1.97
0.03125 1.23E-03 2.00 1.01E-02 2.00 3.40E-02 2.00 8.06E-02 1.99
0.015625 3.07E-04 2.00 2.52E-03 2.00 8.51E-03 2.00 2.02E-02 2.00

0.125 6.63E-04 1.65E-02 1.03E-01 3.46E-01
0.0625 4.47E-05 3.89 1.20E-03 3.78 8.36E-03 3.62 3.25E-02 3.41
0.03125 2.89E-06 3.95 7.94E-05 3.92 5.70E-04 3.88 2.31E-03 3.81
0.015625 1.83E-07 3.98 5.07E-06 3.97 3.67E-05 3.96 1.50E-04 3.94

0.125 1.15E-06 1.51E-04 2.56E-03 1.90E-02
0.0625 1.87E-08 5.95 2.36E-06 6.00 4.04E-05 5.99 3.02E-04 5.98
0.03125 2.70E-10 6.12 3.69E-08 6.00 6.31E-07 6.00 4.73E-06 6.00
0.015625 2.15E-11 3.65 5.67E-10 6.02 9.83E-09 6.00 7.37E-08 6.00

Table 1: Errors and computed convergence rates of first 4 lowest positive eigenvalues for Test 1, 2D
(Triangles, with k ∈ {0, 1, 2} from top to bottom).

Concerning the 3D case, the problem setting and the corresponding analytical solution are given next.{
Ω := (0, 1)3 , ΓS := {(x, y, z) | 0 ≤ x, y ≤ 1 , z = 1} , ΓR := ∅ , ΓN := ∂Ω \ ΓS ,

λm,n = ` π tanh(` π), um,n(x, y) = cos(mπ x) cos(nπ y) cosh(` π z) , ` :=
√
m2 + n2 , m, n ∈ Z+

0 .
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|λ1 − λ1,h| |λ2 − λ2,h| |λ3 − λ3,h| |λ4 − λ4,h|
h Error Rate Error Rate Error Rate Error Rate

0.0883883 7.42E-02 5.29E-01 1.55E+00 3.12E+00
0.0441942 1.90E-02 1.96 1.46E-01 1.86 4.72E-01 1.72 1.06E+00 1.56
0.0220971 4.79E-03 1.99 3.74E-02 1.96 1.25E-01 1.92 2.92E-01 1.86
0.0110485 1.20E-03 2.00 9.42E-03 1.99 3.17E-02 1.98 7.49E-02 1.96
0.0883883 3.36E-04 1.21E-02 1.24E-01 1.15E+00
0.0441942 1.97E-05 4.09 6.72E-04 4.17 5.33E-03 4.54 2.42E-02 5.57
0.0220971 1.28E-06 3.95 4.12E-05 4.03 3.16E-04 4.08 1.35E-03 4.17
0.0110485 7.98E-08 4.00 2.57E-06 4.01 1.95E-05 4.02 8.25E-05 4.03
0.0883883 2.32E-07 3.45E-05 1.27E-03 2.32E+00
0.0441942 3.48E-09 6.06 4.58E-07 6.23 8.33E-06 7.26 6.89E-05 15.04
0.0220971 3.01E-11 6.85 6.84E-09 6.06 1.19E-07 6.12 9.16E-07 6.23
0.0110485 2.33E-12 3.69 1.04E-10 6.04 1.82E-09 6.04 1.37E-08 6.06

Table 2: Errors and computed convergence rates of first 4 lowest positive eigenvalues for Test 1, 2D
(Cartesian meshes, with k ∈ {0, 1, 2} from top to bottom).

We run the HHO scheme on a family of tetrahedral meshes that are a partition of Ω̄, and with uniform
polynomial degree k ∈ {0, 1}. For k = 0, we set τ∂T := h−1

T . However, when k = 1 and considering the
same parameter τ∂T as before, we notice the presence of spurious eigenvalues when solving the problem
on the coarsest mesh. This situation has been also detected using a conforming virtual element method in
[35], where the authors have been studied the variation of the corresponding stabilization parameter. In
order to avoid this phenomenon, we take τ∂T := 10h−1

T for k = 1. In Table 4 we display the computed
error and convergence rate of the first 4 eigenvalues. We observe that the error behaves as O(h2(k+1)),
as predicted by the theory.

5.2 Test 2: Fully Mixed Steklov eigenvalue problem on a polygonal domain

In this section we report the HHO results on another test case proposed in [34], for problem (33). In two
dimensions, we set the problem such that

Ω := (0, 1)2 , ΓR := {(x, y) | 0 ≤ x ≤ 1 , y = 0} , ΓD = ΓN := ∅ , ΓS := ∂Ω \ ΓR , α := 1 ,

while in three dimensions the setting is given next

Ω := (0, 1)3 , ΓR := {(x, y, z) | 0 ≤ x, y ≤ 1 , z = 0} , ΓD = ΓN := ∅ , ΓS := ∂Ω \ ΓR , α := 1 .

For this test case, no analytical solution is known. The stabilization parameter τ∂T is setting as h−1
T

in all cases presented here (2D and 3D). For the 2D setting, we report in Tables 5 and 6 the first 8
eigenvalues computed with HHO using k = 0 and k = 2, respectively, on triangular, quadrangular and
regular hexagonal tiling meshes of similar size h. We notice from these tables, that the HHO method
is convergent, since we obtain similar approximation of first 8 eigenvalues, using different kind of 2D-
meshes, and approximation degrees k ∈ {0, 2}. Indeed, for k = 2 (cf. Table 6) we obtain better
accuracy of approximation of eigenvalues, with 9-10 exact digit decimal places. On the other hand, this
experiment gives us strong evidence of the robustness of the method (polytopal meshes and higher order).
In addition, in Figure 2 the corresponding eigenfunctions are depicted, when approximation is obtained
using hexagonal dominant meshes and k = 2.
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|λ1 − λ1,h| |λ2 − λ2,h| |λ3 − λ3,h| |λ4 − λ4,h|
h/
√

2 Error Rate Error Rate Error Rate Error Rate
0.0906001 6.99E-02 2.64E+00 3.29E+00 4.58E+00
0.0460523 1.74E-02 2.05 1.35E-01 4.39 4.33E-01 3.00 9.73E-01 2.29
0.0232271 4.46E-03 1.99 3.55E-02 1.95 1.17E-01 1.91 2.71E-01 1.87
0.0116655 1.13E-03 2.00 9.06E-03 1.98 3.03E-02 1.96 7.10E-02 1.94
0.0906001 1.31E-04 4.27E-03 3.69E-02 2.02E+00
0.0460523 8.11E-06 4.11 2.61E-04 4.13 2.01E-03 4.30 8.65E-03 8.06
0.0232271 5.03E-07 4.06 1.61E-05 4.07 1.23E-04 4.08 5.23E-04 4.10
0.0116655 3.13E-08 4.03 1.00E-06 4.04 7.62E-06 4.04 3.22E-05 4.05
0.0906001 9.44E-08 1.34E-05 2.98E-04 1.92E+00
0.0460523 1.45E-09 6.17 1.91E-07 6.28 3.41E-06 6.61 2.72E-05 16.50
0.0232271 2.24E-11 6.10 2.91E-09 6.11 5.04E-08 6.16 3.85E-07 6.22
0.0116655 4.53E-13 5.66 4.44E-11 6.07 7.74E-10 6.07 5.84E-09 6.08

Table 3: Errors and computed convergence rates of first 4 lowest positive eigenvalues for Test 1, 2D
(Regular hexagonal tiling meshes, with k ∈ {0, 1, 2} from top to bottom).

|λ1,0 − λ1,0,h| |λ1,1 − λ1,1,h| |λ0,2 − λ0,2,h| |λ2,2 − λ2,2,h|
h Error Rate Error Rate Error Rate Error Rate

0.221721 5.63E-02 1.34E-01 3.96E-01 5.66E-01
0.112285 1.48E-02 1.97 3.49E-02 1.97 1.05E-01 1.96 1.45E-01 2.00
0.0570394 3.83E-03 1.99 9.07E-03 1.99 2.73E-02 1.98 3.80E-02 1.98
0.221721 2.44E-04 1.13E-03 5.83E-03 1.13E-02
0.112285 1.61E-05 3.99 7.47E-05 4.00 4.16E-04 3.88 8.09E-04 3.88
0.0570394 1.08E-06 4.00 4.96E-06 4.00 2.77E-05 4.00 5.42E-05 3.99

Table 4: Errors and computed convergence rates of first 4 lowest positive eigenvalues for Test 1, 3D
(Tetrahedral meshes, with k ∈ {0, 1} from top to bottom).

Concerning the 3D case, in Table 7 we report the numerical approximation of the first 8 lowest
eigenvalues of the proposed problem, using HHO with k = 0, and considering a tetrahedral mesh of
size h = 0.112285. Here, we notice that the approximations of eigenvalues are in agreement to the
corresponding ones, obtained using HDG in [34]. The 8 eigenfunctions associated to each one of the
estimated eigenvalues are displayed in Figure 3.

5.3 Test 3: Fully Mixed Steklov eigenvalue problem on a non-polygonal domain

This case has been taken again from [34], to test problem (33), and consider the domain is the unit disk
or sphere. The specifications of the geometric data are given next

2D:

{
Ω := {(x, y) ∈ R2 |x2 + y2 < 1} ,
ΓR := {(x, y) ∈ R2 |x2 + y2 = 1 , y < 0} , ΓD = ΓN := ∅ , ΓS := ∂Ω \ ΓR , α := 1 ,

3D:

{
Ω := {(x, y, z) ∈ R3 |x2 + y2 + z2 < 1} ,
ΓR := {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1 , z < 0} , ΓD = ΓN := ∅ ,ΓS := ∂Ω \ ΓR , α := 1 .

We point out that the analytical solution is not known in this case, neither for 2D nor 3D setting. Again,
the penalization parameter is given by τ∂T := h−1

T .
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Shape h λ1 λ2 λ3 λ4

Tri 0.0220971 0.2158345987 1.559895634 2.437819931 3.049920666
Cart 0.0220971 0.2158221562 1.559731073 2.43559051 3.048602022
Hex 0.0232271 0.2158325602 1.559368485 2.436442895 3.046759849

λ5 λ6 λ7 λ8

Tri 0.0220971 4.709098557 5.630192912 5.701706322 7.838072639
Cart 0.0220971 4.699926448 5.611148065 5.683806583 7.79151958
Hex 0.0232271 4.696807926 5.611199255 5.680990839 7.785458602

Table 5: Comparison of the agreement of approximation of first 8 lowest eigenvalues on different mesh
shapes (Test 2, 2D, with k = 0).

Shape h λ1 λ2 λ3 λ4

Tri 0.03125 0.2158385026 1.559903017 2.438500603 3.050532108
Cart 0.02209 0.2158385026 1.559903017 2.438500603 3.050532108
Hex 0.02323 0.2158385026 1.559903017 2.438500603 3.050532108

λ5 λ6 λ7 λ8

Tri 0.03125 4.711999675 5.636832636 5.708207711 7.853979883
Cart 0.02209 4.711999678 5.636832650 5.708207724 7.853980005
Hex 0.02323 4.711999678 5.636832652 5.708207726 7.853980022

Table 6: Comparison of the agreement of approximation of first 8 lowest eigenvalues on different mesh
shapes (Test 2, 2D, with k = 2).

λ1 λ2 λ3 λ4

0.1366378544 1.19685572 1.197515884 1.631688662
λ5 λ6 λ7 λ8

1.731891951 2.205594584 2.208357933 2.580903701

Table 7: Approximation of first 8 lowest eigenvalues using a tetrahedral mesh with h = 0.112285 (Test
2, 3D, with k = 0).

λ1 λ2 λ3 λ4

0.37282978 1.500432481 2.380894889 3.39876627
λ5 λ6 λ7 λ8

4.346537437 5.354953316 6.321283502 7.324445868

Table 8: Approximation of first 8 lowest eigenvalues using a triangular mesh with size h = 0.0220536
(Test 3, 2D, with k = 0).

λ1 λ2 λ3 λ4

0.3874486785 1.507367911 1.507385913 2.322542316
λ5 λ6 λ7 λ8

2.567800877 2.567884983 3.371264507 3.371595896

Table 9: Approximation of first 8 lowest eigenvalues using a tetrahedral mesh with size h = 0.11256
(Test 3, 3D, with k = 0).
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k λ1 λ2 λ3 λ4

0 0.3724394903 1.498532641 2.373266412 3.377001344
1 0.3728902032 1.500810900 2.381332254 3.399168194
2 0.3729548393 1.501152576 2.382297588 3.401400182
k λ5 λ6 λ7 λ8

0 4.302096783 5.269212138 6.177973525 7.100710751
1 4.345851994 5.352344733 6.311914181 7.300377389
2 4.350892958 5.361984031 6.331864688 7.339754829

Table 10: Test 3 (2D): First 8 eigenvalues computed on a triangular mesh of size h = 0.1.

Figure 2: Numerical approximation of first 8 eigenfunctions of Test 2 (2D), with k = 2.
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Figure 3: Numerical approximation of first 8 eigenfunctions of Test 2 (3D), with k = 0.

k λ1 λ2 λ3 λ4

0 0.3870775984 1.505550727 1.505617868 2.313113187
1 0.3878616186 1.509634057 1.509703750 2.329887643
2 0.3879830610 1.510166664 1.510222522 2.331344420
k λ5 λ6 λ7 λ8

0 2.556501707 2.556761039 3.340508093 3.341559915
1 2.576496110 2.576675517 3.391642341 3.392248521
2 2.577863626 2.578037715 3.395138790 3.395765921

Table 11: Test 3 (3D): First 8 eigenvalues computed on a tetrahedral mesh of size h = 0.18.

Concerning the 2D case, in Table 10, we report the first 8 lowest eigenvalues computed with HHO
using k ∈ {0, 1, 2} on triangular mesh of size h = 0.1. In addition, in Figure 4 the corresponding
eigenfunctions, for k = 2, are depicted. On the other hand, for the 3D setting, we display in Table 11
the first 8 lowest eigenvalues computed with HHO with k ∈ {0, 1, 2}, using a tetrahedral mesh of size
h = 0.18. The corresponding eigenfunctions, considering k = 2, are shown in Figure 5 . Despite the
fact that the size of the considered meshes are not small enough, we notice that in both cases the method
is convergent.

In Tables 8 and 9, we report the approximation of the first 8 lowest eigenvalues of problem (33) in
2D and 3D, respectively, considering k = 0 in both situations, and on finer meshes. The results are in
agreement with the ones obtained using HDG method with k = 0 (see [34]).

Conclusions

We have extended the application of HHO method to Steklov-type eigenvalue problems. The key idea,
for the analysis, relies on the deduction of a suitable sequence of finite-rank discrete solver operators,
which helps us to invoke well known results of spectral theory of compact operators [8]. As a result,
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Figure 4: Test 3 (2D): First 8 eigenfunctions on unit disk (k = 2)

we have proved that the approximation of eigenvalues converge to the exact ones as h2(k+1), when
piecewise polynomial of degree at most k are considered for approximating smooth eigenfunctions.
Numerical examples are in agreement with our theoretical results, even in situations not covered by the
current analysis (non polygonal domains). In addition, our results show evidence of the robustness of the
method when using different type of polytopal meshes and high order degree.
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Appendix

The purpose here is to establish a discrete trace inequality result for functions belonging to Uk
h. To this

aim, we assume for simplicity that Th is made of simplicial cells. The general case can be derived follow-
ing the ideas described in Section 6.5 in [25]. First, we recall that given vh := ((vT )T∈Th , (vF )F∈Fskel

h
) ∈

Uk
h, we set vh ∈ Pkd (Th) such that ∀T ∈ Th : vh|T := vT . Other ingredient that will be useful is the

operator πh : Uk
h → U0

h, introduced in [25] (cf. (6.85)).

Lemma 5.1 There exists Ctr > 0, idependent of the mesh size, such that

∀uh ∈ Uk
h : ||γh(uh)||0,Γ ≤ Ctr ||uh||h . (34)

Proof. We let uh ∈ Uk
h be fixed. Next, we introduce zh := uh − πhuh ∈ U

k,0
h := {vh ∈ Uk

h :
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Figure 5: Test 3 (3D): First 8 eigenfunctions on unit sphere (k = 2)

(vh, 1)0,Ω = 0}. Then, after invoking Theorem 6.7 and Lemma 6.38 in [25], we obtain

||γh(uh)||0,Γ ≤ ||γh(zh)||0,Γ + ||γh(πhuh)||0,Γ
≤ C1 |||zh|||h + C2 |||πhuh|||h
≤ C1 |||uh|||h + (C1 + C2) |||πhuh|||h .

Therefore, thanks to the boundedness of πh (cf. Lemma 6.33 in [25]), and the fact that ||| · |||h ≤ || · ||h,
we establish (34) and we end the proof. �
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