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SUMMARY

In this paper we consider an augmented curl-based mixed formulation of the Stokes problem in the
plane, and then introduce and analyze stable mixed finite element methods to solve the associated
Galerkin scheme. In this way, we further extend similar procedures applied recently to linear elasticity
and to other mixed formulations for incompressible fluid flows. Indeed, our approach is based on
the introduction of the Galerkin least-squares type terms arising from the corresponding constitutive
and equilibrium equations, and from the Dirichlet boundary condition for the velocity, all of them
multiplied by stabilization parameters. Then, we show that these parameters can be suitably chosen so
that the resulting operator equation induces a strongly coercive bilinear form, whence the associated
Galerkin scheme becomes well posed for any choice of finite element subspaces. In particular, we
can use continuous piecewise linear velocities, piecewise constant pressures, and rotated Raviart-
Thomas elements for the stresses. Next, we derive reliable and efficient residual-based a posteriori error
estimators for the augmented mixed finite element schemes. In addition, several numerical experiments
illustrating the performance of the augmented mixed finite element methods, confirming the properties
of the a posteriori estimators, and showing the behaviour of the associated adaptive algorithms are
reported. The present work should be considered as a first step aiming finally to derive augmented
mixed finite element methods for curl-based formulations of the three-dimensional Stokes problem.
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1. INTRODUCTION

A new class of augmented mixed finite element methods for the dual-mixed variational
formulations of several boundary value problems in continuum mechanics has been derived
in recent papers (see [3], [7], [8], [10], [11], and [12]). A common feature of these methods
is given by the fact that they are all based on the introduction of suitable Galerkin least-
squares terms arising from the corresponding constitutive and equilibrium equations, from the
relations among the different unknowns, and from the boundary conditions. In addition, the
above mentioned works deal with both 2D and 3D problems, and the main results include a
priori and a posteriori error estimates.

In the first work of this serie (cf. [10]), the plane linear elasticity problem with homogeneous
Dirichlet boundary conditions was considered. In this case the application of the first Korn’s
inequality (cf. Theorem 10.1 in [14]) allows to show that the bilinear form arising from the
augmented formulation becomes strongly coercive, whence arbitrary finite element subspaces
can be utilized in the associated Galerkin scheme. In particular, Raviart-Thomas spaces of
lowest order for the stress tensor, piecewise linear elements for the displacement, and piecewise
constants for the rotation can be used. The extension of the results in [10] to the case of non-
homogeneous Dirichlet boundary conditions was provided in [11]. The corresponding analysis
requires the incorporation into the augmented formulation of an additional consistency term,
which is defined precisely in terms of the Dirichlet boundary condition. As a consequence of
it, the strong coerciveness of the resulting bilinear form follows now from a modified Korn’s
inequality. Then, the results from [10] and [11] were extended in [12] to three-dimensional linear
elasticity problems, whereas a residual based a posteriori error analysis yielding a reliable and
efficient estimator for the augmented method from [10], was given in [3].

On the other hand, the results from [10], [11], and [3] were generalized recently in [7] and
[8] to the case of incompressible fluid flows with symmetric and non-symmetric stress tensors,
respectively. More precisely, the a priori and a posteriori error analyses of augmented mixed
finite element methods for a velocity-pressure-stress-rotation formulation of the stationary
Stokes equations are provided in [7]. Besides the Galerkin least-squares type terms arising
from the constitutive and equilibrium equations, the corresponding formulation makes use of
the relations defining the pressure in terms of the symmetric stress tensor and the rotation
in terms of the displacement, all them multiplied by stabilization parameters. Alternatively,
just a velocity-pressure-stress formulation of the Stokes problem, with a non-symmetric stress,
is considered in [8]. As a consequence, the rotation is not required as an auxiliary unknown,
which simplifies the resulting augmented formulation and constitutes the main advantage of
the approach from [8]. On the contrary, the main advantages of the method employed in [7] are,
precisely, the symmetry of the stress, which is a more realistic condition, and the possibility
of having a direct approximation of the rotation, which is also a tensor of practical interest.

The purpose of the present paper is to further extend the analysis in [7] and [8] to a curl-
based mixed variational formulation of the two-dimensional Stokes problem. To this respect,
the present work should be considered as a first contribution aiming finally to define augmented
mixed finite element methods for curl-based mixed formulations of the Stokes problem in 3D.
At the same time, the methods to be proposed here constitute valid alternatives to those
presented in [7] and [8]. The rest of the paper is organized as follows. In Section 2 we describe
the boundary value problem of interest, introduce the associated curl-based mixed variational

Copyright c© 2000 John Wiley & Sons, Ltd.



AUGMENTED MIXED-FEM FOR THE STOKES PROBLEM 3

formulation, and prove that it is well-posed. Then, in Sections 3 and 4 we introduce and
analyze the continuous and discrete augmented formulations, respectively. Next, in Section 5
we develop a residual-based a posteriori error analysis of the augmented mixed finite element
methods yielding reliable and efficient estimators. Finally, several numerical results illustrating
the performance of the augmented mixed finite element methods, confirming the reliability and
efficiency of the a posteriori error estimators, and showing the good behaviour of the associated
adaptive algorithms, are reported in Section 6.

We end this section with some notations to be used below. Given any Hilbert space U , we let
[U ]2 and [U ]2×2 denote, respectively, the space of vectors and square matrices of order 2 with
entries in U . When no confusion arises we simply use U2 and U2×2 instead of [U ]2 and [U ]2×2,
respectively. In particular, given τ := (τij), ζ := (ζij) ∈ IR2×2, we write as usual τ t := (τji)

and τ : ζ :=

2
∑

i,j=1

τijζij . In addition, we define

J :=

(

0 1
−1 0

)

and τ r := τ −
1

2
(τ : J)J ∀ τ ∈ IR2×2 .

Note that τ r : J = 0. On the other hand, given scalar, vector, and tensor valued fields v,
ϕ := (ϕ1, ϕ2)

t, and τ := (τij), respectively, we let

curl(v) :=

( ∂v
∂x2

− ∂v
∂x1

)

, curl(ϕ) :=

(

curl(ϕ1)
t

curl(ϕ2)
t

)

, and curl(τ ) :=

(

∂τ12

∂x1
− ∂τ11

∂x2
∂τ22

∂x1
− ∂τ21

∂x2

)

.

Finally, in what follows we utilize the standard terminology for Sobolev spaces and norms,
employ 0 to denote a generic null vector, and use C and c, with or without subscripts, bars,
tildes or hats, to denote generic constants, independent of the discretization parameters, which
may take different values at different places.

2. THE PROBLEM AND ITS DUAL-MIXED FORMULATION

Let Ω be a bounded and simply connected polygonal domain in IR2 with boundary Γ. Given
a force density f ∈ [L2(Ω)]2 and a Dirichlet datum g ∈ [H1/2(Γ)]2, we seek a vector field u

(velocity) and a scalar field p (pressure) such that

µ ∆u−∇ p = −f in Ω , div(u) = 0 in Ω , u = g on Γ , (2.1)

where µ is the kinematic viscosity of a fluid occupying the region Ω. As required by the
incompressibility condition, we assume from now on that g satisfies the compatibility condition

∫

Γ

g · ν = 0 , (2.2)

where ν := (ν1, ν2)
t denotes the unit outward normal at Γ.

We now introduce the auxiliary unknown given by the tensor

σ := µ curl(u) − pJ in Ω . (2.3)

Copyright c© 2000 John Wiley & Sons, Ltd.



4 GABRIEL N. GATICA LUIS F. GATICA ANTONIO MÁRQUEZ

Then, using that ∆u = curl(curl(u)) and curl(pJ) = ∇p, we find that the first equation in
(2.1) can be stated as

curl(σ) = − f in Ω . (2.4)

In addition, since div(u) = curl(u) : J, we notice that the incompressibility condition can be
rewritten as curl(u) : J = 0 in Ω. Hence, instead of (2.1), in what follows we consider the
curl-based problem: Find a tensor field σ, a vector field u, and a scalar field p, such that

σ := µ curl(u) − pJ in Ω , curl(σ) = − f in Ω,

curl(u) : J = 0 in Ω, u = g on Γ .
(2.5)

It is easy to see that the pair of equations given by

σ := µ curl(u) − pJ in Ω and curl(u) : J = 0 in Ω , (2.6)

is equivalent to

σ := µ curl(u) − pJ in Ω and p +
1

2
(σ : J) = 0 in Ω , (2.7)

whence (2.5) becomes equivalent to:

σ := µ curl(u) − pJ in Ω, curl(σ) = − f in Ω ,

p +
1

2
(σ : J) = 0 in Ω , u = g on Γ .

(2.8)

Then, testing the first three equations of (2.8) with τ ∈ H(curl; Ω), v ∈ [L2(Ω)]2, and
q ∈ L2(Ω), respectively, using the Dirichlet boundary condition, and rearranging the resulting
terms, we arrive at the variational formulation: Find (σ, p,u) ∈ H(curl; Ω)×L2(Ω)× [L2(Ω)]2

such that

1

µ

∫

Ω

σr : τ r +
2

µ

∫

Ω

(

p +
1

2
(σ : J)

)(

q +
1

2
(τ : J)

)

+

∫

Ω

u · curl(τ ) = 〈τ s,g〉 ,

∫

Ω

v · curl(σ) = −

∫

Ω

f · v ,

(2.9)
for all (τ , q,v) ∈ H(curl; Ω) × L2(Ω) × [L2(Ω)]2, where s := (−ν2, ν1)

t is the unit tangential
vector along Γ and 〈·, ·〉 denotes the duality pairing between [H−1/2(Γ)]2 and [H1/2(Γ)]2 with
respect to the [L2(Γ)]2-inner product. In addition, we recall here that

H(curl; Ω) :=
{

τ ∈ [L2(Ω)]2×2 : curl(τ ) ∈ [L2(Ω)]2
}

is a Hilbert space with the inner product

〈ζ, τ 〉curl,Ω := 〈ζ, τ 〉0,Ω + 〈curl(ζ), curl(τ )〉0,Ω ∀ ζ, τ ∈ H(curl; Ω) ,

where

〈ζ, τ 〉0,Ω :=

∫

Ω

ζ : τ ∀ ζ, τ ∈ [L2(Ω)]2×2 ,

and

〈v,w〉0,Ω :=

∫

Ω

v ·w ∀v, w ∈ [L2(Ω)]2 .

Copyright c© 2000 John Wiley & Sons, Ltd.
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The corresponding induced norms are denoted by ‖ · ‖curl,Ω and ‖ · ‖0,Ω, respectively.

Next, we observe that for any c ∈ IR, (cJ,−c,0) is a solution of the homogeneous version
of system (2.9). Hence, in order to avoid this non-uniqueness we consider the decomposition

H(curl; Ω) = H0 ⊕ RJ , (2.10)

where

H0 :=

{

τ ∈ H(curl; Ω) :

∫

Ω

τ : J = 0

}

, (2.11)

and require from now on that σ ∈ H0. Equivalently, in what follows we look for the H0-
component of σ, which is also denoted by σ. Moreover, since the test space can also be
restricted to H0, we now let

H := H0 × L2(Ω) , Q := [L2(Ω)]2 ,

and introduce a generalized version of (2.9): Find ((σ, p),u) ∈ H × Q such that

a((σ, p), (τ , q)) + b(τ ,u) = 〈τ s,g〉 ∀ (τ , q) ∈ H ,

b(σ,v) = −

∫

Ω

f · v ∀v ∈ Q ,
(2.12)

where, given a parameter κ > 0, a : H ×H → R and b : H0×Q → R are the bounded bilinear
forms defined by

a((ζ, r), (τ , q)) :=
1

µ

∫

Ω

ζr : τ r +
κ

µ

∫

Ω

(

r +
1

2
(ζ : J)

) (

q +
1

2
(τ : J)

)

∀ (ζ, r), (τ , q) ∈ H ,

(2.13)
and

b(ζ,v) :=

∫

Ω

v · curl(ζ) ∀ ζ ∈ H0 , ∀v ∈ Q . (2.14)

Note that (2.9) corresponds to (2.12) with κ = 2 and H(curl; Ω) instead of H0.

In order to show that the formulations (2.12) are independent of κ > 0, we prove next that
they are all equivalent to the simplified version arising after taking κ = 0 in (2.12), that is:
Find (σ,u) ∈ H0 × Q such that

a0(σ, τ ) + b(τ ,u) = 〈τ s,g〉 ∀ τ ∈ H0 ,

b(σ,v) = −

∫

Ω

f · v ∀v ∈ Q ,
(2.15)

where a0 : H0 × H0 → R is the bounded bilinear form defined by

a0(ζ, τ ) :=
1

µ

∫

Ω

ζr : τ r ∀ ζ, τ ∈ H0 .

Lemma 2.1. Problems (2.12) and (2.15) are equivalent. Indeed, ((σ, p),u) ∈ H × Q is a

solution of (2.12) if and only if (σ,u) ∈ H0 × Q is a solution of (2.15) and p = − 1
2 (σ : J).

Proof. It suffices to take τ = 0 in (2.12) and then use that the products τ : J live in L2(Ω)
for all τ ∈ H(curl; Ω), as the pressure test functions do. 2

Copyright c© 2000 John Wiley & Sons, Ltd.



6 GABRIEL N. GATICA LUIS F. GATICA ANTONIO MÁRQUEZ

Another way of seeing the equivalence between (2.12) and (2.15) is the following. We observe
that eliminating the pressure unknown from (2.8), that is replacing p by − 1

2 (σ : J) in its first
equation, we are lead to the reduced problem:

1

µ
σr = curl(u) in Ω, curl(σ) = − f in Ω, u = g on Γ , (2.16)

whose variational formulation is precisely (2.15). Hence, (2.12) can also be considered as the
equivalent augmented formulation arising from (2.15) after adding the equation

κ

µ

∫

Ω

(

p +
1

2
(σ : J)

)(

q +
1

2
(τ : J)

)

= 0 ∀ (τ , q) ∈ H .

Certainly, if we had to choose, we would prefer (2.15) since it is simpler than (2.12). However,
the interest in (2.12) lies in the corresponding Galerkin scheme, which, as we show below in
Section 4, provides more flexibility for choosing the pressure finite element subspace.

The well-posedness of (2.12) and (2.15) is proved next. We need the following lemmas.

Lemma 2.2. There exists a positive constant β, depending only on Ω, such that

sup
τ∈H0
τ 6=0

∫

Ω

v · curl(τ )

‖τ‖curl,Ω
≥ β‖v‖Q ∀v ∈ Q . (2.17)

Proof. Given v ∈ Q, v 6= 0, we let τ 0 : = − curl(z), where z ∈ [H1(Ω)]2 is the unique weak
solution of the boundary value problem:

−∆z = v in Ω , z = 0 on Γ. (2.18)

It is clear that τ 0 ∈ [L2(Ω)]2×2, curl(τ 0) = v ∈ Q, and
∫

Ω

τ 0 : J = −

∫

Ω

curl(z) : J = −

∫

Ω

div(z) = −

∫

Γ

z · ν = 0 ,

whence τ 0 ∈ H0. In addition, there holds

‖τ 0‖
2
curl,Ω = ‖curl(z)‖2

0,Ω + ‖v‖2
0,Ω ≤ ‖z‖2

1,Ω + ‖v‖2
0,Ω ,

which, thanks to the continuous dependence result for (2.18), yields

‖τ 0‖curl,Ω ≤ C ‖v‖0,Ω . (2.19)

In this way, we conclude that

sup
τ∈H0
τ 6=0

∫

Ω

v · curl(τ )

‖τ‖curl,Ω
≥

∫

Ω

v · curl(τ 0)

‖τ 0‖curl,Ω
=

‖v‖2
0,Ω

‖τ 0‖curl,Ω
≥ β ‖v‖0,Ω = β ‖v‖Q ,

where (2.19) has been used in the last inequality. 2

Lemma 2.3. There exists c1 > 0, depending only on Ω, such that

c1 ‖τ‖
2
0,Ω ≤ ‖τ r‖2

0,Ω + ‖curl(τ )‖2
0,Ω ∀ τ ∈ H0 . (2.20)

Copyright c© 2000 John Wiley & Sons, Ltd.
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Proof. Given τ :=

(

τ11 τ12

τ21 τ22

)

∈ H0, we define τ̂ :=

(

τ12 −τ11

τ22 −τ21

)

. Since div(τ̂ ) = curl(τ ) ∈

[L2(Ω)]2, it is clear that τ̂ ∈ H(div; Ω). Also, we note that
∫

Ω

tr(τ̂ ) =

∫

Ω

(τ12 − τ21) =

∫

Ω

τ : J = 0 ,

which implies that τ̂ ∈

{

s ∈ H(div; Ω) :

∫

Ω

tr(s) = 0

}

. Hence, according to Lemma 3.1 in

[1] or Proposition 3.1 of Chapter IV in [4], there exists a constant c > 0, depending only on
Ω, such that

c ‖τ̂‖2
0,Ω ≤ ‖τ̂ d‖2

0,Ω + ‖div(τ̂ )‖2
0,Ω . (2.21)

In this way, noting that ‖τ̂‖0,Ω = ‖τ‖0,Ω, ‖τ̂ d‖0,Ω = ‖τ r‖0,Ω, and ‖div(τ̂ )‖0,Ω =
‖curl(τ )‖0,Ω, we see that (2.21) becomes (2.20). 2

Theorem 2.4. Problem (2.15) has a unique solution (σ,u) ∈ H0 ×Q. Moreover, there exists

a positive constant C, depending only on Ω, such that

‖σ‖curl,Ω + ‖u‖Q ≤ C
{

‖f‖0,Ω + ‖g‖1/2,Γ

}

.

Proof. It suffices to check that the bilinear forms a0 and b satisfy the hypotheses of the
Babuška-Brezzi theory. Indeed, from Lemma 2.2 we have the continuos inf-sup condition for
b. Now, let V be the kernel of the operator induced by b, that is

V :=
{

τ ∈ H0 : b(τ ,v) = 0 ∀v ∈ Q
}

=
{

τ ∈ H0 : curl(τ ) = 0 in Q
}

.

It follows, applying Lemma 2.3, that for each τ ∈ V there holds

a0(τ , τ ) =
1

µ
‖τ r‖2

0,Ω ≥
c1

µ
‖τ‖2

0,Ω =
c1

µ
‖τ‖2

curl,Ω ,

which shows that the bilinear form a0 is strongly coercive in V . Hence, a straightforward
application of the clasical result given by Theorem 1.1 in Chapter II of [4] completes the proof.
2

Theorem 2.5. Problem (2.12) has a unique solution ((σ, p),u) ∈ H × Q, independent of κ,

and there holds p = − 1
2 (σ : J). Moreover, there exists a constant C > 0, depending only on

Ω, such that

‖((σ, p),u)‖H×Q ≤ C
{

‖f‖0,Ω + ‖g‖1/2,Γ

}

.

Proof. It is a direct consequence of Lemma 2.1, which gives the equivalence between (2.12)
and (2.15), and Theorem 2.5, which yields the well-posedness of (2.15). 2

3. THE AUGMENTED DUAL-MIXED VARIATIONAL FORMULATIONS

In the following we enrich the formulations (2.12) and (2.15) with residuals arising from the
modified constitutive equation, the equilibrium equation, and the Dirichlet boundary condition

Copyright c© 2000 John Wiley & Sons, Ltd.
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(cf. (2.16)). More precisely, we substract the second from the first equation in (2.12) and then
add the Galerkin least-squares terms given by

κ1

∫

Ω

(

curl(u) −
1

µ
σr

)

:

(

curl(v) +
1

µ
τ r

)

= 0 , (3.1)

κ2

∫

Ω

curl(σ) · curl(τ ) = − κ2

∫

Ω

f · curl(τ ) , (3.2)

and

κ3

∫

Γ

u · v = κ3

∫

Γ

g · v , (3.3)

for all (τ ,v) ∈ H0 × [H1(Ω)]2, where (κ1, κ2, κ3) is a vector of positive parameters to be
specified later. We notice that the above terms implicitly require now the velocity u to live in
the smaller space [H1(Ω)]2.

In other words, instead of (2.12) we propose the following augmented variational formulation:
Find (σ, p,u) ∈ H := H0 × L2(Ω) × [H1(Ω)]2 such that

A((σ, p,u), (τ , q,v)) = F (τ , q,v) ∀ (τ , q,v) ∈ H , (3.4)

where the bilinear form A : H× H → R and the functional F : H → R are defined by

A((σ, p,u), (τ , q,v)) := a((σ, p), (τ , q)) + b(τ ,u) − b(σ,v)

+ κ1

∫

Ω

(

curl(u) −
1

µ
σr

)

:

(

curl(v) +
1

µ
τ r

)

+ κ2

∫

Ω

curl(σ) · curl(τ ) + κ3

∫

Γ

u · v ,

(3.5)
and

F (τ , q,v) := 〈τs,g〉 +

∫

Ω

f · (v − κ2 curl(τ )) + κ3

∫

Γ

g · v . (3.6)

Similarly, instead of (2.15) we propose: Find (σ,u) ∈ H0 := H0 × [H1(Ω)]2 such that

A0((σ,u), (τ ,v)) = F0(τ ,v) ∀ (τ ,v) ∈ H0 , (3.7)

where the bilinear form A0 : H0 × H0 → R and the functional F0 : H0 → R are defined by

A0((σ,u), (τ ,v)) := a0(σ, τ ) + b(τ ,u) − b(σ,v)

+ κ1

∫

Ω

(

curl(u) −
1

µ
σr

)

:

(

curl(v) +
1

µ
τ r

)

+ κ2

∫

Ω

curl(σ) · curl(τ ) + κ3

∫

Γ

u · v ,

(3.8)
and

F0(τ ,v) := 〈τ s,g〉 +

∫

Ω

f · (v − κ2 curl(τ )) + κ3

∫

Γ

g · v . (3.9)

The analogue of Lemma 2.1 is given now.

Lemma 3.1. Problems (3.4) and (3.7) are equivalent. Indeed, (σ, p,u) ∈ H is a solution of

(3.4) if and only if (σ,u) ∈ H0 is a solution of (3.7) and p = − 1
2 (σ : J).

Copyright c© 2000 John Wiley & Sons, Ltd.
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Proof. It suffices to take (τ ,v) = (0,0) in (3.4) and then use again that the products τ : J

live in L2(Ω) for all τ ∈ H(curl; Ω), as the pressure test functions do. 2

In what follows we aim to show the well-posedness of (3.7). The main idea is to choose the
vector of parameters (κ1, κ2, κ3) in a way such that A0 becomes strongly coercive on H0 with
respect to the norm ‖ · ‖H0 defined by

‖(τ ,v)‖H0 :=
{

‖τ‖2
curl,Ω + ‖v‖2

1,Ω

}1/2
.

We first notice, after simple computations, that
∫

Ω

(

curl(v) −
1

µ
τ r

)

:

(

curl(v) +
1

µ
τ r

)

= ‖curl(v)‖2
0,Ω −

1

µ2
‖τ r‖2

0,Ω .

On the other hand, using Peetre-Tartar Lemma (see, e.g., [13], Chapter I, Theorem 2.1) and
the generalized Poincaré inequality, one can prove that there exists C1 > 0, such that

|v|21,Ω + ‖v‖2
0,Γ ≥ C1 ‖v‖

2
1,Ω ∀v ∈ [H1(Ω)]2 . (3.10)

Hence, assuming that 0 < κ1 < µ and 0 < κ2, κ3, noting that ‖curl(v)‖0,Ω = |v|1,Ω, and
applying Lemma 2.3 and (3.10), we deduce that

A0((τ ,v), (τ ,v)) =
1

µ

(

1 −
κ1

µ

)

‖τ r‖2
0,Ω + κ1 ‖curl(v)‖2

0,Ω + κ2 ‖curl(τ )‖2
0,Ω + κ3 ‖v‖

2
0,Γ

≥ c1 α1 ‖τ‖
2
0,Ω +

κ2

2
‖curl(τ )‖2

0,Ω + α2

(

|v|21,Ω + ‖v‖2
0,Γ

)

≥ α3 ‖τ‖
2
curl,Ω + C1 α2 ‖v‖

2
1,Ω ∀ (τ ,v) ∈ H0 ,

where

α1 := min

{

1

µ

(

1 −
κ1

µ

)

,
κ2

2

}

, α2 := min {κ1, κ3} , and α3 := min
{

c1 α1,
κ2

2

}

.

In this way, we find that

A0((τ ,v), (τ ,v)) ≥ α ‖(τ ,v)‖2
H0

∀ (τ ,v) ∈ H0 , (3.11)

where α := min {α3, C1 α2}. In particular, taking

κ2 =
2

µ

(

1 −
κ1

µ

)

and κ3 = κ1 , (3.12)

we obtain α1 = κ2

2 , α2 = κ1, and α = min
{

c1
κ2

2 , κ2

2 , C1 κ1

}

. For instance, κ1 = µ
2 yields

κ2 = 1
µ and κ3 = µ

2 .

As a consequence of the above analysis, we obtain the following main results.

Theorem 3.2. Assume that there hold 0 < κ1 < µ and 0 < κ2, κ3. Then, the augmented

formulation (3.7) has a unique solution (σ,u) ∈ H0. Moreover, there exists a positive constant

C, depending only on µ, (κ1, κ2, κ3), c1, and C1, such that

‖(σ,u)‖H0 ≤ C ‖F0‖H′
0
≤ C

{

‖f‖0,Ω + ‖g‖1/2,Γ

}

.

Copyright c© 2000 John Wiley & Sons, Ltd.
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Proof. It is clear from (3.8) and (3.11) that A0 is bounded and strongly coercive on H0 with
constants depending on µ, (κ1, κ2, κ3), c1, and C1. Also, the linear functional F0 (cf. (3.9)) is
clearly bounded. Therefore, the assertion is a simple consequence of the Lax-Milgram Lemma.
2

Theorem 3.3. Assume that there hold 0 < κ1 < µ and 0 < κ2, κ3. Then, the augmented

formulation (3.4) has a unique solution (σ, p,u) ∈ H, independent of κ, and there holds

p = − 1
2 (σ : J). Moreover, there exists a positive constant C, depending only on µ, (κ1, κ2, κ3),

c1, and C1, such that

‖(σ, p,u)‖H ≤ C
{

‖f‖0,Ω + ‖g‖1/2,Γ

}

.

Proof. It is a direct consequence of Lemma 3.1 and Theorem 3.2. 2

4. THE AUGMENTED MIXED FINITE ELEMENT METHODS

We now let Hσ
0,h, Hp

h, Hu

h be arbitrary finite element subspaces of H0, L2(Ω) and [H1(Ω)]2,
respectively, and define

Hh := Hσ
0,h × Hp

h × Hu

h and H0,h := Hσ
0,h × Hu

h .

In addition, let κ, κ1, κ2 and κ3 be given positive parameters. Then, the Galerkin schemes
associated with (3.4) and (3.7) read: Find (σh, ph,uh) ∈ Hh such that

A((σh, ph,uh), (τ h, qh,vh)) = F (τ h, qh,vh) ∀ (τh, qh,vh) ∈ Hh , (4.1)

and: Find (σh,uh) ∈ H0,h such that

A0((σh,uh), (τ h,vh)) = F0(τ h,vh) ∀ (τ h,vh) ∈ H0,h . (4.2)

The following theorem provides the unique solvability, stability, and convergence of (4.2).

Theorem 4.1. Assume that the parameters κ1, κ2 and κ3 satisfy the assumptions of Theorem

3.2 and let H0,h be any finite element subspace of H0. Then, the Galerkin scheme (4.2) has a

unique solution (σh,uh) ∈ H0,h, and there exist positive constants C, C̃, independent of h,

such that

‖(σh,uh)‖H0 ≤ C sup
(τ h,vh)∈H0,h

(τ h,vh) 6=0

|F0(τ h,vh)|

‖(τh,vh)‖H0

≤ C
{

‖f‖0,Ω + ‖g‖1/2,Γ

}

,

and

‖(σ,u) − (σh,uh)‖H0 ≤ C̃ inf
(τ h,vh)∈H0,h

‖(σ,u) − (τ h,vh)‖H0 . (4.3)

Proof. Since A0 is bounded and strongly coercive on H0 (cf. (3.10)) with constants depending
on µ, (κ1, κ2, κ3), c1, and C1, the proof follows from a straightforward application of the
Lax-Milgram Lemma and Cea’s estimate. 2

In order to define an explicit finite element subspace of H0, we now let {Th}h>0 be a regular
family of triangulations of the polygonal region Ω̄ by triangles T of diameter hT such that
Ω̄ = ∪{T : T ∈ Th} and define h := max{hT : T ∈ Th}. Given an integer l ≥ 0 and a subset

Copyright c© 2000 John Wiley & Sons, Ltd.
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S of R
2, we denote by Pl(S) the space of polynomials of total degree at most l defined on S.

Also, for each T ∈ Th we define the local rotated Raviart-Thomas space of order zero

W (T ) :=

{(

a
b

)

+ c

(

x2

−x1

)

: a, b, c ∈ IR

}

⊆ [P1(T )]2 ,

and let H̃σ
h be the corresponding global space, that is

H̃σ
h := {τh ∈ H(curl; Ω) : τh,i|T ∈ W (T )t ∀ i ∈ {1, 2} , ∀T ∈ Th} , (4.4)

where τh,i denotes the i-th row of τh. Then we let

H̃0,h := H̃σ
0,h × H̃u

h , (4.5)

where

H̃σ
0,h :=

{

τh ∈ H̃σ
h :

∫

Ω

τh : J = 0

}

, (4.6)

and

H̃u

h := {vh ∈ [C(Ω̄)]2 : vh|T ∈ [P1(T )]2 ∀T ∈ Th} . (4.7)

As in [10], it is easy to see that the number of degrees of freedom defining H̃0,h behaves
asymptoticaly as 4 times the number of triangles of Th. In addition, the approximation
properties of these subspaces are given as follows (see [4], [5]):

(APσ
0,h) For each τ ∈ [H1(Ω)]2×2 ∩ H0 with curl(τ ) ∈ [H1(Ω)]2 there exists τh ∈ H̃σ

0,h such
that

‖τ − τh‖curl,Ω ≤ C h
{

‖τ‖1,Ω + ‖curl(τ )‖1,Ω

}

.

(APu

h) For each v ∈ [H2(Ω)]2 there exists vh ∈ H̃u

h such that

‖v − vh‖1,Ω ≤ C h ‖v‖2,Ω .

Then, we have the following result providing the rate of convergence of (4.2) with H0,h =

H̃0,h.

Theorem 4.2. Let (σ,u) ∈ H0 and (σh,uh) ∈ H̃0,h be the unique solutions of the

continuous and discrete augmented formulations (3.7) and (4.2), respectively. Assume that

σ ∈ [Hr(Ω)]2×2, curl(σ) ∈ [Hr(Ω)]2, and u ∈ [H1+r(Ω)]2, for some r ∈ (0, 1]. Then there

exists C > 0, independent of h, such that

‖(σ,u) − (σh,uh)‖H0 ≤ C hr
{

‖σ‖r,Ω + ‖curl(σ)‖r,Ω + ‖u‖1+r,Ω

}

.

Proof. It follows from the Cea estimate (4.3), the above approximation properties, and the
interpolation theorems in the corresponding function spaces. 2

We now state the discrete analogue of Lemma 3.1, which gives a sufficient condition
for the equivalence between (4.1) and (4.2) with arbitrary finite element subspaces Hh :=
Hσ

0,h × Hp
h × Hu

h and H0,h := Hσ
0,h × Hu

h , respectively.

Copyright c© 2000 John Wiley & Sons, Ltd.
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Lemma 4.3. Assume that

(τh : J) ∈ Hp
h ∀ τ h ∈ Hσ

0,h . (4.8)

Then, problems (4.1) and (4.2) are equivalent: (σh, ph,uh) ∈ Hh is a solution of (4.1) if and

only if (σh,uh) ∈ H0,h is a solution of (4.2) and ph = − 1
2 (σh : J).

Proof. Let (σh, ph,uh) ∈ Hh be a solution of (4.1). It is clear from (4.8) that ph + 1
2 (σh : J)

belongs to Hp
h. Then, taking (τh, qh,vh) = (0, ph + 1

2 (σh : J),0) ∈ Hh, we find from (4.1)
that

κ

µ

∫

Ω

(

ph +
1

2
(σh : J)

)2

= 0 ,

which yields ph = − 1
2 (σh : J). Conversely, given (σh,uh) ∈ H0,h a solution of (4.2), we let

ph : = − 1
2 (σh : J) and see that (σh, ph,uh) ∈ Hh becomes a solution of (4.1). 2

It is important to emphasize from Lemma 4.3 that the augmented scheme (4.1) makes sense
only for pressure finite element subspaces not satisfying the condition (4.8). According to the
above, we now aim to show that (4.1) is well-posed when an arbitrary finite element subspace
Hh of H is considered. The idea, similarly as for A0, is to choose κ, κ1, κ2 and κ3 in such a
way that A becomes strongly coercive on H with respect to the norm ‖ · ‖H defined by

‖(τ , q,v)‖H :=
{

‖τ‖2
curl,Ω + ‖q‖2

0,Ω + ‖v‖2
1,Ω

}1/2

.

In fact, we first notice from (3.5) and the definition of a (cf. (2.13)) that

A((τ , q,v), (τ , q,v)) =
1

µ

(

1 −
κ1

µ

)

‖τ r‖2
0,Ω +

κ

µ

∥

∥

∥

∥

q +
1

2
(τ : J)

∥

∥

∥

∥

2

0,Ω

+ κ1 |v|
2
1,Ω + κ2 ‖curl(τ )‖2

0,Ω + κ3 ‖v‖
2
0,Γ ,

which, employing the estimate

∥

∥

∥

∥

q +
1

2
(τ : J)

∥

∥

∥

∥

2

0,Ω

≥
1

2
‖q‖2

0,Ω −
1

2
‖τ‖2

0,Ω ,

and taking κ > 0, yields

A((τ , q,v), (τ , q,v)) ≥
1

µ

(

1 −
κ1

µ

)

‖τ r‖2
0,Ω −

κ

2µ
‖τ‖2

0,Ω + κ2 ‖curl(τ )‖2
0,Ω

+
κ

2µ
‖q‖2

0,Ω + κ1 |v|
2
1,Ω + κ3 ‖v‖

2
0,Γ ∀ (τ , q,v) ∈ H .

Then, assuming that 0 < κ1 < µ and 0 < κ2, κ3, and applying Lemma 2.4 and (3.10), we
deduce that

A((τ , q,v), (τ , q,v)) ≥

(

c1 α1 −
κ

2µ

)

‖τ‖2
0,Ω +

κ2

2
‖curl(τ )‖2

0,Ω

+
κ

2µ
‖q‖2

0,Ω + C1 α2 ‖v‖
2
1,Ω ∀ (τ , q,v) ∈ H ,

Copyright c© 2000 John Wiley & Sons, Ltd.
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where c1 and C1 are the constants from Lemma 2.4 and (3.10), respectively, and the constants
α1 and α2 are given by

α1 := min

{

1

µ

(

1 −
κ1

µ

)

,
κ2

2

}

and α2 := min {κ1, κ3} .

Hence, choosing the parameter κ such that 0 < κ < 2 c1 µ α1, we find that

A((τ , q,v), (τ , q,v)) ≥ α ‖(τ , q,v)‖2
H

∀ (τ , q,v) ∈ H , (4.9)

where α := min
{

α3,
κ
2µ , C1 α2

}

and α3 := min
{

c1 α1 − κ
2µ , κ2

2

}

.

We are now in a position to establish the following result.

Theorem 4.4. Assume that there hold

0 < κ < 2 c1 µ α1 , 0 < κ1 < µ , and 0 < κ2, κ3 .

In addition, let Hh be any finite element subspace of H. Then, the Galerkin scheme (4.1) has

a unique solution (σh, ph,uh) ∈ Hh, and there exist positive constants C, C̃, independent of

h, such that

‖(σh, ph,uh)‖H ≤ C sup
(τ h,qh,vh)∈Hh

(τ h,qh,vh) 6=0

|F (τ h, qh,vh)|

‖(τh, qh,vh)‖H

≤ C
{

‖f‖0,Ω + ‖g‖1/2,Γ

}

,

and

‖(σ, p,u) − (σh, ph,uh)‖H ≤ C̃ inf
(τ h,qh,vh)∈Hh

‖(σ, p,u) − (τ h, qh,vh)‖H .

Proof. Since A is bounded and strongly coercive on H (cf. (3.5) and (4.9)) with constants
depending on µ, (κ, κ1, κ2, κ3), c1, and C1, the proof follows from a straightforward application
of the Lax-Milgram Lemma, and Cea’s estimate. 2

An explicit finite element subspace of H, not satifying (4.8), is given by

H̃h := H̃σ
0,h × H̃p

h × H̃u

h , (4.10)

where H̃σ
0,h and H̃u

h are defined by (4.6) and (4.7), respectively, and

H̃p
h :=

{

qh ∈ L2(Ω) : qh|T ∈ P0(T ) ∀T ∈ Th

}

.

The approximation property of H̃p
h is given as follows (see [4], [5]):

(APp
h) For each q ∈ H1(Ω) there exists qh ∈ H̃p

h such that

‖q − qh‖0,Ω ≤ C h ‖q‖1,Ω .

Then, we have the following theorem providing the rate of convergence of (4.1) with
Hh = H̃h. In this case the number of degrees of freedom defining H̃h behaves asymptoticaly
as 5 times the number of triangles of Th.

Copyright c© 2000 John Wiley & Sons, Ltd.
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Theorem 4.5. Let (σ, p,u) ∈ H and (σh, ph,uh) ∈ H̃h be the unique solutions of the

continuous and discrete augmented formulations (3.4) and (4.1), respectively. Assume that

σ ∈ [Hr(Ω)]2×2, curl(σ) ∈ [Hr(Ω)]2, and u ∈ [Hr+1(Ω)]2, for some r ∈ (0, 1]. Then there

exists C > 0, independent of h, such that

‖(σ, p,u) − (σh, ph,uh)‖H ≤ C hr
{

‖σ‖r,Ω + ‖curl(σ)‖r,Ω + ‖u‖r+1,Ω

}

.

Proof. We first notice, according to Theorem 3.3 and the hypothesis on σ, that p = 1
2 (σ : J)

belongs to Hr(Ω) and that ‖p‖Hr(Ω) ≤ C ‖σ‖r,Ω. Then, the proof follows from Cea’s
estimate (cf. Theorem 4.4), the approximation properties (APσ

0,h), (APp
h), and (APu

h), and
the interpolation theorems in the corresponding function spaces. 2

At this point we remark that the mean value condition

∫

Ω

τ : J = 0 required by the

elements of H̃σ
0,h (cf. (4.6)), is incorporated into the augmented schemes by means of a Lagrange

multiplier φh ∈ IR. In particular, instead of (4.1), we consider the equivalent problem: Find
(σh, ph,uh, φh) ∈ H̃σ

h × H̃p
h × H̃u

h × R such that

A((σh, ph,uh), (τ h, qh,vh)) + φh

∫

Ω

τh : J = F (τ h, qh,vh) ,

ϕh

∫

Ω

σh : J = 0 ,

(4.11)

for all (τh, qh,vh, ϕh) ∈ H̃σ
h × H̃p

h × H̃u

h × IR. We omit further details here and refer to [10]
and [11] for a similar analysis.

On the other hand, if we assume that the Dirichlet datum g = 0, then it follows from
our analysis in Section 2 that the tensor σ (cf. (2.3)) belongs to H0. In addition, the
velocity u lives in [H1

0 (Ω)]2, and the semi-norm | · |1,Ω is a norm on [H1
0 (Ω)]2, equivalent

to the usual [H1(Ω)]2-norm. Consequently, there is no need of introducing the boundary
consistent term, whence our augmented dual-mixed variational formulation reduces to: Find
(σ, p,u) ∈ H̃ := H0 × L2(Ω) × [H1

0 (Ω)]2 such that

Ã((σ, p,u), (τ , q,v)) = F̃ (τ , q,v) ∀ (τ , q,v) ∈ H̃ , (4.12)

where the bilinear form Ã : H̃× H̃ → R and the functional F̃ : H̃ → R are defined by

Ã((σ, p,u), (τ , q,v)) :=
1

µ

∫

Ω

σr : τ r +
κ

µ

∫

Ω

(

p +
1

2
(σ : J)

)(

q +
1

2
(τ : J)

)

+

∫

Ω

u · curl(τ ) −

∫

Ω

v · curl(σ) + κ1

∫

Ω

(curl(u) −
1

µ
σr) : (curl(v) +

1

µ
τ r)

+ κ2

∫

Ω

curl(σ) · curl(τ ) ,

(4.13)

and

F̃ (τ , q,v) :=

∫

Ω

f · (v − κ2 curl(τ )) . (4.14)

In this way, following the same procedure of Section 3, we can replace Theorem 3.3 by the
following.

Copyright c© 2000 John Wiley & Sons, Ltd.



AUGMENTED MIXED-FEM FOR THE STOKES PROBLEM 15

Theorem 4.6. Assume that there hold 0 < κ1 < µ and 0 < κ2. Then, the augmented

variational formulation (4.12) has a unique solution (σ, p,u) ∈ H̃, independent of κ, and

there holds p = − 1
2 (σ : J). Moreover, there exists a positive constant C, depending only on

µ, (κ1, κ2), c1, and C1, such that

‖(σ, p,u)‖
H̃

≤ C ‖f‖0,Ω ,

where

‖(τ , q,v)‖
H̃

:=
{

‖τ‖2
curl,Ω + ‖q‖2

0,Ω + |v|21,Ω

}1/2
∀(τ , q,v) ∈ H̃.

Next, given an arbitrary finite element subspace H̃h ⊆ H̃, the Galerkin scheme associated with
(4.12) reads: Find (σh, ph,uh) ∈ H̃h such that

Ã((σh, ph,uh), (τ h, qh,vh)) = F̃ (τh, qh,vh) ∀ (τ h, qh,vh) ∈ H̃h . (4.15)

In particular, we consider

H̃h := H̃σ
0,h × H̃p

h × H̃u

0,h ,

where H̃σ
0,h is defined by (4.6),

H̃p
h :=

{

qh ∈ L2(Ω) : qh|T ∈ P0(T ) ∀T ∈ Th

}

,

and

H̃u

0,h :=
{

vh ∈ H̃u

h : vh = 0 on Γ
}

, (4.16)

where H̃u

h is defined by (4.7).

The rest of the analysis, including the well-posedness of (4.12) and (4.15), the corresponding
a priori error estimates, and the rates of convergences, follows exactly as in Sections 3 and 4.
We omit further details.

5. A POSTERIORI ERROR ANALYSIS

In this section we follow the approach from [3] (see also [7]) and derive residual based a
posteriori error estimators for (4.1) and (4.2). Actually, the analysis focuses in (4.1) and the
corresponding estimator for (4.2) follows as a particular case.

First we introduce several notations. Given T ∈ Th, we let E(T ) be the set of its edges, and
let Eh be the set of all edges of the triangulation Th. Then we write Eh := Eh,Ω ∪ Eh,Γ, where
Eh,Ω := {e ∈ Eh : e ⊆ Ω}, and Eh,Γ := {e ∈ Eh : e ⊆ Γ}. In what follows, he stands for the
length of the edge e. Further, given τ ∈ [L2(Ω)]2×2 such that τ |T ∈ C(T ) on each T ∈ Th,
an edge e ∈ Eh,Ω, and the unit tangential vector sT along e, we let J [τ sT ] be the corresponding
jump across e, that is, J [τ sT ] := (τ |T −τ |T ′)|e sT , where T ′ is the other triangle of Th having
e as an edge. Abusing notation, when e ∈ Eh,Γ, we also write J [τ sT ] := τ |e sT . We recall
here that sT := (−ν2, ν1)

t, where νT := (ν1, ν2)
t is the unit outward vector normal to ∂T .

Analogously, we define the normal jumps J [τ νT ].

Copyright c© 2000 John Wiley & Sons, Ltd.
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Then, letting (σ, p,u) ∈ H and (σh, ph,uh) ∈ Hh be the unique solutions of the continuous
and discrete augmented formulations (3.4) and (4.1), respectively, we define for each T ∈ Th a
local error indicator θT as follows:

θ2
T := ‖f + curl(σh)‖

2
0,T +

∥

∥

∥

∥

ph +
1

2
(σh : J)

∥

∥

∥

∥

2

0,T

+ h2
T

∥

∥

∥

∥

div

(

curl(uh) −
1

µ
σr

h

)∥

∥

∥

∥

2

0,T

+ h2
T

∥

∥

∥

∥

div

{(

ph +
1

2
(σh : J)

)

J

}
∥

∥

∥

∥

2

0,T

+ h2
T

∥

∥

∥

∥

div

(

curl(uh)r −
1

µ
σr

h

)
∥

∥

∥

∥

2

0,T

+ h2
T

∥

∥

∥

∥

curl

(

curl(uh) −
1

µ
σr

h

)
∥

∥

∥

∥

2

0,T

+
∑

e∈E(T )

he

∥

∥

∥

∥

J

[(

curl(uh) −
1

µ
σr

h

)

νT

]
∥

∥

∥

∥

2

0,e

+
∑

e∈E(T )

he

∥

∥

∥

∥

J

[{(

ph +
1

2
(σh : J)

)

J

}

νT

]∥

∥

∥

∥

2

0,e

+
∑

e∈E(T )

he

∥

∥

∥

∥

J

[(

curl(uh)r −
1

µ
σr

h

)

νT

]∥

∥

∥

∥

2

0,e

+
∑

e∈E(T )∩Eh,Γ

he ‖g − uh‖
2
0,e +

∑

e∈E(T )∩Eh,Γ

he

∥

∥

∥

∥

dg

dsT
−

duh

dsT

∥

∥

∥

∥

2

0,e

+
∑

e∈E(T )∩Eh,Γ

he

∥

∥

∥

∥

J

[(

curl(uh) −
1

µ
σr

h

)

sT

]∥

∥

∥

∥

2

0,e

. (5.1)

The residual character of each term on the right hand side of (5.1) is quite clear. Next, we let

θ :=

{

∑

T∈Th

θ2
T

}1/2

(5.2)

be the global residual error estimator. Then, the following theorem is the main result of this
section.

Theorem 5.1. Let (σ, p,u) ∈ H and (σh, ph,uh) ∈ Hh be the unique solutions of (3.4) and

(4.1), respectively. Then there exist positive constants Ceff and Crel, independent of h, such

that

Ceff θ ≤ ‖(σ − σh, p − ph,u− uh)‖H ≤ Crel θ . (5.3)

The upper and lower bounds in (5.3), which are called reliability and efficiency, respectively,
of the global estimator θ, are proved next in Sections 5.1 and 5.2.

5.1. Reliability

We begin with the following preliminary estimate.

Copyright c© 2000 John Wiley & Sons, Ltd.
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Lemma 5.2. There exists C > 0, independent of h, such that

C ‖(σ − σh, p − ph,u − uh)‖H ≤

sup
(τ ,q,v)∈H\{0}

curl(τ )=0

A((σ − σh, p − ph,u− uh), (τ , q,v))

‖(τ , q,v)‖H

+ ‖f + curl(σh)‖0,Ω .
(5.4)

Proof. Let us define σ∗ = curl(z), where z ∈ [H1
0 (Ω)]2 is the unique solution of the boundary

value problem: −∆z = f + curl(σh) in Ω, z = 0 on Γ. It is easy to see that σ∗ ∈ H0 (cf.
(2.11)) and the corresponding continuous dependence result establishes the existence of c > 0
such that

‖σ∗‖curl,Ω ≤ c ‖f + curl(σh)‖0,Ω . (5.5)

In addition, since curl(curl(z)) = ∆z, we find that

curl(σ − σh − σ∗) = − f − curl(σh) + (f + curl(σh)) = 0 in Ω .

Now, let α and M be the coercivity and boundedness constants of A. Then, there holds

α‖(σ − σh − σ∗, p − ph,u − uh)‖2
H

≤ A((σ − σh − σ∗, p − ph,u − uh), (σ − σh − σ∗, p − ph,u − uh))

≤ A((σ − σh, p − ph,u− uh), (σ − σh − σ∗, p − ph,u− uh))

− A((σ∗, 0,0), (σ − σh − σ∗, p − ph,u− uh)) ,

which, employing the boundedness of A, yields

α‖(σ − σh − σ∗, p − ph,u− uh)‖H

≤ sup
(τ ,q,v)∈H\{0}

curl(τ )=0

A((σ − σh, p − ph,u− uh), (τ , q,v))

‖(τ , q,v)‖H

+ M ‖σ∗‖curl,Ω .
(5.6)

Hence (5.4) follows straightforwardly from the triangle inequality, (5.5) and (5.6). 2

In order to bound the first term on the right hand side of (5.4), we will make use of the
Clément interpolation operator Ih : H1(Ω) → Xh (cf. [6]), where Xh is given by

Xh :=
{

vh ∈ C(Ω̄) : vh|T ∈ P1(T ) ∀T ∈ Th

}

.

It is well known that Ih satisfies the following local approximation properties.

Lemma 5.3. There exist constants C1, C2 > 0, independent of h, such that for all v ∈ H1(Ω)
there holds

‖v − Ih(v)‖0,T ≤ C1 hT ‖v‖1,ω̃T
∀ T ∈ Th ,

and

‖v − Ih(v)‖0,e ≤ C2 h1/2
e ‖v‖1,ω̃e

∀ e ∈ Th ,

where ω̃T and ω̃e are the union of all elements sharing at least one point with T and e,
respectively.
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Proof. See [6]. 2

We now let (τ , q,v) ∈ H, (τ , q,v) 6= 0, such that curl(τ ) = 0 in Ω. Since Ω is simply
connected, there exists a function ϕ := (ϕ1, ϕ2) ∈ [H1(Ω)]2 such that

∫

Ω
ϕ1 =

∫

Ω
ϕ2 = 0 and

τ = ∇ϕ. Note that
‖ϕ‖1,Ω ≤ C |ϕ|1,Ω = ‖τ‖0,Ω = ‖τ‖curl,Ω . (5.7)

Then, we let ϕh := (Ih(ϕ1), Ih(ϕ2)) and define τ h := ∇ϕh. It is easy to see that τh belongs
to H̃σ

h (cf. (4.4)), and there holds the decomposition τh = τh,0 + ch J, where τh,0 ∈ H̃σ
0,h

(cf. (4.6)) and ch := 1
2|Ω|

∫

Ω
τh : J ∈ R.

Next, we define vh := (Ih(v1), Ih(v2)) ∈ H̃u

h , the vector Clément interpolant of v :=
(v1, v2) ∈ [H1(Ω)]2 (cf. (4.7)), and deduce, according to the Galerkin orthogonality and the
definition of the bilinear form A (cf. (3.5)), that

A((σ −σh, p− ph,u−uh), (τ , q,v)) = A((σ−σh, p− ph,u−uh), (τ − τ h,0, q,v−vh)) (5.8)

and

A((σ − σh, p − ph,u − uh), (chJ, 0,0)) = A((σ − σh, p − ph,u− uh), (0, ch,0)) = 0 . (5.9)

We have assumed here, without los of generality, that P0(Ω) ⊆ Hp
h. Hence, it follows from

(5.8), (5.9), and (4.1), after some algebraic manipulations, that

A((σ − σh, p − ph,u − uh), (τ , q,v))

=

∫

Ω

{(

curl(uh) −
1

µ
σr

h

)

−
κ

2µ

(

ph +
1

2
(σh : J)

)

J−
κ1

µ

(

curl(uh)r −
1

µ
σr

h

)}

: (τ − τ h)

+

∫

Γ

(g − uh) · (τ − τh) s − κ1

∫

Ω

(

curl(uh) −
1

µ
σr

h

)

: curl(v − vh)

+

∫

Ω

(f + curl(σh)) · (v − vh) + κ3

∫

Γ

(g − uh) · (v − vh) −
κ

µ

∫

Ω

(

ph +
1

2
(σh : J)

)

q.

(5.10)

The rest of reliability consists in deriving suitable upper bounds for each one of the
terms appearing on the right hand side of (5.10). We begin with those terms involving
τ − τh := ∇(ϕ−ϕh). In fact, given ξ ∈ [L2(Ω)]2×2 such that ξ|T ∈ [H1(T )]2×2 ∀T ∈ Th,
we find that

∫

Ω

ξ : (τ − τh) =

∫

Ω

ξ : ∇(ϕ − ϕh) =
∑

T∈Th

∫

T

ξ : ∇(ϕ − ϕh)

= −
∑

T∈Th

∫

T

div(ξ) · (ϕ − ϕh) +
∑

e∈Eh

〈J [ξ νT ], ϕ − ϕh〉0,e ,

and hence, applying the Cauchy-Schwarz inequality, Lemma 5.4, the fact that the number of
triangles of ω̃T and ω̃e are bounded independently of h, and inequality (5.7), we get

∣

∣

∣

∣

∫

Ω

ξ : (τ − τ h)

∣

∣

∣

∣

≤ C

{

∑

T∈Th

h2
T ‖div(ξ)‖2

0,T +
∑

e∈Eh

he ‖J [ξ νT ]‖2
0,e

}1/2

‖τ‖curl,Ω .

(5.11)
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In this way, applying (5.11) to ξ =

(

curl(uh) −
1

µ
σr

h

)

, then to ξ :=
κ

2µ

(

ph +
1

2
(σh : J)

)

J,

and finally to ξ :=
κ1

µ

(

curl(uh)r −
1

µ
σr

h

)

, we obtain the reliability estimates for the terms

appearing in the first row of the right hand side of (5.10).

Similarly, for the term involving (τ − τh) s :=
d(ϕ−ϕ

h
)

ds , we obtain
∫

Γ

(g − uh) · (τ − τ h) s =

∫

Γ

(g − uh) ·
d(ϕ − ϕh)

ds
= −

∑

e∈Eh,Γ

∫

e

(

dg

ds
−

duh

ds

)

· (ϕ − ϕh) ,

which yields

∣

∣

∣

∣

∫

Γ

(g − uh) · (τ − τ h) s

∣

∣

∣

∣

≤ C







∑

e∈Eh,Γ

he

∥

∥

∥

∥

dg

ds
−

duh

ds

∥

∥

∥

∥

2

0,e







1/2

‖ϕ‖1,Ω . (5.12)

On the other hand, for the terms in (5.10) containing the expression v− vh, we first notice
that

∣

∣

∣

∣

∫

Ω

(f + curl(σh)) · (v − vh)

∣

∣

∣

∣

≤ C

{

∑

T∈Th

h2
T ‖f + curl(σh)‖2

0,T

}1/2

‖v‖1,Ω , (5.13)

and
∣

∣

∣

∣

∫

Γ

(g − uh) · (v − vh)

∣

∣

∣

∣

≤ C







∑

e∈Eh,Γ

he ‖g − uh‖
2
0,e







1/2

‖v‖1,Ω . (5.14)

In addition, letting ξh := curl(uh) −
1

µ
σr

h, we find that

∫

Ω

ξh : curl(v − vh) =
∑

T∈Th

∫

T

ξh : curl(v − vh)

= −
∑

T∈Th

∫

T

curl(ξh) · (v − vh) +
∑

e∈Eh

〈J [ξh sT ],v − vh〉0,e ,

which gives
∣

∣

∣

∣

∫

Ω

ξh : curl(v − vh)

∣

∣

∣

∣

≤ C

{

∑

T∈Th

h2
T ‖curl(ξh)‖2

0,T +
∑

e∈Eh

he ‖J [ξh sT ]‖2
0,e

}1/2

‖v‖1,Ω .

(5.15)

Certainly, the arguments yielding (5.11) have also been employed to derive (5.12) - (5.15).

Finally, we apply again the Cauchy-Schwarz inequality and obtain
∣

∣

∣

∣

∫

Ω

(

ph +
1

2
(σh : J)

)

q

∣

∣

∣

∣

≤

∥

∥

∥

∥

ph +
1

2
(σh : J)

∥

∥

∥

∥

0,Ω

‖q‖0,Ω. (5.16)
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In this way, we conclude from (5.10) - (5.16) that

sup
(τ ,q,v)∈Hr{0}

curl(τ )=0

A((σ − σh, p − ph,u− uh), (τ , q,v))

‖(τ , q,v)‖H

≤ C θ ,

which, together with Lemma 5.2, completes the proof of reliability of θ (cf. (5.1) and (5.2)).

At this point we remark that when the finite element subspace Hh is given by (4.10), that
is, when σh|T ∈ [W (T )t]2, ph|T ∈ P0(T ), and uh|T ∈ [P1(T )]2, then the expression (5.1) for
θ2

T simplifies to

θ2
T := ‖f + curl(σh)‖

2
0,T +

∥

∥ph + 1
2 (σh : J)

∥

∥

2

0,T
+ h2

T

∥

∥

∥
div

(

1
µσr

h

)∥

∥

∥

2

0,T

+ h2
T

∥

∥div
(

1
2 (σh : J)J

)
∥

∥

2

0,T
+ h2

T

∥

∥

∥
curl

(

1
µσr

h

)∥

∥

∥

2

0,T

+
∑

e∈E(T )

he

∥

∥

∥

∥

J

[(

curl(uh) −
1

µ
σr

h

)

νT

]
∥

∥

∥

∥

2

0,e

+
∑

e∈E(T )

he

∥

∥

∥

∥

J

[{(

ph +
1

2
(σh : J)

)

J

}

νT

]∥

∥

∥

∥

2

0,e

+
∑

e∈E(T )

he

∥

∥

∥

∥

J

[(

curl(uh)r −
1

µ
σr

h

)

νT

]∥

∥

∥

∥

2

0,e

+
∑

e∈E(T )∩Eh,Γ

he ‖g − uh‖
2
0,e +

∑

e∈E(T )∩Eh,Γ

he

∥

∥

∥

∥

dg

dsT
−

duh

dsT

∥

∥

∥

∥

2

0,e

+
∑

e∈E(T )∩Eh,Γ

he

∥

∥

∥

∥

J

[(

curl(uh) −
1

µ
σr

h

)

sT

]∥

∥

∥

∥

2

0,e

.

(5.17)

We end this section by mentioning that the local error indicator θ2
T for the Galerkin scheme

(4.2) arises from (5.1) after eliminating the terms containing the discrete pressure ph. Indeed,
this follows easily from the fact that p = − 1

2 (σ : J) and that ph = − 1
2 (σh : J) when

(τ h : J) ∈ Hp
h ∀ τ h ∈ Hσ

0,h.

5.2. Efficiency of the a posteriori error estimators

In this section, we apply inverse inequalities (see [5]) and the localization technique based on
bubble functions (see [15]), to prove the lower bound of the estimate (5.3). More precisely, in
what follows we estimate each one of the 12 terms defining the error indicator θ2

T (cf. (5.1)).

We first employ the equilibrium equation f = − curl(σ) in Ω, the incompressibility
condition p + 1

2 (σ : J) = 0 in Ω, and the Dirichlet boundary condition u = g on Γ.
Indeed, it follows that

‖f + curl(σh)‖2
0,T = ‖curl(σ − σh)‖2

0,T ∀T ∈ Th , (5.18)

∥

∥

∥

∥

ph +
1

2
(σh : J)

∥

∥

∥

∥

2

0,T

≤ ‖p− ph‖
2
0,T + ‖σ − σh‖

2
0,T ∀T ∈ Th , (5.19)
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and
∑

e∈Eh,Γ

he ‖g − uh‖
2
0,e ≤ h ‖g − uh‖

2
0,Γ = h ‖u− uh‖

2
0,Γ ≤ C h ‖u− uh‖

2
1,Ω . (5.20)

In order to derive the upper bounds of the remaining terms, we will make use of Lemmata
5.4 - 5.7 below. More precisely Lemma 5.4 is required for the terms involving the div operator,
Lemma 5.5 handles the terms containing the curl operator, Lemma 5.6 is required for the terms
involving the normal jumps across the edges of Th, and Lemma 5.7 is used to take care of the
terms encompassing tangential jumps across the edges of Th. For the proofs of these lemmas
we refer to [3] and references therein. In what follows, we denote

ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)} .

Lemma 5.4. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polinomial of degree k ≥ 0 on each T ∈ Th.

Then, there exists c > 0, independent of h, such that for any T ∈ Th

‖div(ρh)‖0,T ≤ c h−1
T ‖ρh‖0,T . (5.21)

Lemma 5.5. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polinomial of degree k ≥ 0 on each T ∈ Th.

In addition, let ρ ∈ [L2(Ω)]2×2 be such that curl(ρ) = 0 on each T ∈ Th. Then, there exists

c > 0, independent of h, such that for any T ∈ Th

‖curl(ρh)‖0,T ≤ c h−1
T ‖ρ − ρh‖0,T . (5.22)

Lemma 5.6. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polinomial of degree k ≥ 0 on each T ∈ Th.

Then, there exists c > 0, independent of h, such that for any e ∈ Eh

‖J [ρhνT ]‖0,e ≤ c h−1/2
e ‖ρh‖0,ωe

. (5.23)

Lemma 5.7. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polinomial of degree k ≥ 0 on each T ∈ Th.

Then, there exists c > 0, independent of h, such that for any e ∈ Eh

‖J [ρhsT ]‖0,e ≤ c h−1/2
e ‖ρh‖0,ωe

. (5.24)

We are now in a position to complete the proof of efficiency of θ by conveniently applying
Lemmata 5.4 - 5.7 to the corresponding terms defining θ2

T . In fact, we have the following
estimates.

Lemma 5.8. There exist C1, C2, C3 > 0, independent of h, such that for any T ∈ Th there

hold

h2
T

∥

∥

∥

∥

div

(

curl(uh) −
1

µ
σr

h

)
∥

∥

∥

∥

2

0,T

≤ C1

{

|u − uh|
2
1,T + ‖σ − σh‖

2
0,T

}

, (5.25)

h2
T

∥

∥

∥

∥

div

(

phJ +
1

2
(σh : J)J

)∥

∥

∥

∥

2

0,T

≤ C2

{

‖p − ph‖
2
0,T + ‖σ − σh‖

2
0,T

}

, (5.26)

and

h2
T

∥

∥

∥

∥

div

(

curl(uh)r −
1

µ
σr

h

)∥

∥

∥

∥

2

0,T

≤ C3

{

|u − uh|
2
1,T + ‖σ − σh‖

2
0,T

}

. (5.27)
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Proof. The estimate (5.25) follows from Lemma 5.4 defining ρh := curl(uh) − 1
µσr

h,

introducing 0 = curl(u) − 1
µσr (cf. (2.16)), and then using the triangle inequality and

the continuity of the operators curl and τ → τ r. Similarly, (5.26) and (5.27) follow from
Lemma 5.4 with ρh := phJ + 1

2 (σh : J)J and 0 = pJ + 1
2 (σ : J)J (cf. (2.8)), and

ρh := curl(uh)r − 1
µσr

h and 0 = curl(u)r − 1
µσr (cf. (2.16)), respectively. 2

Lemma 5.9. There exists C4 > 0, independent of h, such that for any T ∈ Th there holds

h2
T

∥

∥

∥

∥

curl

(

curl(uh) −
1

µ
σr

h

)
∥

∥

∥

∥

2

0,T

≤ C4

{

|u− uh|
2
1,T + ‖σ − σh‖

2
0,T

}

. (5.28)

Proof. It follows by applying Lemma 5.5 with ρh := curl(uh) − 1
µσr

h and ρ := curl(u) −
1
µσr = 0, and then using the triangle inequality and the continuity of the linear operators
curl and τ → τ r. 2

Lemma 5.10. There exists C5, C6, C7 > 0, independent of h, such that for any e ∈ Eh there

hold

he

∥

∥

∥

∥

J

[(

curl(uh) −
1

µ
σr

h

)

νT

]∥

∥

∥

∥

2

0,e

≤ C5

{

|u− uh|
2
1,ωe

+ ‖σ − σh‖
2
0,ωe

}

, (5.29)

he

∥

∥

∥

∥

J

[(

phJ +
1

2
(σh : J)J

)

νT

]
∥

∥

∥

∥

2

0,e

≤ C6

{

‖p − ph‖
2
0,ωe

+ ‖σ − σh‖
2
0,ωe

}

, (5.30)

and

he

∥

∥

∥

∥

J

[(

curl(uh)r −
1

µ
σr

h

)

νT

]∥

∥

∥

∥

2

0,e

≤ C7

{

|u − uh|
2
1,ωe

+ ‖σ − σh‖
2
0,ωe

}

. (5.31)

Proof. The estimates (5.29), (5.30) and (5.31) follow all from Lemma 5.6 with ρh :=
curl(uh) − 1

µσr
h, ρh := phJ + 1

2 (σh : J)J, and ρh := curl(uh)r − 1
µσr

h respectively, and

then employing that 0 = curl(u) − 1
µσr, 0 = pJ + 1

2 (σ : J)J, and 0 = curl(u)r − 1
µσr,

respectively. 2

Lemma 5.11. There exists C8 > 0, independent of h, such that

∑

e∈Eh,Γ

he

∥

∥

∥

∥

dg

dsT
−

duh

dsT

∥

∥

∥

∥

2

0,e

≤ C8 ‖u− uh‖
2
1,Ω . (5.32)

Proof. The proof is similar to Lemma 5.7 in [9] and Lemma 4.5 in [2]. We omit further details.
2

Lemma 5.12. There exists C9 > 0, independent of h, such that for any e ∈ Eh

he

∥

∥

∥

∥

J

[(

curl(uh) −
1

µ
σr

h

)

sT

]∥

∥

∥

∥

2

0,e

≤ C9

{

|u− uh|
2
1,ωe

+ ‖σ − σh‖
2
0,ωe

}

. (5.33)

Proof. The estimate (5.33) arises from a direct application of Lemma 5.7 to ρh := curl(uh)−
1
µσr

h, introducing 0 = curl(u) − 1
µσr(cf. (2.16)), and then employing again the triangle

inequality and the continuity of the operators curl and τ → τ r. 2

In this way, the efficiency of θ follows straightforwardly from the estimates (5.18) - (5.20),
and (5.25) - (5.33) after summing over all T ∈ Th and using that the number of triangles on
each domain ωe is bounded by two.
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6. NUMERICAL RESULTS

In this section we present several examples illustrating the performance of the augmented
mixed finite element schemes (4.1) and (4.2), and confirming the reliability and efficiency of
the a posteriori error estimator θ analyzed in Section 5. For the computations we consider the
specific finite element subspaces given by H̃h (cf. (4.10)) and H̃0,h (cf. (4.5)), respectively.

We now introduce some notations. In what follows, N stands for the total number of
degrees of freedom (unknowns) of (4.1) and (4.2), which, as mentioned in Section 4, behaves
asymptotically as 5 and 4 times, respectively, the number of elements of each triangulation.
Also, the individual and total errors are given by

e(σ) := ‖σ − σh‖curl,Ω , e(p) := ‖p − ph‖0,Ω ,

e(u) := ‖u− uh‖1,Ω , e(σ,u) :=
{

(e(σ))2 + (e(u))2
}1/2

,

and
e(σ, p,u) :=

{

(e(σ))2 + (e(p))2 + (e(u))2
}1/2

,

whereas the effectivity index with respect to θ is defined either by

eff(θ) := e(σ, p,u)/θ or eff(θ) := e(σ,u)/θ .

In addition, we define the experimental rates of convergence

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r(σ,u) :=
log(e(σ,u)/e′(σ,u))

log(h/h′)
, and r(σ, p,u) :=

log(e(σ, p,u)/e′(σ, p,u))

log(h/h′)
,

where e and e′ denote the corresponding errors at two consecutive triangulations with mesh
sizes h and h′, respectively. However, when the adaptive algorithm is applied (see details
below), the expression log(h/h′) appearing in the computation of the above rates is replaced
by − 1

2 log(N/N ′), where N and N ′ denote the corresponding degrees of freedom of each
triangulation.

The examples to be considered in this section are described next. The first example is
employed to illustrate the performance of the augmented mixed finite element schemes and
to confirm the properties of the a posteriori error estimator θ. Then, Examples 2 and 3 are
utilized to show the behaviour of the adaptive algorithm for the scheme (4.1), which applies
the following procedure from [15]:

1) Start with a coarse mesh Th.
2) Solve the discrete problem (4.1) for the actual mesh Th.
3) Compute θT (cf. (5.1)) for each triangle T ∈ Th.
4) Evaluate stopping criterion and decide to finish or go to next step.
5) Use blue-green procedure to refine each T ′ ∈ Th whose indicator θT ′ satisfies

θT ′ ≥
1

2
max{θT : T ∈ Th } .
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6) Define resulting mesh as actual mesh Th and go to step 2.

In Example 1 we consider Ω = ]0, 1[2, µ = 1, and choose the data f and g so that the exact
solution is given by

u(x) :=
1

4πµ

{

− log r

(

1
0

)

+
1

r
2

(

(x1 − 2)2

(x1 − 2)(x2 − 2)

)}

and

p(x) =
(x1 − 2)

2πr2
− p0 ,

with r =
√

(x1 − 2)2 + (x2 − 2)2, for all x := (x1, x2) ∈ Ω, where p0 ∈ IR is such that
∫

Ω
p = 0

holds. At this point we recall from (2.7) and the fact that σ ∈ H0, that an admissible solution
p must satisfy

∫

Ω p = 0. Note that (u, p) corresponds to the fundamental solution located at
the point (2, 2). Hence, f = 0, u is curl free, and (u, p) is regular in the whole domain Ω.

In Example 2 we take Ω as the L-shaped domain ] − 1, 1[2 − ]0, 1[2, µ = 2, and choose the
data f and g so that the exact solution is given by

u(x) :=
(

(x1 − 0.1)2 + (x2 − 0.1)2
)−1/2

(

0.1 − x2

x1 − 0.1

)

and

p(x) =
1

x1 + 1.1
− p0 ,

for all x := (x1, x2) ∈ Ω. We note that u is curl free in Ω. In addition, it is clear that u and p
are singular at (0.1, 0.1) and along the line x1 = − 1.1, respectively. Hence, we should expect
regions of high gradients around the origin and along the line x1 = − 1.

In Example 3 we consider the standard test case given by a driven cavity. More precisely,
we take Ω = ]0, 1[2, µ = 2, and choose the data

f = 0 in Ω and g(x1, x2) :=

{

(sin(π x1), 0) if 0 < x1 < 1, x2 = 1
0 otherwise .

The numerical results shown below were obtained using a MATLAB code. In order to
emphasize the robustness of (4.2) with respect to the parameters κ1, κ2, and κ3, we follow

(3.12) and consider (κ1, κ2, κ3) =
(

µ
2 , 1

µ , µ
2

)

and (κ1, κ2, κ3) =
(

3µ
4 , 1

2µ , 3µ
4

)

, which certainly

satisfy the assumptions of Theorem 3.2. On the other hand, since the choice of κ in (4.1)
depends on the unknown constant c1 from Lemma 2.3 (see Theorem 4.4), we simply take
κ = µ

4 and κ = µ
2 . As we will see below, these choices worked out well in the examples

considered.

In Tables 6.1 - 6.3 and Figure 6.1, we summarize the convergence history of the augmented
mixed finite element methods (4.2) and (4.1) as applied to Example 1 for sequences of quasi-
uniform triangulations of the domain. We observe there that the rate of convergence O(h)
predicted by Theorems 4.2 and 4.5 (when r = 1) is attained in all the unknowns for both
schemes. In addition, the results displayed in Tables 6.1 and 6.2, showing almost no difference
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between (κ1, κ2, κ3) = (µ
2 , 1

µ , µ
2 ) and (κ1, κ2, κ3) = (3µ

4 , 1
2µ , 3µ

4 ), illustrate the robustness of

scheme (4.2) with respect to the choice of these parameters. Similarly, though we only display
results with (κ, κ1, κ2, κ3) = (µ

4 , µ
2 , 1

µ , µ
2 ) in Table 6.3, it is also possible to confirm the

robustness of (4.1) with respect to κ, κ1, κ2, and κ3. In particular, the hypothesis on κ
established by Theorem 4.4, that is 0 < κ < 2 c1 µ α1, seems to be more technical than truly
necessary for practical computations. Next, we remark the good behaviour of the a posteriori
error estimator θ for a sequence of quasi-uniform meshes in Example 1. Indeed, we notice
from Table 6.3 that the effectivity index eff(θ) remains always in a neighborhood of 0.222,
which illustrates the reliability and efficiency of θ. Finally, in order to emphasize the good
performance of our augmented schemes, in Figures 6.2 and 6.3 we display two components of
the approximate and exact solutions for Example 1.

Next, in Tables 6.4 and 6.5, we provide the convergence history of the uniform and adaptive
schemes (4.1), with (κ, κ1, κ2, κ3) = (µ

4 , µ
2 , 1

µ , µ
2 ) , as applied to Example 2. We observe that

the errors of the adaptive procedure decrease faster than those obtained by the quasi-uniform
one, which is confirmed by the experimental rates of convergence provided there. This fact
is also illustrated in Figure 6.4 where we display the total errors e(σ, p,u) vs. the degrees of
freedom N for both refinements. As shown by the values of r(σ, p,u), the adaptive method is
able to keep the quasi-optimal rate of convergence O(h) for the total error. Furthermore, the
effectivity indexes remain again bounded from above and below, which confirms the reliability
and efficiency of θ. Some intermediate meshes obtained with the adaptive refinement are
displayed in Figure 6.5. Note here that the method is able to recognize the singularities and
the regions with high gradients of the solution. In fact, the adapted meshes concentrate the
refinements around the origin and the line x1 = − 1. In order to illustrate the good quality
of the solutions provided by the adaptive scheme, in Figures 6.6 and 6.7 we display two
components of the approximate and exact solutions.

Finally, in Table 6.6 we provide the convergence history of the adaptive scheme (4.1),
with (κ, κ1, κ2, κ3) = (µ

2 , µ
2 , 1

µ , µ
2 ), as applied to the driven cavity (Example 3). The

errors and experimental rates of convergence shown there are computed by considering the
discrete solution obtained with the finest mesh (N = 327710) as the exact solution. Two
intermediate meshes obtained with the adaptive refinement are displayed in Figure 6.8, and
some components of the approximate solution are provided in Figures 6.9 and 6.10.

Summarizing, the numerical results presented here constitute enough support to consider our
curl-based augmented mixed finite element schemes and the associated adaptive algorithms,
as valid and competitive alternatives to solve the stationary Stokes equations. However, as
mentioned in the Introduction, it remains to further extend the present approach to the three-
dimensional case, which should be the goal of a separate work.
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Table 6.1: Example 1, uniform scheme (4.2) with (κ1, κ2, κ3) = (µ
2 , 1

µ , µ
2 )

N h e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u)
2179 0.0625 1.705E-03 − 1.368E-03 − 2.186E-03 −
2739 0.0556 1.516E-03 0.999 1.217E-03 0.994 1.944E-03 0.997
3363 0.0500 1.364E-03 0.999 1.096E-03 0.995 1.750E-03 0.998
4051 0.0455 1.240E-03 0.999 9.969E-04 0.996 1.591E-03 0.998
4803 0.0417 1.137E-03 1.000 9.141E-04 0.996 1.459E-03 0.998
5619 0.0385 1.049E-03 1.000 8.440E-04 0.997 1.347E-03 0.999
6499 0.0357 9.744E-04 1.000 7.839E-04 0.997 1.251E-03 0.999
7443 0.0333 9.095E-04 1.000 7.318E-04 0.998 1.167E-03 0.999
8451 0.0313 8.526E-04 1.000 6.861E-04 0.998 1.094E-03 0.999
9523 0.0294 8.025E-04 1.000 6.458E-04 0.998 1.030E-03 0.999
10659 0.0278 7.579E-04 1.000 6.100E-04 0.998 9.729E-04 0.999
13123 0.0250 6.821E-04 1.000 5.491E-04 0.998 8.757E-04 0.999
18819 0.0208 5.684E-04 1.000 4.577E-04 0.999 7.298E-04 1.000
25539 0.0179 4.872E-04 1.000 3.924E-04 0.999 6.255E-04 1.000
33283 0.0156 4.263E-04 1.000 3.433E-04 0.999 5.474E-04 1.000
51843 0.0125 3.410E-04 1.000 2.747E-04 1.000 4.379E-04 1.000
74499 0.0104 2.842E-04 1.000 2.289E-04 1.000 3.649E-04 1.000
101251 0.0089 2.436E-04 1.000 1.962E-04 1.000 3.128E-04 1.000
132099 0.0078 2.131E-04 1.000 1.717E-04 1.000 2.737E-04 1.000
167043 0.0069 1.894E-04 1.000 1.526E-04 1.000 2.433E-04 1.000

Table 6.2: Example 1, uniform scheme (4.2) with (κ1, κ2, κ3) = (3µ
4 , 1

2µ , 3µ
4 )

N h e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u)
2179 0.0625 1.717E-03 − 1.369E-03 − 2.196E-03 −
2739 0.0556 1.525E-03 1.009 1.218E-03 0.994 1.951E-03 1.004
3363 0.0500 1.371E-03 1.008 1.096E-03 0.995 1.756E-03 1.003
4051 0.0455 1.246E-03 1.007 9.971E-04 0.996 1.596E-03 1.003
4803 0.0417 1.141E-03 1.006 9.143E-04 0.997 1.462E-03 1.003
5619 0.0385 1.053E-03 1.006 8.441E-04 0.997 1.350E-03 1.002
6499 0.0357 9.774E-04 1.005 7.840E-04 0.997 1.253E-03 1.002
7443 0.0333 9.119E-04 1.005 7.318E-04 0.998 1.169E-03 1.002
8451 0.0313 8.547E-04 1.004 6.862E-04 0.998 1.096E-03 1.002
9523 0.0294 8.042E-04 1.004 6.459E-04 0.998 1.031E-03 1.002
10659 0.0278 7.594E-04 1.004 6.101E-04 0.998 9.741E-04 1.002
13123 0.0250 6.832E-04 1.003 5.491E-04 0.999 8.766E-04 1.001
18819 0.0208 5.691E-04 1.003 4.577E-04 0.999 7.303E-04 1.001
25539 0.0179 4.876E-04 1.002 3.924E-04 0.999 6.259E-04 1.001
33283 0.0156 4.266E-04 1.002 3.433E-04 0.999 5.476E-04 1.001
51843 0.0125 3.412E-04 1.001 2.747E-04 1.000 4.380E-04 1.001
74499 0.0104 2.843E-04 1.001 2.289E-04 1.000 3.650E-04 1.000
101251 0.0089 2.436E-04 1.001 1.962E-04 1.000 3.128E-04 1.000
132099 0.0078 2.132E-04 1.001 1.717E-04 1.000 2.737E-04 1.000
167043 0.0069 1.895E-04 1.000 1.526E-04 1.000 2.433E-04 1.000
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Table 6.3: Example 1, uniform scheme (4.1) with (κ, κ1, κ2, κ3) = (µ
4 , µ

2 , 1
µ , µ

2 )

N h e(σ) e(p) e(u) e(σ, p,u) r(σ, p,u) eff(θ)
2691 0.0625 1.705E-03 1.368E-03 6.882E-04 2.186E-03 − 0.224
3387 0.0556 1.516E-03 1.217E-03 6.102E-04 1.944E-03 0.997 0.224
4163 0.0500 1.364E-03 1.096E-03 5.480E-04 1.750E-03 0.998 0.223
5019 0.0455 1.240E-03 9.969E-04 4.974E-04 1.591E-03 0.998 0.223
5955 0.0417 1.137E-03 9.141E-04 4.554E-04 1.459E-03 0.998 0.222
6971 0.0385 1.049E-03 8.440E-04 4.200E-04 1.347E-03 0.999 0.222
8067 0.0357 9.744E-04 7.839E-04 3.896E-04 1.251E-03 0.999 0.222
9243 0.0333 9.095E-04 7.318E-04 3.634E-04 1.167E-03 0.999 0.222
10499 0.0313 8.526E-04 6.861E-04 3.405E-04 1.094E-03 0.999 0.222
11835 0.0294 8.025E-04 6.458E-04 3.203E-04 1.030E-03 0.999 0.221
13251 0.0278 7.579E-04 6.100E-04 3.024E-04 9.729E-04 0.999 0.221
16323 0.0250 6.821E-04 5.491E-04 2.719E-04 8.757E-04 0.999 0.221
23427 0.0208 5.684E-04 4.577E-04 2.264E-04 7.298E-04 1.000 0.221
31811 0.0179 4.872E-04 3.924E-04 1.939E-04 6.255E-04 1.000 0.221
41475 0.0156 4.263E-04 3.433E-04 1.696E-04 5.474E-04 1.000 0.221
64643 0.0125 3.410E-04 2.747E-04 1.356E-04 4.379E-04 1.000 0.220
92931 0.0104 2.842E-04 2.289E-04 1.130E-04 3.649E-04 1.000 0.220
126339 0.0089 2.436E-04 1.962E-04 9.681E-05 3.128E-04 1.000 0.220
164867 0.0078 2.131E-04 1.717E-04 8.470E-05 2.737E-04 1.000 0.220
208515 0.0069 1.894E-04 1.526E-04 7.528E-05 2.433E-04 1.000 0.220
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Fig. 6.1: Example 1, uniform scheme (4.1) with (κ, κ1, κ2, κ3) = (µ
4 , µ

2 , 1
µ , µ

2 )
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−15

−10

−5

0

5

x 10
−3

−15

−10

−5

0

5

x 10
−3

Fig. 6.2: Example 1, approximate (left) and exact σ22 for uniform scheme (4.1)
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Table 6.4: Example 2, uniform scheme (4.1) with (κ, κ1, κ2, κ3) = (µ
4 , µ

2 , 1
µ , µ

2 )

N h e(σ) e(p) e(u) e(σ, p,u) r(σ, p,u) eff(θ)
225 0.5000 1.706E+01 1.706E-00 1.621E-00 1.722E+01 − 0.882
481 0.3333 1.566E+01 1.359E-00 1.421E-00 1.578E+01 0.215 0.915
867 0.2500 1.381E+01 1.078E-00 1.140E-00 1.390E+01 0.442 0.922

1263 0.2000 1.259E+01 9.265E-01 9.242E-01 1.266E+01 0.419 0.932
1859 0.1666 1.154E+01 7.982E-01 8.152E-01 1.159E+01 0.482 0.933
2615 0.1429 1.058E+01 7.123E-01 7.214E-01 1.062E+01 0.566 0.934
3441 0.1250 9.603E+00 6.130E-01 6.659E-01 9.646E+00 0.723 0.941
4167 0.1111 8.885E+00 5.696E-01 6.221E-01 8.925E+00 0.659 0.940
5003 0.1000 8.286E+00 5.021E-01 5.823E-01 8.322E+00 0.664 0.943
6299 0.0909 7.925E+00 4.723E-01 5.224E-01 7.956E+00 0.471 0.946
7515 0.0833 7.377E+00 4.381E-01 4.766E-01 7.405E+00 0.825 0.941
8921 0.0769 6.685E+00 4.015E-01 4.267E-01 6.711E+00 1.231 0.941

10117 0.0714 6.403E+00 3.792E-01 4.076E-01 6.427E+00 0.583 0.946
11583 0.0667 6.083E+00 3.505E-01 3.892E-01 6.106E+00 0.743 0.949
13039 0.0625 5.701E+00 3.262E-01 3.564E-01 5.722E+00 1.006 0.945
14935 0.0588 5.383E+00 3.038E-01 3.388E-01 5.402E+00 0.947 0.948
16781 0.0556 5.086E+00 2.823E-01 3.174E-01 5.104E+00 0.996 0.947
20963 0.0500 4.678E+00 2.585E-01 2.896E-01 4.695E+00 0.793 0.948
24975 0.0455 4.220E+00 2.316E-01 2.566E-01 4.235E+00 1.082 0.947
32913 0.0400 3.700E+00 2.038E-01 2.210E-01 3.712E+00 1.029 0.945
43127 0.0345 3.191E+00 1.756E-01 1.971E-01 3.202E+00 0.997 0.948
63383 0.0286 2.751E+00 1.472E-01 1.641E-01 2.760E+00 0.790 0.949
91565 0.0238 2.283E+00 1.210E-01 1.362E-01 2.290E+00 1.024 0.950

127983 0.0200 1.929E+00 1.031E-01 1.130E-01 1.935E+00 0.965 0.948
161639 0.0179 1.750E+00 9.258E-02 1.016E-01 1.756E+00 0.859 0.949
206031 0.0159 1.496E+00 7.980E-02 8.877E-02 1.501E+00 1.332 0.947

Table 6.5: Example 2, adaptive scheme (4.1) with (κ, κ1, κ2, κ3) = (µ
4 , µ

2 , 1
µ , µ

2 )

N e(σ) e(p) e(u) e(σ, p,u) r(σ, p,u) eff(θ)
134 1.603E+01 1.870E-00 1.829E-00 1.625E+01 − 0.841
310 1.464E+01 1.370E-00 1.343E-00 1.476E+01 0.228 0.882
572 1.241E+01 1.019E-00 1.076E-00 1.250E+01 0.544 0.879

1090 9.391E+00 6.911E-01 7.851E-01 9.449E+00 0.867 0.896
2202 6.296E+00 5.839E-01 5.647E-01 6.348E+00 1.131 0.874
4730 3.995E+00 4.032E-01 3.842E-01 4.033E+00 1.187 0.852

10029 2.788E+00 2.796E-01 2.780E-01 2.816E+00 0.956 0.846
17373 2.124E+00 2.027E-01 1.929E-01 2.142E+00 0.995 0.851
37497 1.454E+00 1.405E-01 1.327E-01 1.466E+00 0.985 0.849
72351 1.075E+00 9.949E-02 9.683E-02 1.084E+00 0.921 0.849

146971 7.480E-01 6.990E-02 6.838E-02 7.544E-01 1.022 0.847
282166 5.531E-01 5.010E-02 4.948E-02 5.576E-01 0.927 0.848
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Fig. 6.4: Example 2, uniform/adaptive schemes (4.1) with (κ, κ1, κ2, κ3) = (µ
4 , µ

2 , 1
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2 )

Fig. 6.5: Example 2, adapted intermediate meshes with 4730, 17373, 37497, and 146971
degrees of freedom for scheme (4.1) with (κ, κ1, κ2, κ3) = (µ

4 , µ
2 , 1

µ , µ
2 )
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Fig. 6.6: Example 2, approximate (left) and exact σ21 for adaptive scheme (4.1)
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Fig. 6.7: Example 2, approximate (left) and exact u1 for adaptive scheme (4.1)
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Table 6.6: Example 3, adaptive scheme (4.1) with (κ, κ1, κ2, κ3) = (µ
2 , µ

2 , 1
µ , µ

2 )

N e(σ) e(p) e(u) e(σ, p,u) r(σ, p,u)
59 8.037E-00 5.091E-00 1.737E-00 9.671E-00 −

157 5.272E-00 3.116E-00 1.233E-00 6.247E-00 0.893
328 3.749E-00 2.191E-00 8.082E-01 4.417E-00 0.941
805 2.329E-00 1.292E-00 5.210E-01 2.714E-00 1.085

1358 1.584E-00 8.150E-01 3.839E-01 1.822E-00 1.524
3369 1.016E-00 5.004E-01 2.647E-01 1.163E-00 0.987
6300 7.241E-01 3.357E-01 1.912E-01 8.207E-01 1.115

11539 4.954E-01 2.216E-01 1.332E-01 5.588E-01 1.270
19922 3.611E-01 1.547E-01 1.017E-01 4.058E-01 1.172
47010 2.255E-01 9.466E-02 6.296E-02 2.526E-01 1.105
83819 1.561E-01 6.396E-02 4.560E-02 1.747E-01 1.274

184497 8.261E-02 3.358E-02 2.300E-02 9.209E-02 1.624
327710 − − − − −

Fig. 6.8: Example 3, adapted intermediate meshes with 11539 and 47010 degrees of
freedom for scheme (4.1) with (κ, κ1, κ2, κ3) = (µ

2 , µ
2 , 1

µ , µ
2 )
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Fig. 6.9: Example 3, approximate σ22 (left) and p (right) for adaptive scheme (4.1)
with (κ, κ1, κ2, κ3) = (µ

2 , µ
2 , 1

µ , µ
2 ) and N = 47010
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Fig. 6.10: Example 3, approximate u2 (left) and u (right) for adaptive scheme (4.1)
with (κ, κ1, κ2, κ3) = (µ

2 , µ
2 , 1

µ , µ
2 ) and N = 47010
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buckling problem for Reissner-Mindlin plates

2009-02 Gabriel N. Gatica, Luis F. Gatica, Antonio Marquez: Augmented mixed fi-
nite element methods for a curl-based formulation of the two-dimensional Stokes prob-
lem

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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