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Abstract. The sedimentation of a polydisperse suspension of small rigid spheres of the same density, but

which belong to a finite number of species (size classes), can be described by a spatially one-dimensional
system of first-order, nonlinear, strongly coupled conservation laws. The unknowns are the volume fractions

(concentrations) of each species as functions of depth and time. Typical solutions, e.g. for batch settling in

a column, include discontinuities (kinematic shocks) separating areas of different composition. The accurate
numerical approximation of these solutions is a challenge since closed-form eigenvalues and eigenvectors of

the flux Jacobian are usually not available, and the characteristic fields are neither genuinely nonlinear nor

linearly degenerate. However, the flux vectors associated with the widely used models by Masliyah, Lockett
and Bassoon (MLB model) and Höfler and Schwarzer (HS model) give rise to Jacobians that are low-rank

perturbations of a diagonal matrix. This property allows to apply a convenient hyperbolicity criterion that

has become known as the “secular equation” [J. Anderson, Lin. Alg. Appl. 246 (1996) 49–70]. This criterion
was recently applied [R. Bürger, R. Donat, P. Mulet, C.A. Vega, SIAM J. Appl. Math. 70 (2010) 2186–2213]

to prove that the MLB and HS models are strictly hyperbolic under easily verifiable conditions, that their

eigenvalues interlace with the velocities of the species that form the flux vector (so the velocities are good
starting values for a root finder), and that the corresponding eigenvectors can be calculated with acceptable

effort. In the present work, the newly available characteristic information is exploited for the implementation
of characteristic-wise (spectral) weighted essentially non-oscillatory (WENO) schemes for the MLB and HS

models. Numerical examples illustrate that WENO schemes which use this spectral information are superior

in resolution, and even in efficiency for the same overall resolution, to component-wise WENO schemes.

1. Introduction

1.1. Scope. This work concerns high-resolution numerical schemes for systems of conservation laws that
arise as one-dimensional kinematic models for the sedimentation of polydisperse suspensions. These mixtures
consist of small solid particles that belong to a number N of species that may differ in size or density, and
which are dispersed in a viscous fluid. We will herein only consider particles of the same density. If φi denotes
the volume fraction of particle species i having diameter Di, where we assume that D1 > D2 > . . . > DN ,
and vi is the phase velocity of species i, then the continuity equations of the N species are ∂tφi+∂x(φivi) = 0,
i = 1, . . . , N , where t is time and x is depth. The velocities v1, . . . , vN are assumed to be given functions of
the vector Φ := Φ(x, t) := (φ1(x, t), . . . , φN (x, t))T of local concentrations. This yields nonlinear, strongly
coupled systems of conservation laws of the type

∂tΦ + ∂xf(Φ) = 0, f(Φ) :=
(
f1(Φ), . . . , fN (Φ)

)T
, fi(Φ) := φivi(Φ), i = 1, . . . , N. (1.1)

We seek solutions Φ = Φ(x, t) that take values in Φ ∈ D̄φmax ⊂ RN , where D̄φmax is the closure of the set

Dφmax :=
{

Φ ∈ RN : φ1 > 0, . . . , φN > 0, φ := φ1 + · · ·+ φN < φmax

}
.
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The parameter 0 < φmax ≤ 1 stands for a given maximum solids concentration. For batch settling of a
suspension in a column of height L, (1.1) is defined on ΩT := {(x, t) ∈ R2 | 0 ≤ x ≤ L, 0 ≤ t ≤ T} for a
given final time T > 0 along with the initial condition

Φ(x, 0) = Φ0(x) =
(
φ0

1(x), . . . , φ0
N (x)

)T
, Φ0(x) ∈ D̄φmax , x ∈ [0, L] (1.2)

and the zero-flux boundary conditions

f |x=0 = f |x=L = 0. (1.3)

Several choices of vi (“models”), or equivalently, of the fluxes fi, as functions of Φ, and depending on
the vector of normalized particle sizes d := (d1, . . . , dN )T, where di := Di/D1 for i = 1, . . . , N , have been
proposed in the literature. We restrict ourselves to the two models due to Masliyah [30] and Lockett and
Bassoon [29] (“MLB model”) and Höfler and Schwarzer [10, 23, 24] (“HS model”), respectively. It was
recently shown in [9] that both models are strictly hyperbolic for all Φ ∈ Dφmax , for arbitrary N , and under
easily verifiable, mild restrictions on certain model-specific parameters and the smallest normalized particle
size dN . The key structural property of both models, which led to these results, consists in that the fluxes
fi do not depend on each of the N components of Φ in an individual way, but only on a small number
m � N (m = 2 and m = 3 for the MLB and HS models, respectively) of scalar functions of Φ. Therefore,
the Jacobian Jf (Φ) is a rank-m perturbation of a diagonal matrix. The analysis of [9] also provides sharp
bounds of the eigenvalues of Jf (Φ). This information eventually permits us to numerically calculate the
eigenvalues and corresponding eigenvectors of Jf (Φ) with acceptable effort. Numerical simulations with low-
order schemes were presented in [9], but it was conjectured that this characteristic (or spectral) information
could be employed advantageously for the implementation of high-resolution schemes.

It is the purpose of this work to demonstrate that very efficient high-order accurate weighted essentially
non-oscillatory (WENO) schemes for the numerical solution of (1.1)–(1.3) can indeed be constructed by
incorporating characteristic information related to (1.1). This information is available due to the recent
hyperbolicity analysis made in [9], and can be incorporated in various ways. Specifically, we use the results
in [9] in order to provide a good estimation of the viscosity coefficient in a Lax-Friedrichs-type flux splitting.
This allows to construct high resolution component-wise WENO schemes, akin to those proposed in [44] for
the Multiclass Lighthill-Whitham-Richards (MCLWR) models in traffic flow. In addition, the full spectral
decomposition of Jf (Φ), which can be numerically computed at each cell interface thanks to the analysis in
[9], can be used in order to obtain characteristic-based WENO schemes, for which the WENO reconstruction
procedure is applied to the local characteristic variables and fluxes at each cell-interface. When combined
with a a strong stability preserving (SSP) Runge-Kutta-type time discretization, the resulting SSP-WENO-
SPEC schemes are shown to be extremely robust in a number of numerical experiments concerning the MLB
and HS models, including several properties specific to the present application such as non-negativity of
the solution, almost avoidance of overshoots of the numerical total density φ beyond φmax, and accurate
rendering of stationary kinematic shocks that separate sediment layers of different composition.

1.2. Related work. WENO-type spatial flux reconstructions, which emerged from earlier essentially non-
oscillatory (ENO) schemes, have become a well-established, versatile tool for the construction of high-
resolution conservative schemes in numerous applications. The first WENO scheme, of third-order accuracy,
was introduced by Liu, Osher and Chan in [28], while a general framework to construct WENO schemes of
arbitrary order of accuracy was provided by Jiang and Shu [25]. We refer to Shu [39, 40] for further details,
applications, and references. If applied to a system of conservation laws, the WENO procedure will produce
a spatially semi-discrete system of ODE, for which a discretization in time can be chosen separately [38]. A
suitable choice are total variation diminishing Runge-Kutta schemes [20, 39], also known as strong stability
preserving (SSP) methods [21], because of their favorable stability properties.

While WENO-based high-resolution shock-capturing schemes have been applied successfully to a wide
range of convection-dominated problems [40], the polydisperse sedimentation models considered herein
present some specific challenges for numerical simulation. These models belong to the wider class of multi-
species kinematic flow models [13], which are characterized by a governing system of equations of the type
(1.1) with explicit velocity functions v1, . . . , vN for a numberN of species. Models of this type include, besides
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the sedimentation model, a model of settling of oil-in-water dispersion [33] and, most notably, the multi-class
Lighthill-Whitham-Richards (MCLWR) kinematic traffic model, which extends the well-known LWR model
to vehicles with drivers having different preferential velocities, and which was proposed by Benzoni-Gavage
and Colombo [5] and Wong and Wong [41]. Meanwhile, the MCLWR model has been studied thoroughly in a
series of papers including [13, 42, 43, 44, 45]. All these models can be formulated for an arbitrary number N
of species, that is, of scalar equations. The basic phenomenon of interest is the segregation of species, i.e.
the formation of areas of different composition from an initially homogeneous “mixture” (e.g., suspension or
traffic platoon). Segregation is usually associated with the formation of discontinuities in Φ, so-called kine-
matic shocks. For the sedimentation model considered for batch settling in a column, stationary kinematic
shocks separate sediment layers of different composition. The accurate numerical simulation of the model is
therefore of importance for the prediction of the composition of the sediment as a final “product” or deposit
e.g. in medicine, the manufacturing of functionally graded materials, volcanology, and petrology (see e.g. [2]
for references to these applications).

It is well known that high-resolution shock capturing schemes can be applied to systems of conservation
laws either in a component-wise or in a characteristic-wise (spectral) fashion. The latter requires a detailed
knowledge of the spectral decomposition of the Jacobian matrix of the system, since the eigenstructure is
used in a fundamental way in the design principles of the scheme [17]. For multi-species kinematic flow
models, however, eigenvalues are not available in closed form, nevertheless it has been possible to prove
strict hyperbolicity of some of these models by an explicit representation of the characteristic polynomial
[7, 33, 42], as well as to obtain an interlacing property of the (unknown) eigenvalues of the Jacobian λ1, . . . , λN
with the (known) velocities v1, . . . , vN , which provide excellent starting values for a root finder. For the
MCLWR model, the corresponding hyperbolicity and characteristic analysis was first done by Zhang et al.
[43]. In [45], solutions to this model, with the additional complication of a discontinuously varying coefficient
modeling variable road surface conditions, were compared with solutions generated by a component-wise
WENO scheme which provides good overall accuracy. The first implementation of a component-wise WENO
scheme for that model had been done by Zhang in [42], and pre-dates the hyperbolicity analysis in [43].
An improvement of the component-wise scheme in [43] is presented in [44], and used in subsequent papers.
It amounts to using a more appropriate choice of the viscosity coefficient in a Lax-Friedrichs flux splitting,
and is based on sharper bound for the smallest eigenvalue obtained from the hyperbolicity analysis of the
MCLWR model carried out in [43]. We shall see that the results in [9] easily lead to an analogous estimation
of the viscosity coefficient for the polydisperse sedimentation models considered in this paper.

The hyperbolicity analysis for the MCLWR model is, in fact, fairly straightforward since that model
gives rise to a Jacobian which is a rank-1 perturbation of a diagonal (see Section 1.1). In [17], this feature
was exploited in order to give a much simpler proof of the hyperbolicity of the MCLWR model. The full
spectral decomposition of the Jacobian matrix was then used to construct a characteristic-based version of
the schemes utilized in [42], and it was demonstrated that the resolution of the characteristic-wise WENO
schemes is superior to that of their component-wise counterpart. Most notably, solutions are much less
oscillatory.

In a later paper [16], Donat and Mulet showed that the hyperbolicity calculus of multi-species kinematic
flow models can be greatly simplified if one employs the so-called secular equation due to Anderson [1].
Roughly speaking, the secular equation provides a systematic algebraic framework to determine the eigen-
values, and eventually the eigenvectors if the Jacobian is a rank-m, m � N , perturbation of the diagonal,
and most importantly avoids the explicit representation of the characteristic polynomial. Donat and Mulet
[16] showed that via the secular approach, hyperbolicity of the MLB model for equal-density spheres (a case
of m = 2) can be proved in a few lines, which contrasts with several pages of computation necessary to
exhibit the characteristic polynomial in [7]. In [9] we showed that the secular approach can also be used to
estimate the region of hyperbolicity of the HS model, which corresponds to m = 3 or m = 4. In this paper,
we use the results of [9] to provide a counterpart of [17] for the MLB and HS models, namely we show that
the results in [9] permit to implement characteristic-wise WENO schemes, and that these are robust and
have favorable properties analogous to those in [17].
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1.3. Outline of the paper. The remainder of the paper is organized as follows. In Sections 2.1 and 2.2 the
MLB and HS models are recalled. The relevant parts of the hyperbolicity analysis of [9, 16], which permits
to extract the relevant spectral information for the implementation of WENO schemes, are summarized
in Section 2.4. The numerical schemes are described in Section 3, starting with a spatially semi-discrete
formulation and the implementation of the boundary conditions (Sects. 3.1 and 3.2), which is converted into
a fully discrete scheme by a strong stability preserving Runge-Kutta scheme (SSPRK; Sect. 3.3). We then
proceed with a general discussion of flux vector splitting (Sect. 3.4). Then, in Sections 3.4, and 3.5, which are
at the core of this paper, we describe how the explicit algebraic form of the velocities v1, . . . , vN in conjunction
with the characteristic information, namely the interlacing property of eigenvalues with phase velocities and
the left eigenvectors, can be used to define viscosity coefficients for the characteristic-wise computation of the
flux vectors. The resulting scheme is addressed by SPEC-INT scheme; its counterpart based on less involved
component-wise flux vector splitting is referred to as COMP-GLF scheme. In Section 4 we present a series of
numerical examples for the MLB model with N = 2, 4 and 11, along with error histories, that illustrate the
superiority of SPEC-INT (compared with COMP-GLF) in terms of accuracy. Additional examples suggest
that the scheme is equally suitable for the HS model. Finally, in Section 5 we list some conclusions, address
limitations of the applicability of the scheme and point out possible extensions.

2. The polydisperse sedimentation models

2.1. The MLB model. The Masliyah-Lockett-Bassoon (MLB) model arises from the continuity and linear
momentum balance equations for the solid species and the fluid. Its detailed derivation is presented e.g. in
[7, 12], so we will introduce the model here in its final form. For particles that have the same density, the
velocities v1(Φ), . . . , vN (Φ) are given by

vi(Φ) =
(%s − %f)gD2

1

18µf
(1− φ)

(
d2
iVi(φ)−

(
φ1d

2
1V1(φ) + · · ·+ φNd

2
NVN (φ)

))
, i = 1, . . . , N, (2.1)

where %s and %f are the solid and fluid densities, g is the acceleration of gravity, µf is the fluid viscosity,
φ = φ1 + · · ·+φN is the total solids volume fraction, and V1, . . . , VN are hindered settling factors that are in
general particle-size-specific [2]. In this work, we limit ourselves to the case (originally proposed in [29, 30])
of a collective hindered settling factor V (φ) := V1(φ) = · · · = VN (φ), for which (2.1) can be written as

vi(Φ) = vMLB
i (Φ) :=

(%s − %f)gD2
1

18µf
(1− φ)V (φ)

(
d2
i − (φ1d

2
1 + · · ·+ φNd

2
N )
)
, i = 1, . . . , N, (2.2)

and where V (φ) is assumed to satisfy

V (0) = 1, V (φmax) = 0, V ′(φ) ≤ 0 for φ ∈ [0, φmax], (2.3)

where the maximum total solids concentration is assumed to be given by the constant φmax. A standard
choice for V (φ) is the equation

V (φ) =

{
(1− φ)n−2 if Φ ∈ Dφmax

0 otherwise,
n > 2. (2.4)

We may write the components fi(Φ), i = 1, . . . , N of the flux vector f(Φ) of the MLB model as

fi(Φ) = fMLB
i (Φ) := vMLB

1 (0)φi(1− φ)V (φ)
(
d2
i − (φ1d

2
1 + · · ·+ φNd

2
N )
)
, i = 1, . . . , N. (2.5)

2.2. HS model. The Höfler and Schwarzer (HS) model is motivated by a formula by Batchelor [3] and
Batchelor and Wen [4], who advanced the following expression for vi for a dilute suspension (i.e., φ� φmax):

vi(Φ) =
(%s − %f)gD2

1

18µf
d2
i (1 + sT

i Φ), i = 1, . . . , N. (2.6)
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Here, sT
i := (Si1, . . . , SiN ) is the i-th row of the matrix S = (Sij)1≤i,j≤N of dimensionless sedimentation

coefficients Sij , which are negative functions of λij := dj/di and depend on certain other parameters, see
[3, 4] for details. The coefficients Sij can be reasonably approximated by the formula

Sij =
3∑
l=0

βl

(
dj
di

)l
, 1 ≤ i, j ≤ N with coefficients β0, . . . , β3 ≤ 0. (2.7)

Davis and Gecol [14] employed (2.7) to approximate the numerical values of Sij tabulated in [4] for eight
different values of λij . They obtained βi < 0 for i = 0, . . . , 3, with small values of |β3|. In light of a theoretical
asymptotical result [3], some authors set β3 = 0 a priori; for example, Höfler and Schwarzer [24] obtained

βT = (β0, . . . , β3) = (−3.52,−1.04,−1.03, 0) (2.8)

by fitting data from [4] to a second-order polynomial. For simplicity, we consider β3 = 0 also in this work.
To overcome the limitation of (2.6) to dilute suspensions, formal extensions of (2.6) to the whole range of

concentrations have been proposed. In particular, Höfler and Schwarzer [10, 23, 24] advanced the equation

vi(Φ) = vHS
i (Φ) :=

(%s − %f)gD2
1

18µf
d2
i exp(sT

i Φ + nφ)(1− φ)n, n ≥ 0. (2.9)

For Φ → 0, (2.9) has the same partial derivatives as (2.6), while for φ → 1, the velocities vi given by (2.9)
vanish. The corresponding flux vector of the HS model is given by

fi(Φ) = fHS
i (Φ) := vHS

1 (0)φid2
i exp(sT

i Φ + nφ)(1− φ)n, i = 1, . . . , N. (2.10)

For the HS model it is straightforward to verify strict hyperbolicity on D1 for N = 2, arbitrary non-positive
Batchelor matrices S and arbitrarily small values of d2. The analysis of [9] ensures hyperbolicity for arbitrary
N and in the case of the coefficients (2.8) under the fairly mild restriction dN > 0.0078595. These properties
contrast with those of the model by Davis and Gecol [14], which equally extends (2.6) to the full range of
concentration vectors but is strictly hyperbolic under very restrictive conditions only [12].

2.3. A variant of the HS model. In order to ensure that vi → 0 continuously for the HS model when
φ→ φmax we consider the following variant (see [24]) of the HS model:

vi(Φ) = vHS
1 (0)d2

i exp
(

sT
i Φ + n

φ

φmax

)(
1− φ

φmax

)n
, n ≥ 0, (2.11)

which is defined for Φ ∈ Dφmax . As we will see, the results of the available hyperbolicity analysis for the HS
model in Section 2.2, which consists in setting φmax = 1 in (2.11) but cutting the domain where (2.9) is valid
abruptly at the boundary of Dφmax , can be readily employed to analyze the hyperbolicity of the model given
by (2.11), to which we will refer as the “modified HS model”.

2.4. Hyperbolicity analysis. For the MLB and HS models, the velocities v1, . . . , vN do not depend on
each of the N components of Φ in an individual way, but are functions of a small number m� N of scalar
functions of Φ, i.e.,

vi = vi(p1, . . . , pm), pl = pl(Φ), i = 1, . . . , N, l = 1, . . . ,m. (2.12)

This means that for both models, the entries fij(Φ) := ∂fi(Φ)/∂φj of the Jacobian Jf (Φ) are given by

fij =
∂(φivi)
∂φj

= viδij +
m∑
l=1

φi
∂vi
∂pl

∂pl
∂φj

, i, j = 1, . . . , N, (2.13)

i.e., Jf (Φ) is a rank-m perturbation of the diagonal matrix D := diag(v1, . . . , vN ) of the form

Jf = D + BAT,

{
B := (Bil) = (φi∂vi/∂pl),
A := (Ajl) = (∂pl/∂φj),

1 ≤ i, j ≤ N, 1 ≤ l ≤ m. (2.14)

The hyperbolicity analysis is then based on the following theorem, which can be found in [1], but we give
here the form in [16], which provides the explicit formulas to be used in the applications.
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Theorem 2.1 (The secular equation, [1, 16]). Assume that vi > vj for i < j, and that A and B have the
formats specified in (2.14). We denote by Spr the set of all (ordered) subsets of r elements taken from a set
of p elements. If X is an m×N matrix, I := {i1 < . . . < ik} ∈ SNk and J := {j1 < . . . < jl} ∈ Sml , then we
denote by XI,J the k× l submatrix of X given by (XI,J)p,q = Xip,jq . Let λ 6= vi for i = 1, . . . , N . Then λ is
an eigenvalue of D + BAT if and only if

R(λ) := det
[
I + AT(D− λI)−1B

]
= 1 +

N∑
i=1

γi
vi − λ

= 0. (2.15)

The coefficients γi, i = 1, . . . , N , are given by the following expression:

γi =
min{N,m}∑

r=1

∑
i∈I∈SN

r ,J∈Sm
r

det AI,J det BI,J∏
l∈I,l 6=i(vl − vi)

. (2.16)

The relation R(λ) = 0 is known as the secular equation [1].

Assuming that m < N , with A and B defined in (2.14) we can write

det AI,J = det
(
∂pJ
∂φI

)
, det BI,J = det

(
∂vI
∂pJ

)∏
l∈I

φl,

where the notation above should be self-explanatory. Then, we can write

γi = φi

m∑
r=1

γr,i, γr,i =
∑

i∈I∈SN
r

∏
l∈I,l 6=i

φl
vl − vi

∑
J∈Sm

r

det
(
∂vI
∂pJ

)
det
(
∂pJ
∂φI

)
. (2.17)

When m ≤ 2, these quantities can be easily computed and the hyperbolicity analysis via the secular
equation is much less involved than explicitly deriving det(Jf (Φ)−λI), and discussing its zeros, as was done
in [7, 33]. For m = 3 or m = 4, the computations in the secular equation performed in [9] are more involved,
but have turned out very useful in providing at least partial results concerning hyperbolicity, where the
theoretical analysis of det(Jf (Φ)− λI) is essentially out of reach.

The following corollary illustrates the importance of the secular equation. Its proof (see [9]) follows from
Theorem 2.1 by a discussion of the poles of R(λ) and its asymptotic behaviour as λ→ ±∞.

Corollary 2.1 ([9]). With the notation of Theorem 2.1, assume that γi · γj > 0 for i, j = 1, . . . , N . Then
D + BAT is diagonalizable with real eigenvalues λ1, . . . , λN . If γ1, . . . , γN < 0, the interlacing property

M1 := vN + γ1 + · · ·+ γN < λN < vN < λN−1 < . . . < λ1 < v1 (2.18)

holds, while for γ1, . . . , γN > 0, the following analogous property holds:

vN < λN < vN−1 < λN−1 < . . . < v1 < λ1 < M2 := v1 + γ1 + · · ·+ γN . (2.19)

The analysis of [9] related to the secular equation also permits to obtain an explicit expression of the
spectral decomposition of Jf = Jf (Φ) needed for the implementation of spectral schemes. Assume λ is an
eigenvalue of Jf that satisfies λ 6= vi for all i = 1, . . . , N . Then ξ = ATx is a solution of Mλξ = 0,
where the m × m matrix Mλ := I + AT(D− λI)−1B can easily be computed. In fact, given two vectors
g = (g1, . . . , gN )T,h = (h1, . . . , hN )T ∈ RN , if we use the notation

[g,h] := [g,h]λ := gT(D− λI)−1h =
N∑
k=1

gkhk
vk − λ

(2.20)

and denote by ai and bj the columns of A and B, respectively, then Mλ = I + ([ai,bj ])1≤i,j≤m. Provided
that we can compute a solution ξ 6= 0 of Mλξ = 0, we can use the relation x + (D− λI)−1B(ATx) = 0 to
compute a right eigenvector of Jf as

x = −(D− λI)−1Bξ. (2.21)
The same procedure may be employed to calculate the left eigenvectors of Jf , since they are the right eigen-
vectors of J T

f = D + ABT, so the roles of A and B and corresponding columns just need to be interchanged.
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The version of the MLB model introduced in Section 2.1 corresponds to m = 2, where one may choose
p1 = φ and p2 = V (φ)(d2

1φ1 + · · · + d2
NφN ). For this model, the following lemma is proved in [9] as a

consequence of Corollary 2.1 and the discussion of the computation of left and right eigenvectors.

Lemma 2.1. The MLB model for equal-density spheres (1.1), (2.5) is strictly hyperbolic for all Φ ∈ Dφmax .
The eigenvalues λi = λi(Φ) of the Jacobian Jf (Φ) = JfMLB(Φ) satisfy the interlacing property

M1(Φ) < λN (Φ) < vN (Φ) < λN−1(Φ) < vN−1(Φ) < . . . < λ1(Φ) < v1(Φ) (2.22)

where the lower bound is given by

M1(Φ) := vN (Φ) +
N∑
k=1

γk = vMLB
1 (0)

(
d2
NV (Φ) +

(
(1− φ)V ′(φ)− 2V (φ)

)
(d2

1φ1 + · · ·+ d2
NφN )

)
.

The right and left eigenvectors of Jf (Φ), denoted by x = (x1, . . . , xN )T and y = (y1, . . . , yN )T, respectively,
that correspond to a root λ of the secular equation are

xi =
1

vi − λ

[
bi,1

N∑
k=1

ak,1bk,2
vk − λ

− bi,2

(
1 +

N∑
k=1

ak,1bk,1
vk − λ

)]
, i = 1, . . . , N, (2.23)

yi =
1

vi − λ

[
ai,1

N∑
k=1

bk,1ak,2
vk − λ

− ai,2

(
1 +

N∑
k=1

bk,1ak,1
vk − λ

)]
, i = 1, . . . , N, (2.24)

where

bi,1 = φid
2
iV
′(φ), bi,2 = −φi, ai,1 = 1, ai,2 = V ′(φ)(d2

1φ1 + · · ·+ d2
NφN ) + d2

iV (φ). (2.25)

For the HS model, we define

aν := dT
ν−1 := (dν−1

1 , dν−1
2 , . . . , dν−1

N ), pν := aT
ν Φ, ν = 1, . . . , 4, (2.26)

and taking into account that β3 = 0, we write

sT
i Φ =

N∑
j=1

(
2∑

ν=0

βν

(
dj
di

)ν)
φj =

2∑
ν=0

βν
dνi

aT
ν Φ =

2∑
ν=0

βν
dνi
pν+1, i = 1, . . . , N.

We may then express (2.9) as

vi(Φ) = vi(p1, . . . , p3) = vHS
1 (0)d2

i exp
(
(β0 + n)p1 + β1d

−1
i p2 + β2d

−2
i p3

)
(1− p1)n, i = 1, . . . , N. (2.27)

The entries of the matrices A and B, namely aki = ∂pk/∂φi and bki = φi∂vi/∂pk, are now given by

aki = dk−1
i , bki = d3−k

i φi(1− p1)nβ̃k−1 exp(sT
i Φ + nφ), β̃0 = β0 −

np1

1− p1
, β̃k = βk, k = 1, 2.

The hyperbolicity analysis of the HS model carried out in [9] is considerably more involved than that of the
MLB model. The following lemma summarizes the results obtained in [9] for the HS model.

Lemma 2.2. Assume that the vector of parameters β, the maximum solids concentration φmax and the width
of the particle size distribution, characterized by the value of dN ∈ (0, 1], satisfy the inequality

H(φ,β, dN ) := −β̃0

(
β1dN + β2(1 + dN )2

)
− β2β1dN − φ(1− dN )2β̃0β1β2 < 0. (2.28)

Then the HS model is strictly hyperbolic for Φ ∈ Dφmax . Furthermore, the eigenvalues satisfy the interlacing
property (2.22), with M1(Φ) := vN (Φ) +

∑N
k=1 γk and

γi = vHS
1 (0)φi(1− φ)n exp(sT

i Φ + nφ) (S1,i + S2,i + S3,i) , (2.29)

where in terms of η̃i := exp(sT
i Φ) we define

S1,i := d2
i

(
β̃0 + β1 + β2

)
,
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S2,i := −
N∑

j=1
j 6=i

φj η̃j

d2
j η̃j − d2

i η̃i

{
(di − dj)2β̃0

(
β1didj + β2(di + dj)2

)
+ β1β2didj(di − dj)2

}
,

S3,i := −β̃0β1β2

N∑
j,k=1

j<k, j,k 6=i

φjφkη̃j η̃kπ
2
ijk

(d2
kη̃k − d2

i η̃i)(d
2
j η̃j − d2

i η̃i)
, πijk := (dj − di)(dk − di)(dk − dj).

The spectral decomposition of Jf (Φ) is not provided in [9] in a form similar to that in Lemma 2.1, but
it is easy to obtain from Theorem 2.1. According to Theorem 2.1, if λ 6= vi is an eigenvalue of Jf (Φ), then
det Mλ = 0 and therefore ξ = (ξ1, ξ2, ξ3) is a non-trivial solution of Mλξ = 0 for

ξ1 = (1 + [a2,b2])(1 + [a3,b3])− [a2,b3][a3,b2],

ξ2 = [a2,b3][a3,b1]− [a2,b1](1 + [a3,b3]),

ξ3 = [a2,b1][a3,b2]− (1 + [a2,b2])[a3,b1].

Hence, by using (2.21) we obtain the following right eigenvector x = (x1, . . . , xN )T for the HS model:

xi = − 1
vi − λ

(bi,1ξ1 + bi,2ξ2 + bi,3ξ3) , i = 1, . . . , N. (2.30)

The left eigenvectors can be obtained by interchanging the roles of A and B.
Finally, let us come back to the modified HS model (2.11) considered in this paper. Introducing the

variable Φ̂ := (φ−1
max)Φ we can write (2.11) as follows:

vi(Φ̂) = vHS
1 (0)d2

i exp
(
ŝT
i Φ̂ + nφ̂

)(
1− φ̂

)n = vHS
1 (0)d2

i exp
(
(β̂0 + n)p̂1 + β̂1d

−1
i p̂2 + β̂2d

−2
i p̂3

)
(1− p̂1)n

where ŝT
i = (Ŝi1, . . . , ŜiN )T = φmaxsT

i , i = 1, . . . , N . The available hyperbolicity analysis for the HS model
can be applied to analyze the hyperbolicity of the modified HS model if we define the coefficients β̂k := φmaxβk
for k = 0, 1, 2 and the quantities p̂ν = aT

ν Φ̂, ν = 1, 2, 3. We can now apply Lemma 2.2 to deduce that the
modified HS model is strictly hyperbolic if

H(φ̂, β̂, dN ) := − ˜̂
β0

(
β̂1dN + β̂2(1 + dN )2

)
− β̂2β̂1dN − φ̂(1− dN )2 ˜̂

β0β̂1β̂2 < 0, (2.31)

where we define

˜̂
β0 = β̂0 −

nφ̂

1− φ̂
.

Assume now that the original coefficients β are given by (2.8). Then a simple algebraic computation shows
that (2.31) holds if dN > 0.0078595, that is, with the same mild restriction of the original HS model. This
is the matter of the next lemma.

Lemma 2.3. Assume that the coefficients β are given by (2.8). Then the modified HS model specified by
phase velocities vi given by (2.11) is strictly hyperbolic on Dφmax if dN > 0.0078595.

Proof. To make the basic idea transparent, let us write φ̂(φ) = φ/φmax and β̂(β) = φmaxβ. Then it is
sufficient to notice that we can write

H
(
φ̂(φ), β̂(β), dN

)
= φ2

max

(
H(φ,β, dN )− CH̃(φ,β, dN )

)
, (2.32)

where

H̃(φ,β, dN ) :=
(
β1dN + β2(1 + dN )2 + φ(1− dN )2β1β2

)
, C := nφ

(
1

1− φ
− 1
φmax(φmax − φ)

)
< 0.

Since the variant of the model is strictly hyperbolic if H(φ̂(φ), β̂(β), dN ) < 0, it is sufficient to show that
H̃(φ,β, dN ) < 0, but this statement is true if dN > 0.0078595. �
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3. Numerical schemes

3.1. Semi-discrete schemes. The schemes considered herein are based on the finite difference paradigm
due to Shu and Osher [38] of first setting up a conservative spatial semi-discretization of the term ∂xf(Φ) and
then to apply an SSP ODE solver to get a fully discrete conservative scheme with a high order of accuracy.
Specifically, if we discretize the spatial domain [0, 1] (after normalization) into M cells of size ∆x = 1/M
and define the cell centers xj := (j + 1/2)∆x, j = 0, . . . ,M − 1 and the cell interfaces xj+1/2 = (j + 1)∆x,
then the approximation to ∂xf(xj , t) is obtained by an essentially non-oscillatory reconstruction operator,
R, applied to the fluxes f(Φ) so that:

∂xf(xj , t) =
1

∆x

(
f̂j+1/2 − f̂j−1/2

)
+O(∆xr),

where r is the order of accuracy of the reconstruction and the numerical fluxes f̂j+1/2 are given by

f̂j+1/2 = R
(
f
(
Φ(xj−s, t)

)
, . . . , f

(
Φ(xj+s+1, t)

)
;xj+1/2

)
= f̂j+1/2

(
Φ(xj−s, t), . . . ,Φ(xj+s+1, t)

)
. (3.1)

If we define the vector Φ := (Φ−s,Φ−s+1, . . . ,ΦM+s−2,ΦM+s−1)T, this procedure yields the semi-discrete
scheme (method of lines)

dΦj
dt

= Lj(Φ) := − 1
∆x
(
f̂j+1/2(Φj−s, . . . ,Φj+s+1)− f̂j−1/2(Φj−s−1, . . . ,Φj+s)

)
, j = 0, . . . ,M − 1. (3.2)

for approximations Φj(t) ≈ Φ(xj , t), j = 0, . . . ,M − 1. If we define the vector L := (L0, . . . ,LM−1)T, then
(3.2) can be compactly written as

dΦ(t)
dt

= L
(
Φ(t)

)
. (3.3)

For well-known stability reasons, the reconstruction operator should be “upwind-biased”. In the scalar
case, this means that R should not depend on its last argument if f ′ > 0 and should not depend on its
first argument if f ′ < 0. For nonlinear fluxes ( mandatorily near sonic points, where f ′ = 0) a flux splitting
approach, where

f = f− + f+, f+
u > 0, f−u < 0,

is used in order to define the numerical flux, so that

f̂j+1/2 = R+
(
f+(Φj−s), . . . , f+(Φj+s);xj+1/2

)
+R−

(
f−(Φj−s+1), . . . , f−(Φj+s+1);xj+1/2

)
, (3.4)

for upwind-biased reconstructions R±. In this work, R± is chosen as the mapped WENO5 (WENO5M)
reconstruction, proposed in [26], to avoid a possible loss of accuracy around extrema. This technique can be
extended to vectors of fluxes by its application either to each component of the system (“component-wise”
schemes) or by local characteristic projections (“characteristic-wise” schemes).

3.2. Boundary conditions. The zero-flux boundary conditions (1.3) are implemented by setting

f̂−1/2 = f̂M−1/2 = 0. (3.5)

We recall that a WENO5 scheme requires to consider two additional ghost cells on each boundary of the
computational domain. In order to guarantee that all the interpolatory stencils remain inside of the compu-
tational domain we employ a suggestion given in [39]: we set large values for the concentrations in the ghost
cells, which produce large variations, so that the WENO procedure avoids the use of any stencil involving
the ghost cells.
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3.3. Time discretization. Among the variety of explicit SSP (strong-stability preserving) time discretiza-
tion methods for the approximate solution of (3.3) we use the well known optimal third-order, three-stage
Runge-Kutta method referred to as SSPRK(3,3), which for (3.3) is given by

Φ(1) = Φν + ∆tL
(
Φν
)
,

Φ(2) =
3
4
Φν +

1
4
Φ(1) +

1
4

∆tL
(
Φ(1)

)
,

Φν+1 =
1
3
Φν +

2
3
Φ(2) +

2
3

∆tL
(
Φ(2)

)
.

(3.6)

SSP time discretization methods are widely used for hyperbolic PDE because they preserve the nonlinear
stability properties which are necessary for problems with non-smooth solutions. On the other hand, due
to convexity, the intermediate stages of the SSPRK methods have SSP properties (i.e., ‖Φ(i)‖ ≤ ‖Φ(i−1)‖
for the internal stages). This feature is especially important for some applications [19]. For sedimentation
problems it avoids unphysical negative concentrations in the internal stages. Notice that it is necessary to
evaluate three times the operator L(·) in order to move forward one time step, in fact, the effective SSP
coefficient for SSPRK(3,3) (which is defined as [19, 34, 35] the SSP coefficient of the method divided by the
number of stages) is equal to 1/3.

To satisfy the CFL condition the value of ∆t is computed adaptively for each step ν. More exactly, the
solution Φν+1 at tν+1 = tν + ∆t is calculated from Φν by using the time step ∆t = CFL ∗∆x/ρνmax, where
ρνmax is an estimate of the maximal characteristic velocity for Φν .

3.4. Flux vector splittings and viscosity coefficients. As mentioned before, a flux splitting of the type
f = f+ + f− with f+

u > 0 and f−u < 0 is required when the flux function is nonlinear. A standard recipe is
provided by the Lax-Friedrichs flux vector splitting,

f+(u) =
1
2

(f(u) + αu), f−(u) =
1
2

(f(u)− αu) (3.7)

where the viscosity coefficient α has to verify that all eigenvalues of fu + αI are ≥ 0 and all eigenvalues of
fu − αI are ≤ 0. Obviously, a choice such as

α = max
j=0,...,M−1

max
1≤k≤N

∣∣λkj ∣∣, (3.8)

guarantees these inequalities, and we remark that α above can be easily computed for the polydisperse
models being studied, since the necessary eigenvalues can be computed in an efficient manner by applying a
root finder. However, we can readily apply the results in Lemmas 2.1 and 2.2 in order to provide an estimate
for (3.8) which does not require the computation of the eigenvalues, and is ’optimal’, in the sense specified
in [45],

α = max
j=0,...,M−1

max

{∣∣∣∣∣v1

(
Φj
)

+
N∑
k=1

γk
(
Φj
)∣∣∣∣∣ , ∣∣vN(Φj)∣∣

}
. (3.9)

The choice of the viscosity coefficients (3.8) and (3.9) is global, hence it can be used at each cell interface,
however, the resulting schemes tend to be too dissipative, even when using a characteristic-wise high reso-
lution shock capturing scheme (see the results in [16]). In order to reduce the dissipation effects associated
to the global choice of viscosity coefficient described above, a Local Lax Friedrichs (LLF) approach was
proposed in [38]. The original viscosity coefficient for the computation of the numerical flux at the i + 1/2
interface by the LLF flux splitting approach is given in [38] by

αkj+1/2 = max
Φ∈Γ

∣∣λk(Φ)
∣∣, k = 1, . . . , N, (3.10)

where Γ := Γ(Φj ,Φj+1) ⊂ RN is a path in phase space connecting Φj and Φj+1, for example a straight line.
Since the characteristic fields are neither genuinely nonlinear nor linearly degenerate, the standard choice

αkj+1/2 = max
{∣∣λk(Φj)

∣∣, ∣∣λk(Φj+1)
∣∣}. (3.11)
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will not be appropriate. Indeed, in the numerical experiments section we shall see that (3.11) produces
numerical oscillations which do not disappear upon mesh refinement. Hence, the extrema of λk(Φ) over Γ
in (3.10) needs to be computed. Since there is no closed form for the eigenvalues, this is not an easy task.
However, we notice that the interlacing property (2.18) implies that

max
Φ∈Γ

∣∣λk(Φ)
∣∣ ≤ max

Φ∈Γ

{∣∣vk−1(Φ)
∣∣, ∣∣vk(Φ)

∣∣}, k = 1, . . . , N, (3.12)

where we set v0 := M1. Let us consider Γ as the straight line joining Φj and Φj+1, the minimum and the
maximum of

gk(a) := vk
(
aΦj + (1− a)Φj+1

)
, a ∈ [0, 1],

for each value of k ∈ {1, . . . , N} can be computed as the minimum or maximum of the extremal set

Ek(Φj ,Φj+1) :=
{
gk(0), gk(1)

}
∪
{
gk(a) : g′k(a) = 0, a ∈ (0, 1)

}
. (3.13)

For the MLB model, we obtain

a = ak =
(n− 1)(d2

k − dT
2 (Φj+1))(pj − pj+1) + (1− pj+1)dT

2 (Φj − Φj+1)
n(pj − pj+1)dT

2 (Φj − Φj+1)
, (3.14)

where pj is the value of p = φ associated with node j.
For the modified HS model we have

a = ak =
φmax − pj+1

pj − pj+1
− n(

β0 + n
φmax

)
(pj − pj+1) + β1d

−1
k dT(Φj − Φj+1) + β2d

−2
k dT

2 (Φj − Φj+1)
. (3.15)

Hence, the viscosity coefficient

αkj+1/2 = max
Φ∈[Φj ,Φj+1]

{∣∣vk−1(Φ)
∣∣, ∣∣vk(Φ)

∣∣} (3.16)

where [Φj ,Φj+1] denotes the straight line joining Φj and Φj+1 can be readily computed at each cell interface.
As we shall see in the numerical experiments section, (3.16) provides an adequate recipe for the local viscosity
coefficient required by the LLF approach.

3.5. The SPEC and COMP schemes. A component-wise WENO5 scheme is defined by the numerical
flux

f̂j+1/2,k = R+
(
f+
j−2,k, . . . , f

+
j+2,k;xj+1/2

)
+R−

(
f−j−1,k, . . . , f

−
j+3,k;xj+1/2

)
, (3.17)

where R is the mapped WENO5 reconstruction operator [26] and f±j,k are given by the global Lax-Friedrichs
flux splitting (

f±j,1, . . . , f
±
j,N

)T = f(Φj)± αΦj , j ∈ Z,
with α as defined in (3.9). Notice that this globally defined viscosity coefficient does not require the spectral
information of the Jacobian matrix. We remark that the viscosity coefficient relies on the computation of
the γk coefficients provided in Lemmas 2.1 and 2.2 which is consistent with the observations in [44], about
the need to have a proper estimate of the minimal viscosity coefficient given by (3.8).

We use

ρνmax = max
j=0,...,M−1

max

{∣∣∣∣∣v1

(
Φνj
)

+
N∑
k=1

γk
(
Φνj
)∣∣∣∣∣ , ∣∣vN(Φνj )∣∣

}
to estimate the maximal characteristic velocity for Φν . The resulting scheme will be referred to as “COMP-
GLF”.

In order to implement a characteristic-wise scheme, we need the complete eigenstructure of Jf (Φ), which
is provided by the results of the hyperbolicity analysis summarized in Section 2.4. The normalized left
eigenvectors (lkj+1/2)T and right eigenvectors rkj+1/2, k = 1, . . . , N , of

Jf (Φj+1/2), Φj+1/2 :=
1
2

(Φj + Φj+1),
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are computed using (2.23) and (2.24) for the MLB model and (2.30) for the HS model. The matrices

Rj+1/2 =
[
r1
j+1/2, . . . , r

N
j+1/2

]
, R−1

j+1/2 =
[
l1j+1/2, . . . , l

N
j+1/2

]T
,

are needed in order to compute the local characteristic variables and fluxes around the j + 1/2 interface as
follows:

gj+1/2,i,k :=
(
lkj+1/2

)T
f(Φj+i), g±j+1/2,i,k :=

1
2
(
lkj+1/2

)T(
f(Φj+i)± αkj+1/2Φj+i

)
,

i = −2, . . . , 3, j ∈ Z, k = 1, . . . , N,

with αkj+1/2 given by (3.16). For the spectral scheme we compute the numerical fluxes as

f̂j+1/2 =
(
f̂j+1/2,1, . . . , f̂j+1/2,N

)T = Rj+1/2ĝj+1/2, j ∈ Z, (3.18)

where ĝj+1/2 = (ĝj+1/2,1, . . . , ĝj+1/2,N )T is defined as follows. If λkj · λkj+1 ≤ 0 (Case 1), we set

ĝj+1/2,k = R+
(
g+
j+1/2,−2,k, . . . , g

+
j+1/2,2,k;xj+1/2

)
+R−

(
g−j+1/2,−1,k, . . . , g

−
j+1/2,3,k;xj+1/2

)
, (3.19)

while for λkj · λkj+1 > 0 (Case 2), we set

ĝj+1/2,k =

{
R+(gj+1/2,−2,k, . . . , gj+1/2,2,k;xj+1/2) if λkj > 0 and λkj+1 > 0,
R−(gj+1/2,−1,k, . . . , gj+1/2,3,k;xj+1/2) if λkj < 0 and λkj+1 < 0,

k = 1, . . . , N. (3.20)

We estimate the maximal characteristic velocity for Φν by:

ρνmax = max
j=0,...,M−1

max
k=1,...,N

∣∣λk(Φνj+1/2

)∣∣.
In what follows, we will address by “SPEC-INT” the characteristic-wise mapped fifth-order WENO scheme

whose numerical fluxes are calculated by (3.18)–(3.20), and where the viscosity coefficient is calculated by
(3.16) based on the interlacing property. Alternatively, for comparison purposes we will in one case employ
the same scheme with the viscosity coefficient given by the usual choice (3.11) (instead of (3.16)). This
scheme will be referred to as “SPEC-LLF”.

4. Numerical results

In this section we perform a series of numerical experiments to highlight the numerical issues brought up
earlier in the paper. In particular, we shall see that characteristic based WENO schemes are indeed more
robust that their component-wise counterparts, and that the choice of viscosity is important in the overall
performance of the scheme: an incorrect choice of the viscosity coefficient in the splitting strategy can lead
to an oscillatory behavior that remains under mesh refinement. In this section, we take CFL = 0.5 for all
examples with two species and CFL = 0.2 for N = 4, 11.

4.1. Example 1 (MLB model, N = 2). The first example [13, 36] corresponds to two species with density
%s = 2790 kg/m3 and different diameters D1 = 4.96 × 10−4 m and D2 = 1.25 × 10−4 m, corresponding to
d1 = 1 and d2 = D2/D1 = 0.25202. The (unnormalized) depth of the vessel in the original experiment
[36] is L = 0.3 m. The maximum total concentration is φmax = 0.68, and the initial concentrations are
Φ0 = (φ0

1, φ
0
2) = (0.2, 0.05)T. The hindered settling factor V (φ) is chosen according to (2.4) with the

exponent n = 4.7. The remaining parameters are g = 9.81 m/s2, µf = 0.02416 Pa s and %f = 1208 kg/m3.
Moreover, here and in the following examples, the spatial coordinate x refers to normalized depth, and varies
between x = 0 (meniscus of the suspension) and x = 1 (bottom of the settling column). The solution of
Example 1 is well known, and has been used as a test case for a variety of methods (see, e.g., [6, 9, 10, 13]).

To compare the performance of SPEC-INT with that of COMP-GLF, we calculate numerical solutions for
a sequence of spatial discretizations ∆x = 1/M , and compare the solutions with two alternative reference so-
lutions that have been computed with M = Mref = 6400 and M = Mref = 25600 by SPEC-INT and COMP-
GLF, respectively. These solutions are shown in Figures 1 and 2 for the simulated times t = 50 s and t = 300 s,
respectively. In Table 1 we show approximate L1 errors for both schemes at two selected times. These approx-
imate errors are computed as follows. Let us denote by φMi (·, t) and φref

i (·, t) denote the numerical solution
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Figure 1. Example 1: numerical solution for φ1, φ2 (a, c) and φ (b, d) at t = 50 s computed
by SPEC-INT with M = 6400 (a, b) and COMP-GLF with M = 25600 (c, d).

M e1 cr e2 cr etot cr e1 cr e2 cr etot cr

SPEC-INT, t = 50 s SPEC-INT, t = 300 s

100 126.04 - 22.41 - 131.10 - 121.20 - 204.41 - 113.24 -
200 63.37 0.992 10.62 1.077 64.72 1.018 65.40 0.890 107.38 0.929 56.80 0.995
400 30.54 1.053 5.42 0.970 31.60 1.035 33.76 0.954 55.53 0.951 30.07 0.918
800 16.03 0.930 2.62 1.051 16.35 0.950 14.94 1.177 26.79 1.052 15.75 0.932

1600 6.94 1.207 1.21 1.113 7.19 1.185 7.71 0.953 12.99 1.045 7.10 1.149

COMP-GLF, t = 50 s COMP-GLF, t = 300 s

100 169.64 - 43.37 - 187.63 - 175.79 - 530.19 - 423.23 -
200 87.06 0.962 20.52 1.080 94.26 0.993 86.40 1.025 255.21 1.055 219.27 0.949
400 44.76 0.960 9.69 1.082 47.56 0.987 45.40 0.928 186.98 0.449 174.58 0.329
800 23.94 0.903 4.82 1.009 25.10 0.923 33.31 0.447 64.09 1.545 54.82 1.671

1600 13.18 0.860 2.41 0.998 13.60 0.884 25.05 0.411 53.33 0.265 43.67 0.328

Table 1. Example 1: approximate L1 errors (×10−5) and convergence rates (cr). The
reference solution is computed by SPEC-INT with M = 6400.

for the i-th component at time t calculated for the discretization M ∈ {100, 200, 400, 800, 1600} and the ref-
erence discretization Mref , respectively (Mref = 6400 and Mref = 25600 for the SPEC-INT and COMP-GLF
schemes, respectively). Assume that φMi (x, t) = φMj,i(t) = const. for x ∈ [(j − 1/2)∆x, (j + 1/2)∆x); assume,
moreover, that φref

i (·, t) is piecewise constant on the mesh with meshwidth 1/Mref . For a given time t and
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Figure 2. Example 1: numerical solution for φ1, φ2 (a, c) and φ (b, d) at t = 300 s
computed by SPEC-INT with M = 6400 (a, b) and COMP-GLF with M = 25600 (c, d).

M e1 cr e2 cr etot cr e1 cr e2 cr etot cr

SPEC-INT, t = 50 s SPEC-INT, t = 300 s

100 125.15 - 22.40 - 131.11 - 115.13 - 195.99 - 110.08 -
200 64.58 0.954 10.77 1.056 66.36 0.982 66.21 0.798 102.20 0.939 58.07 0.923
400 33.81 0.934 5.76 0.902 34.94 0.926 33.87 0.967 48.62 1.072 33.25 0.804
800 20.63 0.713 3.03 0.927 20.74 0.752 21.04 0.687 25.26 0.945 21.64 0.620

1600 13.98 0.561 1.82 0.737 13.85 0.582 15.34 0.456 13.64 0.889 15.97 0.439

COMP-GLF, t = 50 s COMP-GLF, t = 300 s

100 167.08 - 43.21 - 188.63 - 166.51 - 519.44 - 416.07 -
200 87.17 0.939 20.62 1.067 96.30 0.970 78.01 1.094 243.39 1.094 211.38 0.977
400 47.05 0.890 9.96 1.051 50.80 0.923 33.50 1.220 178.31 0.449 169.73 0.317
800 28.93 0.702 5.25 0.922 30.39 0.741 22.18 0.594 56.16 1.667 49.53 1.777

1600 21.40 0.435 3.10 0.761 21.65 0.489 12.30 0.851 43.48 0.369 36.55 0.439

Table 2. Example 1: approximate L1 errors (×10−5) and convergence rates (cr). The
reference solution is computed by COMP-GLF with M = 25600.

r := Mref/M ∈ N we then calculate the approximate L1 error in species i by

ei = ei(t) =
∥∥φref

i (·, t)− φMi (·, t)
∥∥

1
=

1
Mref

Mref−1∑
j=0

∣∣φref
j,i (t)− φMbj/rc,i(t)

∣∣, i = 1, . . . , N.
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Figure 3. Example 1: numerical solution at t = 50 s with M = 400 (a) and enlarged views
(b–f). The reference solution is computed by SPEC-INT with M = 6400.

If we define φMj (t) := φMj,1(t) + · · ·+ φMj,N (t) (and analogously, φref
j (t)), then the total approximate L1 error

at that time is given by

etot = etot(t) =
1

Mref

Mref−1∑
j=0

∣∣φref
j (t)− φMbj/rc(t)

∣∣.
Note that etot(t) ≤ e1(t) + · · ·+ eN (t).

Table 1 shows that SPEC-INT produces smaller values of the error than COMP-GLF, with respect to
its ’converged’ solution. The difference is significant in the case of species 2 at t = 50 s. In the plot of the
complete solutions in Figure 3 (a), no difference between both solutions becomes apparent, so we present
enlarged views of portions of the numerical simulation (Figures 3 (b–f)) in which the greater accuracy of the
solutions generated by SPEC-INT is appreciable. Plot (a) of Figure 4, which corresponds to t = 300 s, shows
the difference of behaviour of both solutions even without the necessity to enlarge the view; nevertheless we
present in Figure 4 (b–d) enlarged views to make local differences clearly visible. In Table 1 the reference
solution is computed by SPEC-INT with Mref = 6400. To exclude that our conclusion of superiority of
SPEC-INT is based on a bias due to the choice of this scheme for the reference solution, we present a second
table of errors for this example, Table 2, in which the numerical solutions for M = 100, . . . , 1600 are the
same as in Table 1, but we utilize a reference solution obtained by COMP-GLF with Mref = 25600. As
a general observation, throughout a rather extense testing process, we may say that a numerical solution
obtained by COMP-GLF agrees in quality and resolution power with the solution obtained by SPEC-INT if
the meshwidth for COMP-GLF is roughly a fourth of the one used for SPEC-INT.

Of course, for a given value of M the COMP-GLF scheme is faster than the SPEC-INT scheme, since
COMP-GLF does not require the complete spectral information, which avoids many computations. Never-
theless, if we seek a fixed level of resolution in the numerical simulation, then SPEC-INT turns out to be
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Figure 4. Example 1: numerical solution at t = 300 s with M = 400 (a) and enlarged
views (b–f). The reference solution is computed by SPEC-INT with M = 6400.

SPEC-INT, t = 50 s SPEC-INT, t = 300 s COMP-GLF, t = 50 s COMP-GLF, t = 300 s

M etot cr etot cr etot cr etot cr

100 103.45 - 158.14 - 200.42 - 212.03 -
200 53.68 0.946 72.64 1.122 104.16 0.944 122.90 0.787
400 23.81 1.173 33.95 1.097 50.07 1.057 79.54 0.628
800 11.95 0.995 12.08 1.491 25.02 1.001 40.90 0.959

1600 5.29 1.174 7.08 0.771 12.13 1.044 23.54 0.797

Table 3. Example 2: approximate L1-errors (×10−5) and convergence rates (cr).

computationally more efficient. For instance, in Example 1 the CPU time is 21.01 s and 87.15 s for providing
the solutions at the respective simulated times t = 50 s and t = 300 s, respectively, with SPEC-INT and
M = 400, while to obtain a numerical solution of comparable quality (smallness of errors) by COMP-GLF
we need to use M = 1600 points, and the corresponding CPU times are 29.15 s for t = 50 s and 160.80 s for
t = 300 s.

4.2. Example 2 (MLB model, N = 4). We consider d1 = 1, d2 = 0.8, d3 = 0.6 and d4 = 0.4, φmax = 0.6,
and φ0

i = 0.05 for i = 1, . . . , 4. The other parameters are the same as in Example 1. This example goes
back to Greenspan and Ungarish [22], and was solved numerically in [8] with the slightly different hindered
settling factor V (φ) = (1 − (5/3)φ)2.7 in [8]. Figures 5 (a, b) and 6 (a, b) display the reference solution
obtained with SPEC-INT and Mref = 6400 for t = 50 s and t = 300 s respectively, while plots (c–f) of both
figures are enlarged views of the corresponding numerical solutions obtained with SPEC-INT and COMP-
GLF with M = 400. Both series of plots show that at M = 400 the quality of approximation of piecewise
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Figure 5. Example 2: reference solution for φ1, . . . , φ4 and φ computed by SPEC-INT
with Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 50 s.

i 1 2 3 4 5 6 7 8 9 10 11

φ0
i [10−3] 0.435 3.747 14.420 32.603 47.912 47.762 32.663 15.104 4.511 0.783 0.060
Di[10−5m] 8.769 8.345 7.921 7.497 7.073 6.649 6.225 5.801 5.377 4.953 4.529
di 1.000 0.952 0.903 0.855 0.807 0.758 0.710 0.662 0.613 0.565 0.516

Table 4. Example 3: initial concentrations φ0
i , real and normalized particle sizes Di and di.

constant portions of the solution and the resolution of kinematic shocks by SPEC-INT is superior to that of
COMP-GLF. Table 3 displays the approximate total L1 error and convergence rates for this case. For the
times considered the average convergence rate using the SPEC-INT method is close to one. On the other
hand, as time increases, the errors increase considerably.

We select this case to compare the performance of SPEC-INT with that of SPEC-LLF, the method based
on the simpler viscosity coefficient (3.11). Both choices approximate the same solution globally (not shown
here), and a few enlarged views of relevant parts of the numerical solution shown in Figure 7 indicate that
the resolution of kinematic shocks by SPEC-LLF is even slightly better than by SPEC-INT. However, we
observe spurious oscillations produced by SPEC-LLF in the piecewise constant parts of the solution. These
oscillations do not disappear upon mesh refinement, and indicate that the amount of viscosity introduced
by (3.11) is not appropriate and possibly insufficient.

4.3. Example 3 (MLB model, N = 11). This example is based on experimental data from [37], where
the settling of a suspension in a column of height L = 0.935 m was considered. The initial concentrations φ0

i ,
diameters Di and normalized diameters di = Di/D1 are given in Table 4; the maximum total concentration
is φmax = 0.641 [37]. Figures 8 (a) and (b) show the concentration profiles of the reference solution, obtained
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Figure 6. Example 2: reference solution for φ1, . . . , φ4 and φ computed by SPEC-INT
with Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 300 s.

SPEC-INT, t = 50 s SPEC-INT, t = 300 s COMP-GLF, t = 50 s COMP-GLF, t = 300 s

M etot cr etot cr etot cr etot cr

100 291.87 - 351.60 - 617.68 - 733.96 -
200 135.51 1.107 182.85 0.943 304.39 1.021 393.88 0.898
400 66.22 1.033 96.86 0.917 164.93 0.884 212.10 0.893
800 36.48 0.860 44.93 1.108 89.51 0.882 112.20 0.919

1600 17.74 1.040 21.07 1.093 46.61 0.941 63.38 0.824

Table 5. Example 3: approximate L1 errors (×10−5) and convergence rates (cr).

by SPEC-INT with Mref = 6400 at t = 300 s. Figures 8 (c–f) display enlarged views of portions of the SPEC-
INT and COMP-GLF solutions with M = 400 at the same time. Again, the superiority of the quality of
approximation by SPEC-INT becomes apparent. This observation is also confirmed by the errors displayed
in Table 5.

4.4. Example 4 (MLB model, N = 2). We consider the MLB model with N = 2 and the same parameters
as Example 1, but now start from the initial datum

Φ(x, 0) =

{
0.15 if x ≤ 0.5,,
0 if x > 0.5,

(4.1)

corresponding to a settling column whose upper half is initially filled with a suspension, which is separated
from the lower half by a “membrane”, that is removed at t = 0. The suspension pouring into the lower



WENO SCHEMES FOR POLYDISPERSE SEDIMENTATION MODELS 19

0.59 0.595 0.6 0.605

0.67

0.675

0.68

0.685

0.69

0.695

0.7

0.705

0.71

x

φ
4

 

 

REF

SPEC−INT

SPEC−LLF

0.42 0.425 0.43 0.435 0.44 0.445

0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

x

φ
3

 

 

REF

SPEC−INT

SPEC−LLF

0.172 0.174 0.176 0.178 0.18 0.182

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

x

φ
2

0.24 0.245 0.25 0.255 0.26

0.82

0.83

0.84

0.85

0.86

0.87

0.88

x

φ
1

 

 

REF

SPEC−INT

SPEC−LLF

(a) (b)

(c) (d)

Figure 7. Example 2: details of numerical solutions obtained by SPEC-INT and SPEC-
LLF with M = 400 at t = 300 s.

M e1 cr e2 cr etot cr e1 cr e2 cr etot cr

SPEC-INT, t = 50 s SPEC-INT, t = 250 s

100 210.30 - 83.10 - 282.82 - 124.22 - 70.15 - 194.19 -
200 107.67 0.966 34.57 1.265 136.26 1.054 64.25 0.951 29.39 1.255 93.64 1.052
400 66.79 0.689 9.42 1.875 73.25 0.895 55.27 0.217 10.08 1.544 65.35 0.519
800 37.37 0.838 4.53 1.057 40.74 0.846 32.97 0.745 5.55 0.860 38.53 0.762

1600 19.11 0.967 4.29 0.075 22.78 0.838 14.02 1.233 4.04 0.456 18.07 1.092

COMP-GLF, t = 50 s COMP-GLF, t = 250 s

100 281.79 - 125.25 - 392.34 - 236.18 - 160.41 - 394.76 -
200 161.65 0.802 73.05 0.778 226.85 0.790 121.40 0.960 77.05 1.058 198.27 0.994
400 88.24 0.873 35.53 1.040 119.74 0.922 73.96 0.715 35.46 1.120 109.42 0.858
800 47.80 0.884 18.30 0.957 64.29 0.897 41.71 0.826 18.30 0.954 60.01 0.866

1600 24.91 0.940 10.47 0.806 34.50 0.898 20.56 1.020 9.84 0.894 30.41 0.980

Table 6. Example 4: approximate L1 errors (×10−5) and convergence rates (cr) for Rie-
mann problem. The reference solution is computed by SPEC-INT with Mref = 6400.

half will then gradually dilute, and usually a transient rarefaction wave centred at x = 0.5 will form. (The
rarefaction wave will, however, soon start to interact with concentration information traveling downwards
and upwards from the suspension meniscus and column bottom, respectively.) As was shown in [15], this
configuration can be realized experimentally (with some effort), and the expanding concentration gradient
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Figure 8. Example 3: reference solution for φ1, . . . , φ11 and φ computed by SPEC-INT
with Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 300 s.

M e1 cr e2 cr etot cr e1 cr e2 cr etot cr

SPEC-INT, t = 50 s SPEC-INT, t = 250 s

100 135.94 - 18.45 - 144.90 - 113.12 - 105.16 - 108.60 -
200 70.57 0.946 7.86 1.231 73.50 0.979 59.41 0.929 53.30 0.980 56.05 0.954
400 34.34 1.039 3.76 1.063 35.80 1.038 29.82 0.994 29.01 0.877 27.37 1.034
800 16.49 1.058 1.78 1.073 17.21 1.057 11.26 1.404 12.05 1.267 14.29 0.937

1600 6.71 1.297 0.76 1.226 7.05 1.286 4.86 1.212 5.74 1.068 6.77 1.077

COMP-GLF, t = 50 s COMP-GLF, t = 250 s

100 138.48 - 26.99 - 160.72 - 171.39 - 245.80 - 194.93 -
200 70.17 0.981 11.93 1.177 79.71 1.012 86.78 0.982 138.36 0.829 114.99 0.761
400 35.96 0.964 5.31 1.166 40.08 0.992 45.29 0.938 70.90 0.964 56.92 1.014
800 17.02 1.079 2.52 1.072 19.06 1.072 22.87 0.986 39.53 0.843 32.69 0.800

1600 8.39 1.020 1.20 1.073 9.35 1.028 11.40 1.004 22.39 0.820 19.68 0.732

Table 7. Example 5: approximate L1 errors (×10−5) and convergence rates (cr) for HS
model. The reference solution is computed by SPEC-INT with Mref = 6400.

reveals properties of the function V (φ) which at least for N = 1 can be used for flux identification. A similar
configuration, but on an unbounded domain, was solved for N = 2, 4, 8 and 32 in [11].

Figures 9 and 10, which correspond to the respective simulated times t = 50 s and t = 250 s, show
the reference solution obtained by SPEC-INT with Mref = 6400 and details illustrating the difference in



WENO SCHEMES FOR POLYDISPERSE SEDIMENTATION MODELS 21

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

φ
1
, φ

2

x

 

 

φ
1

φ
2

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

x

φ
0.125 0.13 0.135 0.14 0.145 0.15

0.32

0.34

0.36

0.38

0.4

0.42

x

φ
1

 

 

REF

SPEC−INT

COMP−GLF

0.04 0.045 0.05 0.055 0.06 0.065

0.49

0.5

0.51

0.52

0.53

0.54

x

φ
1

 

 

REF

SPEC−INT

COMP−GLF

0 0.005 0.01 0.015 0.02 0.025

0.48

0.5

0.52

0.54

0.56

x

φ
2

 

 

REF

SPEC−INT

COMP−GLF

0.135 0.14 0.145 0.15 0.155 0.16 0.165

0.34

0.36

0.38

0.4

0.42

x

φ
2

 

 

REF

SPEC−INT

COMP−GLF

(a) (b) (c)

(d) (e) (f)

Figure 9. Example 4: reference solution for φ1, φ2 and φ computed by SPEC-INT with
Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 50 s.

solutions obtained by SPEC-INT and COMP-GLF with M = 400. Table 6 displays the errors observed for
this example.

4.5. Examples 5 and 6: HS model with N = 2 and N = 4. For these examples we implement the
variant of HS model described in Section 2.3. Numerical simulations are shown in Figures 11, 12 (N = 2)
and 13 (N = 4). A noticeable difference with the MLB model (where the flux function is cut abruptly
for φ ≥ φmax) is the profile at the rightmost part of the solution. Table 7 displays the errors observed for
Example 5.

5. Conclusions

In this paper we have shown that the implementation of efficient WENO schemes for polydisperse sed-
imentation models can be accomplished by using the recent hyperbolicity analysis carried out in [9]. In
addition, we have been able to characterize the viscosity coefficients to be used in Global-Lax-Friedrichs
flux-splitting procedures, as well as in the Local-Lax-Friedrichs flux-splitting procedure. The particular al-
gebraic structure of the velocities of the MLB and HS models permits to exactly determine the extremal set
Ek(Φj ,Φj+1) defined in (3.13), and hence the specific viscosity coefficient to be used at each cell interface.

We have constructed component-wise and characteristic-based WENO5 schemes for two polydisperse
sedimentation models, and have compared their performance. As in the case of the MCLWR kinematic
traffic models, the characteristic-based schemes, which use the full spectral decomposition of the Jacobian
matrix at each cell-interface, are more robust and lead to numerical solutions which are essentially oscillation
free. We remark that this situation is absolutely similar to what is observed in the better known case of
the Euler equations for gas dynamics simulations, where the superiority of characteristic-based schemes is
a well known fact. For gas dynamics, the spectral decomposition of the Jacobian matrix is given in closed
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Figure 10. Example 4: reference solution for φ1, φ2 and φ computed by SPEC-INT with
Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 250 s.

form, hence the use of a characteristic-based scheme poses no special difficulties. For polydisperse models,
the spectral decomposition can only be computed numerically. In addition, the characteristic fields are
neither genuinely nonlinear nor linearly degenerate, hence the determination of the viscosity coefficients in
flux-vector splitting schemes becomes a non-trivial task.

According to the numerical tests shown in this paper, our proposed characteristic-based scheme (SPEC-
INT) is very robust, although it is certainly very costly in terms of computational resources, since it involves
an intensive usage of the characteristic information. The interlacing property allows other simplifications to
be implemented. For example, in Section 3.5, the discrimination between Cases 1 and 2 corresponding to
the use of either (3.19) or (3.20) is made in dependence of the sign of the product of eigenvalues λkj · λkj+1.
The interlacing property (2.18) or (2.19) can be used to compute this sign in terms of velocities rather than
eigenvalues.

Nevertheless, we have shown that the SPEC-INT gives a good resolution on the numerical approximation
with a relative small number of mesh points, hence it is competitive with respect to the simpler component-
wise schemes. We expect the SPEC-INT scheme to be even more competitive than cheaper component-wise
schemes, such as COMP-GLF, in an Adaptive Mesh Refinement (AMR) framework, since its non-oscillatory
properties will help to avoid unnecessary refinement in regions of constant concentration.
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Figure 11. Example 5: numerical solution for φ1, φ2 with M = 400 (a) and φ (b) at
t = 50 s and enlarged views (c–f) of zones indicated by rectangles in plot (a). The reference
solution is computed using SPEC-INT with Mref = 6400.
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2010-12 Gabriel N. Gatica, Ricardo Oyarzúa, Francisco J. Sayas: A residual-based
a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled
problem

2010-13 Lourenco Beirao-Da-Veiga, David Mora, Rodolfo Rodŕıguez: Numerical
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