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Abstract

The aim of this paper is to introduce and analyse a general vector optimization

problem in a unified framework. Using a well-known nonlinear scalarizing function

defined by a solid set, we present complete scalarizations of the solution set to the

vector problem without any convexity assumptions. As applications of our results

we obtain new optimality conditions for several classical optimization problems by

characterizing their solution set.

Key words. vector optimization, efficiency, approximate efficiency, scalarization,

weak efficiency, strict efficiency, optimality conditions;

Mathematics subject classification 2000. 90C26, 90C29, 90C30, 90C46

1 Introduction

In most real-life problems, optimization problems concern the minimization of several

criterion functions simultaneously. Very often, no single point minimizing all criteria

at once may be found, and therefore others concepts of optimality arise. Among them,

the so-called weak efficient, efficient, strict efficient, or proper efficient solution are

discussed in the literature.
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2 A unified vector optimization problem: complete scalarizations

By algorithmic and theoretical purposes, one needs to describe the whole solution

set to a vector problem via scalarization. For instance, given a function f : K → Rm, if

we are interested in its weakly efficient minima with respect to the nonnegative orthant

in Rm, EW , one desires to know under which conditions, the equivalence

x̄ ∈ EW ⇐⇒ x̄ ∈
⋃

p∗∈Rm
+
,p∗ 6=0

argminK〈p∗, f(·)〉 (1)

holds. It is well-known that such an equivalence (1) is true whenever each component

of f is convex, but it is still true under weaker assumption as shown in [19, 9]. The

authors in [9] established a necessary and sufficient condition in order the equivalence

(1) is satisfied: it requires the convexity of the set cone(f(K) − f(x̄) + R2
+), where

cone(A) means the smallest cone containing the set A. In spite of this fact, solving the

vector problem via the equivalence (1) (giving rise to the weighting method), requires

to know p∗ in advance. This is the main drawback of the procedure. In fact, by taking

the function f(x) = x = (x1, x2), and K = {(x1, x2) ∈ R2 : x1 + x2 ≥ 1}, we get, for

given p∗ = (p∗1, p
∗
2) ∈ R

2
+, p

∗ 6= 0,

inf
x∈K

〈p∗, f(x)〉 ∈ R⇐⇒ p∗1 = p∗2.

Here EW = {(x1, x2) ∈ R2 : x1 + x2 = 1}. A way to choose the parameter p∗ is

discussed in [5] under the boundedness from below of 〈p∗, f(·)〉 on K.

The outline of the paper is as follows. In Section 2 we formulate the unified vector

optimization problem and discuss its generality. Section 3 introduces the scalarizing

function and recalls its useful properties under very mild conditions. Section 4, is

devoted to describe the scalarization procedure for (approximate) efficiency by estab-

lishing complete scalarizations under a more general assumption, termed (B). Section

5 provides optimality conditions for specific optimization problems and gives several

examples. In Section 6, the main conclusions are presented.

2 A unified vector optimization problem

Let Y be a real topological vector space and let X be a Banach space.

Given a nonempty set S  Y , a nonempty set K ⊆ X and a function f : K → Y ,

we are interested in the problem

(P) find x̄ ∈ K f(x)− f(x̄) ∈ S ∀ x ∈ K, x 6= x̄.

We emphasize the generality of problem (P) from the economic point of view since

the preference order can be given on X by a function f or/and on Y by a set S which

is not necessarily a cone (see Figure 1).
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The set of such vectors x̄ ∈ K is denoted by ES = ES(K), and each one of its

elements is called a (global) S-minimizer of f on K.

S

f(K)

Figure 1: Illustration of problem (P) .

Since most resolution methods, like the iterative and heuristic ones, yield feasi-

ble points near to the exact solution, we also are interested in the main notion of

approximate solutions.

Given ε ≥ 0 and 0 6= q ∈ Y , we consider the following approximated problem

associated to (P):

(P(εq)) find x̄ ∈ K f(x)− f(x̄) ∈ −εq + S ∀ x ∈ K, x 6= x̄,

where S is any set satisfying S + R++q ⊆ S, where R++
.
= ]0,+∞[. We denote by

ES(εq) the solution set to (P(εq)). Thus, the previous inclusion implies that:

0 ≤ ε1 < ε2 =⇒ ES(ε1q) ⊆ ES(ε2q); ES = ES(0) ⊆ ES(εq) ∀ ε > 0.

Consequently,

ES ⊆
⋂

ε>0

ES(εq) ⊆ EclS .

When f is a real function we denote by E(f,K, ε) the set of ε-solutions, that is,

x̄ ∈ E(f,K, ε) if and only if f(x)− f(x̄) ≥ −ε for all x ∈ K. The above approximate

problem is defined in the Kutateladze’s sense [20]. In White [29] several notions of

approximate solutions are discussed.

If we consider the classical framework of vector spaces ordered by a proper convex

cone {0} 6= P ⊆ Y we obtain the following well-known notions of optimality.

In what follows, given any ∅ 6= A ⊆ Y , we denote by C(A), intA, clA and ∂A the

complement, the topological interior, the topological closure and the boundary of A

respectively. A convex cone P is called pointed if l(P )
.
= P ∩ (−P ) = {0}. If

• S = P , the solutions are termed “ideal” or “strong” minima of f and the solution

set is denoted by EP ;

• (intP 6= ∅) S = C(− intP ), the solutions are called “weakly efficient” minima of

f and for the set of solutions we use EW ;
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• S = C(−P ) ∪ l(P ), the solutions are said to be “efficient” minima of f and we

set E
.
= ES ;

• when P is not pointed and S = C(−P ) ∪ {0}, such solutions are named “weakly

strict efficient” minima of f , in this case EW1
.
= ES ;

• S = C(−P ), such solutions are named “strict efficient” minima of f and the

solution set is denoted by E1;

• S = C(−D) ∪ l(D) for some proper convex cone D ⊆ Y with nonempty interior

satisfying P \ l(P ) ⊆ intD, the solutions are called “Henig proper efficient”

minima of f , and the solution set is denoted by E2;

• S = C(− intA) for some closed convex set A  Y with nonempty interior satisfy-

ing 0 ∈ ∂A and A+ (P \ {0}) ⊆ intA, the solutions are called “proper efficient”

minima and the solution set is denoted by E3. Note that A+ (P \ {0}) ⊆ intA

implies the pointedness of P .

Note that if intP = ∅ then we can consider P with algebraic interior or relative

algebraic interior nonempty.

Since l(P )∪ C(−P ) ⊆ C(− intP ) and l(D)∪ C(−D) ⊆ l(P )∪ C(−P ) we have E2 ⊆

E ⊆ EW . In this case, if EP 6= ∅ then EP = E. On the other hand: E1 ⊆ EW1 ⊆ E;

E = EW1 whenever P is pointed; EW = EP provided P is a closed halfspace (see

Lemma 2.5 in [8]); E1 = EW1 whenever f is injective. Moreover, when P is pointed

every Henig proper efficient solution is also proper efficient.

The set E3 has been studied in [28], see the references therein for more details;

whereas the notion of strict efficiency is further developed in [10].

As we shall see in Section 5, problem (P) categorizes optimization problems given

by a not necessarily pre-order relation. Such non-transitive preferences are very inter-

esting in mathematical economics see [23] and references therein. Moreover, (P(εq))

encompasses several notions of ε-efficiency since as a particular case we obtain theQ(ε)-

efficiency concept introduced by Gutiérrez et al. in [15] to unified the approximated

solutions in vector optimization.

3 The nonlinear scalarizing function

A nonlinear scalarizing function that nowadays is having a great impact in the devel-

opment of a theoretical and algorithmic treatment of vector optimization problems, is

a particular Minkowski-type function which is known under different names in several
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areas of applied mathematics. Specially, such a scalarizing function has been considered

in optimization theory by several authors. For instance, in mathematical economics we

refer to Bonnisseau and Cornet [1], [22]; for vector solutions, to Pascoletti and Ser-

afini [24], Jahn [18], Luc [21], Gerth and Weidner [11], Rubinov and Gasimov [27];

for set solutions, to Hamel and Löhne [16], Hernández and Rodŕıguez-Maŕın [17], for

approximate solutions, Gutiérrez, Jiménez and Novo [13] and [14]; for fuzzy optimality

conditions to Durea and Tammer [6]; and for computing ε-efficient solutions to Engau

and Wiecek [7].

Let q ∈ Y , q 6= 0, be fixed. Set R+
.
= [0,+∞[, R++

.
= ]0,+∞[. Let ∅ 6= A ⊆ Y .

Definition 3.1. Let ξq,A : Y −→ R ∪ {±∞} be defined by

ξq,A(y)
.
= inf{t ∈ R : y ∈ tq −A} (y ∈ Y ).

We use the convention inf ∅ = +∞. It is well-known that such a function has many

useful properties of separation and monotonicity which play a central rol in the proofs

of the main previously mentioned results in a nonconvex setting. We emphasize that a

good account of its properties is given in Göpfert, Riahi, Tammer and Zălinescu [12]

and Tammer and Zălinescu [28].

Now we recall some of its properties which are used to establish complete scalariza-

tions of problem (P) in the following section. Some of them are given in [12, Theorem

2.3.1] for closed sets, A.

Firstly, we need directions of the recession cone of a nonempty set A ⊆ Y , A∞ =

{y ∈ Y : a+ R++y ∈ A, ∀ a ∈ A}, then A+A∞ = A.

Proposition 3.2. Let λ ∈ R, q 6= 0, The following assertions hold:

(a) {y ∈ Y : ξq,A(y) < λ} = ]−∞, λ[ q −A; thus

{y ∈ Y : ξq,A(y) < 0} = −R++q −A; {y ∈ Y : ξq,A(y) < +∞} = Rq −A.

If, in addition, A+ R++q ⊆ A  Y .

(b) λq− intA ⊆ {y ∈ Y : ξq,A(y) < λ} ⊆ λq−A ⊆ {y ∈ Y : ξq,A(y) ≤ λ} ⊆ λq− clA;

(c) {y ∈ Y : ξq,A(y) = λ} ⊆ λq − ∂A;

From the preceding result we obtain the next corollary.

Corollary 3.3. Let q ∈ Y , q 6= 0, A  Y .
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(a) Assume that clA+ R++q ⊆ A, then

{y ∈ Y : ξq,A(y) ≤ λ} = λq − clA, ∀ λ ∈ R and ξq,A(y) = ξq,clA(y).

(b) Assume that intA 6= ∅ and A+ R++q ⊆ intA, then

{y ∈ Y : ξq,A(y) < λ} = λq − intA, ∀ λ ∈ R and ξq,A(y) = ξq,intA(y).

Taking into account that [clA + R++q ⊆ A and A + R++q ⊆ intA] ⇐⇒ clA +

R++q ⊆ intA we have the following result.

Corollary 3.4. Let q ∈ Y , q 6= 0, A  Y .

(a) If clA+ R++q ⊆ intA, then for all λ ∈ ξq,A(Y ),

{y ∈ Y : ξq,A(y) = λ} = λq − ∂A.

(b) If clA+ R++q ⊆ A and clA is convex, then ξq,A is convex.

Remark 3.5. Note that clA + R++q ⊆ intA implies that q ∈ (clA)∞. On the other

hand, the condition A+ intP ⊆ A 6= Y , with P being any convex cone with nonempty

interior, implies clA+R++q ⊆ intA ∀ q ∈ intP. Indeed, by [3, Lemma 2.5], we obtain

clA+ R++q ⊆ clA+ intP = int(clA+ P ) = int(cl(A+ P )) = int(A+ P ) = intA.

Lemma 3.6. Let ∅ 6= A ⊆ Y and P ⊆ Y be any proper convex cone with nonempty

interior. Then, for all q ∈ intP ,

ξq,A+P = ξq,A+(P\l(P )) = ξq,A+(P\{0}) = ξq,cl(A+P ) = ξq,A+clP = ξq,A+intP .

Proof. It is a consequence of Corollary 3.3 and [3, Lemma 2.5].

Lemma 3.7. Suppose that A, B ⊆ Y , such that B+B ⊆ B. Let y, y′ ∈ Y and q ∈ Y .

(a) If y − y′ ∈ −B, then ξq,B−A(y) ≤ ξq,B−A(y
′);

(b) if y − y′ ∈ − intB, then ξq,B−A(y) < ξq,B−A(y
′).

Proof. By definition ξq,B−A(y) = inf{t ∈ R : y ∈ tq+A−B} for every y ∈ Y . We only

prove (b) since (a) is entirely similar. Since y − y′ ∈ − intB there exists ε < 0 such

that y − y′ − εq ∈ −B. Thus, if t ∈ R is such that y′ ∈ tq − (B −A), then

y ∈ εq −B + tq − (B −A) ⊆ (ε+ t)q − (B −A)

sinceB+B ⊆ B. It follows that ξq,B−A(y) ≤ ε+t and hence ξq,B−A(y) < ξq,B−A(y
′).
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4 Scalarizations for a unified vector optimization problem

Following the notations introduced in the previous sections, we establish scalarizing

conditions for the problems

(P) find x̄ ∈ K f(x)− f(x̄) ∈ S ∀ x ∈ K, x 6= x̄,

and

(P(εq)) find x̄ ∈ K f(x)− f(x̄) ∈ −εq + S ∀ x ∈ K, x 6= x̄,

where ε ≥ 0, q ∈ Y , q 6= 0, ∅ 6= K ⊆ X and f : K → Y by introducing families of

scalar optimization problems which will describe the solution set to (P) and (P(εq)),

denoted by ES and ES(εq) respectively. This will be carried out through the scalarizing

function discussed in the previous section.

According to [21, Definition 3.1, pag. 95], given a family G of functions g : Y → R,

we say that G is a complete scalarization for (P) if for every x ∈ ES there exists g ∈ G

such that x ∈ E(g ◦f,K) and E(g ◦f,K) ⊆ ES, where E(g ◦f,K) denotes the solution

set to (SP):

(SP) min{(g ◦ f)(x) : x ∈ K}.

In other words, G is a complete scalarization for (P) if and only if there exists G′ ⊆ G

such that

ES =
⋃

g∈G ′

E(g ◦ f,K).

Similar representations will be established for (P(εq)).

In this section we consider sets satisfying the so-called free-disposal assumption

(S + P = S) introduced by Debreu [4] in the setting of mathematical economics.

Assumption (A): P ⊆ Y is a proper (not necessarily closed or pointed) convex cone

with nonempty interior, and S  Y is such that 0 ∈ ∂S and S + intP = intS, or

equivalently, S + intP ⊆ S.

Since then, several conditions related to Assumption (A) have been considered in

economic theory and optimization. More precisely, given a closed convex cone P , we say

that a closed set S  Y satisfies the free-disposal Assumption (P) [2, 28] if S+P = S;

whereas S satisfies the strong free disposal Assumption (PS) [28]: if S+(P\{0}) = intS,

or equivalently, S + (P \ {0}) ⊆ intS.

Obviously, when 0 ∈ ∂S, intS 6= ∅ and intP 6= ∅, we get (PS) =⇒ (P) =⇒ (A).

Certainly, the set S = C(−P )∪ l(P ) satisfies S+P = S without being closed; whereas

S = C(−P ) ∪ {0} satisfies (A), but it is non-closed and S + P 6= S whenever P is

non-pointed.
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Throughout this section we impose the following assumption on S which is more

general that Assumption (A) since no convex cone P is involved.

Assumption (B): 0 6= q ∈ Y , and S  Y is a (not necessarily closed) set such that

0 ∈ ∂S and cl(C(−S)) + R++q ⊆ int C(−S).

It is clear that, the condition 0 ∈ ∂S can be assumed, after a translation, whenever

S 6= Y . Moreover, under this assumption, int C(−S) 6= ∅ 6= intS, because of S 6= Y

and we have the equivalence

cl(C(−S)) + R++q ⊆ int C(−S) ⇐⇒ clS + R++q ⊆ intS.

By virtue of Remark 3.5, if P and S satisfy Assumption (A) then S fulfills As-

sumption (B) for every q ∈ intP since S + intP ⊆ S ⇐⇒ C(−S) + intP ⊆ C(−S),

as one can check easily. We recall that Assumption (A) holds for a wide class of (not

necessarily closed) sets including those classical models:

S = P, S = C(− intP ), S = C(−P ) ∪ l(P ), S = C(−P ) ∪ {0}, S = C(−P ).

Notice that any set S satisfying 0 ∈ ∂S and S+P = S fulfills Assumption (A) provided

int P 6= emptyset, but such an equality is not verified by S = C(−P ) ∪ {0} when P is

not pointed.

If, instead, S is closed and satisfies Assumption (PS), then S fulfills Assumption

(B) for every q ∈ P \ {0}. This allows us to deal with proper efficiency (E3), where

S = C(−int A) for some closed convex set A such that 0 ∈ ∂A and A+(P \{0}) ⊆ intA.

Here, P may have empty interior.

The previous remarks point out the generality of our problem (P) due to geometric

structure of S under Assumption (B) since S could not be a cone or a convex set as

Figure 2 shows.

S

0 q

f(K)

Figure 2: Illustration of problem (P) satisfying Assumption (B).

Remark 4.1. If clS + R++q ⊆ intS, then S + R++q = clS + R++q = intS, and so

int(clS) = intS, cl(intS) = clS. Similar expressions hold for C(−S).
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The next two main theorems characterize when a point x̄ ∈ K belongs to ES (resp.

ES(εq)) in terms of E(ξq,−f(x̄)+C(−S) ◦ f,K) (resp. E(ξq,−f(x̄)+C(−S) ◦ f,K, ε)) under

Assumption (B).

Theorem 4.2. Suppose that q and S satisfy Assumption (B). Let x̄ ∈ K, the following

assertions are equivalent:

(a) x̄ ∈ ES ;

(b) x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K) and

E(ξq,−f(x̄)+C(−S) ◦f,K)\{x̄} = {x ∈ K : x 6= x̄, f(x)−f(x̄) ∈ −(cl(C(−S))\C(−S))}

= {x ∈ K : x 6= x̄, f(x)− f(x̄) ∈ S \ intS}.

Proof. (a) =⇒ (b): It is clear that (ξq,−f(x̄)+C(−S) ◦ f)(x̄) = 0 since 0 ∈ ∂(C(S)). From

x̄ ∈ ES , we have f(x) − f(x̄) 6∈ −C(−S) for all x ∈ K, x 6= x̄. Thus (ξq,−f(x̄)+C(−S) ◦

f)(x) ≥ 0 by Proposition 3.2, which turns out x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K). On the

other hand, take any x ∈ K, x 6= x̄, such that

(ξq,−f(x̄)+C(−S) ◦ f)(x) = (ξq,−f(x̄)+C(−S) ◦ f)(x̄) = 0.

Then f(x) − f(x̄) ∈ ∂(−C(−S)) by Proposition 3.2. We also have f(x) − f(x̄) ∈ S.

From both relations, we obtain f(x)− f(x̄) ∈ [∂(−C(−S))]∩S. By simplifying, we get

f(x)− f(x̄) ∈ −(cl(C(−S))\C(−S))

which proves one inclusion in (b).

For the other inclusion simply observe that if x ∈ K \ {x̄} is such that f(x)− f(x̄) ∈

−(cl(C(−S))\C(−S)), then f(x)−f(x̄) ∈ −∂(C(−S)). Hence, (ξq,−f(x̄)+C(−S) ◦f)(x) =

0, implying that x ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K).

The remaining equality follows from the fact that cl(C(A)) = C(intA) for every A.

(b) =⇒ (a): Let x ∈ K, x 6= x̄. We distinguish two cases. If x is such that

f(x)− f(x̄) ∈ S \ intS ⊆ S,

we are done. If, on the contrary, f(x)−f(x̄) 6∈ S\intS, then x 6∈ E(ξq,−f(x̄)+C(−S)◦f,K)

by assumption. Thus (ξq,−f(x̄)+C(−S) ◦ f)(x) > 0 since x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K) and

(ξq,−f(x̄)+C(−S) ◦ f)(x̄) = 0. Again, by Proposition 3.2, f(x) − f(x̄) 6∈ −C(−S), which

implies that f(x)− f(x̄) ∈ S. Hence x̄ ∈ ES .

In particular, we deduce that Lemma 5.2 in [28] follows from (a) =⇒ (b) in the

previous theorem by taking S such that ES = E3.

Before continuing, some remarks are in order.
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Remark 4.3. (i) It may happen that the set of the right-hand side in (b) be empty (this

occurs for instance when P is closed and S = C(−P )): in such a situation Theorem

4.2 reduces

x̄ ∈ E1 ⇐⇒ (ξq,−f(x̄)+P ◦ f)(x) > 0 ∀ x ∈ K, x 6= x̄.

We will discuss related points later on.

(ii) When 0 ∈ S (some classical models have been described before), (b) of the previous

theorem admits the following formulation:

E(ξq,−f(x̄)+C(−S) ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ S \ intS}.

Now, we establish a similar characterization for the problem (P(εq)). Notice that

it also provides another characterization for ε = 0.

Theorem 4.4. Suppose that q and S satisfy Assumption (B). Let us consider problem

(P(εq)) with ε ≥ 0, and x̄ ∈ K. The following assertions are equivalent:

(a) x̄ ∈ ES(εq);

(b) x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K, ε) and

E(ξq,−f(x̄)+C(−S)◦f,K, ε)\{x̄} ⊆ {x ∈ K : x 6= x̄, f(x)−f(x̄) ∈ (−εq+S)∩(εq−cl(C(−S)))}.

Proof. (a) =⇒ (b): Obviously (ξq,−f(x̄)+C(−S) ◦ f)(x̄) = 0 since 0 ∈ ∂S. From x̄ ∈

ES(εq), we have f(x)− f(x̄) 6∈ −εq − C(−S) for all x ∈ K, x 6= x̄. By Proposition 3.2,

(ξq,−f(x̄)+C(−S) ◦ f)(x) ≥ −ε, which turns out (ξq,−f(x̄)+C(−S) ◦ f)(x)− (ξq,−f(x̄)+C(−S) ◦

f)(x̄) ≥ −ε. Thus x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K, ε).

Let us prove the inclusion in (b). If x′ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K, ε), x′ 6= x̄, then

(ξq,−f(x̄)+C(−S) ◦ f)(x)− (ξq,−f(x̄)+C(−S) ◦ f)(x
′) ≥ −ε ∀ x ∈ K.

Since (ξq,−f(x̄)+C(−S)◦f)(x̄) = 0 we have (ξq,−f(x̄)+C(−S)◦f)(x
′) ≤ ε. Therefore, f(x′) ∈

f(x̄) + εq − cl(C(−S)) by Proposition 3.2. On the other hand, by hypothesis, we have

f(x′)− f(x̄) ∈ −εq + S. Thus, f(x′)− f(x̄) ∈ (−εq + S) ∩ (εq − cl(C(−S)).

(b) =⇒ (a): Let x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K, ε). Then,

(ξq,−f(x̄)+C(−S) ◦ f)(x)− (ξq,−f(x̄)+C(−S) ◦ f)(x̄) ≥ −ε ∀ x ∈ K.

Since ξq,−f(x̄)+C(−S) ◦ f)(x̄) = 0 we have (ξq,−f(x̄)+C(−S) ◦ f)(x) ≥ −ε for all x ∈ K.

If on the contrary x̄ 6∈ ES(εq), there exists x′ ∈ K, x′ 6= x̄, such that f(x′) − f(x̄) ∈

−εq−C(−S). Then (ξq,−f(x̄)+C(−S) ◦f)(x
′) ≤ −ε. From the above inequality we obtain

(ξq,−f(x̄)+C(−S) ◦ f)(x
′) = −ε.
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Thus, x′ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K, ε) \ {x̄}, which by (b) implies that f(x′) − f(x̄) ∈

−εq + S, contradicting a previous relation. Hence x̄ ∈ ES(εq).

Remark 4.5. We point out that taking into account that x̄ ∈ ES if and only if [f(K \

{x̄}) − f(x̄)] ∩ C(S) = ∅, the implication x̄ ∈ ES ⇒ x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K) of

Theorem 4.2 may be obtained by using a similar reasoning to that employed in the proof

of Theorem 2.3.6 in [12] about nonconvex separation (where Assumption (B) substitutes

(i) of [12, Theorem 2.3.6]). A similar argument can be used to prove the “if part” of

Theorem 4.4.

Next example shows the inclusion in Theorem 4.4(b) for ε > 0 may be strict.

Example 4.6. Take K = [−5
2 , 2] and f : K → R2, f(x) = (x, x + 2) if −5

2 ≤ x < 0

and f(x) = (x, 0) if 0 ≤ x ≤ 2. Let S = C(− intR2
+), q = (12 ,

1
2 ) and ε = 2. It is clear

that 0 ∈ ES(εq), in addition,

−1,−
6

5
∈ {x ∈ K : x 6= 0, f(x)− f(0) ∈ (−εq + S) ∩ (εq − cl(C(−S)))} =

{x ∈ K : x 6= 0, f(x) ∈ ((−1,−1) + S) ∩ ((1, 1) − cl(C(−S)))}.

However

−1,−
6

5
6∈ E(ξq,−f(0)+C(−S) ◦ f,K, ε) = E(ξq,C(−S) ◦ f,K, 2)

since

(ξq,C(−S) ◦ f)(−
5

2
)− (ξq,C(−S) ◦ f)(−1) � −2

and

(ξq,C(−S) ◦ f)(−
5

2
)− (ξq,C(−S) ◦ f)(−

6

5
) � −2

taking into account that (ξq,C(−S) ◦ f)(−5
2) = −1, (ξq,C(−S) ◦ f)(−1) = 2 and 1 <

(ξq,C(−S) ◦ f)(−
6
5) < 2.

A simpler equivalence than those in Theorems 4.2 and 4.4 can be obtained under

an additional assumption on S.

Theorem 4.7. Consider problem (P(εq)) and suppose that q and S satisfy Assumption

(B). Let x̄ ∈ K. Then,

x̄ ∈ ES(εq) =⇒ x̄ ∈ E(ξq,−f(x̄)+C(−S)◦f,K, ε) =⇒ x̄ ∈ ES(δq) ∀ δ > ε =⇒ x̄ ∈ EclS(εq).

Consequently if, in addition, S is closed then

(a) x̄ ∈ ES(εq) ⇐⇒ x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K, ε);

(b) ES(εq) =
⋂

δ>ε

ES(δq).
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Proof. The first implication is in Theorem 4.4.

For the second we proceed as follows. If on the contrary x̄ 6∈ ES(δq), then f(x) −

f(x̄) 6∈ −δq + S for some x ∈ K, x 6= x̄. Then, f(x) − f(x̄) ∈ −δq − C(−S). Thus,

(ξq,−f(x̄)+C(−S) ◦ f)(x) ≤ −δ. By assumption,

(ξq,−f(x̄)+C(−S) ◦ f)(x
′)− (ξq,−f(x̄)+C(−S) ◦ f)(x̄) ≥ −ε ∀ x′ ∈ K.

Hence, if δ > ε then −ε ≤ (ξq,−f(x̄)+C(−S) ◦ f)(x) ≤ −δ < −ε, a contradiction.

The third implication is obtained by taking the limit as δ goes to ε in (P(δq)).

By considering (P(εq)), we deduce that Theorem 4.4 extends and refines Theorems

4.5, 5.1(a) in [14]. In addition, the first part of Theorem 4.7 extends Theorem 5.1 of

[14]; whereas the second part can be applied when P is any (not necessarily closed or

pointed) convex cone and S = C(− intP ); or when P is a closed halfspace, to S = P ,

and when P = Q ∪ {0} with Q being open and convex satisfying tQ ⊆ Q for all t > 0,

to S = C(−P \ {0}) = C(−P ) ∪ {0}. This particular case extends Theorems 4.5 and

5.2 in [14].

The examples below show that under the assumptions given in Theorem 4.7 the

implication x̄ ∈ ES(δq) ∀ δ > ε =⇒ x̄ ∈ ES(εq) may be false when S is not closed.

Example 4.8. Here consider S = C(−P ) ∪ {(0, 0)} where P = {(x, y) ∈ R2 : x ≤

0, y < 0}. Let f be a function from K = R to Y = R2 defined by

f(x) =



























(0,−x) if x < 0;

(0, 1) if x = 0;

(x, x) if 0 < x < 1;

(x, 2x− 1) if x ≥ 1,

and take q = (1, 1), ε = 1. Then, it is easy to check that 1 = x̄ 6∈ ES(εq) since

f(0) − f(x̄) 6∈ −εq + S. On the other hand, taking into account that C(−S) = P and

ξq,−f(x̄)+C(−S)(f(x)) = ξq,C(−S)(f(x)− f(x̄)) we easily compute

(ξq,−f(x̄)+C(−S) ◦ f)(x) =



























−x− 1 if x < 0;

−1 if x = 0;

x− 1 if 0 < x < 1;

x− 1 if x ≥ 1.

Thus,

(ξq,−f(x̄)+C(−S) ◦ f)(x)− (ξq,−f(x̄)+C(−S) ◦ f)(x̄) ≥ −ε ∀x ∈ R,

that is, x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦f,K, ε), and therefore 1 = x̄ ∈ ES(δq) ∀ δ > ε = 1. Note

that ES(0) = ES = ∅.
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Example 4.9. Consider S = P with P = {(x, y) ∈ R2 : x > 0, y ≥ 0} ∪ {(0, 0)}. Let

f , q and ε be as in the previous example. Then, we see that 1 = x̄ 6∈ ES(εq) since

f(0)− f(x̄) 6∈ −q + P . However, we can also check that x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K, ε)

and so 1 = x̄ ∈ ES(δq) ∀ δ > ε = 1. Note that ES(0) = ES = ∅.

In order to obtain complete scalarizations for ES, we need the next theorem.

Theorem 4.10. Suppose that q and S satisfy Assumption (B).

(a) If ∅ 6= A ⊆ ES, then A ⊆ E(ξq,−f(A)+C(−S) ◦ f,K) ⊆ E(ξq,−f(ES)+C(−S) ◦ f,K) and

min{(ξq,−f(A)+C(−S) ◦ f)(x) : x ∈ K} = 0.

(b) If 0 ∈ S and S + [cl(C(−S)) \ C(−S)] ⊆ S then,

x̄ ∈ ES ⇐⇒ x̄ ∈ E(ξq,−f(x̄)+C(−S) ◦ f,K) ⊆ ES .

Proof. (a): Since for each x̄ ∈ A, f(x) 6∈ f(x̄)−C(−S) for all x ∈ K \{x̄}, we obtain by

Proposition 3.2, (ξq,−f(x̄)+C(−S)◦f)(x) ≥ 0 for all x ∈ K. Thus, (ξq,−f(A)+C(−S)◦f)(x) ≥

0 for all x ∈ K. Since (ξq,−f(A)+C(−S) ◦ f)(x̄) ≤ (ξq,−f(x̄)+C(−S) ◦ f)(x̄) = 0, we get

x̄ ∈ E(ξq,−f(A)+C(−S) ◦ f,K) and min{(ξq,−f(A)+C(−S) ◦ f)(x) : x ∈ K} = 0.

The same reasoning also proves

min{(ξq,−f(ES)+C(−S) ◦ f)(x) : x ∈ K} = 0.

(b): It only remains to prove the inclusion. Let x̄ ∈ ES and x′ ∈ E(ξq,−f(x̄)+C(−S)◦f,K)

with x′ 6= x̄. By Theorem 4.2, f(x̄)−f(x′) ∈ cl(C(−S))\C(−S). Hence, for every x ∈ K

with x 6= x′, x 6= x̄,

f(x)− f(x′) = f(x)− f(x̄) + f(x̄)− f(x′) ∈ S + [cl(C(−S)) \ C(−S)] ⊆ S,

and so x′ ∈ ES since 0 ∈ S.

Remark 4.11. Taking into account the previos results, we point out that Theorem

4.10(a) applies when P is any (not necessarily closed or pointed) convex cone with

nonempty interior, to S = P ; S = C(− intP ); C(−P ) ∪ l(P ); C(−P ) ∪ {0}; C(−P );

whereas (b) applies when P is any (not necessarily pointed) closed convex cone to

S = C(− intP ); C(−P ) ∪ l(P ); C(−P ) ∪ {0}. Notice that 0 ∈ S ∩ ∂S implies that

cl(C(−S)) \ C(−S) 6= ∅.

Theorem 4.12. Suppose that q and S satisfy Assumption (B) and consider (P(εq)),

ε ≥ 0. Assume that C(−S) + C(−S) ⊆ C(−S) and S is closed. If ∅ 6= A ⊆ K then

E(ξq,−f(A)+C(−S) ◦ f,K, ε) ⊆ ES(εq).
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Proof. Let x̄ ∈ E(ξq,−f(A)+C(−S) ◦ f,K, ε) and x̄ 6∈ ES(εq). Then, there exists x ∈ K,

x 6= x̄, such that f(x) − f(x̄) ∈ −εq − C(−S). By the closedness of S, Lemma 3.7(b)

implies that

(ξq,−f(A)+C(−S))(f(x)) + ε = (ξq,−f(A)+C(−S))(f(x) + εq) < (ξq,−f(A)+C(−S))(f(x̄)).

It follows that x̄ 6∈ E(ξq,−f(A)+C(−S) ◦ f,K, ε), which cannot happen.

Remark 4.13. When P is any (not necessarily closed or pointed) convex cone, the

previous theorem can be applied to S = C(− intP ), and to S = P provided P is a

closed halfspace. In addition, it also applies when S = C(−P \ {0}) = C(−P ) ∪ {0}

where P = Q ∪ {0} is pointed with Q being open and convex set satisfying tQ ⊆ Q for

all t > 0.

We are ready to state our main result of complete scalarization for (P) which is a

consequence of Theorems 4.10 and 4.12.

Theorem 4.14. Suppose that q and S satisfy Assumption (B). Assume that ES 6= ∅.

(a) If 0 ∈ S and S + [cl(C(−S)) \ C(−S)] ⊆ S, then

ES =
⋃

x∈ES

E(ξq,−f(x)+C(−S) ◦ f,K) ⊆ E(ξq,−f(ES)+C(−S) ◦ f,K).

(b) If S is closed and C(−S) + C(−S) ⊆ C(−S), then

ES = E(ξq,−f(ES)+C(−S)◦f,K) =
⋃

x∈ES

E(ξq,−f(x)+C(−S)◦f,K) =
⋃

x∈K

E(ξq,−f(x)+C(−S)◦f,K),

ES(εq) =
⋃

x∈K

E(ξq,−f(x)+C(−S) ◦ f,K, ε) ∀ ε > 0.

5 Some applications

In this section we present three important applications of our results: the first one

develops complete characterizations of the well-known notions of solutions to vector

optimization as described at the introduction, say weakly efficient, efficient, proper

efficient, strict efficient, etc. The second application shows that our Problem (P) also

subsumes the notion of ε-efficiency recently introduced in [15]. Finally, as a third

application we deal with a nontransitive relation since the set S, which models the

vector optimization problem, is neither convex nor a cone; thus, the results established

in [27] are improved.
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5.1 Complete scalarizations for the classical problems

In this section we apply the previous results to establish new optimality conditions and

characterize different types of well-known efficient solutions.

¿From now on, we consider vector optimization problems defined by a solid convex

cone P as described at the introduction.

Let q ∈ intP . From Theorem 4.2, Remark 4.3 and Lemma 3.6, we can prove the

following results.

Corollary 5.1. Let x̄ ∈ K. Then,

(a) x̄ ∈ EP ⇐⇒ E(ξq,−f(x̄)+C(−P )) ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ P \ intP};

(b) x̄ ∈ EW ⇐⇒ E(ξq,−f(x̄)+P ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ −∂P};

(c) x̄ ∈ E ⇐⇒ E(ξq,−f(x̄)+P ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ −(clP \ P ) ∪ l(P )};

(d) x̄ ∈ EW1 ⇐⇒ E(ξq,−f(x̄)+P ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ −(clP \ P ) ∪ {0}};

(e) x̄ ∈ E1 ⇐⇒ E(ξq,−f(x̄)+P ◦ f,K) \ {x̄} = {x ∈ K : f(x)− f(x̄) ∈ −(clP \ P )}.

(f) Denoting by H(P ) to be the family of all proper convex cones D with nonempty

interior satisfying P \ l(P ) ⊆ intD, we get (q ∈ P \ l(P )),

x̄ ∈ E2 ⇐⇒ ∃D ∈ H(P ) : E(ξq,−f(x̄)+D◦f,K) = {x ∈ K : f(x)−f(x̄) ∈ −(clD\D)∪l(D)}.

(g) Denoting by D(P ) to be the family of all closed convex sets A satisfying 0 ∈ ∂A

and A+ (P \ {0}) ⊆ intA, we get (q ∈ P \ {0}),

x̄ ∈ E3 ⇐⇒ ∃ A ∈ D(P ) : E(ξq,−f(x̄)+int A ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ −∂A}.

When P is closed and pointed, Part (c) was earlier proved in [17, Corollary 4.9].

Compare also the above results with those given in [27, Section 6].

Next result, whose proof follows from Theorem 4.7 and Corollary 5.1, provides some

characterizations for a point to be in ES when S = C(− intP ), S = P , S = C(−P )∪{0}

or S = C(−P ). In particular, we recover Corollary 5.5 in [14] and extends Lemma 5.2(ii)

of [28]. The last equality of Part (a1) is really interesting since it says that approximate

weakly efficient solutions can be approximated by efficient solutions.

Corollary 5.2. The following assertions hold.

(a) Let ε ≥ 0. Then,

(a1) x̄ ∈ EW (εq) ⇐⇒ x̄ ∈ E(ξq,−f(x̄)+P ◦ f,K, ε); EW (εq) =
⋂

δ>ε

E(δq) =
⋂

δ>ε

EW (δq).

(a2) E(ξq,−f(K)+P ◦ f,K, ε) ⊆ EW (εq).
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(b) if, in addition, P is closed, then

(b1) x̄ ∈ E ⇐⇒ [x ∈ K, (ξq,−f(x)+P ◦ f)(x̄) > 0 =⇒ (ξq,−f(x̄)+P ◦ f)(x) > 0];

(b2) x̄ ∈ EW1 ⇐⇒ (ξq,−f(x̄)+P ◦ f)(x) > 0 ∀ x ∈ K such that f(x) 6= f(x̄);

(b3) x̄ ∈ E1 ⇐⇒ (ξq,−f(x̄)+P ◦ f)(x) > 0 ∀ x ∈ K, x 6= x̄;

(b4) x̄ ∈ EP ⇐⇒ x̄ ∈ E(ξq,−f(x̄)+C(−P ) ◦ f,K).

Proof. (a1) follows from Theorem 4.7 and (a2) results by particularizing S = C(− intP )

in Theorem 4.12.

(b1) is a consequence of the following equivalence:

x̄ ∈ E ⇐⇒ [x ∈ K, f(x)− f(x̄) ∈ −P =⇒ f(x̄)− f(x) ∈ −P ],

and the closedness of P , along with Corollary 3.3; (b2) results from (d) of Corollary

5.1; (b3) is Remark 4.3(i).

To prove (b4), we write

x̄ ∈ EP ⇐⇒ f(x)− f(x̄) ∈ P ∀ x ∈ K ⇐⇒ f(x)− f(x̄) 6∈ −C(−P ) ∀ x ∈ K.

We use the closedness of P and Corollary 3.3 to conclude with the desired result.

The next example shows that the closedness of P is necessary in (b1), (b2), (b3)

and (b4).

Example 5.3. Let f be a function from R to R2 defined by

f(x) =















(−1,−x− 1) if x ≤ −1;

(x, 0) if −1 < x < 0;

(x, x) if x ≥ 0.

Let P = {(x, y) ∈ R2 : x, y > 0} ∪ {(0, 0)} and q = (1, 1). It is clear that EP = ∅ and

E = E1 = EW1 = (−∞, 0]. However (b4) is false because −1 ∈ E(ξf(−1)−C(−P ) ◦ f,K)

since (ξq,−f(−1)+C(−P ) ◦f)(x) = 0 if x ≤ 0 and (ξq,−f(−1)+C(−P ) ◦f)(x) > 0 if x > 0. In

addition, (b1), (b2) and (b3) do not hold since (ξq,−f(0)+P ◦ f)(−1) = 0, (ξq,−f(−1)+P ◦

f)(0) > 0 and f(0) 6= f(−1).

From Corollary 5.2 we deduce Corollary 4.8(a) in [10].

By particularizing Theorem 4.14 to our classical models, we obtain complete scalar-

ization for EW , E, E1, EW1, E2 and E3.
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Corollary 5.4. Let P ⊆ Y be a (not necessarily pointed) convex cone with nonempty

interior and q ∈ intP .

(a) If EW 6= ∅ then

EW = E(ξq,−f(EW )+P ◦ f,K) =
⋃

x∈EW

E(ξq,−f(x)+P ◦ f,K) =
⋃

x∈K

E(ξq,−f(x)+P ◦ f,K),

EW (εq) =
⋃

x∈K

E(ξq,−f(x)+P ◦ f,K, ε) ∀ ε > 0;

(b) If P is closed and E 6= ∅ then

E =
⋃

x∈E

E(ξq,−f(x)+P ◦ f,K) ⊆ E(ξq,−f(E)+P ◦ f,K);

(c) If P is closed and EW1 6= ∅ then

EW1 =
⋃

x∈EW1

E(ξq,−f(x)+P ◦ f,K) ⊆ E(ξq,−f(EW1+P ) ◦ f,K);

(d) If P is closed and E1 6= ∅ then

E1 =
⋃

x∈E1

E(ξq,−f(x)+P ◦ f,K) ⊆ E(ξq,−f(E1)+P ◦ f,K);

(e) Let H(P ) be as in Corollary 5.1, we get

E2 =
⋃

D∈H(P )

⋃

x∈E(D)

E(ξq,−f(x)+D ◦ f,K),

where E(D) corresponds to the efficient solution set for D instead of P .

(f) Let D(P ) be as in Corollary 5.1, we get

E3 =
⋃

A∈D(P )

⋃

x∈K

E(ξq,−f(x)+intA ◦ f,K).

Proof. By taking into account Remark 4.11, the corollary is a consequence of Theorem

4.14. Notice the equality of (c) may be also obtained from Corollary 5.1(d) since x̄ ∈ E1

if and only if E(ξq,−f(x̄)+P ◦ f,K) = {x ∈ K : f(x) = f(x̄)}. Part (d) trivially holds by

Remark 4.3(i) since x̄ ∈ E1 if and only if E(ξq,−f(x̄)+P ◦ f,K) = {x̄}.

The remaining part follows from Corollary 5.1.

The first part in (a) of the above result was established in the proof of [21, Theorem

3.4, pag. 96]; whereas the second part was proved in [14, Theorem 5.11] for P pointed.

Observe also that (a) is sharper than Theorem 3.1 in [25] when restricted to single-

valued functions.
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We cannot expect an equality in Corollary 5.4 for EP even when P is closed. Indeed,

take P = R2
+, q = (1, 1) and f : R −→ R2 defined by f(x) = (−1,−x − 1) if x ≤ −1,

f(x) = (x, 0) if −1 < x < 0 and f(x) = (x, x) if x ≥ 0. We have EP = {−1} and

E(ξq,−f(−1)+C(−P ) ◦ f,K) = ]−∞, 0].

Remark 5.5. In [10, Corollary 4.14] a free boundary Stefan problem is discussed

taking into account the definitions introduced in [18]. Exactly, the scalarizing func-

tion ξq,f(x̄) is computed. We point out that according to previous results (see, for in-

stance, Theorem 4.7 and Corollary 5.2) we may obtain optimality conditions for the

(approximate) free boundary Stefan problem.

5.2 About Q(ε)-efficiency

Recently, a new ε-efficiency notion in vector optimization was introduced in [15] which

is more general than that (C, ε)-efficiency discussed by the same authors in [13] (see

more details in [15, Remark 2.1]).

We show that our problem (P) also subsumes such approximated solutions, and so

new optimality conditions will be obtained as applications of our results established in

Section 4.

Throughout this subsection, we consider Y to be a real topological vector space

(note that additionally local convexity of Y was needed in [15]), P ⊆ Y to be a proper

pointed convex cone.

Following the notations in [15]), let QP : R+ → 2P be defined by QP (ε) = Q(ε) +

P \ {0} for all ε ∈ R+ where Q : R+ → 2P is a proper set-valued map (Q(ε) 6= ∅ for all

ε ∈ R+). From the pointedness of P , we obtain that 0 6∈ QP (R+) and QP (ε) +R+p ⊆

QP (ε) for all p ∈ P .

Definition 5.6. [15] Let M ⊆ Y and ε ∈ R+. y ∈ M is a Q(ε)-efficient point of M ,

y ∈ E(M,Q(ε)), if (M − y) ∩ (−QP (ε)) = ∅

As stated in Remark 2.1 of [15], the above approximated notion of efficiency can

be considered as an extension of several approximated solutions, and when applied to

the vector optimization problem (V-P)

Min{f(x) : x ∈ K},

we obtain the notion of Q(ε)-efficient solution of (V-P) as follows: x̄ ∈ K is Q(ε)-

efficient solution of (V-P), denoted by x̄ ∈ E(f,K,Q(ε)), if f(x̄) ∈ E(f(K), Q(ε)).

Lemma 5.7. x̄ ∈ E(f,K,Q(ε)) if and only if x̄ ∈ ES being S = C(−QP (ε)).
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From now on, we denote by S1 = C(−QP (ε)). Note that 0 ∈ S1 and we have two

cases:

Case I: 0 ∈ ∂S1.

It is not much interesting from the point of view of approximate solutions since if

0 ∈ ∂S1, then cl(QP (ε)) = cl(P ). Indeed, it is clear that cl(QP (ε)) ⊆ cl(P ) (note that

QP (ε) ⊆ P ). Conversely, if p ∈ cl(P ) then p = p+ 0 ∈ cl(QP (ε)) since 0 ∈ cl(QP (ε)).

Case II: 0 ∈ intS1.

Since QP (ε) ⊆ P we can chose q ∈ P \ {0} such that 0 ∈ ∂(q+S1) (note q depends on

Q(ε), see Figure 3).

Q(ε)

P

q QP (ε)

Figure 3: Illustration of QP (ε).

Thus, if S2
.
= q + S1 then Problem (P) for S = S1 can be rewritten as follows:

(P1) find x̄ ∈ K f(x)− f(x̄) ∈ −q + S2 ∀ x ∈ K.

By Lemma 5.7, ES1
= ES2

(q) = E(f,K,Q(ε)) and (P1) is a particular case of

(P(εq)) for ε = 1. Moreover, S2 +R++q ⊆ S2, q ∈ intS2 and 0 ∈ ∂S2. From C(−S2) =

−q+QP (ε), we can easily deduce that Assumption (B) for problem (P1) holds if, and

only if

cl(Q(ε) + P \ {0}) + R++q ⊆ int(Q(ε) + P \ {0}). (2)

In particular, if P is solid and q ∈ intP , by Remark 3.5, the inclusion (2) always is

satisfied and, by Lemma 3.6 the scalarizing function for problem (P1) is:

ξq,−f(x̄)+C(−S2) = ξq,−f(x̄)−q+Q(ε)+P\{0} = ξq,−f(x̄)−q+Q(ε)+P = ξq,−f(x̄)−q+Q(ε)+intP = . . .

(note that ξq,A−q(·) = ξq,A(·)− 1).

As particular cases of Theorems 4.4 and 4.7 we obtain new characterizations for

Q(ε)-efficiency under the solidness of P .

Corollary 5.8. Let us consider problem (P1), q ∈ intP and x̄ ∈ K. The following

assertions are equivalent:

(a) x̄ ∈ E(f,K,Q(ε));
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(b) x̄ ∈ E((ξq,−f(x̄)+QP (ε) − 1) ◦ f,K, 1) and

E((ξq,−f(x̄)+QP (ε) − 1) ◦ f,K, 1) \ {x̄}

⊆ {x ∈ K : x 6= x̄, f(x)− f(x̄) ∈ (−q + C(−QP (ε))) ∩ (q − clQP (ε))}.

Corollary 5.9. Consider problem (P1) and q ∈ intP . Let x̄ ∈ K. Then,

x̄ ∈ E(f,K,Q(ε)) =⇒ x̄ ∈ E((ξq,−f(x̄)+QP (ε) − 1) ◦ f,K, ε)

=⇒ x̄ ∈ ES(δq) ∀ δ > 1 =⇒ x̄ ∈ EclS2
(q).

Consequently if, in addition, QP (ε) is open then

(a) x̄ ∈ E(f,K,Q(ε)) ⇐⇒ x̄ ∈ E((ξq,−f(x̄)+QP (ε) − 1) ◦ f,K, 1);

(b) x̄ ∈ E(f,K,Q(ε)) =
⋂

δ>1

ES2(δq).

Corollaries 5.8 and 5.9 can be considered more interesting than Corollaries 5.1 and

5.2 of [15] since from the practical point of view the scalarizing function could be easily

computed and the assumptions on QP (ε) could be relaxed.

On the other hand, the authors in [15] establish necessary or sufficient conditions

for Q(ε)-efficiency where P is pointed and not necessarily solid; instead, they consider

scalarizing function satisfying suitable separation properties. See Definitions 3.1, 4.1

in [15] and compare with Proposition 3.2(a) and (b) respectively.

Remark 5.10. Note that it is possible to assume P not necessarily pointed by replacing

in the above results P \ {0} by P \ l(P ).

5.3 About a non-transitive preference relation

We now provide a geometric condition on q and S satisfying Assumption (B) by con-

sidering preferences that are not necessarily transitive (examples are given in [27]), it

means that non-convex cones are involved giving rise such preferences.

Following notations used in [27], we consider Y a Banach space (although Y to be a

real topological vector space suffices) and say that a set S ⊆ Y is strongly star-shaped if

there exists u ∈ intS such that u+R+y does not intersect the boundary ∂S of the set A

more than once for each y ∈ Y . The set of points u, which enjoy this property is denoted

by Ker∗ S. That is, Ker∗ S
.
= {u ∈ intS : (u+R+y)∩∂S = {z} or ∅ for each y ∈ Y } =

{u ∈ intS : (u+ R+y) ∩ ∂S = {z} or u+ R+y ⊆ intS for each y ∈ Y }.

A set S ⊆ Y is star-shaped if there exists u ∈ S such that αu + (1 − α)x ∈ S for

all x ∈ S and α ∈ [0, 1]. We denote by

KerS = {u ∈ S : αu + (1 − α)a ∈ S, ∀ α ∈ [0, 1], ∀a ∈ S} = {u ∈ S : u+ α(a − u) ∈

S, ∀α ∈ [0, 1], ∀ a ∈ S}. Note that, in general, Ker∗ S 6⊆ KerS.

Lemma 5.11. [26, P roposition 5.18] Let S ⊆ Y . If S is closed, then Ker∗ S ⊆ KerS.
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It is easy to check that if S is a conic set, then αS = S for any α > 0, or equivalently

R++S = S, and C(S), intS, ∂S and Ker∗ S are also conic sets.

Proposition 5.12. Let S ⊆ Y be a conic set. Then the following assertions hold.

(a) S + R++q ⊆ S ⇐⇒ S +R+q ⊆ S ⇐⇒ S + q ⊆ S;

(b) KerS = S∞;

(c) If Ker∗ S ⊆ KerS, then u and S satisfy Assumption (B) for all u ∈ Ker∗ S.

Proof. (a): The equivalences are straightforward.

(b): KerS = {u ∈ S : αu+ (1−α)S ⊆ S, ∀ α ∈ [0, 1]}. Since S is conic, KerS = {u ∈

S : αu + S ⊆ S, ∀ α ∈ [0, 1]} = {u ∈ S : u + S ⊆ S} and from (a), the conclusion

follows.

(c): Let u ∈ Ker∗ S. By assumption, u ∈ KerS. From (a) it follows that intS+u ⊆ intS.

Since clS = intS ⊔ ∂S we need to check that ∂S + u ⊆ intS. Let a ∈ ∂S. Since

u ∈ Ker∗ S, we have [u+R+(a− u)]∩ ∂S = {a}. On the other hand, u+α(a− u) ∈ S

for all α ∈ (0, 1) since u ∈ KerS. Thus, u + α(a − u) ∈ intS for α ∈ (0, 1). In

particular, 1
2(a + u) = u + 1

2(a − u) ∈ intA and taking account that A is conic the

proof is concluded.

The previous proposition allows us to state the following result which ensures the

applicability of our approach developed in Section 4.

Proposition 5.13. Suppose that P is a closed conic set and strongly star-shaped. Then

P +Ker∗ P ⊆ intP. In particular, if u ∈ Ker∗ P , P and u satisfy Assumption (B).

U(P )

u

P

Figure 4: Illustration of u ∈ U(P ).

Consequently, we obtain a class of sets which satisfy Assumption (B) and point out

that the definition of weakly minimal, minimal and proper minimal considered in [27]

can be rewritten as minimal solutions of problem (P) where f is the identity function on

(a suitable) S (for instance, S = C(− intP ) for weakly minimal points). Thus, according

Proposition 5.13, it is easy to check that the results given in Section 5 of [27] could be



22 A unified vector optimization problem: complete scalarizations

improved and extended by those results established in Section 4 under Assumption (B)

and P not necessarily closed and/or conic (note that the scalarizing function considered

in [27] pu,P where u ∈ U(P )
.
= {u ∈ Ker∗ P : for each y ∈ Y, y + Ru * P}, see Figure

4, coincides with ξu,P ). Moreover, optimality conditions for approximate solutions in

the framework of [27] can be also given.

6 Conclusions

We have provided an alternative approach to study several efficient notions via an ab-

stract optimization problem. By using a well-known nonlinear function and considering

the standard procedure of scalarization we obtain new optimality conditions for several

classical efficient notions without any convexity assumption. This has been carried out

by considering a solid set which satisfies an assumption of free-disposal type.

The unified optimization problem (P) subsumes several vector optimization prob-

lems and sheds a new light since offers an alternative to study more general problems,

for instance, when f is a economic function and S is a production set.

The main result lies in establishing complete characterizations of the solution sets to

the (approximate) vector optimization problems. Moreover, many instances satisfying

our assumptions are exhibited, showing the wide applicability of our results.

It would be interesting to obtain new characterizations without solidness on S in

order to include ordering cones like Lp
+, l

p
+, 1 ≤ p < ∞, for instance. On the other hand,

applications of our complete scalarizations to derive convergence results and analyzing

QP (ε)-efficiency for set-valued maps Q and QP not necessarily with values into the

power set of P would be welcome.
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