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Abstract Many multicriteria problems in economics and finance require that efficient solutions
be found. A recent contribution to production theory established a characterization of efficient
points under closedness and free-disposability (Bonnisseau and Crettez, 2007, Theorem 1). However,
as will be shown using a number of examples, these results cannot be applied to simple and
plausible production sets, nor can they be extended to other classic multicriteria problems such
as those arising in optimal portfolio theory and bargaining theory. To address these limitations,
a reformulation of the above theorem without closedness or free-disposability is proposed. This
enables efficient solutions for a wider range of multicriteria problems to be identified.

Keywords Production efficiency · Portfolio Theory · Bargaining theory · Nash demand game ·
free-disposability.

1 Introduction

Many classic multicriteria problems arising in economic and financial theory involve the identifica-
tion of efficient solutions. Typical examples include production theory (Debreu, 1959, [2]), portfolio
selection (Markowitz, 1952, [3]) and Pareto-optimal solution choice in Nash demand games (Nash,
1950, [4]). In the case of production theory, it is known that the points on the boundary of a
closed production set satisfying certain conditions such as free disposability are always weakly effi-
cient. The conditions under which boundary points are efficient have been recently established by
Bonnisseau and Crettez, see Theorem 1 below [1, Theorem 1, p. 216].

It would be desirable to apply this theorem to simple and plausible sets in production models
as well as portfolio selection and Pareto-optimal Nash demand game solution choices, the other
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two examples mentioned above. As we will see, however, this is not possible with the above-cited
theorem in its original form. We therefore propose a reformulation that will allow it to be extended
to these and potentially other multicriteria problems.

Our modified version of the theorem does not in fact replace the original one, hereafter referred
to also (in keeping with Bonnisseau and Crettez) as Theorem 1. To identify the efficient solutions a
method is needed that will eliminate those points preventing this theorem from fulfilling this task.
Thus, Theorem 1 must be applied to identify the points that do not satisfy either of its assumptions.
Given a set of feasible solutions, we propose an approach that consists of the following three steps.
First, apply Theorem 1 to the original solution set if possible. Second, identify those boundary
points that do not satisfy some of theorem’s assumptions and eliminate them from the feasible
solution set. And third, apply our main theorem to the (modified) feasible set whose efficient
points coincide with those of the original set.

In the next section we present Bonnisseau- Crettez’s theorem (Theorem 1), our main result
(Theorem 2), whereas in Section 3, a method (Theorem 3) showing the construction of the modified
set satisfying the assumptions of Theorem 2 is presented. We then apply this method to determine
the efficient points of simple and plausible solution sets for production, portfolio and Nash demand
game models. Some concluding remarks end the paper.

2 Basic Definitions and the Main Results

Let Y be a (not necessarily closed or convex) non-empty set in Rm, that will play the role of the
production set, the set of possible portfolios or the set of feasible strategy profiles of Nash demand
game in the three respective theoretical models already cited. Let K ⊆ Rm be a proper closed
convex cone with nonempty interior, i.e., intK 6= ∅, where by proper we mean {0} 6= K 6= Rm.
This cone induces the following preference relations:

y ≥K y′ if and only if y − y′ ∈ K;

y >K y′ if and only if y − y′ ∈ intK.

We define the set of weakly efficient points of Y (with respect to K) as

WE(Y ;K)
.
= {y ∈ Y : @ y′ ∈ Y (y′ >K y)},

and the set of efficient points of Y (with respect to K) as

E(Y ;K)
.
= {y ∈ Y : @ y′ ∈ Y (y′ ≥K y and y �K y′)},

If K is pointed, i.e., K ∩ (−K) = {0}, this reduces to

E(Y ;K)
.
= {y ∈ Y : @ y′ ∈ Y (y′ ≥K y and y′ 6= y)}.

Recall also that the boundary of Y is defined by ∂Y .
= Y \ intY , where Y is the closure of Y .

The classic free-disposal property (see [1, p. 215]) of Y 6= Rm is defined by Y − K ⊆ Y , or
equivalently, Y − K = Y . It is expressed in Assumption (P), which is the first assumption of
Theorem 1. We will use the following weaker assumption:

Assumption (P′): Y − intK ⊆ Y , or equivalently, Y − intK = intY .

The latter equivalence follows from the equality int(Y −K) = Y − int K provided int K 6= ∅.
The second assumption of Theorem 1 is Assumption (B), which states that for all y, y′ ∈ ∂Y
such that y′ ≥K y and y 6≥K y′, ty + (1 − t)y′ ∈ intY for all t ∈]0, 1[. We propose instead the
following weaker assumption:

Assumption (B′): For all y, y′ ∈ Y \ intY such that y′ ≥K y, y �K y′, ty+(1−t)y′ ∈ intY
for all t ∈ ]0, 1[.
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It is easily shown that WE(Y ;K) = Y \ (Y − intK). Hence, under Assumption (P′), we get

WE(Y ;K) = Y \ intY. (1)

Now let us recall Theorem 1 in [1], which specifies the condition under which the boundary of
Y is the set of its efficient points.

Theorem 1 [1, Theorem 1] Assume Y is closed and satisfies Assumption (P). Then

E(Y ;K) = ∂Y if and only if Y satisfies Assumption (B).

Observe the previous result remains true even if Y = Rm, since in this case, Assumption (B) holds
vacuously and E(Rm;K) = ∅.

By replacing Assumptions (P) and (B) with Assumptions (P′) and (B′) respectively, we obtain
the following theorem:

Theorem 2 Assume Y satisfies Assumption (P′). Then

E(Y ;K) = Y \ intY if and only if Y satisfies Assumption (B′). (2)

Proof (⇒) Take any y, y′ ∈ Y \ intY satisfying y′ ≥K y and y �K y′. This yields a contradiction
if y ∈ E(Y ;K).
(⇐) Let y ∈ Y \ intY . If y 6∈ E(Y ;K) then there exists a y′ ∈ Y such that y′ ≥K y and y �K y′.
We distinguish two cases:

(a) y′ ∈ intY : By Assumption (P′), int Y = Y − intK. Thus, one obtains

y ∈ y′ + (−K) \K ⊆ Y − intK + (−K) \K ⊆ intY

which is a contradiction.
(b) y′ 6∈ intY , i.e., y′ ∈ Y \ int Y . By Assumptions (B′) and (P′), we get

y′′ =
1

2
y +

1

2
y′ ∈ intY = Y − intK.

Thus y − y′′ = 1
2 (y − y′) ∈ (−K) \K. Hence

y ∈ y′′ + (−K) \K ⊆ Y − int K + (−K) \K ⊆ Y − intK −K ⊆ intY,

reaching a contradiction again.

This completes the proof of Y \ intY ⊆ E(Y ;K). The other inclusion is straightforward. Conse-
quently, Y \ intY = E(Y ;K).

A result similar to Theorem 2 when Y is closed may be found in [5, Proposition 6.1].
Finally, taking into account (1), we observe that (2) in Theorem 2 can be written as

E(Y ;K) = WE(Y ;K) if and only if Y satisfies Assumption (B′).

3 How to Reach Assumptions (P′) and (B′)

Given a set Y , we provide a general procedure allowing to construct a set Ỹ satisfying Assumptions
(P′) and (B′) such that E(Ỹ ;K) = E(Y ;K).

Let ∅ 6= Y  Rm and K ⊆ Rm be a proper pointed closed convex cone. Set Ŷ .
= Y −K and

Z
.
= WE(Ŷ ;K) \ E(Ŷ ;K), Ỹ

.
= Ŷ \ Z.

Obviously Ŷ − K = Ŷ , and therefore Ŷ − int K = int Ŷ . On the other hand, Ỹ − int K ⊆
Ŷ − int K = int(Ŷ −K) = int Ŷ , which ensures that y ∈ Ỹ − int K implies y ∈ Ŷ \Z = Ỹ . Whence
Ŷ and Ỹ satisfy Assumptions (P) and (P′) respectively. From equality (1), we get

WE(Ŷ ;K) = Ŷ \ int Ŷ ; WE(Ỹ ;K) = Ỹ \ int Ỹ .
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Thus,

Z =
{
y ∈ Ŷ \ int Ŷ : ∃ y′ ∈ Ŷ , y′ ≥K y and y 6= y′

}
(3)

=
{
y ∈ Ŷ \ int Ŷ : Ŷ ∩ (y +K) 6= {y}

}
. (4)

It is not difficult to check that

Ỹ \ int Ỹ = [(Ŷ \ int Ŷ ) \ Z] ∪ [((int Ŷ ) ∩ Z) \ Z] ∪ [(Ŷ \ int Ŷ ) ∩ Z \ Z].

Since (int Ŷ ) ∩ Z = ∅, the preceding equality reduces to

Ỹ \ int Ỹ = [(Ŷ \ int Ŷ ) \ Z] ∪ [(Ŷ \ int Ŷ ) ∩ Z \ Z], (5)

or equivalently,
Ỹ \ int Ỹ = E(Ŷ ;K).

One can prove, due to pointedness of K, that E(Ŷ ;K) = E(Y ;K). Hence,

WE(Ỹ ;K) = E(Ŷ ;K) = E(Y ;K).

We have the following theorem.

Theorem 3 Assume that K and Y are as above. Then

(a) Ỹ satisfies Assumptions (P′) and (B′);
(b) E(Ỹ ;K) = E(Y ;K) = Ỹ \ int Ỹ .

Proof (a): The fulfilment of Assumption (P′) was showed above. We will check that Ỹ verifies
Assumption (B′) vacuously. Indeed, let y, y′ be points in Ỹ \ int Ỹ such that y − y′ 6∈ K and
y′−y ∈ K. By (5), y′, y ∈ Ŷ \ int Ŷ and y 6∈ Z. Then, Ŷ ∩ (y+K) = {y} leading to a contradiction.
(b): We first show E(Y ;K) ⊆ Ỹ and E(Ỹ ;K) ⊆ Y . Indeed, for the first inclusion, we obviously get
E(Y ;K) ⊆ Y ⊆ Ŷ . Take any y ∈ E(Y ;K): if y ∈ Z then y ∈ Ŷ \ int Ŷ and there exists y′ ∈ Ŷ such
that y′ ≥K y and y′ 6= y. This gives a contradiction, and the first claim is proved.
For the second inclusion, let us take any y ∈ E(Ỹ ;K) ⊆WE(Ỹ ;K) = Ỹ \int Ỹ . By (5), y ∈ Ŷ \int Ŷ ,
y 6∈ Z. Thus, Ŷ ∩ (y+K) = {y}, which is absurd, if we take into account that y ∈ Ŷ = Y −K and
assume that y 6∈ Y . This proves the second claim.
We now prove that E(Y ;K) ⊆ E(Ỹ ;K). Let ȳ ∈ E(Y ;K) and y ∈ Ỹ such that y ≥K ȳ, i.e.,
y− ȳ ∈ K. Since y ∈ Ŷ , being y ∈ Ỹ by the above remark, y = y0−k, for some y0 ∈ Y and k0 ∈ K.
Thus, y0 − ȳ ∈ K, therefore, ȳ − y0 ∈ K by the choice of ȳ. Moreover, ȳ − y = ȳ − y0 + k ∈ K,
showing that ȳ ≥K y, which proves ȳ = y due to pointedness of K, and therefore ȳ ∈ E(Ỹ ;K).
We now prove that E(Ỹ ;K) ⊆ E(Y ;K). Let ȳ ∈ E(Ỹ ;K) and y ∈ Y such that y ≥K ȳ, i.e.,
y − ȳ ∈ K. Since y ∈ Y by the above remark. From (5) it follows that ȳ ∈ Ŷ \ int Ŷ and ȳ 6∈ Z.
Hence Ŷ ∩ (ȳ +K) = {ȳ}. By the choice of y, we obtain y = ȳ, concluding that ȳ ∈ E(Y ;K).
The last equality of (b) is a consequence of Theorem 2.

Remark 1 Theorems 2 and 3 are valid even in any real normed vector space.

4 Some Illustrative Examples

In this section we apply the preceding theorems to some simple and plausible example models
from production, portfolio selection and Nash bargaining theory. Certainly we first check whether
the original feasible set Y satisfies Assumptions (P) and (B) of Theorem 1. Second, if it does
not (which will always be the case in our examples) we modify the set by using Theorem 3. This
leaves us with a modified set Ỹ . Third and finally, we apply Theorem 2 to this modified set, thus
identifying the efficient points of the original set Y .

Before proceeding, however, we briefly review the theoretical concepts behind the three exam-
ples.
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4.1 Production Theory Example

The standard Arrow-Debreu theory of production (see Debreu, 1959 [2]), posits an economy withm
commodities modeled as anm-dimensional space denoted Rm. A production plan in this economy is
a specification of inputs and outputs constrained by the existing technology in which the outputs
are represented by non-negative numbers and the inputs by non-positive ones. This production
space is traditionally denoted as the subset Y of the commodities space Rm and describes the
production possibilities of the entire economy.

For simplicity the example studied here assumes a single input, single output production plan.
As depicted in Fig. 1a, the feasibility set, Y , has two goods: an input resource and a output obtained
from it. The resource lies on the negative x-axis and the output on the y-axis. A quantity |x0| of
the resource is needed to initiate production (at less than this minimum amount, no production
is possible given that the economy must pay a setup cost). Output beyond this quantity exhibits
constant returns to scale up to y1. A saturation point is reached at (x1, y1), no further output
increases being possible even though more of the resource is available. This model is described in
formal terms below.

The original set Y . Let (x0, 0) and (x1, y1) be pairs in R2, where x1 < x0 < 0 and 0 < y1. The
closed set Y ⊂ R2 is given by all pairs (x, y) ∈ R2 such that

(i) y ≤ 0 for all x0 ≤ x ≤ 0;
(ii) the pairs are on or below the path between the points (x0, 0) and (x1, y1); and
(iii) y ≤ y1 for all x ≤ x1.

These conditions are illustrated in Fig. 1a. Here, K = R2
+. As can be seen, Y satisfies Assumption

(P) but not Assumption (B). Therefore, we must modify the original set Y .
The modified set Ỹ . It is obtained following Theorem 3 and is given by all pairs (x, y) ∈ R2

such that

(i) y < 0 for all x0 < x < 0;
(ii) the pairs are on or below the path between the points (x0, 0) and (x1, y1); and
(iii) y < y1 for all x < x1.

These conditions are illustrated in Fig. 1b. As can be seen, the modified set satisfies Assumptions
(P′) and (B′).

0x0x1

0

y1

Y

(a) An example of Production Theory (Prod-1) Y

0x0x1

0

y1

Ỹ

(b) The example modified (Prod-2)

Fig. 1: A typical production theory example. In 1a, Y is a closed set satisfying Assumption (P)
(free-disposal) but not Assumption (B). In 1b, the modified set Ỹ is depicted, which satisfies both
Assumptions (P′) and (B′).
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4.2 Portfolio Theory Example

Portfolio theory is a mathematical formulation of the concept of investment diversification. It seeks
to identify the proportions of various assets that maximize expected return given a given amount
of portfolio risk, or equivalently, to minimize risk subject to a given level of return. The theory
was first stated by Markowitz (1952, [3]) and is considered a significant advance in mathematical
modeling of financial theory.

Consider now a simple example of an investment portfolio with two assets denoted Asset 2 and
Asset 3. The returns on both are normally distributed, with expected values of y2 for the first asset
and y3 for the second, and corresponding standard deviations of x2 and x3. Suppose in this example
that the coefficient of correlation ρ between the two random variables belongs to the interval ]0, 1[.
If t ∈ [0, 1] is the proportion of Asset 2 in the portfolio, 1 − t thus being the proportion of Asset
3, it is easily demonstrated that the portfolio’s expected return is given by y(t)

.
= ty2 + (1 − t)y3

and the standard deviation by x(t)
.
=

√
t2x22 + (1− t)2x23 + 2t(1− t)ρx2x3, as represented by the

parametric curve in Fig. 2a. Observe that 0 < x1 < x2 < x3 and 0 < y2 < y1 < y3. In this case
it is customary to considerer that the cone defining the partial order on Y is represented by the
second quadrant of the plane (rather than the first quadrant as in the other examples studied in
this article).

The original set Y . This set is given by the parametric curve (x(t), y(t)), where t ∈ [0, 1].
Observe that it does not satisfy Assumption (P) with K = {(x1, x2) ∈ R2 : x1 ≤ 0, x2 ≥ 0},
meaning that Theorem 1 cannot be applied. The set must therefore be modified.

The modified set Ỹ . By Theorem 3, it is described by all pairs (x, y) ∈ R2 such that

(i) the pairs are on the parametric curve from point (x3, y3) to (x1, y1);
(ii) they are below the curve except directly underneath the point (x1, y1); and
(iii) y < y3 for all x3 < x;

These conditions are illustrated in Fig. 2b. The modified set satisfies both Assumption (P′) and
Assumption (B′).

x1 x2 x3

y1

y2

y3

Y

(a) An example of portfolio theory (Port-1)

x1 x3

y1

y3

Ỹ

(b) The modified example (Port-2)

Fig. 2: A typical portfolio theory example. In 2a, Y is a closed set but does not satisfy either
Assumption (P) (free-disposal) or Assumption (B). In 2b the modified set Ỹ is shown, which
satisfies Assumptions (P′) and (B′).
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4.3 Bargaining Theory Example

The Nash demand game is a non-cooperative game that models negotiation between two risk-
neutral players. It was first posited and solved by John Nash in 1950 ([4]). The model assumes that
a divisible good (usually of size 1) is available for distribution between two players in accordance
with their simultaneous demands. If the two demands add up to no more than the total good, both
players get what they demanded and the game ends. Otherwise, neither get anything.

More formally, assume that each strategy of each player is represented by x and y chosen from
the interval [0, 1] where 1 is the total good to be distributed. If x + y is less than or equal to 1,
the first player gets x and the second y. Otherwise, both get 0, which is what they get if they do
not negotiate. It is proved that each pair (x, y) satisfying x + y = 1 is a Nash equilibrium and a
Pareto-efficient solution too.

The original set Y . Consider the set Y given by all points (x, y) ∈ R2 such that y ≤ 1 − x
for all 0 ≤ x ≤ 1, as illustrated in Fig. 3a. By taking K = R2

+, the set Y does not satisfy either
Assumption (P) or Assumption (B) and Theorem 1 cannot therefore be applied.

The modified set Ỹ . In this case, again by Theorem 3, the set is given by all pairs (x, y) ∈ R2

such that

(i) y = 1− x for all 0 ≤ x ≤ 1;
(ii) the pairs are below the curve except directly underneath the point (1, 0); and
(iii) y < 1 for all x < 0.

This new set satisfies both Assumptions (P′) and (B′), as can be observed in Fig. 3b.

0 1

1

Y

(a) Example of Nash demand game (Nash-1)

0 1

0

1

Ỹ

(b) The modified example (Nash-2)

Fig. 3: Typical Nash demand game example. In 3a, Y is a closed set but does not satisfy either
Assumption (P) or Assumption (B). In 3b the modified set Ỹ is shown, which satisfies both
Assumptions (P′) and (B′).
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Property Prod-1 Prod-2 Port-1 Port-2 Nash-1 Nash-2
Y Ỹ Y Ỹ Y Ỹ

Closed yes no yes no yes no
P yes yes no no no no
B no no no no no no
P′ yes yes no yes no yes
B′ no yes no yes no yes

Table 1: Properties of Y and Ỹ for each example. As all the modified examples (i.e., those ending in
-2) satisfy both Assumptions (P′) and (B′), Theorem 2 can be applied to Ỹ providing the efficient
points of Y .

4.4 Application of Theorem 2

The characteristics of the sets for our three examples are summarized in Table 1. Observe that
Assumption (P) is not satisfied by any of the original example sets, Y , with the exception of Prod-
1, meaning that Theorem 1 cannot be applied. Even for Prod-1, Theorem 1 can only establish that
the boundary does not coincide with the set of efficient solutions (i.e., E(Y ) 6= ∂Y ).

On the other hand, in all the three modified examples (i.e., those ending in -2 in the table
headings), the set Ỹ satisfies both Assumption (P′) and Assumption (B′). Theorem 2 can therefore
be applied to identify the efficient points through the equality E(Y ;K) = E(Ỹ ;K) = Ỹ \ int Ỹ via
Theorem 3.

5 Conclusions

A theorem originally presented in [1](Theorem 1) and a modified version developed in this article
(Theorem 2) are applied to classic examples of three economic and financial theories. The results
are summarized in Table 2. The first two examples (Prod-1 and Prod-2) are from production theory,
the second two (Port-1 and Port-2) from optimal portfolio theory and the third two (Nash-1 and
Nash-2) from the feasible solutions set for the Nash demand game. In each case, the first example
gives the set of feasible points typically characterized in the literature while the second example
is a modified version that satisfies conditions imposed here for finding the points of the efficient
frontier.

For all of the examples, application of Theorem 1 is either impossible or does not identify the
efficient points (e.g., Prod-1 where E(Y ) 6= ∂Y ). In contrast with this formulation, applying the
modified version Theorem 2 (by means of Theorem 3) identifies the efficient solutions in all cases
with the help of the equality E(Y ;K) = E(Ỹ ;K) = Ỹ \ int Ỹ , under Assumptions (P′) and (B′).

Example Prod-1 Prod-2 Port-1 Port-2 Nash-1 Nash-2
Theorem 1 E 6= ∂Y not applicable not applicable not applicable not applicable not applicable
Theorem 2 E 6= Y \ intY E = Ỹ \ int Ỹ not applicable E = Ỹ \ int Ỹ not applicable E = Ỹ \ int Ỹ

Table 2: Results of applying Theorem 1 and Theorem 2. Observe that Theorem 1 either cannot be
applied to any of the examples or asserts that all boundary points are not efficient. By contrast,
Theorem 2, the modified version, determines the efficient solutions for all of the modified sets Ỹ
(those ending in -2), and hence those of Y .

Acknowledgements The authors want to thank both referees for their constructive criticism which allowed to
improve the presentation of this note.
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