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Strong duality in cone constrained nonconvex optimization: a
general approach with applications to nonconvex variational

problems

Fabián Flores-Bazán, Giandomenico Mastroeni

PREPRINT 2012-19

SERIE DE PRE-PUBLICACIONES





Strong duality in cone constrained nonconvex

optimization: a general approach with

applications to nonconvex variational problems ∗

Fabián Flores-Bazán† Giandomenico Mastroeni‡

Abstract

In this paper we deepen the analysis of the conditions that ensure strong duality

for a cone constrained nonconvex optimization problem. Our conditions can be

used where no previous result is applicable, even in a finite dimensional setting or

convex situations. An application to Calculus of Variations without the standard

convexity assumption yielding zero duality gap and strong duality is provided.
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1 Introduction

The purpose of this paper is to develop the analysis of conditions ensuring the existence

of strong duality for a cone constrained nonconvex optimization problem. Such condi-

tions are based on the notion of quasi relative interior [3], that recently has received

great attention in the literature. Our results unify and extend to the nonconvex case

some analogous theorems that have been obtained under suitable convexity assump-

tions on the functions involved [6, 7, 17].

Let X be a real locally convex topological vector space, Y be a Hausdorff locally

convex topological vector space, P ⊆ Y be a nonempty closed convex cone with possibly

empty topological interior, and C be a nonempty subset of X. Given f : C → R and
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g : C → Y , let us consider the cone constrained minimization problem

µ
.
= inf

g(x)∈−P
x∈C

f(x). (1.1)

The (Lagrangian) dual problem associated to (P ) is

ν
.
= sup

λ∗∈P ∗
inf
x∈C

[f(x) + 〈λ∗, g(x)〉], (1.2)

where P ∗ is the non negative polar cone of P . We say that problem (1.1) has a (La-

grangian) zero duality gap if the optimal values of (1.1) and (1.2) coincide, that is,

µ = ν. Problem (1.1) is said to have strong duality if it has a zero duality gap and

problem (1.2) admits a solution. Our task is to characterize this property without

convexity assumptions, and therefore some constraints qualification (CQ) are needed,

which may be of Slater-type, or interior-point condition. In some other situation, the

validity of strong duality requires a so called closed-cone CQ. Such CQ often restrict

some applications.

More precisely, when X = C = Rn and P = [0,+∞[ with g being a non identically

zero quadratic function, the authors in [19] prove that, (1.1) has strong duality for

each quadratic function f if, and only if there exists x̄ ∈ Rn such that g(x̄) < 0, which

is the classical Slater condition. A similar result is proven in [23, Theorem 3.3] when

X = Rn, C = {x ∈ Rn : Hx = d}.
Similarly, when g is P -convex (g(tx1 + (1− t)x2) ∈ tg(x1) + (1− t)g(x2)−P for every

t ∈ ]0, 1[ and all x1, x2 ∈ C, provided C is convex) and continuous, it is proven in

[4] that (1.1) has strong duality for each f ∈ X∗ if, and only if a certain CQ holds.

This CQ involves the epigraph of the support function of C and the epigraph of the

conjugate of the function x 7→ 〈λ∗, g(x)〉. This CQ is also equivalent to the fact that

(1.1) has strong duality for each continuous and convex function f ([18]).

Stable zero duality gaps in convex programming (g is continuous, P -convex, and

f is lower semicontinuous proper convex function), which means that strong duality

holds for each linear perturbation of f , were characterized in terms of a similar CQ as

above, see [20, 22] for details.

Several sufficient conditions of the zero duality gap have been also established in the

literature, see [14, 1, 2, 36, 4, 6, 7].

Unlike some of the above results, which involve conditions on g and C that guar-

antee (1.1) has strong duality for every f in a certain class of functions, our approach

allows us to derive conditions on f , g and C, jointly, that ensure (1.1) has strong dual-

ity holds under no convexity assumption. Thus, we provide results where none of those

in [14, 4, 20, 18, 5, 6, 7, 21] is applicable.



Strong duality in cone constrained nonconvex optimization 3

At the same time, because of many applications, our purpose is also to consider con-

vex cones P possibly with empty topological interior. This happens for instance if

(1 < p < +∞)

P = Lp+
.
= {u ∈ Lp(Ω) : u ≥ 0 a.e. x ∈ Ω},

or if P is of the form P = Q × {0} with int Q 6= ∅. The former case appears when

dealing with constrained best interporlation problems, see the nice work by Qi, [31]

(see also [26]).

A good substitute for the topological interior is the quasi interior and even the

quasi-relative interior. Borwein and Lewis in [3] introduced the quasi-relative interior

of a convex set A ⊆ Y , although the concept of quasi interior was introduced earlier.

We use both notions, and since the sets considered are not necessarily convex, the

convex hull arises naturally.

The paper is structured as follows. Section 2 provides the basic definitions, no-

tations and preliminaries on quasi (relative) interior of convex sets. In Section 3 we

first establish a characterization of strong duality without additional assumption; then

we present two main theorems on the validity of strong duality under no convexity

assumptions, which extend and unify previous existing results in the literature. Fur-

thermore, we show instances where no previous result is applicable. Consequences and

comparison with other previous results are discussed in Section 4. Finally, Section 5

exhibits an application to a nonconvex variational problem showing a characterization

of the zero duality gap and the validity of the strong duality property.

2 Basic notations and preliminares

Throughout the paper, Y is a real Hausdorff locally convex topological vector space,

its topological dual space is Y ∗, and 〈·, ·〉 denotes the duality pairing between Y and

Y ∗.

A set P ⊆ Y is said to be a cone if tP ⊆ P , ∀ t ≥ 0; given A ⊆ Y , cone(A) stands

for the smallest cone containing A, that is,

cone(A) =
⋃
t≥0

tA,

whereas cone(A) denotes the smallest closed cone containing A: obviously cone(A) =

cone(A), where A denotes the closure of A. Additionally, we set

cone+(A)
.
=
⋃
t>0

tA.

Evidently, cone(A) = cone+(A) ∪ {0} and therefore cone(A) = cone+(A).
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Some elementary properties of cones are collected in the next lemma, where co(A),

int A, stand for the convex hull of A which is the smallest convex set containing A,

and topological interior of A, respectively. We denote R+
.
= [0,+∞[.

Given a convex set A ⊆ Y and x ∈ A, NA(x) stands for the normal cone to A at

x, defined by NA(x) = {ξ ∈ Y ∗ : 〈ξ, a− x〉 ≤ 0, ∀ a ∈ A}. We say that x ∈ A is a (see

for instance [7]):

(a) quasi interior point of A, denoted by x ∈ qi A, if cone(A−x) = Y , or equivalently,

NA(x) = {0};

(b) quasi relative interior of A, denoted by x ∈ qri A, if cone(A − x) is a linear

subspace of Y , or equivalently, NA(x) is a linear subspace of Y ∗.

For any convex set A, we have that ([26, 7]) qi A ⊆ qri A and, int A 6= ∅ implies

int A = qi A. Similarly, if qi A 6= ∅, then qi A = qri A. Moreover [3], if Y is a finite

dimensional space, then qi A = int A and qri A = ri A, where ri A means the relative

interior of A, which is the interior with respect to the affine hull of A, denoted by aff A.

We recall the definition of pointedness for a cone that is not necessarily convex (see

for instance [34]).

Definition 2.1. A cone P ⊆ Y is called “pointed” if x1 + · · ·+ xk = 0 is impossible

for x1, x2, . . . , xk in P unless x1 = x2 = · · · = xk = 0.

It is easy to see that a cone P is pointed if, and only if co(P ) ∩ (−co(P )) = {0} if,

and only if 0 is a extremal point of co(P ).

The positive polar of the convex cone P ⊆ Y is defined by:

P ∗
.
= {y∗ ∈ Y ∗ : 〈y∗, x〉 ≥ 0, ∀x ∈ P}.

Lemma 2.2. Let ∅ 6= M ⊆ Y . The following relations hold:

(a) co(M ∪ {0}) ⊆ cone(co M);

(b) cone(co(M ∪ {0})) = cone(co M);

(c) If ∅ 6= N ⊆ Y is a convex set then co(M +N) = co(M) +N ;

(d) 0 ∈ qri[co(M ∪ {0})] ⇐⇒ 0 ∈ qri[cone(co M)];

(e) 0 ∈ qi[co(M ∪ {0})] ⇐⇒ 0 ∈ qi[cone(co M)].

Proof. (a): Let ȳ ∈ co(M ∪ {0}). Then

ȳ =

p∑
i=1

αimi, for some αi ≥ 0, mi ∈M, i = 1, . . . , p.
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If
∑p

i=1 αi = 0, then ȳ = 0 ∈ cone M ⊆ cone(co M).

If
∑p

i=1 αi > 0, then

ȳ = (

p∑
i=1

αi)

p∑
i=1

αi∑p
i=1 αi

mi ∈ cone(co M).

(b): The inclusion (⊇) is obvious; the other comes from (a).

(c): ⊆) Let mi ∈M,pi ∈ N, i = 1, . . . , q, αi ≥ 0,
∑q

i=1 αi = 1. Then

q∑
i=1

αi(mi + pi) =

q∑
i=1

αimi +

q∑
i=1

αipi ∈ co(M) +N.

⊇) Let mi ∈M, i = 1, . . . , q, αi ≥ 0,
∑q

i=1 αi = 1, p ∈ N .

Then
q∑
i=1

αimi + p =

q∑
i=1

αi(mi + p) ∈ co(M +N).

(d) It is a consequence of the following equalities obtained from (a)

cone[co(M ∪ {0})] = cone(co M) = cone[cone(co M)].

Therefore, cone[co(M ∪ {0})] is a linear subspace of Y if and only if cone[cone(co M)]

is a linear subspace of Y , or, equivalently, 0 ∈ qri[cone(co M)].

(e) It is analogous to the proof of part (c).

The following separation theorem is a direct consequence of the equivalent char-

acterization of the quasi relative interior and of Lemma 2.2. As mentioned in [3], the

quasi relative interior of a set M consists of the points of x ∈ M for which it is not

possible to find a supporting hyperplane to M at x.

Theorem 2.3. Let ∅ 6= M ⊆ Y . Then, 0 6∈ qri[cone(co M)] (or, equivalently, 0 6∈
qri[co(M ∪{0})]) if, and only if there exists x∗ ∈ Y ∗\{0} such that 〈x∗, x〉 ≤ 0, ∀ x ∈
M , with strict inequality for some x̄ ∈M .

Proof. The necessity part is as follows. Since 0 ∈ co(M∪{0})), then 0 6∈ qri[co(M∪{0})]
if and only if Nco(M∪{0})(0) is not a linear subspace of Y ∗, i.e., there exists x∗ ∈ Y ∗\{0}
such that

〈x∗, x〉 ≤ 0, ∀x ∈ co(M ∪ {0}),

and, furthermore, there is x̂ ∈ co(M ∪ {0}) such that

〈x∗, x̂〉 < 0. (2.1)
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Since x̂ ∈ co(M ∪ {0}), then, for some integer p ≥ 1,

x̂ =

p∑
i=1

αixi, αi ≥ 0, xi ∈M, i = 1, . . . , p.

It follows that there exists at least one i ∈ 1, . . . , p, such that 〈x∗, xi〉 < 0, otherwise

(2.1) would be contradicted, which proves the necessity part.

The sufficiency is straightforward.

The next result [3] is a useful characterization of the quasi-relative interior.

Theorem 2.4. [3, Theorem 3.10] Let Y be locally convex, partially ordered by a convex

cone P with P − P = Y . Then:

y ∈ qri P ⇐⇒ y ∈ P and 〈y∗, y〉 > 0, ∀y∗ ∈ P ∗ \ {0}.

Proposition 2.5. Let A ⊆ Y be a convex set. Then,

(a) cone(A−A) = cone A− cone A provided 0 ∈ A;

(b) [0 ∈ qi A]⇐⇒ [0 ∈ qi(A−A) and 0 ∈ qri A].

Proof. (a): It is straightforward.

(b): From (a) it follows that

cone(A−A) = cone(A)− cone(A) = cone(A)− cone(A). (2.2)

This along with the equivalence 0 ∈ qi A⇐⇒ 0 ∈ A and cone(A) = Y , allow us to get

cone(A−A) = Y and therefore,

[0 ∈ qi A] =⇒ [0 ∈ qi(A−A) and 0 ∈ qri A].

The converse implication follows from (2.2) as well.

Notice that (b) can also be found in [17].

Proposition 2.6. Let P ⊆ Y be a convex cone such that P − P = Y . Then

qri P = qi P.

Proof. We only need to prove that qri P ⊆ qi P . Since y ∈ qri P if and only if

0 ∈ qri(P − y) and y ∈ P ; by virtue of the previous proposition, we need to check that

0 ∈ qi(P − y − (P − y)) = qi(P − P ), which is true by assumption: cone(P − P ) =

P − P = Y .
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3 Lagrangian strong duality: main results and regularity

conditions

Let Y be as in the preceding section and X be a Hausdorff topological vector space,

f : X → R, g : X → Y , C ⊆ X and P be a closed and convex cone in Y . We consider

the problem

µ
.
= inf

x∈K
f(x), (3.1)

where K
.
= {x ∈ C : g(x) ∈ −P}. We assume that µ is finite and that the feasible

region K of (3.1) is nonempty.

Notice that the requirement of f taking finite values is not restrictive since no additional

structure like convexity or closedness on C is imposed. Thus for functions f : X →
R ∪ {+∞} the set C may be the effective domain dom f

.
= {x ∈ X : f(x) < +∞}.

Such a situation is present in the model we deal with in Section 5.

Let F
.
= (f, g) and consider the set:

Eµ
.
= F (C)− µ(1, 0) + (R+ × P ).

This set or its conic hull arises in a natural way when dealing with duality results or

in deriving alternative theorems, see [24, 14, 10, 17, 12]. Giannessi [15] used it in a

systematic manner for a constrained extremum problem giving rise to the image space

analysis.

Proposition 3.1. The following assertions hold.

(a) Assume that µ ∈ f(K). Then, µ = inf
x∈K

f(x) if and only if

Eµ ∩H = ∅, (3.2)

where H .
= {(u, v) ∈ R× Y : u < 0, v ∈ −P}. Furthermore,

Eµ ∩H = ∅ ⇐⇒ cone(Eµ) ∩H = ∅.

(b) inf
x∈K

f(x) = −∞ if and only if

Eρ ∩H 6= ∅, ∀ ρ ∈ R, (3.3)

where Eρ is Eµ with µ replaced by ρ.

Proof. Since (b) is obvious, we only prove (a). We preliminarly observe that (3.2) is

equivalent to the fact that the system

f(x)− µ+ t < 0, g(x) + p ∈ −P, (x, t, p) ∈ C × R+ × P (3.4)
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is impossible.

Let µ = inf
x∈K

f(x) and assume that (3.2) does not hold. Then, there exists a solution

(x̃, t̃, p̃) ∈ (C × R+ × P ) of system (3.4), i.e.,

f(x̃) < µ− t̃ ≤ µ, g(x̃) ∈ −p̃− P ∈ −P,

which contradicts the definition of µ. Conversely, assume that (3.4) is impossible, then,

in particular, setting t = 0 and p = 0, we have that

f(x) ≥ µ, ∀x ∈ K

and, since µ ∈ f(K), then (3.1) holds.

For the equivalence, one implication is obvious; whereas the other follows from (0, 0) 6∈
H.

Strong duality for (3.1) requires the existence of a linear continuous functional that

separates the sets Eµ and H. Actually, we need more than that as the next theorem

asserts. Let us introduce the Lagrangian

L(γ∗, λ∗, x) = γ∗f(x) + 〈λ∗, g(x)〉

associated with (3.1).

Theorem 3.2. The following assertions are equivalent:

(a) Strong duality holds for (3.1), i.e., there exists λ∗0 ∈ P ∗ such that

inf
x∈K

f(x) = inf
x∈C

L(1, λ∗0, x); (3.5)

(b) cone(co Eµ) ∩ (−R++ × {0}) = ∅.

Proof. Assume that strong duality holds, then,

f(x)− µ+ 〈λ∗0, g(x)〉 ≥ 0, ∀ x ∈ C, (3.6)

which implies

f(x) + t− µ+ 〈λ∗0, g(x) + p〉 ≥ 0, ∀ x ∈ C, ∀ t ≥ 0, ∀ p ∈ P,

i.e.,

u+ 〈λ∗0, v〉 ≥ 0, ∀ (u, v) ∈ Eµ.

It follows that

u+ 〈λ∗0, v〉 ≥ 0, ∀ (u, v) ∈ cone(co Eµ).
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Moreover, observe that

u+ 〈λ∗0, v〉 < 0, ∀ (u, v) ∈ −R++ × {0},

so that (b) follows.

Vice-versa, assume that (b) holds. Let A := (−1, 0) + (] − ρ, ρ[×V (0)), where V (0) is

an open convex neighborhood of 0Y and ρ > 0. Then, cone+(A) is an open convex set

and by (b) it follows that

cone(co Eµ) ∩ cone+(A) = ∅

for a suitable choice of ρ > 0 and V (0). By the separation theorem for convex sets in

a t.v.s., there exist (γ∗0 , λ
∗
0) ∈ (R× Y ∗), (γ∗0 , λ

∗
0) 6= (0, 0), such that

γ∗0u+ 〈λ∗0, v〉 ≥ 0, ∀(u, v) ∈ cone Eµ, (3.7)

γ∗0u+ 〈λ∗0, v〉 ≤ 0, ∀(u, v) ∈ cone A. (3.8)

Let us prove that γ∗0 6= 0. By contradiction, suppose that γ∗0 = 0, then from (3.8)

it follows that 〈λ∗0, v〉 ≤ 0, ∀v ∈ V (0), which implies λ∗0 = 0, thus contradicting

(γ∗0 , λ
∗
0) 6= (0, 0). Therefore, γ∗0 6= 0 and, with no loss of generality, we can assume

γ∗0 = 1, since by (3.8) (at the point (−1, 0) ∈ A), we have −γ∗0 ≤ 0. Then, (3.7) implies

u+ 〈λ∗0, v〉 ≥ 0, ∀(u, v) ∈ Eµ, (3.9)

and, in turn,

f(x)− µ+ 〈λ∗0, g(x)〉 ≥ 0, ∀x ∈ C,

so that

inf
x∈C

L(1, λ∗0, x) ≥ µ.

Let us prove that λ∗0 ∈ P ∗. For fixed x0 ∈ C, we obtain from (3.7)

γ∗0(f(x0)− µ) + 〈λ∗0, g(x0)〉+ 〈λ∗0, p〉 ≥ 0, ∀p ∈ P,

which implies λ∗0 ∈ P ∗. Then

inf
x∈C

L(1, λ∗0, x) ≤ µ,

which completes the proof.

We now establish other theorems of a different nature about strong duality,

which involve generalized Slater conditions and quasi (relative) interior. To that

purpose, we first prove a necessary and sufficient condition for the existence of Fritz
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John multipliers, and afterwards, under Slater-type conditions, the desired strong du-

ality result is established. Example 4.3 below shows the difference between both results.

The next theorem yields the existence of an hyperplane which may separate not

in a proper sense (0, 0) from cone(co Eµ). Instead, Theorem 3.4 below provides an

hyperplane which separates them properly.

Theorem 3.3. Let us consider problem (3.1) and assume that µ is finite. The following

assertions are equivalent:

(a) there exist (γ∗0 , λ
∗
0) ∈ R+ × P ∗, (γ∗0 , λ

∗
0) 6= (0, 0), such that

γ∗0 inf
x∈K

f(x) = inf
x∈C

L(γ∗0 , λ
∗
0, x);

(b) (0, 0) 6∈ qi[cone(co Eµ)];

(c) (0, 0) 6∈ qi[co(Eµ ∪ {(0, 0)})].

In case qi(co Eµ) 6= ∅, any of the previous conditions proves the pointedness of

cone[qi(co Eµ)]. Consequently, if int(co Eµ) 6= ∅, then (a) is equivalent to the point-

edness of cone[int(co Eµ)].

Proof. By Lemma 2.2 (d) it follows that (b) and (c) are equivalent. Assume that (b)

is fulfilled. Since (0, 0) ∈ cone(co Eµ), then (b) holds if and only if Ncone(coEµ)(0, 0) 6=
{(0, 0)}, i.e., there exists (0, 0) 6= (−γ∗0 ,−λ∗0) ∈ Ncone(co Eµ)(0, 0) such that

〈(γ∗0 , λ∗0), (u, v)〉 ≥ 0, ∀ (u, v) ∈ cone(co Eµ),

or, equivalently,

〈(γ∗0 , λ∗0), (u, v)〉 ≥ 0, ∀ (u, v) ∈ Eµ. (3.10)

Note that (3.10) is equivalent to:

γ∗0(f(x) + t− µ) + 〈λ∗0, g(x) + p〉 ≥ 0, ∀ t ∈ R+, ∀ x ∈ C, ∀ p ∈ P.

Since (γ∗0 , λ
∗
0) ∈ (R+ × P )∗ = R+ × P ∗, the previous inequality yields

γ∗0f(x) + 〈λ∗0, g(x) + p〉 ≥ γ∗0µ, ∀ x ∈ C, ∀ p ∈ P.

Hence

γ∗0 inf
x∈K

f(x) ≤ inf
x∈C

L(γ∗0 , λ
∗
0, x).

The reverse inequality is obvious, so that we obtain (a).

Vice versa, if (a) holds, then the previous relations show that (3.10) is fulfilled for a

suitable (0, 0) 6= (γ∗0 , λ
∗
0) ∈ R+ × P ∗, so that we obtain (b).
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For the last part we proceed as follows. Let x, − x ∈ cone[qi(co Eµ)], x 6= 0. Thus,

x, − x ∈ cone+[qi(co Eµ)]. Then 0 = x + (−x) ∈ cone+[qi(co Eµ)]. Therefore (0, 0) ∈
qi(co Eµ), and so Y = cone(co Eµ) = cone[cone(co Eµ)]. This contradicts (b), proving

the desired implication. For the reverse implication, simply notice that pointedness

of cone[int(co Eµ)] implies that (0, 0) 6∈ int(co Eµ). Then, use a standard separation

theorem to derive (a).

A similar theorem using quasi relative interior is obtained next.

Theorem 3.4. Let us consider problem (3.1) and assume that µ is finite. The following

assertions are equivalent:

(a) there exist (γ∗0 , λ
∗
0) ∈ R+ × P ∗, (γ∗0 , λ

∗
0) 6= (0, 0), x̃ ∈ C, t̃ ≥ 0 and p̃ ∈ P such

that

γ∗0 inf
x∈K

f(x) = inf
x∈C

L(γ∗0 , λ
∗
0, x) and γ∗0(f(x̃) + t̃) + 〈λ∗0, g(x̃) + p̃〉 > µγ∗0 .

(b) (0, 0) 6∈ qri[cone(co Eµ)];

(c) (0, 0) 6∈ qri[co(Eµ ∪ {(0, 0)})].

In case qri(co Eµ) 6= ∅, any of the previous conditions implies the pointedness of

cone[qri(co Eµ)].

Proof. The equivalences are consequences of Theorem 2.3. The remaining part follows

a similar reasoning as in the preceding theorem.

Looking at Theorems 3.3 and 3.4, we realize that strong duality is obtained under

the non-verticality of the linear functional (γ∗0 , λ
∗
0), that is, we need γ∗0 > 0. It holds

whenever a Slater-type condition is imposed as the following two theorems show.

Theorem 3.5. Assume that µ is finite and cone(co(g(C)) + P ) = Y , i.e., 0 ∈
qi(co(g(C)+P )). Then, any of the assumptions (b) or (c) of Theorem 3.3 is equivalent

to (3.5) for some λ∗0 ∈ P ∗. In such a situation,

inf
x∈K

f(x) = inf
〈λ∗0,g(x)〉≤0

x∈C

f(x). (3.11)

Hence, if x̄ is a solution to (3.1) then 〈λ∗0, g(x̄)〉 = 0.

Proof. As regards (3.5), from Theorem 3.3, we have only to prove that γ∗0 > 0. If, on

the contrary, γ∗0 = 0, then

0 = inf
x∈C

L(0, λ∗0, x) ≤ 〈λ∗0, g(x)〉, ∀ x ∈ C.
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It implies that 〈λ∗0, v〉 ≥ 0, ∀ v ∈ g(C) + P , which yields

〈λ∗0, v〉 ≥ 0, ∀ v ∈ cone(co(g(C)) + P ).

Therefore, by assumption, we obtain λ∗0 = 0, which cannot happen as (γ∗0 , λ
∗
0) 6= (0, 0).

Hence γ∗0 > 0, and the conclusion follows.

For the equality in (3.11), we observe that the inequality “≥” is obvious. The reverse

inequality is a consequence of (3.5):

inf
〈λ∗0,g(x)〉≤0

x∈C

f(x) ≥ inf
〈λ∗0,g(x)〉≤0

x∈C

L(1, λ∗0, x) ≥ inf
x∈C

L(1, λ∗0, x) = inf
x∈K

f(x).

Now, we consider a Slater-type condition involving the quasi relative interior of the

set co(g(C) + P ).

Theorem 3.6. Assume that µ is finite and 0 ∈ qri(co(g(C) + P )). Then, any of the

assumptions (b) or (c) of Theorem 3.4 is equivalent to the following:

inf
x∈K

f(x) = inf
x∈C

L(1, λ∗0, x). (3.12)

for some λ∗0 ∈ P ∗. In such a case, if x̄ is a solution to (3.1) then 〈λ∗0, g(x̄)〉 = 0.

Proof. By Theorem 3.4, we have only to prove that γ∗0 > 0, taking into account that,

in such a case, the second assertion in Theorem 3.4(a),

γ∗0(f(x̃) + t̃) + 〈λ∗0, g(x̃) + p̃〉 > γ∗0µ,

for some (γ∗0 , λ
∗
0) ∈ R+ × P ∗, x̃ ∈ C, t̃ > 0, p̃ ∈ P , is automatically satisfied if the

feasible set K is nonempty.

Lemma 2.2 (a) proves that (b) and (c) of Theorem 3.4 are equivalent. By Theorem 2.3

where we have set M = Eµ, (b) or (c) holds if and only if there exists (0, 0) 6= (γ∗0 , λ
∗
0) ∈

R× Y ∗ such that

〈(γ∗0 , λ∗0), (u, v)〉 ≤ 0, ∀ (u, v) ∈ Eµ,

with strict inequality for some (ū, v̄) ∈ Eµ.

Suppose on the contrary, that γ∗0 = 0, then λ∗0 6= 0 and

〈λ∗0, v〉 ≤ 0, ∀ v ∈ co(g(C) + P ), (3.13)

i.e., λ∗0 ∈ Nco(g(C)+P )(0), recalling that 0 ∈ co(g(C) + P ) because the feasible set is

nonempty. Since 0 ∈ qri(co(g(C) + P )) is equivalent to say that Nco(g(C)+P )(0) is a

linear subspace, then −λ∗0 ∈ Nco(g(C)+P )(0), and it follows that

〈λ∗0, v〉 = 0, ∀ v ∈ co(g(C) + P ),

which contradicts that strict inequality holds in (3.13) for v = v̄.
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The next two theorems provides certain regularity conditions on cone(co Eµ) under

the Slater-type assumptions It is really an important and interesting fact since, for in-

stance in finite dimension, such a Slater assumption guarantees that int[cone(co Eµ)] 6=
∅, under the assumptions of Theorem 3.5.

Proposition 3.7.

(a) If 0 ∈ qi[co(g(C) + P )] then qi[co(Eµ ∪ {(0, 0)})] 6= ∅ and so qi[cone(co Eµ)] 6= ∅.

(b) If 0 ∈ qri[co(g(C) + P )] then qri[co(Eµ ∪ {(0, 0)})] 6= ∅ and qri[cone(co Eµ)] 6= ∅.

Proof. (a) Since we assume that the feasible region of (3.1) is nonempty, then there

exists x̃ ∈ C such that 0 ∈ g(x̃) + P (therefore, our assumption is equivalent to say

that 0 ∈ qi[co(g(C) + P )]). Let g(x̃) = −p̃, where p̃ ∈ P . We will prove that

(f(x̃) + t− µ, g(x̃) + p̃) ∈ qi(co(Eµ ∪ {(0, 0)})), ∀ t > 0. (3.14)

Let t > 0, be fixed and consider

(u∗, v∗) ∈ Nco(Eµ∪{(0,0)})((f(x̃) + t− µ, g(x̃) + p̃)).

Therefore u∗ ∈ R, v∗ ∈ Y ∗ and

u∗(u− ((f(x̃) + t− µ)) + 〈v∗, v− (g(x̃) + p̃)〉 ≤ 0, ∀(u, v) ∈ co(Eµ ∪ {(0, 0)}). (3.15)

Setting u
.
= f(x̃) + t

2 − µ, v = g(x̃) + p̃, we obtain −u∗ t2 ≤ 0 and setting u
.
=

f(x̃) + 3
2 t − µ, v = g(x̃) + p̃, we obtain u∗ t2 ≤ 0. Since t > 0, it must be u∗ = 0.

Therefore, (3.15) becomes:

〈v∗, v − (g(x̃) + p̃)〉 ≤ 0, ∀v ∈ co(g(C) + P ). (3.16)

Since g(x̃) + p̃ = 0, then (3.16) implies that

〈v∗, v − (g(x̃) + p̃)〉 ≤ 0, ∀v ∈ cone[co(g(C) + P )] = Y,

so that it must be v∗ = 0.

Hence,

Nco(Eµ∪{(0,0)})((f(x̃) + t− µ, g(x̃) + p̃)) = {(0, 0)}, (3.17)

which proves (3.14).

In order to complete the proof, we simply observe that co(Eµ ∪ {(0, 0)}) ⊆ cone(co Eµ)

implies that qi[co(Eµ ∪ {(0, 0)})] ⊆ qi[cone(co Eµ)] 6= ∅, see Lemma 2.2(a).

(b) With the same x̃ ∈ C and p̃ ∈ P as in (a), we will prove that

(f(x̃) + t− µ, g(x̃) + p̃) ∈ qri(co(Eµ ∪ {(0, 0)})), ∀ t > 0. (3.18)
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Indeed, similar to (a), we can check that

〈v∗, v − (g(x̃) + p̃)〉 ≤ 0, ∀ v ∈ co(g(C) + P ), (3.19)

which says v∗ ∈ Nco(g(C))+P (g(x̃) + p̃). By assumption, 0 = g(x̃) + p̃ ∈
qri(co(g(C)) + P ), so that, by the equivalent characterization of the quasi rela-

tive interior, Nco(g(C)+P )(g(x̃) + p̃) is a linear subspace of Y ∗. Then we have also

−v∗ ∈ Nco(g(C)+P )(g(x̃) + p̃), i.e.,

〈−v∗, v − (g(x̃) + p̃)〉 ≤ 0, ∀v ∈ co(g(C)) + P. (3.20)

¿From (3.19) and (3.20), it follows that

(0,±v∗) ∈ Nco(Eµ∪{(0,0)})((f(x̃) + t− µ, g(x̃) + p̃)). (3.21)

We have already proved that, if (u∗, v∗) ∈ Nco(Eµ)((f(x̃)+ t−µ, g(x̃)+ p̃)), then u∗ = 0.

Thus, (3.21) implies that Nco(Eµ∪{(0,0)})((f(x̃) + t − µ, g(x̃) + p̃)) is a linear subspace

and (3.18) holds.

The second part of the proof follows a similar reasoning as above. More precisely, we

observe that

(u∗, v∗) ∈ Ncone(co Eµ)((f(x̃) + t− µ, g(x̃) + p̃)), for some t > 0,

implies that u∗ = 0, so that v∗ ∈ Ncone(co(g(C)+P ))(g(x̃) + p̃). The assumption 0 ∈
qri(co(g(C) + P )) is equivalent to the fact that Ncone(co(g(C)+P ))(g(x̃) + p̃) is a linear

subspace (see Remark 3.9) which implies that Ncone(co Eµ)((f(x̃) + t − µ, g(x̃) + p̃)) is

a linear subspace, i.e., (f(x̃) + t− µ, g(x̃) + p̃) ∈ qri[cone(co Eµ)], which completes the

proof.

Remark 3.8. Denoted by aff(A) the affine hull of A, one of the referees proposes

the following alternate proof of the second part of (b). It follows observing that: if

A ⊆ B and aff(A) = aff(B), then one has qri(A) ⊆ qri(B). We apply it to the sets

A = co(Eµ ∪ {(0, 0)}), B = cone(co Eµ). However, our proof is selfcontained.

Remark 3.9. By Lemma 2.2 (a) and since K 6= ∅, the hypothesis 0 ∈ qri(co(g(C)+P ))

is equivalent to 0 ∈ qri(cone(co(g(C) + P ))); likewise the hypothesis 0 ∈ qi(co(g(C) +

P )) is equivalent to 0 ∈ qi(cone(co(g(C) + P ))).

We end this section by noting that our results are closely related with saddle point

conditions for the Lagrangian L(1, λ∗, x) in case the infimum of (3.1) is attained. The

saddle point characterization of strong duality clarifies the importance of such a prop-

erty for nonconvex optimization problems both from the theoretical and algorithmic

point of view.
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Theorem 3.10. Let Y be locally convex and assume that 0 ∈ qi(co(g(C) +P )). Then,

µ is attained at x̄ ∈ K and any of the assumptions (b) or (c) of Theorem 3.3 holds if

and only if there exists λ∗0 such that (λ∗0, x̄) ∈ P ∗ × C is a saddle point for L(1, λ∗, x)

on P ∗ × C, i.e.,

L(1, λ∗, x̄) ≤ L(1, λ∗0, x̄) ≤ L(1, λ∗0, x), ∀(λ∗, x) ∈ P ∗ × C. (3.22)

Proof. It is enough to recall that (λ∗0, x̄) is a saddle point for L(1, λ∗, x) on (P ∗×C), if

and only if x̄ ∈ K, f(x̄) = inf
x∈C

L(1, λ∗0, x) and 〈λ∗0, g(x̄)〉 = 0, so that the thesis follows

from Theorem 3.5.

Similarly, from Theorem 3.6 we obtain the following result.

Theorem 3.11. Let Y be locally convex and assume that 0 ∈ qri(co(g(C)+P )). Then,

µ is attained at x̄ ∈ K and any of the assumptions (b) or (c) of Theorem 3.4 holds if

and only if there exists λ∗0 such that (λ∗0, x̄) ∈ P ∗ × C is a saddle point for L(1, λ∗, x)

on P ∗ × C.

4 Some consequences and comparison with other existing

results

We observe that the convex hull appearing in the results of the previous section can

be deleted everywhere simply by requiring the convexity of the sets cone Eµ and

cone(g(C) + P ), since in this situation,

cone Eµ = cone(co Eµ), cone(co(g(C)) + P ) = cone(g(C) + P ).

An important class of vector functions implying the convexity of the sets Eµ and

g(C) + P which satisfy more verifiable conditions, is that introduced in [24]: given a

convex set C ⊆ X with X as above, a real locally convex topological vector space Z

along with a convex cone Q ⊆ Z, a mapping G : C → Z is called ∗-quasiconvex if

〈q∗, G(·)〉 is quasiconvex for all q∗ ∈ Q∗. Independently, the author in [35] says that G

is naturally Q-quasiconvex if for all x, y ∈ C, G([x, y]) ⊆ [G(x), G(y)]−Q. Both classes

coincide as shown in [10, Proposition 3.9] when int Q 6= ∅, and [13, Theorem 2.3] for

general Q. See also [25].

It is known from Corollary 3.11 in [10], that every ∗-quasiconvex function G : C → Z

satisfying (4.1):

∀q∗ ∈ Q∗, the restriction of 〈q∗, G(·)〉 on any line segment of C is lower semicontinuous,

(4.1)
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is such that G(C) +P is convex, so that G(C ′) +P is also convex for every convex set

C ′ ⊆ C.

Therefore, by setting F = (f, g), and assuming the convexity of C, the lower semi-

continuity on any line segment of C of 〈q∗, F (·)〉 for all q∗ ∈ R+ × P ∗, and the ∗-
quasiconvexity of F : C → R× Y , we get: the convexity of F (C) + (R+ × P ), (and so

Eµ is convex as well) and the quasiconvexity of the functions f and 〈p∗, g(·)〉 on C for

all p∗ ∈ P ∗. Hence, f(C) + R+ and g(C) + P are convex sets as well.

Obviously there are vector functions F such that F (C)+(R+×P ) is convex without

being ∗-quasiconvex. The convexity of F (C) + (R+×P ) was imposed in [7, 17]. Hence,

our Theorem 3.6 is more general, even in the convex case, than Theorem 4.4 in [7]

and Theorem 10 in [17], since the last two theorems require the stronger condition

0 ∈ qi(g(C) + P ). This is shown by Example 4.3 below. To be more precise, Theorem

4.4 in [7] reads as follows

Theorem 4.1. [7, Theorem 4.4] Suppose that F (C)+(R+×P ) is convex, 0 ∈ qi(g(C)+

P ) and (0, 0) 6∈ qri[co(Eµ∪{(0, 0)})]. Then, there exists λ∗0 ∈ P ∗ such that (3.12) holds.

In order to prove the previous theorem, the authors show first that “Fenchel and

Lagrange duality” (so, some convexity assumptions are imposed) are equivalent, gen-

eralizing an earlier result due to Magnanti [27]. Then, from such an equivalence the

strong duality is obtained.

On the other hand, from Proposition 2.5(b), it follows

0 ∈ qi(co(g(C))+P )⇐⇒ 0 ∈ qi[co(g(C))+P−(co(g(C))+P )] and 0 ∈ qri(co(g(C))+P ).

(4.2)

This implies that Theorems 4.2 and 4.4 in [7] are identical provided g(C)+P is convex.

Furthermore, we point out that Theorems 3.5 and 3.6 apply to more general situa-

tions, even to non quasiconvex functions with equality and inequality constraints and

possibly where argmin
K

f is empty as the next example shows.

Example 4.2. Notice this example shows our approach applies even if int P = ∅.
Take C = R2, P = {0} × R+, x = (x1, x2), f(x) = x21 + 2e−x

2
2 ,

g1(x) = x41 − e−x
2
2 , g2(x) = x21 − x22,

and consider the problem

µ
.
= inf{f(x) : g1(x) = 0, g2(x) ≤ 0, x ∈ C}.

Thus, P ∗ = R × R+ and µ = 0, although the set of minimizers is empty. Setting

F (x) = (f(x), g1(x), g2(x)), x ∈ C, we obtain F (x) = (x21 + 2e−x
2
2 , x41 − e−x

2
2 , x21 − x22).
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It follows that

E0 = {(u, v1, v2) ∈ R3 : u ≥ x21 + 2e−x
2
2 , v1 = x41 − e−x

2
2 , v2 ≥ x21 − x22, (x1, x2) ∈ R2},

which is nonconvex (see afterwards). Then, because of the condition u ≥ x21 +

2e−x
2
2 , ∀(x1, x2) ∈ R2, we have co E0 ⊆ {(u, v1, v2) ∈ R3 : u > 0} and, therefore,

(0, 0, 0) 6∈ int(cone (co(F (C))− µ(1, 0, 0) + R+ × P )) .

Observe that E0 ∩ H = ∅, where H = {(u, v1, v2) ∈ R3 : u < 0, v1 = 0, v2 ≤ 0}.
Moreover,

(g1, g2)(C) + P = {(v1, v2) ∈ R2 : v1 = x41 − e−x
2
2 , v2 ≥ x21 − x22, (x1, x2) ∈ R2}

is nonconvex. In fact, taking (x1, x2) = (0, 0), (0, 2
√

2), we have that (v1, v2) =

(−1, 0), (−e−8,−8) belongs to (g1, g2)(C) + P but the convex combination

(−1−e
−8

2 ,−4) 6∈ (g1, g2)(C) + P . To prove this, observe that the system
−1−e−8

2 = x41 − e−x
2
2 , (x1, x2) ∈ R2;

−4 ≥ x21 − x22,

is not possible. Otherwise, for a suitable (x1, x2) ∈ R2 it should bee
−x22 = x41 + 1+e−8

2 ≥ 1

2
;

x22 ≥ x21 + 4 ≥ 4,

that is clearly impossible. This also proves that E0 is nonconvex.

It is easy to see that

(0, 0) ∈ int(co((g1, g2)(C) + P ))

that is, the generalized Slater condition is satisfied. (Actually, taking (x1, x2) =

(0, 0), (1, 0), (1,
√

2), we have that (v1, v2) = (−1, 0), (0, 1), (1 − e−2,−1) belongs to

(g1, g2)(C) + P , so that the previous relation follows). On the other hand, given

λ = (λ1, λ2) ∈ R× R+, we obtain

L(λ, x) = x21 + 2e−x
2
2 + λ1(x

4
1 − e−x

2
2) + λ2(x

2
1 − x22) =

λ1x
4
1 + (1 + λ2)x

2
1 + (2− λ1)e−x

2
2 − λ2x22.

Hence, for λ1 ∈ R and λ2 ≥ 0, we get

inf
x∈R2

L(λ, x) =


0 if λ2 = 0, 0 ≤ λ1 ≤ 2,

2− λ1 if λ2 = 0, λ1 > 2,

−∞ if λ2 = 0, λ1 < 0 or λ2 > 0.
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and therefore,

max
(λ1,λ2)∈P ∗

inf
x∈R2

L(λ, x) = 0 = µ,

inf
x∈R2

L(λ∗, x) = 0, λ∗ = (λ∗1, 0), 0 ≤ λ∗1 ≤ 2.

The following example shows that even in the convex case, our Theorem 3.6 is

applicable but Theorem 4.4 in [7] or Theorem 10 in [17] are not.

Example 4.3. This example shows an application to a convex problem with int P = ∅.
Take C = {(x1, x2, x3) ∈ R3 : x3 = 0}, P = {0}×{0}×R+, x = (x1, x2, x3), f(x) = x21,

g1(x) = x1 + x2 + x3, g2(x) = x1 + x2 − x3, g3(x) = x21 + x22 − 1,

and consider the problem

µ
.
= inf{f(x) : g1(x) = 0, g2(x) = 0, g3(x) ≤ 0, x ∈ C}.

Thus, µ = 0 and x̄ = (0, 0, 0) is the optimal solution. Setting F (x) = (x21, x1 + x2 +

x3, x1 + x2 − x3, x21 + x22 − 1), it follows that

E0 = {(u, v1, v2, v3) ∈ R4 : u ≥ x21, v1 = x1+x2+x3, v2 = x1+x2−x3, v3 ≥ x21+x22−1, x ∈ R3},

is convex, and it is not difficult to check that cone(E0) ∩ H = ∅, which implies that

cone(E0) ∩ (−R++ ∩ {0}) = ∅, where

H = {(u, v1, v2, v3) ∈ R3 : u < 0, v1 = 0, v2 = 0, v3 ≤ 0}.

The former equality allows us to apply Theorem 3.2. It is easy to see that

(g1, g2, g3)(C)+P = {(v1, v2, v3) ∈ R3 : v1 = v2 = x1+x2, v3 ≥ x21+x22−1, (x1, x2) ∈ R2}

is a convex set with empty interior so that qi((g1, g2, g3)(C) + P ) = ∅. However, since

(0, 0, 0) ∈ qri((g1, g2, g3)(C) + P )

Theorem 3.6 can be applied.

The next example shows a problem where the Slater condition does not hold while

(b) of Theorem 3.2 is fulfilled.

Example 4.4. Take f(x) = x2, C = R, g(x) = x2 + x4, P = R+ and consider the

problem

µ
.
= min

g(x)≤0
f(x)

It is easy to see that µ = 0 and x̄ = 0 is the optimal solution. On the other hand,

F (C) = {(x2, x2 + x4) : x ∈ R} = {(u, v) ∈ R × R : v = u + u2, u ∈ R+}. Then

F (C) + (R+ × P ) = R2
+ is a closed convex cone and (b) of Theorem 3.2 is fulfilled.

However, g(C) + P = R+ and therefore 0 6∈ qi(g(C) + P ) = qri(g(C) + P ).



Strong duality in cone constrained nonconvex optimization 19

A simple consequence of Theorem 3.5 is the following.

Corollary 4.5. Assume that µ is finite and 0 ∈ co(g(C)) + qi P . Then, any of the

assumptions (b) or (c) of Theorem 3.3 is equivalent to the existence of λ∗0 ∈ P ∗ such

that (3.5) is fulfilled.

Proof. The result follows from Theorem 3.5 once we observe that co(g(C)) + qi P ⊆
qi(co(g(C))+P ). Such an inclusion easily follows since any x = q+p with q ∈ co(g(C))

and p ∈ qi P satisfies cone(P − (x− q)) = Y , which yields

Y = cone(P + q − x) ⊆ cone(P + co(g(C))− x) ⊆ Y,

proving the desired result.

The next corollary is a generalization to the nonconvex case of Theorem 4.1 of [6].

Corollary 4.6. Let P be a convex cone in Y such that P − P = Y . Assume that µ is

finite and 0 ∈ co(g(C)) + qri P . Then, any of the assumptions (b) or (c) of Theorem

3.3 is equivalent to the existence of λ∗0 ∈ P ∗ such that (3.5) is fulfilled.

Proof. Since P − P = Y , by Proposition 2.6 we obtain that qri P = qi P so that our

assumptions imply that 0 ∈ co(g(C)) + qi P and from Corollary 4.5 the conclusion

follows.

When the topological interior is employed instead of the quasi relative interior, we

obtain the following theorem which is a consequence of Theorems 3.3 and 3.5, already

appeared in [11] and applies to situations when int P may be empty. In what follows,

R++ = ]0,+∞[.

Theorem 4.7. Let us consider problem (3.1) and assume that µ is finite,

int[co(F (C)) + (R+ × P )] 6= ∅, (or int[co Eµ] 6= ∅)

and cone(co(g(C) + P )) = Y . The following assertions are equivalent:

(a) there exists λ∗0 ∈ P ∗ such that (3.12) hold;

(b) cone[int[co(F (C))− µ(1, 0) + (R+ × P )]] is pointed.

(b′) cone[co(F (C))− µ(1, 0) + (R++ × int P )] is pointed, provided int P 6= ∅.

Remark 4.8. (The case of finite dimensional spaces)

Theorem 3.4, when specialized to finite dimension, reduces to Theorem 3.2 in [16];

whereas the finite dimensional version of Theorem 3.6 strengthens Theorem 3.6 in [16].
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Remark 4.9. (Connection with the S-lemma)

We now provide a connection with the well-known S-lemma. This expresses the fol-

lowing: given f, g : Rn → R and C ⊆ Rn, the question is under which conditions the

implication

g(x) ≤ 0, x ∈ C =⇒ f(x) ≥ 0

is satisfied, or equivalently when the system g(x) ≤ 0, x ∈ C, f(x) < 0 has no solution.

The important case, when f and g are quadratic, with C = Rn, was studied by

Yakubovich, see the survey by Pólik and Terlaky in [30]. Its proof uses the Dines

theorem which asserts the convexity of the set {(f(x), g(x)) ∈ R2 : x ∈ Rn} when f

and g are homogeneous quadratic functions. The S-lemma due to Yakubovich says the

following:

assume f and g as above and that there is x̄ ∈ Rn such that g(x̄) < 0. Then, (a) and

(b) are equivalent:

(a) There is no x ∈ Rn such that

f(x) < 0, g(x) ≤ 0.

(b) There is λ ≥ 0 such that

f(x) + λg(x) ≥ 0, ∀ x ∈ Rn.

Let us sketch a proof. Obviously (b) =⇒ (a) always holds. Assume therefore that

(a) holds. This means that g(x) ≤ 0 implies f(x) ≥ 0, that is, 0 ≤ µ .
= inf

g(x)≤0
f(x). By

Proposition 3.1 we have that cone(Eµ) ∩H = ∅, where (set F = (f, g))

Eµ
.
= F (Rn)− µ(1, 0) + R2

+ and H .
= {(u, v) ∈ R2 : u < 0, v ≤ 0}.

By Dines theorem [30, Proposition 2.3], F (Rn) is convex, and therefore Eµ is convex.

It follows that

ri(cone Eµ) ∩ ri H = ∅ ⇐⇒ ri(cone Eµ) ∩ ri(H) = ∅

or, equivalently, (recalling that for any nonempty convex sets C1, C2 ⊆ Rn, ri(C1 +

C2) = riC1 + riC2, see [33, Corollary 6.6.2])

(0, 0) 6∈ ri[cone Eµ −H] = ri[cone(Eµ −H)] = ri(cone Eµ).

Therefore, (0, 0) 6∈ ri(cone Eµ). Moreover, we observe that the set g(Rn)+R+ is convex

since g takes values in R. We can apply Theorem 3.6 to obtain the existence of λ ≥ 0

such that f(x) + λg(x) ≥ µ ≥ 0 for all x ∈ Rn.
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We end this remark by pointing out that the Dines theorem was extended to the

case when Rn is substituted by a cone K such that K ∪ (−K) is a subspace of Rn in

[21, Theorem 3.2].

5 Zero duality gap and strong duality for a nonconvex

variational problem

In this section we shall deal with the problem P (a) defined by

inf

∫ 1

0
f0(t, z(t))dt s.t. z ∈ K(a)

.
=
{
z ∈ L1([0, 1],Rn) :

∫ 1

0
g0(t, z(t))dt ∈ −P+a

}
,

(5.1)

where f0 : [0, 1] × Rn → R ∪ {+∞}, g0 : [0, 1] × Rn → (R ∪ {+∞})m and f0(t, ·) is

lower semicontinuous and g0(t, ·) is continuous for a.e. t ∈ [0, 1]; f0 is a Borel function

and g0(·, u) is measurable (with respect to the Lebesgue measure) for all u ∈ Rn such

that g0(·, z(·)) ∈ L1([0, 1],Rm) for all z ∈ L1([0, 1],Rn); P is a closed convex cone

in Rm and a ∈ Rm. We consider the functions f : L1([0, 1],Rn) → R ∪ {+∞} and

g : L1([0, 1],Rn)→ Rm defined by

f(z) =

∫ 1

0
f0(t, z(t))dt, g(z) =

∫ 1

0
g0(t, z(t))dt,

Here, dom g = L1([0, 1],Rm) by assumption. Furthermore, in order to avoid techni-

calities we impose the following linear growth condition of f0: there exist α ∈ Rn,

β ∈ L1([0, 1],R) such that

f0(t, u) ≥ 〈α, u〉+ β(t), for a.e. t ∈ [0, 1], all u ∈ Rn.

Under this assumption, f(z) > −∞ for all z ∈ L1([0, 1],Rn).

We associate with our problem the optimal value function ψ defined as follows

ψ(a) =

inf
{∫ 1

0
f0(t, z(t))dt : g(z) ∈ −P + a

}
if K(a) 6= ∅;

+∞ otherwise.

Consider the Lagrangian dual (D) associated with P (0) and defined by

vD
.
= sup

λ∈P ∗
inf
z∈C

L(1, λ, z).

Here C
.
= L1([0, 1],Rn) and

L(1, λ, z) = f(z) + 〈λ, g(z)〉, λ ∈ P ∗, z ∈ L1([0, 1],Rn). (5.2)
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We remark that the analysis can be equivalently carried out with slight modifications

if in (5.1) we set z ∈ C where C is a closed subset of L1([0, 1],Rn).

We recall an extension of the Lyapunov theorem proved in [28]. Given a set K ⊆
L1([0, 1],Rk), define the set

I(K)
.
=
{∫ 1

0
φ(t)dt : φ ∈ K

}
.

K is said to be decomposable if, for every measurable set B ⊆ [0, 1] and all u, v ∈ K:

u · χB + v · χ[0,1]\B ∈ K,

where χB is the characteristic function of the set B.

Theorem 5.1. If K ⊆ L1([0, 1],Rk) is decomposable, then I(K) is convex and I(K) =

I(co K). If, in addition, K is (strongly) closed and I(K) contains neither a line nor

an extremal halfline, then I(K) is closed.

In what follows, given h : Rn → R ∪ {±∞}, h, co h stand for the greatest lower

semicontinuous function bounded above by h and for the greatest convex and lower

semicontinuous function bounded above by h, respectively. To be coherent with our

previous notation we need the following definition of epigraph of a function: epi h
.
=

{(t, x) ∈ R× Rn : h(x) ≤ t}.
It is known that

epi h = epi h; co(epi h) = epi co h.

Moreover, if co h(x) > −∞ for all x ∈ Rn (which is satisfied when h is bounded below

by a linear function for instance) then co h(x) = h∗∗(x) for all x ∈ Rn, where h∗∗ is the

bipolar or biconjugate of h, that is, the conjugate of h∗. There are examples showing

the assumption co h(x) > −∞ for all x ∈ Rn is necessary to get the equality. In general

we have h∗∗ ≤ co h ≤ h.

Set C0
.
= dom f = {z ∈ C : f(z) < +∞} and

K0
.
=
{

(u, v) ∈ L1([0, 1],R1+m) : ∃ z ∈ C, u(t) ≥ f0(t, z(t)),

v(t) ≥P g0(t, z(t)), for a.e. t ∈ [0, 1]
}
. (5.3)

The following result holds.

Proposition 5.2. I(K0) = F (C0) + (R+ × P ); it is convex and

F (C0) + (R+ × P ) = epi ψ = epi ψ = epi co ψ,

where F (z)
.
= (f(z), g(z)).
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Proof. We observe that K0 is a decomposable set and I(K0) = F (C0) + (R+ × P ).

Indeed, let (ui, vi) ∈ K0, i = 1, 2 and B ⊆ [0, 1] a measurable set. Then,

ui(t) ≥ f0(t, zi(t)), vi(t) ≥P g0(t, zi(t)), for a.e. t ∈ [0, 1].

Setting z̃
.
= z1 · χB + z2 · χ[0,1]\B ∈ C, we have for a.e. t ∈ [0, 1]:

u1(t)·χB(t)+u2(t)·χ[0,1]\B(t) ≥ f0(t, z̃(t)), v1(t)·χB(t)+v2(t)·χ[0,1]\B(t) ≥P g0(t, z̃(t)),

i.e. (u1, v1) · χB + (u2, v2) · χ[0,1]\B ∈ K0.

It is straightforward that I(K0) ⊆ F (C0) + (R+ × P ). To prove the reverse inclusion

it is enough to observe that if (u, v) ∈ F (C0) + (R+ × P ), then, for some z ∈ C0 and

(h, p) ∈ (R+ × P ),

(u, v) =
(∫ 1

0
[f0(t, z(t)) + h]dt,

∫ 1

0
[g0(t, z(t)) + p]dt

)
∈ I(K0).

This proves the first equality.

By Theorem 5.1 with K0 instead of K, the set F (C0) + (R+ × P ) is convex.

We observe that

F (C0) + (R+ × P ) ⊆ epi ψ ⊆ F (C0) + (R+ × P ). (5.4)

Taking the convex hulls in (5.4) we obtain

F (C0) + (R+ × P ) ⊆ co(epi ψ) ⊆ F (C0) + (R+ × P ). (5.5)

Taking the closures in (5.4) and (5.5) we complete the proof.

Let us define the function G : Rm → R ∪ {±∞} by

G(p) =

∫ 1

0
fg(t, p)dt, where fg(t, p)

.
= sup

ξ∈Rn

{
〈p, g0(t, ξ)〉 − f0(t, ξ)

}
.

It follows that G is lsc and convex.

Let µ = ψ(0) be the value of P (0). Next result provides a new characterization of the

zero duality gap between P (0) and (D) in terms of the set Eµ
.
= F (C0) + (R+ × P )−

µ(1, 0) considered in Section 3.

Theorem 5.3. Assume that K(0) 6= ∅ and

A
.
= {p ∈ −P ∗ : fg(·, p) ∈ L1[0, 1]} 6= ∅. (5.6)

The following statements hold.

(a) ψ(a) ≥ 〈p∗, a〉−G(p∗) > −∞, ∀ a ∈ Rn, ∀ p∗ ∈ A; consequently ψ = co ψ = ψ∗∗;
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(b) The duality gap between P (0) and (D) is zero, i.e., vD = ψ(0), if and only if

Eµ ∩ −(R++ × {0}) = ∅. (5.7)

Proof. (a): Let p∗ ∈ A. We have

G(p∗)
.
=

∫ 1

0
fg(t, p∗)dt ≥

∫ 1

0
〈p∗, g0(t, z(t))〉dt−

∫ 1

0
f0(t, z(t))dt, ∀z ∈ L1([0, 1],Rn).

Then, for every a ∈ Rm and z ∈ K(a) there exists p ∈ P such that:∫ 1

0
f0(t0, z(t))dt ≥

∫ 1

0
〈p∗, g0(t, z(t))〉dt−

∫ 1

0
fg(t, p∗)dt ≥

∫ 1

0
〈p∗, a− p〉dt−G(p∗).

Since p∗ ∈ −P ∗ we have:

ψ(a) ≥
∫ 1

0
〈p∗, a〉dt−G(p∗) = 〈p∗, a〉 −G(p∗).

(b) Recalling that vD = ψ∗∗(0), (see e.g., [32, Theorem 7]), by (a), it follows that

vD = ψ(0). Therefore, we only need to prove that ψ(0) = ψ(0).

Since µ = ψ(0) then (5.7) is equivalent to

F (C0) + (R+ × P ) ∩ {(u, v) ∈ R× Rn : u < ψ(0), v = 0} = ∅. (5.8)

Taking into account Proposition 5.2, we have that (5.8) implies that ψ(0) ≥ ψ(0).

Recalling that

ψ(a) ≤ ψ(a), ∀ a ∈ Rn, (5.9)

we obtain ψ(0) = ψ(0).

Vice versa, from (5.9) and Proposition 5.2, we immediately obtain that ψ(0) = ψ(0)

implies (5.8).

Remark 5.4. We notice that the set I(K0) is closed in the simplest case when K0

is an affine set, i.e., ∀x, y ∈ K0, ∀α ∈ R, αx + (1 − α)y ∈ K0. Then, recalling that

I : K0 → Rn+1 is linear, I(K0) is an affine set in Rn+1 and therefore it is closed. Clearly

K0 is affine if f0(t, ·) and g0(t, ·) are affine, for a.e. t ∈ [0, 1] and C is an affine set in

L1([0, 1],Rn). In such a case, from Proposition 5.2 it follows that Eµ is closed and by

Proposition 3.1, we have that (5.7) is fulfilled.

Recalling that L(1, λ, z) is given by (5.2), from Theorem 3.6, the following result on

strong duality is obtained, without assuming any coercivity or convexity assumption.

Here quasi relative interior, “qri”, coincides with relative interior, “ri”.
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Corollary 5.5. Assume that µ ∈ R, K(0) 6= ∅ and 0 ∈ ri(g(C0) + P ). Then, there

exists λ0 ∈ P ∗ such that

inf
z∈K(0)

∫ 1

0
f0(t, z(t))dt = inf

z∈L1([0,1],Rn)

∫ 1

0
[f0(t, z(t)) + 〈λ0, g0(t, z(t))〉]dt.

Moreover, if z̄ ∈ L1([0, 1],Rn) is a solution to P (0), then (λ0, z̄) is a saddle point for

L(1, λ, z) on (P ∗ × C).

Proof. By Proposition 3.1 we have that cone(Eµ) ∩H = ∅, where

Eµ
.
= F (C0)− µ(1, 0) + (R+ × P ) and H .

= {(u, v) ∈ R× Rm : u < 0, v ∈ −P}.

By Proposition 5.2, Eµ is convex. It follows that

ri(cone Eµ) ∩ ri H = ∅ ⇔ ri(cone Eµ) ∩ ri(H) = ∅

or, equivalently,

(0, 0) 6∈ ri[cone Eµ −H] = ri[cone(Eµ −H)] = ri[cone Eµ].

Therefore, (0, 0) 6∈ ri[cone(F (C0)−µ(1, 0) + (R+×P ))]. Moreover, we observe that the

set g(C0)+P is convex since Eµ is convex, so that the thesis follows from Theorem 3.6.

The last statement follows from Theorem 3.11.

In case g0(t, z) = z and C0 = L1([0, 1],Rn), we obtain g(L1([0, 1],Rn) = Rn. Thus,

0 ∈ ri(g(C0) + P ) trivially holds whatever P is.

A similar strong duality result with a different proof was established in [8], see also

[29].
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