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Convexity-preserving flux identification for scalar conservation
laws modelling sedimentation

Raimund Bürger, Stefan Diehl

PREPRINT 2012-22

SERIE DE PRE-PUBLICACIONES





CONVEXITY-PRESERVING FLUX IDENTIFICATION FOR

SCALAR CONSERVATION LAWS MODELLING

SEDIMENTATION

RAIMUND BÜRGERA AND STEFAN DIEHLB,∗

Abstract. The sedimentation of a suspension of small particles dispersed in
a viscous fluid can be described by a scalar, nonlinear conservation law, whose
flux function usually has one inflection point. The identification of the flux
function is a problem of theoretical interest and practical importance for the
implementation of plant-scale simulators of continuous sedimentation. For a
real suspension, the Kynch test and the Diehl test, which are based on an ini-
tially homogenous suspension either filling the whole settling column or being
initially located above clear liquid, respectively, provide data points that repre-
sent curved (convex or concave, respectively) suspension-supernate interfaces
from which it is possible to reconstruct portions of the flux function to either
side of the inflection point. Several functional forms can be employed to gener-
ate a provably convex or concave, twice differentiable accurate approximation
of these data points via the solution of a constrained least-squares minimiza-
tion problem. The resulting spline-like estimated trajectory can be converted
into an explicit formula for the flux function. It is proved that the inverse
problem of flux identification solved this way has a unique solution. The prob-
lem of gluing together the portions of the flux function from the Kynch and
Diehl tests is addressed. Examples involving synthetic data are presented.

Mathematics subject classification: 35L65, 35R30, 65M32

1. Introduction

1.1. Scope. The sedimentation of small particles dispersed in a viscous fluid under
the influence of a (mostly gravitational) body force is a process of theoretical and
practical interest that appears as a controlled unit operation in mineral process-
ing, wastewater treatment, the pulp-and-paper and chemical industry, medicine,
volcanology, and other areas where a suspension must be separated into a clarified
liquid and concentrated sediment. The particles are small compared with typical
length scales (diameter and depth) of the settling vessel. Moreover, sedimentation
models for these applications should be able to predict the behaviour of a given
unit on relatively large temporal and spatial scales, and cover the full range of con-
centrations from the dilute limit to the packed sediment bed. These considerations
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y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile. E-Mail:
rburger@ing-mat.udec.cl.

BCentre for Mathematical Sciences, Lund University, P.O. Box 118, S-221 00 Lund, Sweden.
E-Mail: diehl@maths.lth.se.

1



2 BÜRGER AND DIEHL

justify representing the liquid and the solid particles as superimposed continuous
phases, namely a liquid phase and one or several solid phases.

Most mathematical models for the simulation and control of sedimentation pro-
cesses that incorporate these properties go back to the kinematic sedimentation
model by Kynch [44], also known as the solids-flux theory, which is based on the
following constitutive assumption. We consider batch sedimentation of an ideal
suspension of monosized particles that show no compressive behaviour. The sedi-
mentation takes place in a cylindrical vessel of height H . Let φ(x, t) be the local
concentration (or volume fraction) of solids at height x, measured from the bottom
of the vessel, and at time t. For ideal suspensions, the constitutive assumption
by Kynch states that the settling velocity vs of the particles depends on the local
concentration φ only; vs = vs(φ) ≥ 0. The function vs is assumed to satisfy vs ∈ C

2,
v′s(φ) ≤ 0 for 0 ≤ φ ≤ φmax, and vs(φmax) = 0, where φmax is the maximum packing
concentration. Thus, the evolution of φ as a function of x and t is governed by the
scalar conservation law with nonlinear flux

∂φ

∂t
−
∂fb(φ)

∂x
= 0, fb(φ) ∶= φvs(φ), (1)

supplied with suitable initial and boundary conditions. (The unconventional neg-
ative sign for the flux term originates from our upwards pointing x-axis, which is
opposite to the flux direction.)

The so-called batch-settling flux fb, or equivalently, the function vs, reflects
specific material properties of the material under study. In most circumstances, fb is
convex-concave with one inflection point φinfl. The same function fb also appears in
extensions of (1) to models of continuous sedimentation. The reliable identification
of the function fb from experimental data is therefore of considerable practical and
theoretical interest. Entropy solutions of (1) for a constant or piecewise constant
initial concentration can be constructed explicitly. Specific curved discontinuities
(shocks) of such solutions, corresponding to curves in the standard height versus
time settling plot, arise from an explicit transformation of a concave or convex
portion of fb. Physically, these trajectories correspond to the temporal evolution
of the suspension-supernate interface. This interface is fairly easy to observe, and
its measurement has been documented in numerous papers in literature; e.g. [16,
18, 29, 38, 42, 47, 48, 51, 56, 59].

The purpose of this paper is to introduce a technique that permits to reconstruct
the aforementioned convex or concave portions of fb (located to the right and left
of φinfl, respectively) from measurements of curved suspension-supernate interfaces
and to obtain explicit formulas for the estimation of these portions of fb. One
curved interface separates the suspension from the supernatant liquid in a stan-
dard batch-settling test of an initially homogeneous suspension (the Kynch test).
Another curved interface separates the fan of characteristics forming a transsonic
rarefaction wave emerging from the interface between a column of a highly con-
centrated suspension that is initially located above, and initially separated by a
membrane from, a column of clear liquid (the Diehl test). The main novelty lies in
the technique of approximating the height versus time data points by representing
the interface (but affected by errors in measurement, etc.) by a smooth function
that is defined piecewise by either quadratic polynomials, cubic polynomials, or
rational functional forms. The salient feature of the present approach is the partic-
ular approximation of the data points by the solution of a constrained optimization
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problem, which ensures that the identified curved interface is C2 and either convex
or concave, and that the corresponding portion of fb has the same property. The
Kynch and Diehl tests can be conducted independently for the same material, and
the problem of properly “gluing” together the separate portions of fb identified
by either test is made so that a final explicit formula for the estimation of fb is
obtained.

1.2. Related works. Inverse problems for scalar conservation laws of type (1),
where (a portion of) the flux function fb (or −fb) is identified without any assumed
parametric form, can be found in [30, 40, 41, 53]. James and Sepúlveda [40] ana-
lyze the minimization of a nonstandard cost function which contains the difference
between observed data and the solution of (1) at a fixed time point. This is done
via an adjoint equation obtained from a formal computation of the gradient of the
cost function, in spite of the fact that the latter may not be differentiable. The
nonuniqueness of identifying fb when the direct problem contains discontinuities
still remains, and in a particular example the authors resolve this by assuming a
physically motivated parametric function for fb. Kang and Tanuma [41] deal with
the case when −f ′′b (φ) > C > 0 for some constant C and the identification of fb
is made from observations of the shock formed for large time for initial data with
compact support. Fernández-Berdaguer and Savioli [30, 53] consider the displace-
ment of oil by water in petroleum reservoirs where the oil fractional flux function
is to be identified. This is done with a relatively advanced method including a
least-squares technique in functional spaces. Their method is successful in their
presented examples; however, they need to start with a continuous solution of the
direct problem (1) for small times and hence need to assume that the initial datum
is smooth. This is not satisfied in our sedimentation problems.

To put the paper into the proper perspective with respect to sedimentation, we
mention that formulas equivalent to vs = vs(φ) were derived in the dilute limit
φ/φmax ≪ 1 more than a century ago by A. Einstein [27], and in the 1940s for both
dilute and concentrated suspensions (see, e.g., [37, 54, 55, 58]). It was Kynch’s
specific contribution [44] that he explicitly solved the governing equation (1) for
initially constant concentrations. His arguments concerning characteristics, discon-
tinuities, and their possible intersections led to solutions that coincide with those
singled out by the current entropy solution theory for scalar hyperbolic conserva-
tion laws. Historical accounts and overviews related to sedimentation models based
on (1) are provided in [10, 24, 25].

Of particular importance is the extension of (1) to models of continuous sedi-
mentation in secondary settling tanks (SSTs) or clarifier-thickener units handling
suspensions forming compressible sediments. For that application the govern-
ing equation (1) is replaced by a degenerate parabolic equation with discontinu-
ous coefficients, which are however still based on knowledge of fb. We refer to
[5, 6, 7, 8, 19, 20] for the mathematical and numerical analysis of these models
(this list is incomplete). During normal operation of SSTs, it is well known that
solutions of the model PDE contain concentrations in the convex part of the flux
function fb. During transient solutions with a highly loaded SST at the limit to
overloaded situations, the concave part of fb influences the solution; see [22]. An ac-
curate determination of the concave part of fb is therefore crucial for the saturating
bounds of the regulator for SSTs presented in [23].
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The problem of determining the flux fb for a given material has been solved
in several ways by using measurements from the standard Kynch test; see the
references in [21]. Roughly speaking, one approach consists in choosing a global
parametric form for fb with a vector of a small number of parameters. One then
compares an observed temporal or spatial solution profile with a numerically simu-
lated one, and seeks to minimize the distance between both by successively varying
the parameter vector. One can employ a variety of descent methods to deter-
mine the direction of the parameter correction (which should be aligned with the
gradient of the cost functional) [3, 4]; another technique is based on solving an
adjoint problem [14]. These techniques are most common when there is an addi-
tional degenerate diffusive term accounting for sediment compressibility, and exact
closed-form solutions of the direct problem are not at hand.

Alternatively, one may identify certain observed trajectories with portions of an
exact solution, and determine the flux parameters by a constrained least-squares
technique. This procedure does not require the numerical solution of PDEs. Neither
does the graphical estimation method presented by Kynch [44]. For the Kynch test
available treatments pursuing such approaches include [2, 26, 31, 32, 33, 34, 35, 36,
45, 60, 61].

The graphical method by Kynch utilizes the PDE theory connection between the
flux function and the curved discontinuity of the Kynch test. An explicit formula
for the estimated flux function in terms of measurable variables was presented by
Lester et al. [45]. However, their formula contains an integral over the measured
settling velocities. Diehl [21] presented a simpler formula, which has been used by
Grassia et al. [35] and is utilized herein together with a constrained least-squares
method to obtain closed-form estimations for fb. In Section 7 some of the previous
treatments will be compared with ours in a more detailed way.

With the aim of a new batch-settling experiment, called the Diehl test, a portion
of the concave part of the flux function can also be estimated with explicit formulas
(Diehl [21]). The experiment requires a special arrangement, since a highly concen-
trated suspension should initially be applied on top of clear liquid. On the other
hand, the solution of the PDE is more involved with a richer behaviour than the
Kynch test. This initial datum has also been used for simulation and parameter
identification elsewhere; see e.g. [3, 4].

1.3. Outline of the paper. The remainder of this paper is organized as follows.
In Section 2 we first describe the direct problem, namely the initial-boundary value
problem (IBVP) for (1) that models batch sedimentation (Section 2.1). We then
recall in Section 2.2 the construction of the unique solution of the IBVP for a
constant initial datum φ0, and specify the range of initial concentrations φ0 for
which the solution exhibits a lower rarefaction fan (needed for flux identification).
The present flux identification method is based on a pair of representation formulas
due to Diehl [21], which expresses the pairs of values (φ, fb(φ)) assumed within the
rarefaction fan (in a sense that will be made precise) as an explicit function of pairs
(t, h(t)), where h(t) is the position of the curved interface at time t. This pair of
representation formulas is introduced in Section 2.3, along with an alternative pair
due to Kunik [43] that expresses (t, h(t)) as an explicit function of (φ, fb(φ)). In
that section it is also shown that if Diehl’s formulas are applied to an estimated
portion of the curved interface

⌣
h(t) with

⌣
h ∈ C2 and if

⌣
h is strictly convex, then the

resulting estimated portion of fb, denoted by
⌣
fb, is also C2 and strictly convex.
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In Section 3 we describe how the “raw” data typically available from measure-
ments of a Kynch test, namely data points (tj , xj) that represent the curved dis-
continuity (Section 3.1), give rise to a once or twice continuously differentiable and
convex curve

⌣
h(t) that estimates the real curved interface. This is done by repre-

senting
⌣
h(t) by piecewise quadratic, piecewise cubic, or particular piecewise rational

functional forms per segment, which give rise to the “quadratic-fit”, “spline-fit” and
“special-fit” methods, respectively. Convexity conditions for each of these methods
are identified along with certain auxiliary functions appearing in the Diehl formula.
While Section 3 is focused on the functional forms, Section 4 deals with the actual
solution of the inverse problem, namely of the quadratic programming problem
of computing the coefficients appearing in

⌣
h(t) such that the resulting function

is globally convex. An optimization problem is formulated for all three methods
(Section 4.1), and it is proved that the problem has a unique solution (Section 4.2).
In Section 4.4, we present the application of the flux identification techniques to
synthetically produced Kynch-test data.

In Section 5, we summarize the steps and modifications necessary for the anal-
ogous treatment of the curved supernate-suspension interface arising in the Diehl
test. This interface is concave, and its reconstruction provides an estimate of the
concave portion of fb. This is illustrated with synthetic data in Section 5.1. Com-
bining the treatments of both the Kynch and Diehl tests for one and the same
material, one is able to reconstruct the portions of fb to either side of φinfl. In Sec-
tion 6, we describe how to complement the two estimated portions of fb to obtain
an entire flux function. Conclusions are summarized in Section 7.

2. The Kynch model of batch sedimentation: the direct problem

2.1. The initial-boundary-value problem. We use the convention that the set-
tling velocity vs and the flux fb are positive in the downward direction, which is
opposite to the direction of the x-axis. The batch-settling flux fb has generally in-
flection points. For simplicity, we consider here only the case of one inflection point
φinfl, which necessarily satisfies f ′b(φinfl) < 0; see Figure 1 (left). Our analysis will
use results by Diehl [21], where the case when fb has two inflection points is also
covered. The identification method presented here can in principle be applied to a
flux function with several inflection points. The φ-intervals of estimation will then
be a subset of the union of the convex (concave) parts fb (cf. the “convex hull”
of fb), and special care has to be taken for the corresponding convex (concave)
continuous discontinuity where its slope make jumps. We leave the details.

The conservation of mass implies an initial-value zero-boundary-flux problem.
For a piecewise smooth initial-value function φinit(x) that satisfies φinit(H

−) <
φmax and φinit(0

+) > 0 (one-sided limits), an entropy condition at the boundaries
(Diehl [19, Section 5]) yields the initial-boundary-value problem

∂φ

∂t
−
∂fb(φ)

∂x
= 0, 0 < x <H, t > 0,

φ(x,0) = φinit(x), 0 < x <H,

φ(0+, t) = φmax, t > 0,

φ(H−, t) = 0, t > 0.

(2)

In a standard batch-settling experiment, here called the Kynch test, it is assumed
that the suspension is initially homogeneous, i.e. φinit(x) ≡ φ0, and in an alternative
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φinfl φmaxφ∗∗
max

φ0 φ∗
0

fb(φ)

φmax

φ0 φ∗
0

t

x

H

φ = 0

x = h(t)

tstart tend

x = x1(t)

x = x2(t)

0

Figure 1. Left: The batch-settling flux function. The dotted
line through the point (φmax,0) has the slope f ′b(φ

∗∗
max). Right: A

schematic solution of a Kynch test with φ0 ∈ (φ
∗∗
max, φmax]. Thin

lines are characteristics and thick lines discontinuities, except for
x2, which is a line of continuity. The solution assumes values in
{φ0} ∪ [φ∗0 , φmax].

batch-settling test, called the Diehl test [21], there is initially a high concentration
φ0 in a top layer, below which there is liquid. A solution of (2) is then piece-
wise smooth. For a function fb with exactly one inflection point there are three
qualitatively different solutions of the Kynch test, called modes of sedimentation,
depending on the value of φ0; for exactly two inflection points, there are in total
seven modes (under the assumption that the settling velocity vs is a decreasing
function; see [21]). These modes of sedimentation are derived in detail in [11] and
are summarized in [9]. (In the terminology of [9, 11], the choice of φ0, considered
herein for the Kynch test, corresponds to modes of sedimentation MS-2 and MS-3.)

Across each smooth curve of discontinuity x = x(t), between the values φ± ∶=
φ(x(t)± 0, t), the jump condition (also known as Rankine-Hugoniot condition; and
which is a mere consequence of the conservation of mass)

−x′(t) = fb(φ+) − fb(φ−)
φ+ − φ−

=∶ S(φ+, φ−) (3)

holds. The solution is unique if every discontinuity satisfies the following entropy
condition by Oleinik [50]:

S(φ+, u) ≥ S(φ+, φ−) for all u between φ+ and φ−,

where (for convenience) we define S(φ,φ) ∶= f ′b(φ).
2.2. Construction of the solution. We need the following operations for the
construction of the solution of (2) (cf. Ballou [1]). Given φ ∈ [0, φmax], we define

φ∗ ∶=max{u ∈ [φ,φmax] ∶ f ′b(u) = S(φ,u) ≤ S(φ, v) ∀v ∈ [φ,u]}, (4)

φ∗ ∶=min{u ∈ [0, φ] ∶ f ′b(u) = S(φ,u) ≤ S(φ, v) ∀v ∈ [u,φ]}, (5)

φ∗∗ ∶=min{u ∈ [0, φ] ∶ u∗ = φ}.
The solution of (2) for φ0 ∈ (φ∗∗max, φmax] is shown in Figure 1 (right). The line

x = x1(t) is a discontinuity if φ0 ∈ (φ∗∗max, φinfl), otherwise it is a line of continuity.
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If 0 < φ0 ≤ φ
∗∗
max, then the lines x = x1(t) and x = x2(t) in Figure 1 (right) coincide,

tstart = tend and there is no expansion wave. In the present paper we consider only
the case φ0 ∈ (φ∗∗max, φmax), i.e. when there is a non-trivial expansion wave.

We denote the height of the uppermost discontinuity between zero and nonzero
concentrations by h(t). According to (3), the function h(t) satisfies

−h′(t) = fb(φ0)
φ0

= vs(φ0), 0 < t < tstart,

where tstart is the time of intersection with another discontinuity, namely x = x1(t) =
−f ′b(φ∗0)t, originating from the bottom. Between x1(t) and down to the line of con-
tinuity x = x2(t) = −f ′b(φmax)t there is an expansion wave of continuously increasing
concentrations from φ∗0 to φmax. The solution φ in the expansion wave satisfies

x

t
= −f ′b(φ(x, t)) (= the slopes of the characteristics). (6)

If f ′b(φmax) < 0, then the line x2(t) intersects x = h(t) at the time tend, after which
the solution is stationary. If f ′b(φmax) = 0, then φ∗∗max = 0 and x2(t) ≡ 0, i.e. the
expansion wave fills out the region down to the t-axis (tend = ∞). Since the deriva-
tive h′ may be discontinuous at tstart, we use the convention h′(tstart) ∶= h′(t+start).
2.3. Diehl’s and Kunik’s representation formulas. Given the upper curved
discontinuity h(t), t ∈ [tstart, tend], of the solution of (2), Kynch [44] presented a
graphical procedure for obtaining the flux function fb in the interval [φ∗0 , φmax]
(the “tail”). Diehl [21] showed that Kynch’s graphical procedure can be written
by representation formulas; namely the tail of the flux function can be expressed
as a function of the curved discontinuity h and its derivative h′. This is a solution
of the inverse problem of obtaining (the tail of) the flux function fb given the so-
lution of (2). Kunik [43] presented representation formulas for the global solution
of the forward problem (2) for a monotone initial-value function φinit. In the spe-
cial batch-sedimentation case where φinit ≡ φ0, Kunik’s formulas relate the curved
discontinuity h as a function of the flux function fb in precisely the same way as
Diehl’s formulas relate fb as a function of h. We will here explore this symmetry.

We denote the concentration just below the curved discontinuity by

φh(t) ∶= φ(h(t)−, t) for tstart ≤ t ≤ tend, (7)

where φhis an increasingC1 function that maps the interval [tstart, tend] to [φ∗0 , φmax].
In the rest of this section we restrict the two functions h and fb to these two inter-
vals. Evaluating (6) at the discontinuity x = h(t) and inserting (7) we get

h(t)
t
= −f ′b(φh(t)) , for tstart ≤ t ≤ tend. (8)

The jump condition (3) for x = h(t), tstart ≤ t ≤ tend, implies that

−h′(t) = fb(φh(t))
φh(t) for tstart ≤ t ≤ tend. (9)

Since φ ∈ C1 and fb ∈ C
2, (9) implies that h ∈ C2 and h′ < 0. Differentiating (8),

we get

φ′h(t) = −h′(t) + f ′b(φh(t))
tf ′′

b
(φh(t)) > 0.



8 BÜRGER AND DIEHL

Furthermore, differentiating (9), we get (for tstart ≤ t ≤ tend)

h′′(t) = −f ′b(φh(t))φ′h(t)φh(t) − fb(φh(t))φ′h(t)
φh(t)2 = −

φ′h(t)
φh(t)(f ′b(φh(t)) − vs(φh(t))).

Since f ′b(φh(t)) < 0 and the other functions are positive, there holds h′′(t) > 0.
Thus, fb and h are both decreasing, strictly convex and C2 functions (as restrictions
to the intervals of interest).

Let us now define the following auxiliary functions:

η(t) ∶= h(t) − th′(t), (10)

Φ(φ) ∶= fb(φ) − φf ′b(φ). (11)

Since η > 0, Φ > 0, η′(t) = −th′′(t) < 0 and Φ′(φ) = −φf ′′b (φ) < 0 on the intervals of
interest, both η and Φ are invertible. Adding equations (8) and (9), we get

h(t)
t
− h′(t) = −f ′b(φh(t)) + fb(φh(t))

φh(t) ,

which (by (10) and (11)) is equivalent to φh(t)η(t) = tΦ(φh(t)). The expressions
on both sides are actually constant and equal to the total mass per unit area, i.e.,

φh(t)η(t) =Hφ0 = tΦ(φh(t)) for tstart ≤ t ≤ tend. (12)

This was proved by Diehl [21], utilizing (4), (8) and (9).

Remark 2.1. The left equality of (12) was in fact derived already by Kynch [44],
who used the following physical argumentation together with (8) and (9). Consider a
fixed time point t ∈ (tstart, tend) and the characteristic in the expansion wave between
the origin and the point (t, h(t)). Along this characteristic, the concentration has
the constant value φh(t) and the slope −f ′b(φh(t)) > 0, which is equal to the speed of
the characteristic upwards. All particles pass this characteristic with the constant
relative speed vs(φh(t)) − f ′b(φh(t)) and, hence, constant flux (mass per unit area
and unit time) given by

φh(t) [vs(φh(t)) − f ′b(φh(t))] = φh(t)(fb(φh(t))
φh(t) − f ′b(φh(t))) .

The total mass of the particles per unit area is Hφ0. During the time period [0, t]
all particles have passed, which together with (8) and (9) yields

Hφ0 = φh(t)(fb(φh(t))
φh(t) − f ′b(φh(t))) t = φh(t)(−h′(t) + h(t)

t
) t,

which in view of (10) is equivalent to Hφ0 = Φ(φh(t))t = φh(t)η(t).
The following representation formulas by Diehl [21] are obtained by (12) and(9).

The parametrization of the tail of the flux function is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
φ =

Hφ0

η(t) ,
fb(φ) = −Hφ0

η(t) h′(t)
for tstart ≤ t ≤ tend. (13)

Since η is invertible, we may solve the first equation in (13) for t and insert the
result into the second to obtain the explicit formula

fb(φ) = −φh′ (η−1 (Hφ0

φ
)) for φ∗0 ≤ φ ≤ φmax, where φ∗0 =

Hφ0

η(tstart) . (14)
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The representation formulas by Kunik [43] are obtained by (12) and (8):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t =

Hφ0

Φ(φ) ,
h(t) = −Hφ0

Φ(φ)f ′b(φ)
for φ∗0 ≤ φ ≤ φmax. (15)

Since fb is invertible, we may solve the first equation in (15) for φ to obtain the
explicit formula

h(t) = −tf ′b (Φ−1 (Hφ0

t
)) , for tstart ≤ t ≤ tend. (16)

Given an estimated curved discontinuity
⌣
h, we may define an estimated flux

function
⌣
fb via (13). Then these functions satisfy (9), but it is not obvious that

they satisfy (8). Hence, there is no direct information on
⌣
fb
′

and whether the
regularity of

⌣
fb is equal to that of

⌣
h. The following lemma and theorem resolve this

issue.

Lemma 2.1. Assume that h, fb ∈ C
2 are decreasing and strictly convex functions.

Then Equations (13) and (15) are equivalent.

Proof. We have h ∈ C2 and hence η, η−1 ∈ C1. The first equality of (13) is equivalent
to

t = η−1 (Hφ0

φ
) =∶ t(φ), tstart ≤ t ≤ tend, φ∗0 ≤ φ ≤ φmax,

where t(⋅) ∈ C1. Differentiating φη(t(φ)) =Hφ0, see (12), with respect to φ, we get

η(t(φ)) + φ( − th′′(t(φ)))t′(φ) = 0 ⇐⇒ −φh′′(t(φ)))t′(φ) = −η(t(φ))
t(φ) . (17)

Writing the second equality of (13) as fb(φ) = −φh′(t(φ)), differentiating it and
using (17), we obtain

f ′b(φ) = −h′(t(φ)) − φh′′(t(φ))t′(φ) = −h′(t(φ)) − η(t(φ))
t(φ) = −

h(t(φ))
t(φ) . (18)

Now we get the first equation of (15) from

tΦ(φ) = t(fb(φ) − φf ′b(φ)) = t(−φh′(t) + φh(t)t ) = φη(t) =Hφ0

and then the second from (18). By the symmetry between (13) and (15), one could
start with the latter equations and derive the former in the same way. �

In Section 3, we will use functions
⌣
h consisting of piecewise highly regular func-

tions with the regularity C1 or C2 at the fitting points.

Theorem 2.1. Assume that the function
⌣
h ∈ Ck, for some k ≥ 1, satisfies

⌣
h > 0

and
⌣
h′ < 0, such that ⌣η(t) ∶= ⌣h(t) − t⌣h′(t) is decreasing. If k = 1, we assume that

⌣
h ∈ C2 except at a finite number of points. Then the estimated flux function defined
by (13) satisfies

⌣
fb ∈ C

k. Conversely, given
⌣
fb ∈ C

k, then
⌣
h ∈ Ck holds.

Proof. For k ≥ 2, the proof of Lemma 2.1 can be repeated with C2 replaced by
Ck and C1 replaced by Ck−1. Then (18) gives that

⌣
fb
′
∈ Ck−1, hence

⌣
fb ∈ C

k. For
k = 1,

⌣
h′′ and ⌣t′(⋅) are not defined at a finite number of points. However, outside

these finite number of points, (17) holds and states that the product
⌣
h′′(⌣t(⋅))⌣t′(⋅) is
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equal to a function, which is defined and continuous for all φ ∈ [φ∗0 , φmax]. Hence,
(18) also holds, so that

⌣
fb
′
∈ C, hence

⌣
fb ∈ C

1. �

3. Piecewise fitting of the convex discontinuity of a Kynch test

3.1. Preliminaries. Assume that we are given N pairs of data points that repre-
sent the curved discontinuity in the interval [tstart, tend]; see Figure 1 (right):

(tj , xj), j = 1, . . . , j2, . . . , j3, . . . , jn, . . . ,N. (19)

Let j1 ∶= 1 and jn+1 ∶= N . The number of data points belonging to each interval(tji
, tji+1

] is Ni ∶= ji+1 − ji, so that N = 1 +∑n
i=1Ni. We would like to fit smooth

functions
⌣
hi, i = 1, . . . , n close to these data such that the graph of

⌣
h(t) ∶= n

∑
i=1

⌣
hi(t)χi(t) for t1 < t ≤ tN , (20)

where

χi(t) = ⎧⎪⎪⎨⎪⎪⎩
1 if tji

< t ≤ tji+1
,

0 otherwise,

is an estimation of the curved discontinuity of the function h of the solution of the
PDE. The goal is to substitute (20) into (14) to obtain an explicit formula for a
portion of the batch settling flux function

⌣
fb.

The functions
⌣
hi will be chosen such that they are sufficiently smooth in a neigh-

bourhood of the interval (tji
, tji+1

). We present below three functional forms for
⌣
hi,

all with a linear dependence in the parameters, the number of which are either 3
or4. At the end points of the n intervals, we require continuity in the function value
and derivatives up to the number of parameters minus 2. For

⌣
h ∈ C2, each

⌣
hi con-

tains four parameters, ai, bi, ci and di, and we require
⌣
h to be twice continuously

differentiable, which leads to the continuity constraints
⌣
hi−1(tji

) = ⌣hi(tji
), i = 2, . . . , n, (21)

⌣
h′i−1(tji

) = ⌣h′i(tji
), i = 2, . . . , n, (22)

⌣
h′′i−1(tji

) = ⌣h′′i (tji
), i = 2, . . . , n. (23)

These constitute 3(n−1) equations of the 4n parameters (in the 4-parameter case).
To obtain a unique solution of a least-squares minimization problem (see Theo-
rem 4.1 in Section 4.2), it turns out that in each interval (tji

, tji+1
], there should

be at least as many data points as parameters, i.e., ji+1 − ji ≥ 4, which implies that
the total number N of data points should satisfy

N = jn+1 = 1 +
n

∑
i=1

(ji+1 − ji) ≥ 1 + 4n.

In accordance with the properties of the solution of (2), we require
⌣
h′i(t) < 0, tji

≤ t < tji+1
, i = 1, . . . , n, and

⌣
h′n(tN) ≤ 0, (24)

⌣
h′′i (t) > 0, tji

≤ t < tji+1
, i = 1, . . . , n, and

⌣
h′′n(tN) ≥ 0, (25)

Because of the continuity constraint (22), we can conclude that
⌣
h′ is increasing (in

both 3- and 4-parameter cases). Hence, (24) can be replaced by the single constraint
⌣
h′n(tN) ≤ 0. (26)
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The parameters are determined as the solution of a least-squares optimization
problem in Section 4, where the constraints are such that they imply (21)–(23) and
(25)–(26). Once the optimization problem is solved, we may continue by defining
⌣ηi(t) ∶= ⌣hi(t) − t⌣h′i(t), i = 1, . . . , n. The continuity constraints (21)-(22) imply that

⌣η(t) = ⌣h(t) − t⌣h′(t) = n

∑
i=1

⌣ηi(t)χi(t) for t1 < t ≤ tN .

The inverse of ⌣η can be written by means of a sum of the inverses of all ⌣ηi. We
have to transform the characteristic functions χi. Since ⌣η is decreasing, it maps the
interval (tji

, tji+1
] to the interval [⌣η(tji+1

), ⌣η(tji
)). Because of the argument of η−1

in (14), the corresponding interval for φ is

⌣η(tji+1
) ≤ Hφ0

φ
< ⌣η(tji

) ⇐⇒
Hφ0

⌣η(tji
) < φ ≤ Hφ0

⌣η(tji+1
) .

Consequently, to express the inverse of ⌣η we define the characteristic functions

ψi(φ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if

Hφ0

⌣η(tji
) < φ ≤ Hφ0

⌣η(tji+1
) ,

0 otherwise,
i = 1, . . . , n.

Finally, (14) yields the following explicit formula for the estimated portion
⌣
fb of fb:

⌣
fb(φ) = −φ n

∑
i=1

⌣
h′i (⌣η−1i (Hφ0

φ
))ψi(φ), Hφ0

⌣η(t1) < φ ≤ Hφ0

⌣η(tN) . (27)

We note that
⌣
fb has the same regularity as

⌣
h by Theorem 2.1.

3.2. Quadratic-fit method. A 3-parameter functional form with the quadratic
polynomial

⌣
hi(t) = ait

2 + bit + ci together with (21), (22) yields that
⌣
h ∈ C1. The

convexity constraints (25) are ai > 0 for i = 1, . . . , n − 1 and an ≥ 0. We require now
that all ai > 0. It is straightforward to compute

⌣ηi(t) = −ait
2 + ci and ⌣η−1i (y) =

√
ci − y
ai

,

where we note that ai > 0 and ci > y.
After the 3n parameters have been determined (see Section 4), (27) yields

⌣
fb(φ) = − n

∑
i=1

(biφ + 2
√
aiφ(ciφ −Hφ0))ψi(φ), Hφ0

⌣η(t1) < φ ≤ Hφ0

⌣η(tN) . (28)

Here we note that bi < 0 since ai > 0 and
⌣
h′i(t) = 2ait + bi < 0, and that

⌣
fb ∈ C

1.

3.3. Spline-fit method. In order to increase the regularity so that
⌣
h,
⌣
fb ∈ C

2 one
can use cubic polynomials

⌣
hi(t) = ait

3 + bit2 + cit + di. Then we have

⌣ηi(t) = −2ait
3 − bit2 + di, t ∈ R.

An explicit representation for the inverse ⌣η−1i requires some preparation. Note that
the convexity conditions (25) are

⌣
h′′i (t) = 2(3ait + bi) > 0, tji

≤ t < tji+1
, i = 1, . . . , n − 1,

and
⌣
h′′n(tN) = 2(3antN + bn) ≥ 0,

(29)
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and that ⌣η′i(t) = −t⌣h′′i (t) = −2t(3ait + bi), which should be negative in the interval(tji
, tji+1

]. Furthermore, ⌣ηi has the two stationary points t = 0 and t = −bi/(3ai).
In these points the function values are

⌣ηi(0) = di and ⌣ηi (− bi
3ai

) = di −
b3i

27a2
i

.

To simplify calculations and implementation, we impose the additional constraints

ai < 0 and bi > 0, i = 1, . . . , n. (30)

(For the minimization problem, the more preferable constraints bi ≥ 0 could also
have been used, but this leads to different explicit formulas for ⌣η−1i depending on
whether bi = 0 or bi > 0 holds after the optimization.) Since ai < 0 if we impose (30),
all functions

⌣
h′′i are decreasing. This fact, together with the continuity constraints

(23), implies that all inequalities (29) can be replaced by the single constraint

⌣
h′′n(tN) ≥ 0. (31)

The graph of ⌣ηi has its decreasing part within the two stationary points, i.e. in the
interval (0,−bi/(3ai)). Hence, when solving the equation

⌣ηi(t) = y for a fixed y ∈ (di −
b3i

27a2
i

, di) , (32)

we are interested in the middle root of the three real ones. Details of the solution
procedure can be found in the Appendix. The inverse is

⌣η−1i (y) = − bi6ai

(2 cos(1

3
arccos(1 − 54(di − y)a2

i

b3i
) − 2π

3
) + 1) . (33)

This function should be used in formula (27) for the estimated flux function. The
result is too long to write down and it is not advisable to use in a computer program,
wherefore we instead summarize the method in Section 4.3.

3.4. Special-fit method. With the following four-parameter functional form we
will obtain the same regularity as the splines:

⌣
hi(t) = ai

t2
+
bi

t
+ ci + dit.

Then we have

⌣
h′i(t) = −2ai

t3
−
bi

t2
+ di,

⌣
h′′i (t) = 6ai

t4
+

2bi
t3
,

⌣ηi(t) = 3ai

t2
+

2bi
t
+ ci,

⌣η′i(t) = −t⌣h′′i (t) = −6ai

t3
−

2bi
t2
.

The convexity conditions (25) are equivalent to

⌣
h′′i (t) = 3ai + bit > 0, tji

≤ t < tji+1
, i = 1, . . . , n − 1,

and
⌣
h′′n(tN) = 3antN + bn ≥ 0,

(34)

which means that each ⌣ηi is decreasing, and, together with the continuity constraints
(21)–(22), ⌣η is decreasing. By imposing the constraints

ai > 0 and bi ≥ 0, i = 1, . . . , n, (35)
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the convexity constraints (34) are satisfied. Hence, each ⌣ηi is invertible and the
second-order equation ⌣ηi(t) = y, that is,

3ai + 2bit + (ci − y)t2 = 0 (36)

has the unique positive solution

t = ⌣η−1i (y) = 1

y − ci
(bi +√b2i + 3ai(y − ci)) . (37)

Note that (35) and (36) imply that y > ci. We get

⌣η−1i (Hφ0

φ
) = biφ +

√
φ2(b2i − 3aici) + 3aiHφ0φ

Hφ0 − ciφ
,

which should be composed with
⌣
h′i in the formula (27) for the estimated flux func-

tion. This is too long to write down and it is not advisable to use in a computer
program, wherefore we instead summarize the method in Section 4.3.

4. The inverse problem of estimating the tail of the flux function

from a Kynch test

4.1. The quadratic-programming problem. To the given the N data points
(19), the parameters ai, bi, ci and di should be determined as the unique solution
of a linear least-squares minimization problem with constraints. We introduce the
following vectors:

pi ∶=

⎛⎜⎜⎜⎝
ai

bi
ci
di

⎞⎟⎟⎟⎠ , p ∶=

⎛⎜⎜⎜⎝
p1

p2

⋮
pn

⎞⎟⎟⎟⎠ , xi ∶=

⎛⎜⎜⎜⎝
xji

xji+1

⋮
xji+1−1

⎞⎟⎟⎟⎠ , x ∶=

⎛⎜⎜⎜⎜⎜⎝

x1

x2

⋮
xn

xN

⎞⎟⎟⎟⎟⎟⎠
.

Then one can write
⌣
hi(t) = pT

i q(t) = q(t)Tpi, where

q(t) ∶=
⎛⎜⎜⎜⎝
t2

t

1
0

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
t3

t2

t

1

⎞⎟⎟⎟⎠ , or

⎛⎜⎜⎜⎝
1/t2
1/t
1
t

⎞⎟⎟⎟⎠ ,

to cover all our three fitting methods. Defining also the matrices

Qi ∶=

⎛⎜⎜⎜⎝
q(tji

)T
q(tji+1)T
⋮

q(tji+1−1)T
⎞⎟⎟⎟⎠ , Q ∶=

⎛⎜⎜⎜⎜⎜⎝

Q1 0 ⋯ 0

0 Q2 ⋮
⋮ ⋱
0 ⋯ Qn

0 ⋯ q(tN)T

⎞⎟⎟⎟⎟⎟⎠
,
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we can express the objective function of the minimization problem as follows:

J(p) = n

∑
i=1

ji+1−1

∑
k=ji

(⌣hi(tk) − xk)2 + (⌣hn(tN) − xN)2

=
n

∑
i=1

ji+1−1

∑
k=ji

(q(tk)Tpi − xk)2 + (⌣hn(tN) − xN)2
=

n

∑
i=1

(Qipi − xi)T(Qipi −xi) + (⌣hn(tN) − xN)2
= (Qp −x)T(Qp −x) = pTQ

T
Qp − 2xTQp +xTx.

(38)

We note that the size of Q is N × 4n and the Hessian of J has the size 4n × 4n.
To express the equality constraints (21)–(23) in standard matrix form, we define

R
spline
i ∶=R

spec
i ∶=Ri ∶=

⎛⎜⎝
q(tji

)T
q′(tji

)T
q′′(tji

)T
⎞⎟⎠ ,

R
spline ∶=R

spec ∶=

⎛⎜⎜⎜⎝
R2 −R2 0 ⋯ 0

0 R3 −R3 ⋯ 0

⋮ ⋱ ⋱ ⋮
0 ⋯ 0 Rn −Rn

⎞⎟⎟⎟⎠ .
For the quadratic-fit method, only (21)–(22) are used, wherefore we define

R
quad
i ∶= (q(tji

)T
q′(tji

)T)
and R

quad in the same ways as for the other methods. Then the equality con-
straints (21)–(23) are equivalent to Rmethod

i (pi−1 − pi) = 0 for i = 2, . . . , n, or more

compactly, Rmethodp = 0, where “method” equals “quad”, “spline” or “special”.
The inequality constraints for the three methods are different and some are strict.

Therefore, we let ε > 0 be a small number and 1m×n denote an m×n matrix full of
ones. We define

e1 ∶=

⎛⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎠ , e2 ∶=

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ , Ii ∶=

⎛⎜⎜⎜⎝
eT

i 0 ⋯ 0

0 eT
i ⋮

⋮ ⋱ 0

0 ⋯ 0 eT
i

⎞⎟⎟⎟⎠
n×(4n)

,

I
quad ∶= ( −I1(01×4(n−1) q′(tN)T)) , b

quad ∶= −ε(1n×1

0
) ,

I
spline ∶=

⎛⎜⎜⎜⎝
I1

−I2(01×4(n−1) q′(tN)T)(01×4(n−1) −q′′(tN)T)
⎞⎟⎟⎟⎠ , b

spline ∶= −ε
⎛⎜⎝
12n×1

0
0

⎞⎟⎠ ,

I
spec ∶=

⎛⎜⎝
−I1

−I2(01×4(n−1) q′(tN)T)
⎞⎟⎠ , b

spec ∶= −ε( 1n×1

0(n+1)×1
) .

(39)

Then the inequality constraints I
method

p ≤ b
method imply (25) and (26).
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For data points (19) representing the curved discontinuity, the parameters p are
determined by the following quadratic programming problem:

minimize J(p) = (Qp − x)T(Qp −x)
subject to Rmethodp = 0, Imethodp ≤ b

method,
(40)

where “method” is equal to one of the three methods described above.

4.2. Well-posedness of the inverse problem.

Theorem 4.1. Consider the data points (19) and one of the three fitting methods
described in Section 3. If the number of data points Ni = ji+1 − ji on each interval(tji

, tji+1
] satisfies Ni ≥ p, where p is the number of parameters of hi, then there

exists a unique solution p of the quadratic program (40). Furthermore, the estimated
tail of the flux function

⌣
fb, explicitly given by (14), depends continuously on the

data points.

Proof. The uniqueness of the solution of (40) is obtained by proving that the Hes-
sian ∇2J =Q

T
Q is positive definite. To this end, we may temporarily consider the

calculations in (38) with x = 0 and let p be an arbitrary vector. Then pTQTQp ≥ 0
holds, with equality if and only if

q(tk)Tpi = 0, k = ji, . . . , ji+1 − 1, i = 1, . . . , n, and q(tN)Tpn = 0.

These equalities are equivalent to the fact that each polynomial of degree p− 1 has
Ni ≥ p roots (the tk are distinct), which, in view of the fundamental theorem of
algebra, implies that p = 0. To prove that there exists a feasible solution of (40), we
state explicitly a such for each of the methods. A feasible point for the quadratic-fit
method is given by the following parameters:

ai = 1, bi = −2tN , ci = t
2
N , i = 1, . . . , n,

which correspond to the (global) polynomial
⌣
h(t) = (t − tN)2. A feasible point for

the spline-fit method is given by the following parameters:

ai = −1, bi = 3tN , ci = −3t2N , di = t
3
N , i = 1, . . . , n,

which correspond to the (global) polynomial
⌣
h(t) = −(t − tN)3. A feasible point for

the special-fit method is given by the following parameters:

ai = 1, bi = ci = 0, di =
2

t3N
, i = 1, . . . , n,

which correspond to the (global) function
⌣
h(t) = 1/t2 + 2t/t3N . It is straightforward

to check that the constraints are satisfied in each of the three cases, and
⌣
fb depends

continuously on p since it is composed of functions that are continuous with respect
p. It is well known (cf. [15, 17]) that the unique minimum p depends continuously
on the matrices of the quadratic program (40), hence on the data points (19). �

4.3. Summary of the three curve-fitting methods. As the coefficients ai, bi,
ci, di have been determined as the unique solution of the quadratic programming
problem (40), they should be plugged into the explicit formulas according to the
following. For the quadratic-fit method, the expression for the tail of the batch-
settling flux function is

⌣
fb(φ) = − n

∑
i=1

(biφ + 2
√
aiφ(ciφ −Hφ0))ψi(φ), Hφ0

⌣η(t1) < φ ≤ Hφ0

⌣η(tN) . (28)
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Figure 2. Three-dimensional graph (left) and contours (right) of
the numerical solution of a Kynch test.

For the other two methods, the explicit expressions for
⌣
fb are easier presented

in the following step-wise ways. For each given volume fraction φ in the interval

Hφ0

⌣η(t1) < φ ≤ Hφ0

⌣η(tN) ,
one determines to which interval φ belongs; i.e., one determines the integer I that
satisfies

Hφ0

⌣η(tjI
) < φ ≤ Hφ0

⌣η(tjI+1
) .

Then one sets y ∶=Hφ0/φ. For the spline-fit method one then computes

αI ∶= arccos(1 − 54a2
I(dI − y)
b3I

) , τI ∶= −
bI

6aI

(2 cos(αI − 2π

3
) + 1) ,

⌣
fb(φ) ∶= −φ⌣h′I(τI).

and for the special-fit method, one computes

τI ∶=
1

y − cI
(bI +√b2I + 3aI(y − cI)) , ⌣

fb(φ) ∶= −φ⌣h′I(τI).
4.4. Estimation from synthetic data. We exemplify the three estimation meth-
ods applied to synthetic data produced by a numerical simulation of a Kynch test,
where the flux function is known. One advantage of using synthetic data is that the
accuracies of the three methods can be compared. The simulation was performed
with the Godunov numerical flux and the batch-settling flux function chosen is

fb(φ) = v0φ(1 − φ)nRZ , (41)

with v0 = 10 and the Richardson-Zaki [52] exponent nRZ = 10; see the dashed graph
in Figure 3 (upper right). This function has an inflection point at φinfl = 2/11 ≈
0.182. We have chosen an initial concentration slightly less than the inflection point;
φ0 = 0.15. The numerical solution and contours of it are presented in Figure 2.

In (39) and (52), we have used ε = 10−5. The division of the data points into n
subintervals is made such that the points are evenly distributed with the remainder
of the points put in the last interval. From the contour plot 47 data points were
selected on the computer screen. Some estimation results of the three methods are
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Figure 3. Quadratic-fit method. The value of J is the minimum
for the estimated

⌣
h. Note that the estimated

⌣
h,
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fb ∈ C

1 ∖C2.

shown in Figures 3–5. Note that the estimated functions
⌣
h and

⌣
fb have the same
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Figure 4. Spline-fit method for the estimation of
⌣
h,
⌣
fb ∈ C

2.

regularity. For the special-fit method, there seems to be no improvement with more
than one subinterval; see Figures 5 and 6.



19

0 1 2 3 4 5 6 7
0.2

0.25

0.3

0.35

0.4

0.45

0.5
Special−fit method: 1 subinterval, J=8.05e−005

t [h]

x 
[m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

φ

Special−fit method: estimated f
b
(φ) (solid red)

0 1 2 3 4 5 6 7
0.2

0.25

0.3

0.35

0.4

0.45

0.5
Special−fit method: 5 subintervals, J=7.49e−005

t [h]

x 
[m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

φ

Special−fit method: estimated f
b
(φ) (solid red)

0 1 2 3 4 5 6 7
−1

−0.5

0

t [h]

Special−fit method: 5 subintervals, h’(t)

0 1 2 3 4 5 6 7
0

2

4

6
Special−fit method: 5 subintervals, h"(t)

t [h]

0.2 0.3 0.4 0.5 0.6 0.7
−2

−1

0

Special−fit method: 5 subintervals, f
b
’(φ)

φ

0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

Special−fit method: 5 subintervals, f
b
"(φ)

φ

Figure 5. Special-fit method with
⌣
h,
⌣
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2.

5. The inverse problem of estimating a concave part of the flux

function from a Diehl test

The initial data are now

φinit(x) = ⎧⎪⎪⎨⎪⎪⎩
0 for 0 < x <H0,

φ0 for H0 ≤ x <H,
(42)

where H0 is the height of clear liquid from the bottom. The solution of (2) with
the initial data (42) and φinfl < φ0 < φmax is shown in Figure 7. For details on
the solution, including the cases not treated here, we refer to [21]. (In the case
φ0 = φmax, the uppermost first discontinuity has zero speed, i.e., it stays at the
liquid surface until t = ⌢tstart.) Of our interest is the upper curved discontinuity
x = h(t) for ⌢tstart < t <

⌢tend, which is now concave. Below this, the concentration
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Figure 7. Left: Flux function with some of the concentrations
appearing in the solution. Right: Schematic solution of the Diehl
test with zero concentration below x = H0 and a uniform concen-
tration φ0 above. The interval of estimation is [φa, φ0∗] (cf. (5)).

values, in the expansion wave originating at (0,H0), decreases from φ0∗ to φa, where
the latter is unknown beforehand but can be calculated given the time pointtend:

φa =
(H −H0)φ0

η(⌢tstart) −H0

. (43)

Note that the interval [φa, φ0∗] corresponds to a concave part of the flux function fb.
With similar derivations as for the convex tail of fb and the convex h of the

Kynch test, one can obtain the parametric formulas for the concave part of fb:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
φ =
(H −H0)φ0

η(t) −H0

,

fb(φ) = −(H −H0)φ0

η(t) −H0

h′(t),
⌢tstart ≤ t ≤

⌢tend,
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where η(t) = h(t) − th′(t) as before. The explicit representation is

fb(φ) = −φh′ (η−1 (H0 +
(H −H0)φ0

φ
)) , φa ≤ φ ≤ φ0∗,

where φa is given by (43). By analogy with the analysis in Section 2.3, one can
conclude that h, fb ∈ C

2 are strictly concave functions and that η is increasing.
Furthermore, the analogous results of Lemma 2.1 and Theorem 2.1 hold, so that

⌢
h

and
⌢
fb have the same regularity.

Given M data points, a piecewise fitting of m functional forms can be done in
a similar way as in Section 3, however, with some adjustments. For the estimated
functions corresponding to the concave part of the flux, we use the accent ⌢ instead
of ⌣. Inequalities (24) and (25) are replaced by

⌢
h′i(t) < 0, tji

≤ t ≤ tji+1
, i = 1, . . . ,m, (44)

⌢
h′′i (t) < 0, tji

≤ t ≤ tji+1
, i = 1, . . . ,m, (45)

Since
⌢
h′ is now decreasing, all inequalities in (44) can be replaced by the single

inequality
⌢
h′1(t1) < 0. This replaces (26) for the Kynch test. Most of the other

inequality constraints are now reversed (in comparison with Section 3).
The explicit formulas for the estimated

⌢
fb can be obtained in the following ways.

Consider for simplicity a given subinterval of [0, φmax]:
( (H −H0)φ0

⌢η(tji+1
) −H0

,
(H −H0)φ0

⌢η(tji
) −H0

] . (46)

For the quadratic-fit method, we require that all ai < 0 (reversed in comparison to
the Kynch test). The inverse of ⌢η is the same as for ⌣η, but the explicit formula for
the subinterval (46) is slightly different:

⌢
fb(φ) = 2

√
aiφ((ci −H0)φ − (H −H0)φ0) − biφ, (47)

For the spline-fit method, we require that the coefficients have the opposite signs
as for the Kynch test, i.e., ai > 0 and bi < 0. Then ⌢η has the same two stationary
points as in the Kynch test but is now increasing in the interval between these;(0,−bi/(3ai)). Hence, when solving the equation

⌢ηi(t) = y for a fixed y ∈ (di, di −
b3i

27a2
i

) , (48)

we are again interested in the middle root of the three real ones. Note that di < y
(opposite to the Kynch test). The inversion of the cubic polynomial in the Appendix
can be repeated with the conclusion that p < 0 and ∣q∣ < −b3/(108a3), which are the
same as for the Kynch test. Hence, the same final formula is valid, i.e., set

y ∶=H0 +
(H −H0)φ0

φ
, (49)

and calculate

αi ∶= arccos(1 − 54a2
i (di − y)
b3i

) , τi ∶= −
bi

6ai

(2 cos(αi − 2π

3
) + 1) ,

⌢
fb(φ) ∶= −φ⌢h′i(τi).

(50)
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For the special-fit method, we require ai < 0 and bi ≤ 0. Then the unique positive
inverse of ⌢η is

⌢η−1i (y) = 1

ci − y
(−bi +√b2i + 3ai(y − ci)) .

(with ci > y) instead of (37) for the Kynch test. Inserting (49), one obtains

τi(φ) ∶= ⌢η−1i (H0 +
(H −H0)φ0

φ
)

=
−biφ +

√
φ2(b2i + 3ai(H0 − ci)) + φ3aiφ0(H −H0)

φ(H0 − ci) + φ0(H −H0) .

(51)

Finally, set
⌢
fb(φ) ∶= −φ⌢h′i(τi(φ)).

For the quadratic program (40), the inequality constraints are changed. All
coefficient inequalities are reversed and (44) holds. Furthermore, for the spline-fit
method, ai > 0 and bi < 0 imply that

⌢
h′′i (t) = 2(3ait + bi) is increasing. Hence, all

inequalities in (45) are satisfied if
⌢
h′′m(tM) < 0. This inequality replaces (31) for the

Kynch test. Therefore, the matrices

Iquad ∶= ( I1(q′(t1)T 01×4(m−1))) , b
quad ∶= −ε1(m+1)×1,

I
spline ∶=

⎛⎜⎜⎜⎝
−I1

I2(q′(t1)T 01×4(m−1))(01×4(m−1) q′′(tM)T)
⎞⎟⎟⎟⎠ , b

spline ∶= −ε(1(2m+1)×1

0
) ,

Ispec ∶=
⎛⎜⎝

I1

I2(q′(t1)T 01×4(m−1))
⎞⎟⎠ , b

spec ∶= −ε
⎛⎜⎝
1m×1

0m×1

1

⎞⎟⎠

(52)

are used in the optimization problem

minimize J(p) = (Qp − x)T(Qp −x)
subject to R

method
p = 0, I

method
p ≤ b

method,

where “method” is equal to one of the three methods. We finally note that a
corresponding well-posedness result to Theorem 4.1 also holds for the case of de-
termining

⌢
fb.

5.1. Estimation from synthetic data. By analogy with the examples in Sec-
tion 4.4 for the Kynch test, we here show estimations from synthetic data for the
Diehl test produced by simulations with the flux function (41). The (upper) ini-
tial concentration is slightly larger than the inflection point (φinfl = 2/11 ≈ 0.182);
φ0 = 0.25. The results of the simulation can be found in Figure 8.

From the contour plot 37 data points were selected on the computer screen.
Some results of the three methods are presented in Figures 9–11.

We note that the special-fit method is not able to produce an acceptable es-
timation in this example. Finally, we show in Figure 12 the values of J of the
minimization problem.
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Figure 8. Three-dimensional graph (left) and contours (right) of
the numerical solution of the Diehl test.

6. Obtaining the entire flux function

To obtain an entire estimated flux function, denoted by f̄b, the estimated convex
and concave parts have to be complemented in the following three intervals of φ:

Left: 0 ≤ φ ≤
(H −H0)φ0

⌢η(tM) −H0

=∶ φ1, (53)

Middle: φ2 ∶=
(H −H0)φ0

⌢η(t1) −H0

< φ <
Hφ0

⌣η(t1) =∶ φ3, (54)

Right: φ4 ∶=
Hφ0

⌣η(tM) ≤ φ ≤ φmax. (55)

6.1. The left interval. For the left interval [0, φ1], one may extend the leftmost
estimated function for the concave part

⌢
fb(φ) = −φ⌢h′m (⌢η−1m (H0 +

(H −H0)φ0

φ
)) , φ1 ≤ φ ≤

(H −H0)φ0

⌢η(tM−1) −H0

to the larger interval

0 ≤ φ ≤
(H −H0)φ0

⌢η(tM−1) −H0

.

It is essential that
⌢
fb(φ)↳ 0 as φ ↳ 0. This holds for the quadratic-fit method,

which follows from the explicit formula (47). For the special-fit method, (51) yields

lim
φ↳0

τm(φ) = lim
φ↳0

⌢η−1m (H0 +
(H −H0)φ0

φ
) = 0.

Hence

⌢
fb(0) = − lim

φ↳0
φ
⌢
h′m(τm(φ)) = 0.

For the spline-fit method, this cannot be done since φ ↳ 0 implies y → ∞ in
(49) and then αi in (50) is not defined. Instead, one can fit a quadratic polynomial
r01 to define f̄b all the way down to φ = 0. The unique such polynomial that
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Figure 9. Quadratic-fit method with 1 (two uppermost plots) and
5 intervals for the estimation of

⌢
h.

satisfies r01(0) = 0, r01(φ1) = ⌢fb(φ1) and r′01(φ1) = ⌢fb′(φ1) is given by the following
expression, where Φ is defined by (11):

r01(φ) = φ

φ2
1

(φ1
⌢
fb(φ1) −Φ(φ1)(φ − φ1)) . (56)

This means that f̄b ∈ C
1 at φ1. The numerical value of

⌢
fb
′(φ1) can, in theory,

be obtained easily by the corresponding formula of (8) for the Diehl test (see [21,
Eq. (27)]);

⌢
fb
′(φ1) = ⌢fb′(φh(tend)) = −(h(tend) −H0)/tend. Because of error in the

data, this is not recommended. Differentiation of the explicitly obtained expression
⌢
fb is of course possible, but a finite difference calculation (using

⌢
fb) is easiest.

6.2. The middle interval. Due to various types of error, one may have φ2 ≥ φ3

after the optimization problem is solved, so that (54) are false. To proceed, we
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Figure 10. Spline-fit method with 1 (two uppermost plots) and
5 intervals for the estimation of

⌢
h.

simply assume that the interval (φ2, φ3) has a positive length. In this interval, one
can fit a cubic polynomial

r23(φ) ∶= a23(φ − φ2)(φ − φ3)2 + b23(φ − φ2)(φ − φ3) + c23(φ − φ2) + d23 (57)

satisfying the four equations

r23(φ2) = ⌢fb(φ2), r′23(φ2) = ⌢fb′(φ2), r23(φ3) = ⌣fb(φ3), r′23(φ3) = ⌣fb′(φ3),
which have a unique solution when φ2 ≠ φ3.The coefficients are then given by

a23 =
2( ⌢fb(φ3) − ⌣fb(φ2)) + (φ2 − φ3)( ⌣fb′(φ2) + ⌢fb′(φ3))(φ2 − φ3)3 ,
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⌢
h.

b23 =
⌣
fb(φ2) − ⌢fb(φ3) + φ3

⌣
fb
′(φ2) − φ2

⌢
fb
′(φ3)(φ2 − φ3)2 ,

c23 =
⌣
fb(φ2) − ⌢fb(φ3)

φ2 − φ3

, d23 =
⌣
fb(φ2).

This means that f̄b ∈ C
1 at φ2 and φ3. Now, one should check whether fb has

precisely one inflection point φinfl ∈ [φ2, φ3] with r′′′23(φinfl) > 0. Generically, the
numerical values of the coefficients a23, . . . , d23 are nonzero; however, we may have
the following cases, where the last case is the preferred one:

● If a23 = 0 and b23 = 0, then r23 is linear and f̄ ′′b (φ) = 0 for φ ∈ (φ2, φ3).
● If a23 = 0 and b23 ≠ 0, then r23 is a quadratic function. If r′′23(φ2) =

4a23(φ2 − φ3) + 2b23 < 0, then φinfl = φ2, otherwise φinfl = φ3.
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● If a ≠ 0 and b ≠ 0, then compute the inflection point of r23:

φinfl,23 ∶=
φ2 + 2φ3

3
+
b23

3a23

;

note that r′′′23(φinfl,23) = 6a23.
– If (φinfl,23 ≤ φ2 and a23 < 0) or (φinfl,23 ≥ φ3 and a23 > 0), then φinfl = φ3.
– If (φinfl,23 ≥ φ3 and a23 < 0) or (φinfl,23 ≤ φ2 and a23 > 0), then φinfl = φ2.
– If φinfl,23 ∈ (φ2, φ3) and a23 < 0, then f̄b has three inflection points;
φ2, φinfl,23 and φ3. Then one may enlarge the interval [φ2, φ3] (i.e.,
redefine φ2 and φ3) so that r23 becomes a linear function.

– If φinfl,23 ∈ (φ2, φ3) and a23 > 0, then f̄b has a unique inflection point
at φinfl = φinfl,23.

6.3. The right interval. For the right interval [φ4, φmax], we note that φmax is not
known a priori and the (convex) flux function should be nonnegative. An estimation
of φmax can be obtained at the final steady state in either the Kynch or the Diehl
test. However, for the type of flux functions with f ′b(φmax) = 0, which holds for the
example flux (41), the steady state is not reach until t →∞. Furthermore, most of
the published experimental batch tests are finished before the steady state arises.

If one had an estimation or guess of φmax, of course a spline fit (e.g. similar to
the one for the middle interval in Section 6.2) could be made; however we choose
here the most simple alternative. A C1 function f̄b is obtained by extending

⌣
fb by

a straight line through the point (φ4,
⌣
fb(φ4)) with slope

⌣
fb
′(φ4):

r45(φ) ∶= ⌣fb(φ4) + ⌣fb′(φ4)(φ − φ4). (58)

Note that (8) yields
⌣
fb
′(φ4) = ⌣fb′(φh(tend)) = −h(tend)/tend < 0. Denote the inter-

section of this line with the φ-axis by

φ5 ∶= φ4 −
⌣
fb(φ4)
⌣
fb
′(φ4) .

This is an approximation of φmax.
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6.4. Estimation from synthetic data. As a demonstration with the synthetic
data from the two simulations above, one may decide, from inspection of Figures 6
and 12, to choose the following methods for the different intervals:

[0, φ1] ∶ quadratic polynomial (56),

[φ1, φ2] ∶ spline-fit method with one interval,

[φ2, φ3] ∶ cubic polynomial (57) or linear function,

[φ3, φ4] ∶ special-fit method with one interval,

[φ4, φ5] ∶ first-order polynomial (58).

The Diehl and Kynch tests yield the numerical interval [φ2, φ3] = [0.1361,0.2369],
which for the middle interval means that a23 = −24.15, b23 = 0.6330 and φinfl,23 =
0.1946; see Section 6.2. Since φ2 < φinfl,23 < φ3 and a23 < 0, a cubic polynomial fit
would yield three inflection points of the final f̄b. Therefore, we enlarge the interval[φ2, φ3] in both ends until we can fit a linear function so that f̄b ∈ C

1 at the end
points of this interval. After this procedure, we have the following values:

φ1 = 0.0578, φ2 = 0.1319, φ3 = 0.2527, φ4 = 0.5290 φ5 = 0.6061.

These correspond to the five dashed vertical lines in Figure 13, which shows the
graph of the following estimated flux function (for simplicity, numerical values are
given by three significant figures):

f̄b(φ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(5.52 − 55.0(φ − 0.0578)), 0 ≤ φ < 0.0578,

−φ(93.2τ12(φ)2 − 52.1τ12(φ) + 1.75) 0.0578 ≤ φ < 0.132,

0.512 − 1.44φ, 0.132 ≤ φ < 0.253,

φ(4.68 ⋅ 10−5

τ34(φ)3 + 0.0482

τ34(φ)2 + 0.00430) , 0.253 ≤ φ < 0.529,

0.0221− 0.365φ, 0.529 ≤ φ ≤ 0.606,

(59)

where

τ12(φ) = 0.838(2 cos(α12(φ) − 2π

3
) + 1) ,

α12(φ) = arccos(1 + 2.96(0.989− (0.8 + 0.0500

φ
))) ,

τ34(φ) = 0.0482φ+
√

0.00231φ2 + 1.76 ⋅ 10−5φ

0.250 − 0.269φ
.

Finally, we use the estimated flux function f̄b for numerical simulations of the
Kynch and Diehl test, respectively; see Figure 14.

7. Conclusions

Given data from a Kynch batch settling test, there are two ways to determine
an explicitly given flux function with respect to the representation formulas in Sec-
tion 2.3. In Section 3, we start from functional forms of the curved discontinuity,
denoted by

⌣
h, containing parameters to be determined and where the functional

form is such that the inverse of ⌣η(t) ∶= ⌣h(t) − t⌣h′(t) can be expressed as an explicit
function so that eventually (14) can be an explicit expression for a smooth and
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Figure 14. Contours of the numerical solution of a Kynch test
(left) and Diehl test (right) when using the estimated flux function
f̄b (59).

convex function
⌣
fb. An alternative treatment could consist in starting with func-

tional forms of the settling velocity function fb, or equivalently vs, (rather than
⌣
h), and using (16) to get an expression with parameters, and which is fitted to
data by a least-squares minimization. A version of the latter idea has been ap-
plied by Grassia et al. [36], who use a piecewise linear approach for the function
r(φ) = (1 − φ)2/vs(φ) = φ(1 − φ)2/fb(φ). The decisive difference in results consists
in the observation that their approach leads to an estimated portion of the flux
⌣
fb which is not convex; moreover, their identified portions of fb are only piecewise
differentiable and have slight but appreciable “kinks” at boundaries defined by the
subintervals of piecewise definition of r(φ).

The main feature of the method presented herein consists in the fact that the
approximations

⌣
h and

⌢
h of the data points (19) arising from the Kynch and Diehl

tests are provably convex and concave, respectively (cf. Theorem 4.1). This prop-
erty ensures that the flux fb identified can be directly used to determine exact
solutions of (2). Moreover, one should keep in mind that the function fb appears in
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models of continuous sedimentation, which are (roughly speaking) posed as conser-
vation laws with the flux f(φ, t) = q(t)φ − fb(φ), where q is a controllable positive
or negative bulk velocity (see [6, 8, 19, 24] for details). Note carefully that f(φ, t)
has the same second derivative (with respect to φ) as fb. For the implementation
of control strategies and numerical simulators, accurate knowledge of the location
of the extrema of f(φ, t) (as a function of φ) is very important. For instance, ac-
cording to a theorem in [22] related to transient solutions, the maximum of the
flux function is very important for the distinction whether overflow situations will
occur or not (cf. the “safe” and “dangerous” regions in that paper). Reliable and
efficient numerical methods for the numerical simulation of SSTs, for example those
based on the Engquist-Osher scheme [28] (see [6, 8]), are likewise based on a reliable
computation of these extrema.

Clearly, the present treatment has certain limitations. For example, while the
Kynch and Diehl tests provide convex and concave portions of fb, respectively,
one has to apply special care in gluing these portions together in such a way that
the global flux has one inflection point only. Section 6 discusses this problem and
presents an ad-hoc treatment of this problem. However, this problem is not inherent
to the flux identification technique. Furthermore, the method presupposes that the
suspension under study behaves indeed according the model (2), which means, for
example, that effects of sediment compressibility are absent. These effects are,
however, significant for suspensions that are flocculated, and which are described
by (1) only for concentrations φ ≤ φc, where φc is a material-dependent critical
concentration or gel point at which particles touch each other. Nevertheless, in
these cases the present treatment can still provide a valid starting point for flux
identification. The authors plan to apply the present technique to a number of
published and original experimental data.

Hyperbolic conservation laws of the form (1) have arisen in the macroscopic
modelling of vehicle traffic flow for more than a century [46]. Of course, more
sophisticated models have been developed; however, the need for model calibration
is always present; see e.g. [12, 13, 39, 49, 57] and references therein. For the
identification of the “fundamental diagram”, i.e. flux function fb of (1), we note
that the upper part of the solution of the Diehl test (see Figure 7, right) can be
interpreted as the event when vehicles in a queue of length H −H0 start to drive
as the red light at x =H0 turns into green at t = 0. Thus, the techniques presented
here may also be employed in applications other than sedimentation.

Appendix A. An inverse of the cubic polynomial (32)

The three roots of the cubic equation (32) can be found in the following way
according to Cardano’s method. Skipping the index i, the equation is

−2at3 − bt2 + d = y where a < 0, b > 0 and d > y. (60)

Setting s ∶= t + b
6a

one gets the equation

s3 + ps + q = 0, where p ∶= −
b2

12a2
< 0 and q ∶=

b3

108a3
+
y − d
2a

.

Introducing two new variables u and v via u + v = s and 3uv + p = 0, one gets

u3 + v3 + q = 0, u6 + qu3 −
p3

27
= 0, v6 + qv3 −

p3

27
= 0. (61)
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The second and third equations in (61) are second-order equations in u3 and v3,
respectively, both having the discriminant

D ∶=
q2

4
+
p3

27
.

We shall prove that D < 0. The possible interval for y in (32) yields (for all three
roots)

d −
b3

27a2
< y < d ⇐⇒

b3

108a3
<
y − d
2a
+

b3

108a3
< −

b3

108a3
⇐⇒ ∣q∣ < − b3

108a3
.

Hence

D <
1

4
( b3

108a3
)2 − 1

27
( b2

12a2
)3 = 0.

This means that the equations (61) are satisfied by

u3 = −
q

2
+ iR, v3 = −

q

2
− iR, (62)

where i =
√
−1 and R ∶=

√
−D > 0. Let α denote the argument of the complex num-

ber in the right-hand side of the first equation of (62). Note that ∣u3∣ = (−p/3)3/2.
Hence, we have 0 < α < π and

α = arccos(− q

2(−p/3)3/2) = arccos(1 − 54a2(d − y)
b3

) . (63)

Then the solutions (62) are

uk = ei(α+k2π)/3
√
−
p

3
, k = −1,0,1; vk = ei(−α+k2π)/3

√
−
p

3
, k = −1,0,1.

These should be paired so that 3uv + p = 0, i.e.,

u0v0 = −
p

3
, u−1v1 = −

p

3
, u1v−1 = −

p

3
.

Substituting back and noting that√
−
p

3
= −

b

6a
,

the three solutions of (60) are

t1 = s −
b

6a
= u0 + v0 −

b

6a
= −

b

6a
(2 cos(α

3
) − 1) ,

t2 = s −
b

6a
= u−1 + v1 −

b

6a
= −

b

6a
(2 cos(α

3
−

2π

3
) + 1) ,

t3 = s −
b

6a
= u1 + v−1 −

b

6a
= −

b

6a
(2 cos(α

3
+

2π

3
) + 1) .

If q < 0, (63) gives that cosα > 0 and 0 < α < π/2. Then one can conclude that t2
is the middle root. Analogously, the case q ≥ 0 yields that t2 is the middle root.
Substituting back we get the solution in the original parameters, and hence the
inverse (33).
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[14] A. Coronel, F. James, and M. Sepúlveda. Numerical identification of parameters for a model
of sedimentation processes. Inverse Problems, 19(4):951–972, 2003.

[15] J.W. Daniel. Stability of the solution of definite quadratic programs. Mathematical Program-

ming, 5:41–53, 1973.
[16] P.J.T. Dankers and J.C. Winterwerp. Hindered settling of mud flocs: theory and validation.

Cont. Shelf Res., 27:1893–1907, 2007.
[17] G.B. Dantzig, J. Folkman, and N. Shapiro. On the continuity of the minimum set of a

continuous function. J. Math. Anal. Appl., 17(3):519–548, 1967.
[18] J. De Clercq, M. Devisscher, I. Boonen, J. Defrancq, and P.A. Vanrolleghem. Analysis and

simulation of the sludge profile dynamics in a full-scale clarifier. J. Chem. Technol. Biotech-

nol., 80:523–530, 2005.



33

[19] S. Diehl. A conservation law with point source and discontinuous flux function modelling
continuous sedimentation. SIAM J. Appl. Math., 56(2):388–419, 1996.

[20] S. Diehl. Dynamic and steady-state behaviour of continuous sedimentation. SIAM J. Appl.

Math., 57(4):991–1018, 1997.
[21] S. Diehl. Estimation of the batch-settling flux function for an ideal suspension from only two

experiments. Chem. Eng. Sci., 62:4589–4601, 2007.
[22] S. Diehl. Operating charts for continuous sedimentation IV: limitations for control of dynamic

behaviour, J. Eng. Math., 60:249–264, 2008.
[23] S. Diehl. A regulator for continuous sedimentation in ideal clarifier-thickener units. J. Eng.

Math., 60:265–291, 2008.
[24] S. Diehl. The solids-flux theory—confirmation and extension by using partial differential

equations. Water Res., 42:4976–4988, 2008.
[25] S. Diehl. Shock-wave behaviour of sedimentation in wastewater treatment: A rich problem. In
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