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LOCKING-FREE FINITE ELEMENT METHOD FOR A BENDING

MOMENT FORMULATION OF TIMOSHENKO BEAMS

FELIPE LEPE, DAVID MORA, AND RODOLFO RODRÍGUEZ

Abstract. In this paper we study a finite element formulation for Timo-
shenko beams. It is known that standard finite elements applied to this model
lead to wrong results when the thickness of the beam t is small. Here, we
consider a mixed formulation in terms of the transverse displacement, rota-
tion, shear stress and bending moment. By using the classical Babuška-Brezzi
theory it is proved that the resulting variational formulation is well posed. We
discretize it by continuous piecewise linear finite elements for the shear stress
and bending moment, and discontinuous piecewise constant finite elements for
the displacement and rotation. We prove an optimal (linear) order of conver-
gence in terms of the mesh size h for the natural norms and a double order
(quadratic) in L2-norms for the shear stress and bending moment, all with con-
stants independent of the beam thickness. Moreover, these constants depend
on norms of the solution that can be a priori bounded independently of the
beam thickness, which leads to the conclusion that the method is locking-free.
Numerical tests are reported in order to support our theoretical results.

1. Introduction

Beams used in practice, like in buildings and bridges as well as in aircrafts,
cars, ships, etc., commonly present continuous and discontinuous variations of the
geometry and the physical parameters. They may also have appreciable thickness
where the shear stress is not negligible. As a result, the thick beam model based
on the Timoshenko theory have gained more popularity (see for instance [2, 9, 10,
14, 19]).

In this paper, we study the numerical approximation of the bending of a non-
homogeneous beam modeled by Timoshenko equations. Despite its simplicity, the
numerical approximation of this problem often presents some difficulties. Indeed, it
is very well known that standard finite element methods applied to models of thin
structures, like beams, rods and plates, are subject to the so-called locking phenom-
enon. This means that they produce very unsatisfactory results when the thickness
is small with respect to the other dimensions of the structure (see [8]). Indeed, sev-
eral methods for this model have been rigorously shows to be free from locking and
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optimally convergent by resorting to a mixed formulations, discontinuous Galerkin
methods, considering p and h− p versions of the finite element method or based on
reduced integration; let us mention, for instance [1, 5, 6, 7, 11, 12, 13, 15].

The purpose of this paper is to propose a mixed finite element method for a
bending moment formulation of non-homogeneous Timoshenko beams and to pro-
vide an a priori error analysis. This approach follows the strategy used in [3]
for Reissner-Mindlin plates, where a finite element method was introduced for the
approximation of the bending of a clamped plate. However, the one-dimensional
character of the problem allows us to give simpler proofs valid in a more general
context. In particular, the results of this paper are valid for non-homogeneous
beams, whose physical and geometrical properties may be discontinuous, and the
error estimates are fully independent of the beam thickness. To cover such cases,
a key point in our analysis is an improved regularity result, which we are able to
prove exploiting, once more, the one-dimensional character of the problem.

In the present paper we consider a bending moment formulation for the Timo-
shenko beam problem. We introduce the bending moment together with the shear
stress as new unknowns in the model (we note that the bending moment usually
represents a quantity of major interest in engineering applications), which together
with the rotation and the transverse displacement lead us to a mixed variational
formulation. Using the Babuška-Brezzi theory, we show that the proposed varia-
tional formulation is well posed and stable in the natural norms of the considered
Sobolev spaces . For the numerical approximation, piecewise linear and continuous
finite elements are used for the bending moment and the shear stress and piece-
wise constants for the transverse displacement and rotation. We prove a uniform
inf-sup condition with respect to the discretization parameter h and the thickness
t. We note that one advantage of this formulation is that, the bending moment
and the shear stress are computed directly instead of by a post-process which may
produces loss of accuracy. The method is proved to have an optimal (linear) order
of convergence in terms of the mesh size h for the natural norms and a double
order (quadratic) in L2-norms for the shear stress and bending moment. Moreover,
the obtained estimates only depend on norms of quantities which are known to be
bounded independently of t. Therefore, the method turns out to be thoroughly
locking-free.

The outline of this paper is as follows: In Section 2, we recall the differential
equations governing the problem, and state a mixed variational formulation. Then,
we prove the unique solvability and stability properties of the proposed formulation
and some regularity results. In Section 3, we present the finite element discretiza-
tion of our variational formulation, for which we prove a discrete inf-sup condition
uniformly with respect to the beam thickness t and the mesh parameter h. Then,
we establish the linear convergence of the method for the natural norms and a qua-
dratic order in L2-norm for the shear stress and bending moment. In Section 4,
we report some numerical tests which confirm the theoretical error estimates and
allow us to assess the performance of the proposed method. Finally, we summarize
some conclusions in Section 5.

We will use standard notations for Sobolev spaces, norms and seminorms. For l ≥
0, ‖·‖l,I stands the norm of the Hilbertian Sobolev space H l(I), with the convention
H0(I) := L2(I). Moreover, we will denote with c and C, with or without subscripts,
tildes or hats, a generic positive constant, possibly different at different occurrences,
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independent of the beam thickness t and the mesh parameter h introduced in the
next section.

2. Timoshenko beam model.

Let us consider an elastic beam which satisfies the Timoshenko hypotheses for
the admissible displacements. We assume that the geometry and the physical pa-
rameters of the beam may change along the axial direction. The deformation of
the beam is described in terms of the transverse displacement w and the rotation
of the transversal fibers β. Let x be the coordinate in the axial direction.

The equations for the bending of a clamped Timoshenko beam subjected to a
distributed load p(x) reads as follows (see [16, 17, 18]):

Find (β(x), w(x)) ∈ H1
0 (I)×H1

0 (I) such that

∫

I

E(x)I(x)β′(x)η′(x) dx +

∫

I

G(x)A(x)kc(x)(β(x) − w′(x))(η(x) − v′(x)) dx

=

∫

I

p(x)v(x) dx

(2.1)

for all (η(x), v(x)) ∈ H1
0 (I) × H1

0 (I), where I := (0, L), L being the length of the
beam, E(x) is the Young modulus, I(x) the moment of inertia of the cross-section,
A(x) the area of the cross-section, G(x) := E(x)/(2(1 + ν(x))) the shear modulus,
with ν(x) the Poisson ratio, and kc(x) a correction factor. We consider that E(x),
I(x), A(x) and ν(x) are piecewice smooth in I, the most usual case being when all
those coefficients are piecewise constant. Moreover, primes denote derivatives with
respect to the x-coordinate.

It is well known that standard finite element procedures, when used in formu-
lations such as (2.1) for very thin structures are subject to numerical locking, a
phenomenon induced by the difference of magnitude between the coefficients in
front of the different terms (see [1]). The appropriate framework for analysing this
difficulty is obtained by rescaling formulation (2.1) so as to identify a family of
problems with a well-posed limit as the thickness becomes infinitely small. With
this aim, we introduce the following nondimensional parameter, characteristic of
the thickness of the beam,

(2.2) t2 :=
1

L

∫

I

I(x)

A(x)L2
dx,

which we assume may take values in the range (0, tmax].
We define

f(x) :=
p(x)

t3
, Î(x) :=

I(x)

t3
, Â(x) :=

A(x)

t
,

E(x) := E(x)̂I(x) and κ(x) := G(x)Â(x)kc(x).

Then, problem (2.1) can be equivalently written as follows:
Find (β,w) ∈ H1

0 (I)×H1
0 (I) such that

(2.3)∫

I

E(x)β′(x)η′(x) dx +
1

t2

∫

I

κ(x)(β(x) − w′(x))(η(x) − v′(x)) dx =

∫

I

f(x)v(x) dx

for all (η(x), v(x)) ∈ H1
0 (I)×H1

0 (I).
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Now, we assume that there exist constants E,E, κ, κ ∈ R
+ such that

E ≥ E(x) ≥ E > 0 ∀x ∈ I,

κ ≥ κ(x) ≥ κ > 0 ∀x ∈ I.
(2.4)

In such a case, for each t > 0, the bilinear form on the left hand side of (2.3) is
elliptic and hence this problem has a unique solution.

The aim of this paper is to consider a bending moment formulation of this
problem. With this end, by introducing the bending moment σ(x) := E(x)β′(x)
and the shear stress γ(x) := t−2κ(x)(β(x)−w′(x)) as new unknowns in the model,
problem (2.3) can be equivalently rewritten as follows (see [5]):

(2.5)






σ(x) = E(x)β′(x) in I,
−σ′(x) + γ(x) = 0 in I,
γ′(x) = f(x) in I,
γ(x) = t−2κ(x)(β(x) − w′(x)) in I,
w(0) = β(0) = w(L) = β(L) = 0.

Finally, testing the equations (2.5) with adequate functions and integrating by
parts, we obtain the following variational formulation, where from now on we omit
the dependence on the axial variable x:

Find ((σ, γ), (β,w)) ∈ V ×Q such that
∫

I

στ

E
+ t2

∫

I

γξ

κ
+

∫

I

β(τ ′ − ξ)−
∫

I

wξ′ = 0 ∀(τ, ξ) ∈ V,

∫

I

η(σ′ − γ)−
∫

I

vγ′ = −
∫

I

fv ∀(η, v) ∈ Q,

(2.6)

where

V := H1(I) ×H1(I),

and

Q := L2(I)× L2(I),

each one endowed with the corresponding product norm.
Finally, we endow V ×Q with the corresponding product norm.
We rewrite the variational problem (2.6) as follows:
Find ((σ, γ), (β,w)) ∈ V ×Q such that

a((σ, γ), (τ, ξ)) + b((τ, ξ), (β,w)) = 0 ∀(τ, ξ) ∈ V,(2.7)

b((σ, γ), (η, v)) = F (η, v) ∀(η, v) ∈ Q,(2.8)

where the bilinear forms a : V ×V → R and b : V ×Q→ R and the linear functional
F : Q→ R are defined by

a((σ, γ), (τ, ξ)) :=

∫

I

στ

E
+ t2

∫

I

γξ

κ
,(2.9)

b((τ, ξ), (η, v)) :=

∫

I

η(τ ′ − ξ)−
∫

I

vξ′,(2.10)

and

F (η, v) := −
∫

I

fv,

for all (σ, γ), (τ, ξ) ∈ V and (η, v) ∈ Q.
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Next, we will prove that problem (2.7)–(2.8) satisfies the hypotheses of the
Babuška-Brezzi theory, which yields the unique solvability and continuous depen-
dence on the data of this variational formulation.

We first observe that the bilinear forms a and b and the linear functional F are
bounded with constants independent of the beam thickness t.

Let
K := {(τ, ξ) ∈ V : b((τ, ξ), (η, v)) = 0 ∀(η, v) ∈ Q}

be the so-called continuous kernel; hence (cf. (2.10))

K = {(τ, ξ) ∈ V : (τ ′ − ξ) = 0, and ξ′ = 0 in I} = {(τ, τ ′) : τ ∈ P1(I)} .
The following lemma shows that the bilinear form a is V -elliptic in K uniformly in
t.

Lemma 2.1. There exists α > 0, independent of t, such that

a((τ, ξ), (τ, ξ)) ≥ α‖(τ, ξ)‖2V ∀(τ, ξ) ∈ K.

Proof. Given (τ, ξ) ∈ K, from (2.9) and (2.4) we obtain

a((τ, ξ), (τ, ξ)) ≥ 1

Ē
‖τ‖20,I +

t2

κ̄
‖ξ‖20,I ≥

1

Ē
‖τ‖20,I ≥ C‖τ‖21,I,

where the last inequality because of the equivalence between ‖·‖0,I and ‖·‖1,I, with
a constant independent of t in K ∼= P1(I). Thus, the result follows from the fact
that

‖(τ, ξ)‖2V = ‖τ‖21,I + ‖τ ′‖20,I ∀(τ, ξ) ∈ K.

Therefore, we end the proof. �

Now, we are in a position to prove an inf-sup condition for the bilinear form b
uniformly in t.

Lemma 2.2. There exists C > 0, independent of t, such that

sup
(τ,ξ)∈V
(τ,ξ) 6=0

b((τ, ξ), (η, v))

‖(τ, ξ)‖V
≥ C‖(η, v)‖Q ∀(η, v) ∈ Q.

Proof. Let (η, v) ∈ Q. Let τ̃ (r) :=
∫ r

0 η(s)ds, 0 ≤ r ≤ L. We have that τ̃ ′ = η ∈
L2(I). Hence τ̃ ∈ H1(I), and

‖τ̃‖1,I ≤
(
L2 + 2

2

)1/2

‖η‖0,I.

Therefore,

sup
(τ,ξ)∈V
(τ,ξ) 6=0

b((τ, ξ), (η, v))

‖(τ, ξ)‖V
≥ b((τ̃ , 0), (η, v))

‖τ̃‖1,I
(2.11)

=
‖η‖20,I
‖τ̃‖1,I

≥
(

2

L2 + 2

)1/2

‖η‖0,I.

Finally, let ξ̃(r) := −
∫ r

0 v(s)ds, 0 ≤ r ≤ L. The same arguments as above allow
us to prove that

‖ξ̃‖1,I ≤
(
L2 + 2

2

)1/2

‖v‖0,I.
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Hence, it follows that

sup
(τ,ξ)∈V
(τ,ξ) 6=0

b((τ, ξ), (η, v))

‖(τ, ξ)‖V
≥ b((0, ξ̃), (η, v))

‖ξ̃‖1,I

=
‖v‖20,I −

∫
I
ηξ̃

‖ξ̃‖1,I
≥
(

2

L2 + 2

)1/2

‖v‖0,I − ‖η‖0,I.

From this inequality and (2.11), it is immediate to show that

sup
(τ,ξ)∈V
(τ,ξ) 6=0

b((τ, ξ), (η, v))

‖(τ, ξ)‖V
≥ 2√

L2 + 2(
√
L2 + 2 +

√
2)

‖v‖0,I.

Thus, the proof follows from this estimate, and (2.11). �

We are now in a position to state the main result of this section which yields the
solvability of the continuous problem (2.7)–(2.8).

Theorem 2.1. There exists a unique solution ((σ, γ), (β,w)) ∈ V × Q to prob-
lem (2.7)–(2.8) and the following continuous dependence result holds:

‖((σ, γ), (β,w))‖V ×Q ≤ C‖f‖0,I,

where C is independent of t.

Proof. By virtue of Lemmas 2.1 and 2.2, the proof follows from a straightforward
application of [4, Theorem II.1.1]. �

The following result establish an additional regularity result for the solution of
problem (2.7)–(2.8). This result will be the key point to prove the convergence of
the propose method.

Proposition 2.1. Suppose that f ∈ H l(I), l = 0, 1. Let ((σ, γ), (β,w)) ∈ V ×Q be
the solution to problem (2.7)–(2.8). Then, there exists a constant C, independent
of t and f , such that

‖w‖1,I + ‖β‖1,I + ‖γ‖l+1,I + ‖σ‖l+2,I ≤ C‖f‖l,I.

Proof. Because of the equivalence between problems (2.6) and (2.3), we will consider
the latter to prove the result.

Consider the following decomposition for the scaled shear stress:

(2.12) γ = ψ′ + k,

with ψ ∈ H1
0 (I) and k := ( 1

L

∫
I γ) ∈ R. We have that problem (2.3) and the

following are equivalent:
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Given f ∈ H l(I), l = 0, 1, find (ψ, β, k, w) ∈ H1
0 (I) × H1

0 (I) × R × H1
0 (I) such

that

(2.13)





∫

I

ψ′v′ = −
∫

I

fv ∀v ∈ H1
0 (I),

∫

I

Eβ′η′ +

∫

I

kη = −
∫

I

ψ′η ∀η ∈ H1
0 (I),

∫

I

βq − t2
∫

I

kq

κ
= −t2

∫

I

ψ′q

κ
∀q ∈ R,

∫

I

w′δ′ =

∫

I

βδ′ + t2
∫

I

ψ′δ′

κ
∀δ ∈ H1

0 (I).

For this problem, we have that for any t ∈ (0, tmax] and f ∈ H l(I), l = 0, 1,
there exists a unique solution (ψ, β, k, w) ∈ H1

0 (I)×H1
0 (I)× R×H1

0 (I). Moreover,
there exists a constant C independent of t and f , such that

‖ψ‖l+2,I + ‖β‖1,I + |k|+ ‖w‖1,I ≤ C‖f‖l,I.

In fact, given f ∈ H l(I), l = 0, 1, from problem (2.13)1 and the Lax-Milgram’s
Theorem, we have that there exists a unique ψ ∈ H1

0 (I) ∩ H l+2(I), solution and
‖ψ‖l+2,I ≤ C‖f‖l,I, l = 0, 1. Now, for all t ∈ (0, tmax] we can apply Theorem 5.1
of [1] to obtain that there exists a unique solution (β, k) ∈ H1

0 (I) × R of problem
(2.13)2−3, moreover,

‖β‖1,I + |k| ≤ C‖ψ‖1,I ≤ C‖f‖0,I,
where the constant C is independent of t.

Finally, we obtain from the Lax-Milgram’s lemma, that there exists a unique
solution w ∈ H1

0 (I) of problem (2.13)4, and taking ξ = w, we obtain

‖w‖1,I ≤ C(‖β‖0,I + ‖ψ′‖0,I) ≤ C‖f‖0,I.
Consequently, by virtue of (2.12), (2.4), the first and the second equation of

(2.5) and the equivalence between problems (2.3) and (2.13), we have that there
exists C independent of t and f such that for l = 0, 1

‖β‖1,I + ‖w‖1,I + ‖γ‖l+1,I + ‖σ‖l+2,I ≤ C‖f‖l,I.
The proof is complete. �

Remark 2.1. It is possible to refine the proposition above by considering piecewise
smooth loads. Suppose that there exists a partition 0 = s0 < · · · < sn = L, of
the interval I. If we denote Si := (si−1, si), i = 1, . . . , n, then, we assume that
f ∈ H1(Si). Then, repeating the arguments used in the proof, we have the following
result for the solution of problem (2.7)–(2.8): There exist a constant C, independent
of t and f , such that

‖w‖1,I + ‖β‖1,I + ‖γ‖1,I +
(

n∑

i=1

‖γ′′‖20,Si

)1/2

+ ‖σ‖2,I +
(

n∑

i=1

‖σ′′′‖20,Si

)1/2

≤ C

(
‖f‖20,I +

n∑

i=1

‖f ′‖20,Si

)1/2

.
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3. The mixed finite element scheme

In this section, we present our discrete methods for the Timoshenko beam prob-
lem. With this aim, first we consider a family of partitions of I

Th := 0 = x0 < · · · < xN = L.

We denote Ij = (xj−1, xj), with length hj = xj − xj−1, j = 1, . . . , N , and the
maximun subinterval length is denoted h := max1≤j≤N hj .

To approximate the shear stress and the bending moment, we consider the space
of piecewise linear continuous finite elements:

Wh := {ξh ∈ H1(I) : ξh|Ij ∈ P1(Ij), j = 1, . . . , N}.
Let L(ξ) ∈Wh be the Lagrange interpolant of ξ ∈ H1(I), we recall that

‖ξ − L(ξ)‖1,I ≤ Ch|ξ|2,I ∀ξ ∈ H2(I),(3.1)

‖ξ − L(ξ)‖0,I ≤ Ch2|ξ|2,I ∀ξ ∈ H2(I).(3.2)

To approximate the transverse displacement and the rotation, we will use the
space of piecewise constant functions:

Zh := {vh ∈ L2(I) : vh|Ij ∈ P0(Ij), j = 1, . . . , N}.
We also consider the L2-proyector onto Zh:

P : L2(I) → Zh,

v 7→ P(v) := v̄ ∈ Zh :

∫

I

(v − v̄)qh = 0 ∀qh ∈ Zh.

Then, we have

(3.3) ‖v − P(v)‖0,I ≤ Ch|v|1,I ∀v ∈ H1(I).

Defining Vh :=Wh×Wh and Qh := Zh×Zh, the discretization of problem (2.7)-
(2.8) reads as follows:

Find ((σh, γh), (βh, wh)) ∈ Vh ×Qh such that

a((σh, γh), (τh, ξh)) + b((τh, ξh), (βh, wh)) = 0 ∀(τh, ξh) ∈ Vh,(3.4)

b((σh, γh), (ηh, vh)) = F (ηh, vh) ∀(ηh, vh) ∈ Qh.(3.5)

Our next goal is to show the corresponding discrete versions of Lemmas 2.1 and
2.2 to conclude the solvability and stability of problem (3.4)-(3.5). With this aim,
we note that the discrete null space of the bilinear form b reduces to:

Kh := {(τh, ξh) ∈ Vh : b((τh, ξh), (ηh, vh)) = 0 ∀(ηh, vh) ∈ Qh} .

Let (τh, ξh) ∈ Kh, taking (0, vh) ∈ Qh and using that ξ′h|Ij is a constant, since
vh|Ij is also a constant, we conclude that ξ′h = 0 in I.

Now, taking (ηh, 0) ∈ Qh, since τ
′
h|Ij is a constant and ξh|Ij is also a constant,

we conclude that (τ ′h − ξh) = 0 in Ij and hence τ ′h = ξh in I. Thus, we obtain

Kh = {(τh, ξh) ∈ Vh : (τ ′h − ξh) = 0 and ξ′h = 0 in I} = {(τh, τ ′h) : τh ∈ P1(I)} .

Hence, we have that Kh coincides with K, thus, we have

Lemma 3.1. There exists α > 0 independent of h and t such that

a((τh, ξh), (τh, ξh)) ≥ α‖(τh, ξh)‖2V ∀(τh, ξh) ∈ Kh.
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We continue with the following lemma establishing the discrete analogue to
Lemma 2.2.

Lemma 3.2. There exists C > 0, independent of h and t, such that

sup
(τh,ξh)∈Vh

(τh,ξh) 6=0

b((τh, ξh), (ηh, vh))

‖(τh, ξh)‖V
≥ C‖(ηh, vh)‖Q ∀(ηh, vh) ∈ Qh.

Proof. Let (ηh, vh) ∈ Qh. The arguments used in the proof of Lemma 2.2 can
be applied. In fact, τ̃ (r) :=

∫ r

0 ηh(s)ds lies in Wh, and the same happens with

ξ̃(r) :=
∫ r

0 vh(s)ds. �

We are now in a position to establish the unique solvability, the stability, and
the convergence properties of the discrete problem (3.4)-(3.5).

Theorem 3.1. There exists a unique ((σh, γh), (βh, wh)) ∈ Vh×Qh solution of the

discrete problem (3.4)-(3.5). Moreover, there exist C̃, C > 0, independent of h and
t, such that

‖((σh, γh), (βh, wh))‖V×Q ≤ C̃‖f‖0,I,
and

‖((σ, γ), (β,w)) − ((σh, γh), (βh,wh))‖V×Q

≤ C inf
((τh,ξh),(ηh,vh))∈Vh×Qh

‖((σ, γ), (β,w)) − ((τh, ξh), (ηh, vh))‖V×Q,
(3.6)

where ((σ, γ), (β,w)) ∈ V × Q is the unique solution of the mixed variational for-
mulation (2.7)-(2.8).

Proof. Existence and uniqueness of problem (3.4)-(3.5) and the error bound (3.6)
follow from the abstract theory for the saddle point problem [4, Theorem II.2.1]
and Lemmas 3.1 and 3.2. �

The following theorem provides the rate of convergence of our mixed finite ele-
ment scheme (3.4)-(3.5).

Theorem 3.2. Let ((σ, γ), (β,w)) ∈ V ×Q and ((σh, γh), (βh, wh)) ∈ Vh×Qh be the
unique solutions of the continuous and discrete problems (2.7)-(2.8) and (3.4)-(3.5),
respectively. If f ∈ H1(I), then,

‖((σ, γ), (β,w)) − ((σh, γh), (βh, wh))‖V ×Q ≤ Ch‖f‖1,I,

where the constant C > 0 is independent of h and t.

Proof. From Theorem 3.1 we have

‖((σ, γ), (β,w))−((σh, γh), (βh, wh))‖V×Q

≤ C‖((σ, γ), (β,w)) − ((L(σ),L(γ)), (P(β),P(w)))‖V ×Q.
(3.7)

Then, the proof follows from the term above, and using error estimates for P
(see (3.3)) and L (see (3.1)-(3.2)), and Proposition 2.1. �

The theorem above, implies that ‖σ − σh‖0,I + ‖γ − γh‖0,I = O(h), but it is
possible to refine this estimate as show the following result.

Theorem 3.3. Under the assumptions of Theorem 3.2

‖(σ − σh, γ − γh)‖Q :=
(
‖σ − σh‖20,I + ‖γ − γh‖20,I

)1/2 ≤ Ch2‖f‖1,I,
where C > 0 is independent of h and t.
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Proof. We resort to a duality arguments. First, we consider the following well posed

problem: Given g = (g1, g2) ∈ L2(I)
2
, find ((φ, ρ), (χ, u)) ∈ V ×Q such that

a((τ, ξ), (φ, ρ)) + b((τ, ξ), (χ, u)) = (g, (τ, ξ))0,I ∀(τ, ξ) ∈ V,(3.8)

b((φ, ρ), (η, v)) = 0 ∀(η, v) ∈ Q.(3.9)

The unique solution of the problem above satisfies the following additional reg-
ularity result: There exists a constant C > 0, independent of t and g such that

(3.10) ‖u‖1,I + ‖χ‖1,I + ‖ρ‖2,I + ‖φ‖2,I ≤ C‖g‖0,I.

In fact, considering a decomposition similar to (2.12) for the variable ρ (namely,
writing ρ = λ′ + r, with λ ∈ H1

0 (I) and r := ( 1
L

∫
I ρ) ∈ R), we have that prob-

lem (3.8)–(3.9) and the following are equivalent: Given g = (g1, g2) ∈ L2(I)2, find
(λ, χ, r, u) ∈ H1

0 (I)×H1
0 (I)× R×H1

0 (I) such that

(3.11)






∫

I

λ′v′ = 0 ∀v ∈ H1
0 (I),

∫

I

Eχ′η′ +

∫

I

rη = −
∫

I

Eg1η
′ −
∫

I

λ′η ∀η ∈ H1
0 (I),

∫

I

χq − t2
∫

I

rq

κ
= −

∫

I

g2q − t2
∫

I

λ′q

κ
∀q ∈ R,

∫

I

u′δ′ =

∫

I

χδ′ +

∫

I

g2δ
′ + t2

∫

I

λ′δ′

κ
∀δ ∈ H1

0 (I).

From the first of these equation we have that λ = 0. Then, reapeating the arguments
used to prove Proposition 2.1, we conclude the additional regularity (3.10).

On the other hand, by choosing (τ, ξ) = (σ − σh, γ − γh) in problem (3.8)–(3.9),
we obtain

(3.12) (g, (σ−σh, γ−γh))0,I = a((σ−σh, γ−γh), (φ, ρ))+b((σ−σh, γ−γh), (χ, u)).

Substracting (2.7) and (3.4) and using (3.9), we have

a((σ − σh, γ − γh), (φh, ρh)) = −b((φh, ρh), (β − βh, w − wh))

= b((φ − φh, ρ− ρh), (β − βh, w − wh)) ∀(φh, ρh) ∈ Vh.

Moreover, from (2.8) and (3.5), we also have

b((σ − σh, γ − γh), (χh, uh)) = 0 ∀(χh, uh) ∈ Qh.

Substituting the last two terms into (3.12) we obtain:

(g, (σ − σh, γ − γh))0,I = a((σ − σh, γ − γh), (φ− φh, ρ− ρh))

+ b((σ − σh, γ − γh), (χ− χh, u− uh)) + b((φ− φh, ρ− ρh), (β − βh, w − wh))

for all (φh, ρh) ∈ Vh, and for all (χh, uh) ∈ Qh. Hence,

|(g, (σ − σh, γ − γh))0,I| ≤ C(‖(σ − σh, γ − γh)‖V ‖(φ− φh, ρ− ρh)‖V
+ ‖(σ − σh, γ − γh)‖V ‖(χ− χh, u− uh)‖Q
+ ‖(φ− φh, ρ− ρh)‖V ‖(β − βh, w − wh)‖Q)

≤ Ch‖f‖1,I(‖(φ− φh, ρ− ρh)‖V + ‖(χ− χh, u− uh)‖Q)
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for all (φh, ρh) ∈ Vh and (χh, uh) ∈ Qh, where in the last inequality we have
utilized Theorem 3.2. Taking in particular (φh, ρh) := (L(φ),L(ρ)) and (χh, uh) :=
(P(χ),P(u)) in the above estimate we obtain:

|(g, (σ − σh, γ − γh))0,I| ≤Ch‖f‖1,I(‖(φ− L(φ), ρ − L(ρ))‖V + ‖(χ− P(χ), u− P(u))‖Q)
≤Ch2‖f‖1,I(‖φ‖2,I + ‖ρ‖2,I + ‖χ‖1,I + ‖u‖1,I)
≤Ch2‖f‖1,I‖g‖0,I,

where in the last inequality, first we consider the error estimates for P (see (3.3))
and L (see (3.1)-(3.2)), and then additional regularity result (3.10).

Finally, from the estimate above and the definition by duality of ‖ · ‖Q we have
that:

‖(σ − σh, γ − γh)‖Q = sup
g∈L2(I)

2

g 6=0

(g, (σ − σh, γ − γh))0,I
‖g‖0,I

≤ Ch2‖f‖1,I,

where the constant C is independent of h and t.
The proof is complete. �

Remark 3.1. It is possible to refine Theorems 3.2 and 3.3, considering piecewise
smooth loads. Considering a family of partitions of I

T̃h := 0 = x0 < · · · < xN = L,

which are refinements of the initial partition 0 = s0 < · · · < sn = L (see Re-
mark 2.1). We denote Ij = (xj−1, xj), j = 1, . . . , N , and note that for any mesh

T̃h, each Ij is contained in some subinterval Si, i = 1, . . . , n. Hence, if f ∈ H1(Si),
then,

‖((σ, γ), (β,w)) − ((σh, γh), (βh, wh))‖V×Q ≤ Ch

(
‖f‖20,I +

n∑

i=1

‖f ′‖20,Si

)1/2

,

and

‖(σ − σh, γ − γh)‖Q ≤ Ĉh2

(
‖f‖20,I +

n∑

i=1

‖f ′‖20,Si

)1/2

,

where the constants C, Ĉ > 0 are independent of h and t. In fact, the first estimate
follows from inequality (3.7), the local character of the Lagrange interpolant of γ
and the additional regularity result given in Remark 2.1. In its turn, the second one
follows from the first one and Theorem 3.3.

4. Numerical results.

We report in this section some numerical experiments which confirm the theoret-
ical results proved above. The numerical method analyzed has been implemented
in a MATLAB code.

In what follows, N denotes the number of degrees of freedom, namely, N :=
dim(Vh ×Qh). Moreover, we define the individual errors by:

e0(σ) := ‖σ − σh‖0,I, e1(σ) := ‖σ′ − σ′
h‖0,I, e0(γ) := ‖γ − γh‖0,I,

e1(γ) := ‖γ′ − γ′h‖0,I, e0(β) := ‖β − βh‖0,I, e0(w) := ‖w − wh‖0,I,
where ((σ, γ), (β,w)) ∈ V ×Q and ((σh, γh), (βh, wh)) ∈ Vh ×Qh are the solutions
of problems (2.7)-(2.8) and (3.4)-(3.5), respectively.
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We define the experimental rates of convergence (rci) for the errors ei(·) by

rci(·) :=
log(ei(·)/e′i(·))

log(h/h′)
i = 0, 1,

where h and h′ denote two consecutive meshsizes and e and e′, denote the corre-
sponding errors.

4.1. Test 1. As a first test, we take I := (0, 1) and solve the equations (2.5) with
f(x) = ex, E(x) = ex, and κ(x) = e−x. Thus, we obtain the following exact
solution:

γ(x) = ex + c1,

σ(x) = ex + c1x+ c2,

β(x) = x− c1((x+ 1)ex − 1)− c2(e
−x − 1),

w(x) =
x2

2
+ c1((x + 2)e−x + x+ t2(1− ex)− 2) + c2(e

−x + x− 1) +
t2

2
(1− e2x),

where

c1 =
t2(e2 − 1)− 2

1−e − 1

6e−1 + 2t2(1− e)− 2(e−1−1)
1−e

, and c2 =
1− c1(2e

−1 − 1)

e−1 − 1
.

First, we analyze the convergence properties of the elements proposed here, and
keep the thickness fixed t = 0.01. Then, we also show an analysis for various
thickness in order to assess the locking free nature of the proposed method.

Tables 1 and 2 show the convergence history of the mixed finite element scheme
(3.4) applied to our test problem.

Table 1. Convergence analysis for t = 0.01. Errors and experi-
mental rates of convergence for variables σ and γ.

N h e0(σ) rc0(σ) e1(σ) rc1(σ) e0(γ) rc0(γ)
34 0.125 1.6539e-3 – 6.4508e-2 – 2.6697e-3 –
66 0.0625 4.1355e-4 1.98 3.2249e-2 0.99 6.6905e-4 2.00
130 0.03125 1.0339e-4 1.99 1.6124e-2 1.00 1.6736e-4 2.00
258 0.015625 2.5848e-5 2.00 8.0617e-3 1.00 4.1847e-5 2.00
514 0.0078125 6.4621e-6 2.00 4.0309e-3 1.00 1.0462e-5 2.00

Table 2. Convergence analysis for t = 0.01. Errors and experi-
mental rates of convergence for variables γ, β and w.

N h e1(γ) rc(γ) e0(β) rc0(β) e0(w) rc0(w)
34 0.125 6.4474e-2 – 1.3298e-3 – 2.1197e-4 –
66 0.0625 3.2245e-2 0.99 6.7574e-4 0.98 1.0523e-4 1.01
130 0.03125 1.6123e-2 1.00 3.3923e-4 1.00 5.2507e-5 1.00
258 0.015625 8.0618e-3 1.00 1.6978e-4 1.00 2.6240e-5 1.00
514 0.0078125 4.0310e-3 1.00 8.4912e-5 1.00 1.3118e-5 1.00
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We observe from Tables 1 and 2 that the rates of convergence O(h) and O(h2)
predicted by Theorems 3.2 and 3.3 are attained for all the variables.

Secondly, we solve the same problem with a varying thickness to asses the locking
free character of the method. We report in Table 3 the errors and the rates of
convergence for the transverse displacement.

Table 3. Locking free analysis for variable w (e0(w)).

t=1.0e-3 t=1.0e-4 t=1.0e-5
N h e0(w) rc0(w) e0(w) rc0(w) e0(w) rc0(w)
34 0.125 2.0928e-4 – 2.0929e-4 – 2.0925e-4 –
66 0.0625 1.0388e-4 1.01 1.0387e-4 1.01 1.0386e-4 1.01
130 0.03125 5.1831e-5 1.00 5.1824e-5 1.00 5.1824e-5 1.00
258 0.015625 2.5902e-5 1.00 2.5898e-5 1.00 2.5898e-5 1.00
514 0.0078125 1.2949e-5 1.00 1.2947e-5 1.00 1.2947e-5 1.00

We observe from Table 3 that our method does not deteriorate when the thickness
parameter becomes small. The same happens with all the other variables, so that
we can assert that the method is locking free.

4.2. Test 2. As a second test, we take I := (0, 1) and solve the equations (2.5)
with

f(x) =

{
x, 0 ≤ x ≤ 0.5,
e−x, 0.5 < x ≤ 1,

E(x) =

{
1, 0 ≤ x ≤ 0.5,
e−x, 0.5 < x ≤ 1,

and

κ(x) =

{
ex, 0 ≤ x ≤ 0.5,

1, 0.5 < x ≤ 1.

In this case, we have consided a piecewise smooth load f(x). As required by
the theory (see Remark 3.1), we analyze the convergence properties of the elements
proposed here, keep the thickness fixed t = 0.01 and taking meshes where the point
x = 0.5 is always a node.

For this particular test, the analytical solution can be obtained by solving the
corresponding problems in (0, 0.5) and (0.5, 1) in terms of the unknowns values at
x = 0.5 and matching the solutions at this point.

Tables 4 and 5 show the convergence history of the mixed finite element scheme
(3.4)-(3.5) applied to our test problem.

Table 4. Convergence analysis for t = 0.01. Errors and experi-
mental rates of convergence for variables σ and γ.

N h e0(σ) rc0(σ) e1(σ) rc1(σ) e0(γ) rc0(γ)
34 0.125 4.6083e-4 – 1.4357e-2 – 1.2335e-3 –
66 0.0625 1.1605e-4 1.99 7.1723e-3 0.99 3.0852e-4 1.99
130 0.03125 2.9063e-5 2.00 3.5854e-3 1.00 7.7138e-5 2.00
258 0.015625 7.2691e-6 2.00 1.7926e-3 1.00 1.9285e-5 2.00
514 0.0078125 1.8175e-6 2.00 8.9628e-4 1.00 4.8213e-6 2.00
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Table 5. Convergence analysis for t = 0.01. Errors and experi-
mental rates of convergence for variables γ, β and w.

N h e1(γ) rc(γ) e0(β) rc0(β) e0(w) rc0(w)
34 0.125 2.8322e-2 – 9.6598e-4 – 1.5040e-4 –
66 0.0625 1.4163e-2 0.99 4.9102e-4 0.98 7.3356e-5 1.02
130 0.03125 7.0817e-3 1.00 2.4652e-4 0.99 3.6417e-5 1.00
258 0.015625 3.5409e-3 1.00 1.2338e-4 1.00 1.8175e-5 1.00
514 0.0078125 1.7705e-3 1.00 6.1707e-5 1.00 9.0830e-6 1.00

We observe from Tables 4 and 5 that the rates of convergence O(h) and O(h2)
predicted by Remark 3.1 are attained for all the variables.

5. Conclusions.

In the present paper, we analyzed a mixed finite element method to approxi-
mate the bending of a non-homogeneous Timoshenko beam. We proposed a mixed
variational formulation in terms of the bending moment, shear stress, rotation and
transverse displacement, which has been shown to be well posed by the Babuška-
Brezzi theory. The proofs cover the cases of non-homogeneous beams with varying
geometry and physical parameters. The formulation was discretized by continuous
P1 and discontinuous P0 finite elements and we proved linear convergence with
respect to the mesh size in the natural norm and a quadratic order for the bending
moment and the shear stress in L2-norm, all the estimates being uniform in the
beam thickness. Finally, we reported numerical results that confirm the numerical
analysis of the proposed method.
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