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Abstract

This paper starts to develop balanced schemes for stochastic differential
equations (SDEs) with multiplicative noise based on the addition of stabilizing
functions to the drift terms. First, we use the linear scalar SDE as a test
problem to show that it is possible to construct efficient almost sure stable
first-order weak balanced schemes. Second, we design balanced schemes for
bilinear SDEs that achieve the first order of weak convergence, and do not
involve the simulation of multiple stochastic integrals. Numerical experiments
show a promising performance of the new numerical methods.

1 Introduction

In this paper, we deal with the problem of constructing balanced Euler schemes
having the same rate of weak converge as the Euler method. Consider the
stochastic differential equation (SDE)

Xt = X0 +

∫ t

0

b (Xs) ds+

m∑
k=1

∫ t

0

σk (Xs) dW
k
s , (1)

where Xt is an adapted Rd-valued stochastic process, b, σk : Rd → Rd are
smooth functions and W 1, . . . ,Wm are independent standard Wiener processes.
For solving (1) in cases the diffusion terms σk play an essential role in the dy-
namics of Xt, Milstein, Platen and Schurz [14] introduced the balanced implicit
method

Zn+1 = Zn + b (Zn) ∆ +

m∑
k=1

σk (Zn)
(
W k

(n+1)∆ −W
k
n∆

)
(2)

+

(
c0 (Zn) ∆ +

m∑
k=1

ck (Zn)
∣∣∣W k

(n+1)∆ −W
k
n∆

∣∣∣) (Zn − Zn+1) ,

where c0, . . . , cm are weight functions that should be appropriately chosen for
each SDE, and ∆ > 0. Up to now, the schemes of type (2) use the damping
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functions c1, . . . , cm to control the numerical instabilities caused by σk (see,
e.g., [1, 14, 16, 17, 21]), and hence their rate of weak convergence is equal to
1/2, which is low. To the best of our knowledge, concrete balanced versions of
the Milstein scheme have been developed only in particular cases, like m = 1,
where the Milstein scheme does not involve multiple stochastic integrals with
respect to different Brownian motions [2, 10].

We are interested in the development of efficient 1-order balanced schemes
for computing Ef (Xt), with f : Rd → R smooth. This motivates us to design
balanced schemes based only on c0. More precisely, we address the general
question of whether we can find c0 such that

Zn+1 = Zn + b (Zn) ∆ + c0 (∆, Zn) (Zn+1 − Zn) ∆ +

m∑
k=1

σk (Zn) ξkn (3)

reproduces the long-time behavior of Xt. Here, ξ1
0 , ξ

2
0 , . . . , ξ

m
0 , ξ

1
1 , . . . are inde-

pendent random variables satisfying P
(
ξkn = ±1

)
= 1/2. Section 2 gives a pos-

itive answer to this problem when (1) reduces to an almost sure exponentially
stable linear scalar SDE. In this test case, we obtain an explicit expression for
c0 (∆, ·) that makes Zn an almost sure asymptotically stable numerical method
for all ∆ > 0. Moreover, Section 2 introduces a stabilized trapezoidal scheme.
Section 3 focuses on bilinear systems of SDEs. In case b, σk : Rd → Rd are
linear, we propose an optimization procedure for identifying a suitable weight
function c0. Section 3 also provides a choice of c0 based on a heuristic closed for-
mula. Both techniques show good results in our numerical experiments, which
encourages further studies of (3). All proofs are deferred to Section 4.

2 The linear scalar SDE

In this section, we assume that Xt satisfies the scalar SDE

Xt = X0 +

∫ t

0

µXsds+

∫ t

0

λXsdW
1
s , (4)

where, for simplicity, the real numbers µ, λ satisfy 2µ − λ2 < 0. The SDE (4)
is a classical test equation for studying the stability properties of the numerical
schemes for (1) (see, e.g., [1, 7, 8]).

2.1 Stabilized Euler scheme

Set Tn = n∆, with ∆ > 0 and n = 0, 1, . . . For all t ∈ [Tn, Tn+1] we have

Xt = XTn +

∫ t

Tn

(µXs + a (∆)Xs − a (∆)Xs) ds+

∫ t

Tn

λXsdW
1
s ,

where a (∆) is an arbitrary real number. Then

XTn+1
≈ XTn

+ µXTn
∆ + a (∆)

(
XTn+1

−XTn

)
∆ + λXTn

(
W 1

Tn+1
−W 1

Tn

)
,

and so Xt is weakly approximated by the recursive scheme

Y s
n+1 = Y s

n + µY s
n∆ + a (∆)

(
Y s
n+1 − Y s

n

)
∆ + λY s

n ξ
1
n, (5)

where, from now on, ξ1
0 , ξ

1
1 , . . . is a sequence of independent random variables

taking values ±1 with probability 1/2. In case a (∆) ∆ 6= 1, we have

Y s
n+1 = Y s

n

(
1 +

(
µ∆ + λ

√
∆ξ1

n

)
/ (1− a (∆) ∆)

)
.

We wish to find a locally bounded function ∆ 7→ a (∆) such that:
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P1) Y s
n preserves a.s. the sign of Y s

0 for all n ∈ N.

P2) Y s
n converges almost surely to 0 as n→∞ whenever 2µ− λ2 < 0.

We check easily that Property P1 holds iff a (∆) ∈ ]−∞, p1[∪ ]p2,+∞[ , with

p1 := min
{

1, 1− |λ|
√

∆ + µ∆
}
/∆ and p2 := max

{
1, 1 + |λ|

√
∆ + µ∆

}
/∆.

A close look at E log
(

1 +
(
µ∆ + λ

√
∆ξ1

n

)
/ (1− a (∆) ∆)

)
reveals that:

Lemma 2.1. Suppose that a (∆) ∆ 6= 1. Then, a necessary and sufficient
condition for Property P1, together with limn→∞ Y s

n = 0 a.s., is that a (∆) ∈ ]−∞, p1[ ∪ ]p2, p3[ , in case µ < 0
a (∆) ∈ ]−∞, p1[ ∪ ]p2,+∞[ , in case µ = 0 and λ 6= 0
a (∆) ∈ ]p3, p1[ ∪ ]p2,+∞[ , in case µ > 0

,

where p3 :=
(
µ2∆ + 2µ− λ2

)
/ (2µ∆).

Using Lemma 2.1 we deduce that we can choose

a (∆) =


µ− α1 (∆)λ2, if µ ≤ 0
µ− α2 (∆)λ2, if µ > 0 and ∆ < 2/µ(

1 + |λ|
√

∆ + µ∆
)
/∆ + β, if µ > 0 and ∆ ≥ 2/µ

, (6)

where β > 0, 1/4 < α2 (∆) ≤ 1/4 +
(
λ2 − 2µ

)
(2− µ∆) /

(
8λ2
)

and α1 is a
bounded function satisfying α1 (∆) > 1/4.

Theorem 2.2. Let 2µ − λ2 < 0. Then, Y s
n with a (∆) given by (6) satisfies

Properties P1 and P2.

Notation 2.1. We denote by C`p
(
Rd,R

)
the set of all `-times continuously

differentiable functions from Rd to R, whose partial derivatives up to order 4
have at most polynomial growth.

Remark 2.1. Assume that X0 have finite moments of any order, together with
2µ− λ2 < 0. Suppose that for every g ∈ C4

p(R,R) there exists K > 0 such that
|Eg(X0)− Eg(Y s

0 )| ≤ K (1 + E |X0|q)T/N for all N ∈ N. Let a (∆) be given
by (6). Since ∆ 7→ a (∆) is a bounded function, using classical arguments (see,
e.g., [11, 13, 15, 16, 20]) we can deduce that there exists N0 ∈ N such that for
any f ∈ C4

p (R,R),

|Ef (XT )− Ef (Y s
N )| ≤ K (T ) (1 + E |X0|q)T/N ∀N ≥ N0, (7)

where q ≥ 2 and T 7→ K (T ) is a positive increasing function. Furthermore,
from 2µ− λ2 < 0 it follows that there exists ε ∈ (0, 1) such that

|1− a (∆) ∆| > ε ∀∆ > 0 (8)

(see Section 4), and so (7) holds for all N ∈ N. This is proved by applying, for
instance, Theorem 3.2.

Following [14], we now illustrate the behavior of Y s
n using (4) with µ = 0

and λ = 4. We take X0 = 1. Since µ ≤ 0, we choose α1 (∆) = 1/4 +
1/100; its convenient to keep the weights as small as possible. Figure 1 displays
the computation of E sin (Xt/5) obtained from the sample means of 25 · 109

observations of: Y s
n with a (∆) = −0.26 λ2, the fully implicit method Ỹn+1 =

Ỹn/
(

1 + λ2∆− λ
√

∆ξ1
n

)
(see p. 497 of [11]), and the balanced scheme

Z̃n+1 = Z̃n

(
1 + λ

√
∆ξ1

n + λ
√

∆
)
/
(

1 + λ
√

∆
)
,
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Figure 1: Computation of E sin (Xt/5), where t ∈ [0, 2] and Xt solves (4) with µ = 0,
λ = 4 and X0 = 1. Dashed line: Ỹ , dashdot line: Z̃, dotted line: Y s, and solid
line: reference values. Here, ∆ takes the values 1/8, 1/16, 1/32 and 1/64. As we
expected, smaller ∆ produce better approximations.

which is a weak version of the method developed in Section 2 of [14]. Solid lines
identifies the ‘true’ values gotten by sampling 25 · 109 times exp (−8t+ 4Wt).
In contrast with the poor performance of the Euler-Maruyama scheme when
the step sizes are greater than or equal to 1/16, Figure 1 suggests us that Y s

n is
an efficient scheme having good qualitative and convergence properties. In this
numerical experiment, the accuracy of Z̃n is not good, and Ỹn decays too fast
to 0 as n→∞.

2.2 Stabilized trapezoidal method

The trapezoidal scheme (see, e.g., p. 497 of [11])

ZT
n+1 = ZT

n + µ
ZT
n+1 + ZT

n

2
∆− λ2Z

T
n+1 + ZT

n

4
∆ + λ

ZT
n+1 + ZT

n

2

√
∆ξ1

n (9)

have a good speed of weak convergence to the solution of (4), but ZT
n fails to

preserve the sign of X0. Analysis similar to that in Subsection 2.1 shows the
next theorem, which ensures the existence of a ∈ R such that

Y T
n+1 = Y T

n + µ
(
Y T
n+1 + Y T

n

)
∆/2− λ2

(
Y T
n+1 + Y T

n

)
∆/4 (10)

+λ
(
Y T
n+1 + Y T

n

)√
∆ξ1

n/2 +
(
Y T
n+1 − Y T

n

)
a∆

verifies: (P1’) Y T
n has the same sign as Y T

0 a.s. for all n ∈ N; and (P2’) Y T
n

converges a.s. to 0 as n → ∞ whenever 2µ − λ2 < 0. Moreover, as in Remark
2.1 using standard arguments we can prove that Y T

n have linear rate of weak
convergence.

4



∆

1/4 1/8 1/16 1/32 1/64

ε
(
Y T
) µ = −1 0.1510 0.0668 0.0321 0.0172 0.0110

µ = 2 0.2436 0.1638 0.1074 0.0713 0.0437

ε
(
ZT
) µ = −1 77.935 9.8110 0.0706 0.0402 0.0218

µ = 2 78.527 10.047 0.1983 0.1012 0.0514

ε (Y s)
µ = −1 0.3703 0.1250 0.0545 0.0269 0.0133

µ = 2 0.3633 0.0697 0.0361 0.0178 0.0088

ε
(
Z̃
) µ = −1 0.9259 0.7567 0.5870 0.4353 0.3115

µ = 2 1.4534 1.3128 1.1220 0.9116 0.7092

Table 1: Estimation of errors involved in the computation of Eg (XT ) and Eh (XT )
for T = 1. Here, Xt verifies (4) with X0 = 1 and λ = 4.

Theorem 2.3. Let 2µ−λ2 < 0. Consider Scheme (10) with a < µ/2−5λ2/16.
Then Y T

n satisfies Properties P1’ and P2’. Moreover,

Y T
n+1 =

4 +
(
2µ− λ2 − 4a

)
∆ + 2λ

√
∆ξ1

n

4− (2µ− λ2 + 4a) ∆− 2λ
√

∆ξ1
n

Y T
n .

In order to evaluate the sign-preserving property and the accuracy of Y T
n , we

compute Eg (Xt) and Eh (Xt), where g (x) = 100 (π/2− arctan (1000x+ 100))
and h (x) = log

(
1 + x2

)
. We choose X0 = 1, λ = 4, and µ takes the values

−1 and 2. In Table 1 we compare the following schemes: Scheme (10) with
a = µ/2− 3λ2/8, the trapezoidal scheme ZT

n , the weak balanced scheme

Z̃n+1 = Z̃n

(
1 +

(
µ∆ + λ

√
∆ξn1

)
/
(

1− µ∆/2 + |λ|
√

∆
))

and Scheme (5) with α1 (∆) = 0.26, α2 (∆) = 1/4 + 10−4
(
λ2 − 2µ

)
µ/
(
8λ2
)

and β = 0.01. Indeed, Table 1 presents the errors

ε
(
Ŷ
)

:=
∣∣∣Eg (XT )− Eg

(
ŶN

)∣∣∣+
∣∣∣Eh (XT )− Eh

(
ŶN

)∣∣∣ ,
with T = 1 and N = T/∆. For each numerical method Ŷ , we estimate ε

(
Ŷ
)

by

sampling 25 · 109 times both Ŷ and the explicit solution exp ((µ− 8) t+ 4Wt).
Table 1 shows that Y T

n has good qualitative properties, and in addition Y T
n

inherits the good speed of weak convergence of ZT
n . We can also observe the

very good behavior of the stabilized Euler scheme Y s.

3 A non-commutative system of bilinear SDEs

This section is devoted to the SDE

Xt = X0 +

∫ t

0

BXsds+

m∑
k=1

∫ t

0

σkXsdW
k
s , (11)

where Xt ∈ Rd and B, σk are given real matrices of size d×d. The bilinear SDEs
describe dynamical features of non-linear SDEs via the linearization around
their equilibrium points. The system of SDEs (11) also appears, for example,
in the spatial discretization of stochastic partial differential equations (see, e.g.,
[6, 9]).
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3.1 Heuristic balanced scheme

We now return to (3). Since (11) is bilinear, we restrict c0 to be linear, and so
(3) becomes

Zn+1 = Zn +BZn∆ +H (∆) (Zn+1 − Zn) ∆ +

m∑
k=1

σkZn

√
∆ξkn, (12)

with H : ]0,∞[ → Rd×d and ∆ > 0. The rate of weak convergence of Zn is

equal to 1 provided, for instance, that H (∆) and (I −∆H (∆))
−1

are bounded
on any interval ∆ ∈ ]0, a] (see, e.g., [16]). Generalizing roughly Subsection 2.1
we choose

H (∆) = B −
m∑

k=1

αk (∆)
(
σk
)>
σk,

where, for example, αk (∆) = −0.26. This gives the recursive scheme(
I −∆B − 0.26 ∆

m∑
k=1

(
σk
)>
σk

)
Y s
n+1 (13)

= Y s
n − 0.26 ∆

m∑
k=1

(
σk
)>
σkY s

n +

m∑
k=1

σkY s
n

√
∆ξkn,

which is a first-order weak balanced version of the semi-implicit Euler method.

3.2 Optimal criterion to select c0

In case I −∆H (∆) is invertible, according to (12) we have

Zn+1 = Zn + (I −∆H (∆))
−1

(
∆B +

m∑
k=1

√
∆ξknσ

k

)
Zn, (14)

where I is the identity matrix. Therefore, a more general formulation of Zn is
given by

Vn+1 = Vn + (I + ∆M (∆))

(
∆B +

m∑
k=1

√
∆ξknσ

k

)
Vn, (15)

with M : ]0,∞[ → Rd×d. In fact, taking M (∆) =
(

(I −∆H (∆))
−1 − I

)
/∆

we obtain (14) from (15). The following theorem provides a useful estimate of
the growth rate of Vn in terms of E log (‖A0 (∆,M (∆))x‖), a quantity that we
can compute explicitly in each specific situation.

Theorem 3.1. Let Vn be defined recursively by (15). Then

lim
n→∞

1

n∆
log (‖Vn‖) ≤

1

∆
sup

x∈Rd,‖x‖=1

E log (‖An (∆,M (∆))x‖) , (16)

where An (∆,M) = I + (I + ∆M)
(

∆B +
∑m

k=1

√
∆ξknσ

k
)

.

Set λ := sup‖x‖=1

(
〈x,Bx〉+ 1

2

∑m
k=1

∥∥σkx
∥∥2 −

∑m
k=1〈x, σkx〉2

)
. Then

lim sup
t→∞

1

t
log (‖Xt‖) ≤ λ a.s. (17)
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∆ 1/2 1/4 1/8 1/16 1/32 1/64

M1,1 (∆) −1.6099 −5.1036 −4.8804 −7.1499 −1.6758 0.9887

M2,1 (∆) 0.0975 0.2758 0.7667 1.0136 1.1500 0.9918

M1,2 (∆) −0.0975 −0.2752 −0.8505 −0.1814 −1.0448 −1.9947

M2,2 (∆) −1.3173 −5.9305 −2.6136 −2.3003 −1.7421 −1.9005

Order −10 −19 −21 −21 −20 −19

Table 2: Approximate values of the weight matrix (Mi,j (∆))1≤i,j≤2 for (20) with
σ1 = 7, σ2 = 4 and ε = 1, together with the corresponding order of magnitude of
the objective function minimum.

(see, e.g., [8]). Fix ∆ > 0. We would like that for all ‖x‖ = 1,

1

∆
E log (‖A0 (∆,M (∆))x‖) ≈ 〈x,Bx〉+

1

2

m∑
k=1

∥∥σkx
∥∥2 −

m∑
k=1

〈x, σkx〉2.

A simpler problem is to find M (∆) for which the upper bounds (16) and (17) are
as close as possible, and so we can expect, for instance, that Vn is exponentially
stable whenever λ < 0. Then, we propose to take

M (∆) ∈ arg min


(

1

∆
sup

x∈Rd,‖x‖=1

E log (‖A0 (∆,M)x‖)− λ

)2

: M ∈M

 ,

(18)
where M is a predefined subset Rd×d. Two examples of M used successfully
in our numerical experiments are Rd×d and{

(Mi,j)1≤i,j≤d : |Mi,j | ≤ K for all i, j = 1, . . . , d
}
,

with K large enough. The next theorem states that Vn converges weakly with
order 1.

Theorem 3.2. Consider T > 0 and f ∈ C4
p(Rd,R). Let Vn be given by (15)

with ∆ = T/N , where N ∈ N. Assume that X0 have finite moments of any
order, and that for every g ∈ C4

p(Rd,R),

|Eg(X0)− Eg(V0)| ≤ K (1 + E ‖X0‖q)T/N ∀N ∈ N,

with K > 0. Let ∆→M (∆) be bounded on [0, T ]. Then

|Ef (XT )− Ef (VN )| ≤ K (T ) (1 + E ‖X0‖q)T/N ∀N ∈ N, (19)

where q ≥ 2 and K (·) is a positive increasing function.

3.3 Numerical experiments

3.3.1 Exponentially stable SDE

We consider the non-commutative test equation

dXt =

(
σ1 0

0 σ2

)
XtdW

1
t +

(
0 −ε
ε 0

)
XtdW

2
t , (20)

7



∆

1/2 1/4 1/8 1/16 1/32 1/64

ε
(
Ỹ
) T = 1 6.5497 9.4879 12.733 11.0676 0.15183 0.02365

T = 3 18.814 28.8744 38.9743 34.1327 0.0086188 0.00075718

ε
(
Z̃
) T = 1 1.3395 1.1777 0.98272 0.7757 0.58279 0.42137

T = 3 1.0611 0.78255 0.51624 0.30475 0.1643 0.08361

ε (Y s)
T = 1 1.1914 0.85936 0.49789 0.15466 0.042484 0.018271

T = 3 0.81853 0.38585 0.10185 0.0096884 0.0013717 0.00055511

ε (V )
T = 1 1.2544 0.8482 0.36579 0.11998 0.029324 0.0069274

T = 3 0.64867 0.16695 0.035366 0.0065051 0.00068084 0.00031002

Table 3: Estimation of errors involved in the computation of E log
(

1 + ‖XT ‖2
)

for

T = 1 and T = 3. Here, Xt verifies (20) with σ1 = 7, σ2 = 4, ε = 1 and X0 = (1, 2)>.

where σ1 = 7, σ2 = 4, ε = 1 and X0 = (1, 2)
>

. Since 0 < σ2 < σ1 < 3σ2,
applying elementary calculus we get λ =

(
ε2 − σ2

2

)
/2 < 0, and so Xt converges

exponentially fast to 0. In order to illustrate the performance of schemes of
type (3), we take Vn with M (∆) given by (18) and

M =
{

(Mi,j)1≤i,j≤2 : |Mi,j | ≤ 20 for all i, j = 1, 2
}
.

Table 2 provides four-decimal approximations of the components of M (∆),
which have been obtained by running (54-times) the MATLAB function fmincon

for the initial parameters{
(Mi,j)1≤i,j≤2 : Mi,j ∈ {−2,−1, 0, 1, 2} for all i, j = 1, 2

}
.

Figure 2 shows the computation E log
(

1 + ‖Xt‖2
)

by means of Vn (dashed

line), Y s
n (dotted line), and

Z̃n+1 = Z̃n +

(
σ1 0

0 σ2

)
Z̃n

√
∆ξ1

n +

(
0 −ε
ε 0

)
Z̃n

√
∆ξ2

n

+
√

∆

(
|σ1|+ |ε| 0

0 |σ2|+ |ε|

)(
Z̃n − Z̃n+1

)
(dashdot line). Z̃n is a weak version of the balanced scheme proposed in Sub-

section 5.2 of [16]. The reference values for E log
(

1 + ‖Xt‖2
)

(solid line) have

been calculated by using the weak Euler method

Ỹn+1 = Ỹn +

(
σ1 0

0 σ2

)
Ỹn
√

∆ξ1
n +

(
0 −ε
ε 0

)
Ỹn
√

∆ξ2
n

with step-size ∆ = 2−13 ≈ 0.000122. Indeed, we plot the sample means obtained
from 108 trajectories of each scheme. Furthermore, Table 3 provides estimates of

the errors ε
(
Ŷ
)

:=

∣∣∣∣E log
(

1 + ‖XT ‖2
)
− E log

(
1 +

∥∥∥ŶN∥∥∥2
)∣∣∣∣, where T = 1, 3,

8
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Figure 2: Computation of E log
(

1 + ‖Xt‖2
)

, where t ∈ [0, 10] and Xt solves (20).

Dashed line: Vn, dashdot line: Z̃, dotted line: Y s, and solid line: reference val-
ues. Here, ∆ is equal to 1/8, 1/16, 1/32 and 1/64; smaller deltas produce better
approximations.

N = T/∆, and Ŷ represents the numerical methods Vn, Y s
n , Ỹn and Z̃n. From

Table 3 we can see that Ỹn blows up for ∆ ≤ 1/16. Figure 2, together with Table

3, illustrate that Z̃n is stable, but presents a slow rate of weak convergence. In
contrast, the performance of Vn is very good, Vn mix good stability properties
with reliable approximations. The heuristic balanced scheme Y s

n shows a very
good behavior. In fact, the accuracy of Y s

n is very similar to that of Vn for
∆ ≤ 1/16, and Y s

n does not involve any optimization process.

3.3.2 SDE with an unstable equilibrium point

We solve numerically the SDE

dXt =

(
0 b2

−b2 b1

)
Xtdt+

(
σ1 0

0 σ2

)
XtdW

1
t +

(
0 −ε
ε 0

)
XtdW

2
t , (21)

with b1 = 0.06, b2 = 1, σ1 = 0.2, σ2 = 0.1, ε = 0.3 and Xt =
(
X1

t , X
2
t

)> ∈ R2.

We set X0 = (1,−1)
>
/
√

2. We have that 0 is unstable equilibrium point of
(21). Indeed, lim inft→+∞ ‖Xt‖ > 0, because there exists θ ∈ (0, 1/2) such that

〈x,Bx〉+ 1
2

∑m
k=1

∥∥σkx
∥∥2− (1 + θ)

∑m
k=1〈x, σkx〉2 ≥ 0 for all ‖x‖ = 1 (see, e.g.,

[3]).
We apply to (21) the scheme Vn, where M (∆) is defined by (18) withM ={

(Mi,j)1≤i,j≤2 : |Mi,j | ≤ 6 for all i, j = 1, 2
}

. To this end, we first compute

M (1/128) by proceeding as in Subsection 3.3.1 with Mi,j ∈ {−1,−0.5, 0, 0.5, 1}.
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∆ 1/4 1/8 1/16 1/32 1/64 1/128

M1,1 (∆) −0.6568 −0.6683 −0.6745 −0.6805 −0.6887 −0.6949

M2,1 (∆) −0.2573 −0.3220 −0.3587 −0.3777 −0.3867 −0.3911

M1,2 (∆) 0.3123 0.3110 0.3112 0.3130 0.3165 0.3193

M2,2 (∆) −0.6382 −0.6492 −0.6544 −0.6597 −0.6675 −0.6735

Order −18 −19 −19 −20 −21 −26

Table 4: Approximate weight matrices (Mi,j (∆))1≤i,j≤2 for (21), together with the
corresponding order of magnitude of the objective function minimum.

Then, we solve the optimization problem corresponding to ∆ = 1/64 (resp.
∆ = 1/32, . . . , 1/4) by running the MATLAB code fmincon with initial solution
M (1/128) (resp. M (1/64) , . . . ,M (1/8)) (see Table 4).

Figure 3 presents the computation E arctan
(
1 + (X2

t )2
)

estimated by sam-
pling 108 trajectories of Vn, the backward Euler scheme

Ỹn+1 = Ỹn +

(
0 b2

−b2 b1

)
Ỹn+1∆ +

(
σ1 0

0 σ2

)
Ỹn
√

∆ξ1
n

+

(
0 −ε
ε 0

)
Ỹn
√

∆ξ2
n

and the balanced scheme Z̃n defined by (2) with
∣∣∣W k

Tn+1
−W k

Tn

∣∣∣ replaced by

√
∆ξkn , c0 = − 1

2

(
0 b2

−b2 b1

)
, c1 =

(
σ1 0

0 σ2

)
and c2 =

(
ε 0

0 ε

)
(see

[1, 16]). Solid line provides the ‘exact’ values obtained by sampling 108 times the
weak Euler-Maruyama scheme with step-size ∆ = 2−13 ≈ 0.000122. Moreover,

Table 5 provides the errors ε
(
Ŷ
)

:=
∣∣∣Ef (XT )− Ef

(
ŶN

)∣∣∣, where T = 10, 20,

N = T/∆, and Ŷ stands for the schemes Vn, Ỹn and Z̃n. Figure 3 and Table

5 show the good accuracy of the new scheme Vn. We also see that Vn and Z̃n

reply the unstable behavior of the exact solution and that Ỹn tends to 0 in case
∆ = 1/4. Finally, we have checked that the performs of the heuristic scheme

Y s
n is similar to that of the backward Euler scheme Ỹn.

∆

1/4 1/8 1/16 1/32 1/64 1/128

ε
(
Ỹ
) T = 10 0.30305 0.17473 0.089215 0.04452 0.022189 0.011144

T = 20 0.47504 0.29513 0.14533 0.069623 0.033923 0.016778

ε
(
Z̃
) T = 10 0.10986 0.12667 0.10127 0.069549 0.044963 0.028632

T = 20 0.056883 0.049722 0.051519 0.036835 0.022017 0.0127

ε (V )
T = 10 0.084783 0.051834 0.014313 0.0031168 0.00055984 0.00011417

T = 20 0.025462 0.0080347 0.014935 0.011232 0.0062795 0.0032123

Table 5: Estimation of errors involved in the computation of E arctan
(

1 +
(
X2

T

)2)
for T = 10 and T = 20, where Xt solves (21).
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Figure 3: Computation of E arctan
(
1 + (X2

t )2
)
, where t ∈ [0, 20] and Xt solves (21).

Dashed line: Ỹ , dashdot line: Z̃, dotted line: V , and solid line: reference values.
Here, ∆ takes the values 1/4, 1/8, 1/16 and 1/32; smaller values of ∆ produce better
approximations.
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4 Proofs

Proof of Lemma 2.1. We first prove that under Property (P1), limn→∞ Y s
n = 0

a.s. iff 
a (∆) <

(
µ2∆ + 2µ− λ2

)
/ (2µ∆) , if µ < 0

a (∆) ∈ R, if µ = 0 and λ 6= 0

a (∆) >
(
µ2∆ + 2µ− λ2

)
/ (2µ∆) , if µ > 0

. (22)

Suppose that Property P1 holds. Applying the strong law of large numbers and
the law of iterated logarithm we obtain that Y s

n → 0 a.s. as n→∞ iff

E log
(

1 +
(
µ∆ + λ

√
∆ξ1

n

)
/ (1− a (∆) ∆)

)
< 0 (23)

(see, e.g., Lemma 5.1 of [7]). Since

E log

(
1 +

µ∆ + λ
√

∆ξ1
n

1− a (∆) ∆

)
=

1

2
log

((
1 +

µ∆

1− a (∆) ∆

)2

− λ2∆

(1− a (∆) ∆)
2

)
,

inequality (23) becomes 2µ (1− a (∆) ∆) + µ2∆ − λ2 < 0, which is equivalent
to (22). This establishes our first claim.

From the assertion of the first paragraph we get that Property P1, together
with limn→∞ Y s

n = 0 a.s., is equivalent to (a) a (∆) ∈ ]−∞,min{p1, p3}[∪]p2, p3[
for µ < 0; (b) a (∆) ∈ ]−∞, p1[ ∪ ]p2,+∞[ for µ = 0 and λ 6= 0; and a (∆) ∈
]p3, p1[ ∪ ]max{p2, p3},+∞[ for µ > 0. This gives the lemma, because p1 < p3

(resp. p2 > p3) whenever µ < 0 (resp. µ > 0).

Proof of Theorem 2.2. In case λ 6= 0, using differential calculus we obtain that

the function ∆ 7→
(

1− |λ|
√

∆ + µ∆
)
/∆ attains its global minimum at 4/λ2.

Then, for all ∆ > 0 and λ ∈ R we have(
1− |λ|

√
∆ + µ∆

)
/∆ ≥ µ− λ2/4. (24)

First, we suppose that µ ≤ 0 and α1 (∆) > 1/4. From (24) it follows that
p1 > µ − α1 (∆)λ2, which implies a (∆) ∈ ]−∞, p1[. Second, if µ > 0 and
∆ ≥ 2/µ, then a (∆) ∈ ]p2,+∞[.

Third, assume that µ > 0 and ∆ < 2/µ. Since µ > 0, for any ∆ < λ2/µ2

we have 1 − |λ|
√

∆ + µ∆ < 1. Using 2µ − λ2 < 0 we get λ2/µ2 > 2/µ,

and so p1 =
(

1− |λ|
√

∆ + µ∆
)
/∆ whenever ∆ < 2/µ. Applying (24) gives

p1 > µ − α2 (∆)λ2, because α2 (∆) > 1/4. On the other hand, we have p3 <
µ− α2 (∆)λ2 if and only if 2µ− λ2 < µ∆

(
2µ− 4α2 (∆)λ2

)
/2, which becomes

2

µ
> ∆

(
1 + (4α2 (∆)− 1)

λ2

λ2 − 2µ

)
(25)

since 2µ− λ2 < 0 and µ > 0. By 2/µ > ∆, (25) holds in case

2

µ
≥ ∆ + (4α2 (∆)− 1)

λ2

λ2 − 2µ

2

µ
,

which is equivalent to α2 (∆) ≤ 1/4 +
(
λ2 − 2µ

)
(2− µ∆) /

(
8λ2
)
. Then p3 <

µ− α2 (∆)λ2, hence a (∆) ∈ ]p3, p1[.
Combining Lemma 2.1 with the above three cases yields Properties P1 and

P2.
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Proof of the inequality (8). If µ ≤ 0, then a (∆) ≤ µ − λ2/4 ≤ 0, and so 1 −
a (∆) ∆ ≥ 1. Let µ > 0, together with ∆ ≥ 2/µ. Then we have 1 − a (∆) ∆ =
− |λ|

√
∆− µ∆− β∆ ≤ −2.

Finally, suppose that µ > 0 and ∆ < 2/µ. Since 2µ − λ2 < 0, there exists
ε ∈ (0, 1) such that 2µ−λ2 < −2εµ. Hence µ−λ2/4 < (1− ε)µ/2 < (1− ε) /∆,
which implies (

µ− 1− ε
∆

)
1

λ2
<

1

4
< α2 (∆) .

We thus get 1− a (∆) ∆ > ε.

Proof of Theorem 2.3. We first prove that Properties P1’ and P2’ hold provided
that 2µ− λ2 < 0 and

a < min
{

1/∆, µ/2− λ2/4 +
(

2− |λ|
√

∆
)
/2∆

}
. (26)

From (26) we have 4 +
(
2µ− λ2 − 4a

)
∆− 2 |λ|

√
∆ > 0, and so for all ∆ > 0,

4 +
(
2µ− λ2 − 4a

)
∆ + 2λ

√
∆ξ1

n > 0.

Since 2µ− λ2 < 0, 4−
(
2µ− λ2 + 4a

)
∆− 2 |λ|

√
∆ > 0. Hence, for any ∆ > 0,

4 −
(
2µ− λ2 + 4a

)
∆ − 2λ

√
∆ξ1

n > 0. Therefore Y T
n satisfies Property P1’.

Moreover, as in the proof of Lemma 2.1, using the strong law of large numbers
and the law of iterated logarithm we deduce that Y T

n → 0 a.s. as n→∞ iff

E log

(
4 +

(
2µ− λ2 − 4a

)
∆ + 2λ

√
∆ξ1

n

4− (2µ− λ2 + 4a) ∆− 2λ
√

∆ξ1
n

)
< 0. (27)

Inequality (27) is equivalent to(
4 +

(
2µ− λ2 − 4a

)
∆
)2 − 4λ2∆ <

(
4−

(
2µ− λ2 + 4a

)
∆
)2 − 4λ2∆,

which becomes 16
(
2µ− λ2

)
∆ (1− a∆) < 0, and so Property P2’ holds because

a < 1/∆.
Consider λ = 0. Then, the claim of the first paragraph guarantees that

Properties P1’ and P2’ holds if a < min {1/∆, µ/2 + 1/∆}. Since 2µ − λ2 < 0
we have µ < 0, and so a sufficient condition for Properties P1’ and P2’ is
a < µ/2.

Finally, suppose that λ 6= 0 and set f (∆) =
(

2− |λ|
√

∆
)
/2∆ for all

∆ > 0. Then, we get f ′ (∆) =
(
|λ| /4− 1/

√
∆
)
/∆3/2. Note that f is in-

creasing or decreasing depending on
√

∆ > 4/ |λ| or
√

∆ < 4/ |λ|, respec-
tively. Thus, f attains its global minimum at ∆0 = 16/λ2. Since 2µ− λ2 < 0,
we have µ/2 − λ2/4 + f (∆0) = µ/2 − 5λ2/16 < 0. Then, µ/2 − 5λ2/16 ≤
min

{
1/∆, µ/2− λ2/4 + f (∆)

}
. Using again the claim of the first paragraph

we conclude that Properties P1’ and P2’ holds under a < µ/2− 5λ2/16.

Proof of Theorem 3.1. From (15) it follows that

Vn = An−1 (∆,M (∆))An−2 (∆,M (∆)) · · ·A0 (∆,M (∆))V0.

Since ξkn are bounded random variables,

sup
x∈Rd,‖x‖=1

E log+ (‖A0 (∆,M (∆))x‖) <∞,
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where log+ (x) stands for the positive part of log (x). Hence, the limit

lim
n→∞

1

n
log (‖Vn‖)

exists whenever V0 6= 0, and only dependents on V0. Furthermore,

lim
n→∞

1

n
log (‖Vn‖) =

∫
‖x‖=1

E log (‖A0 (∆,M (∆))x‖)µ (dx) ,

where µ is a probability measure (see, e.g., Theorem 3.1 of [5]). This gives
(16).

Proof of Theorem 3.2. Let q ≥ 2. Iterating (15) we obtain

Vn+1 = V0 + (I + ∆M (∆))

∆B

n∑
k=0

Vk +

m∑
j=1

n∑
k=0

√
∆ξjkσ

jVk

 .

Since ∆→M (∆) is locally bounded,

‖Vn+1‖q ≤ Kq (T )

‖V0‖q +
1

N

n∑
k=0

‖Vk‖q +mq−1
m∑
j=1

∥∥∥∥∥
n∑

k=0

√
∆ξjkσ

jVk

∥∥∥∥∥
q
 ,

where, from now on, Kq (·) is a generic positive increasing function. By ξjk is
bounded, applying the Burkholder-Davis-Gundy inequality yields

E ‖Vn+1‖q ≤ Kq (T )

(
‖V0‖q +

1

N

n∑
k=0

‖Vk‖q
)
,

and so using a discrete Gronwall lemma (see, e.g., [4]) we get

E ‖Vn‖q ≤ Kq (T )E ‖V0‖q ∀n = 0, . . . , N. (28)

According to (15) we have

Vn+1 − Vn = (I + ∆M (∆))

(
∆B +

m∑
k=1

√
∆ξknσ

k

)
Vn. (29)

Hence ‖Vn+1 − Vn‖ ≤ K (T ) ∆1/2 ‖Vn‖ , which implies

E (‖Vn+1 − Vn‖q� FTn
) ≤ Kq (T ) ∆q/2 ‖Vn‖q . (30)

From (29) it follows∥∥∥∥∥E
(
Vn+1 − Vn −

(
B∆ +

m∑
k=1

σk
(
W k

(n+1)∆ −W
k
n∆

))
Vn� Fn∆

)∥∥∥∥∥
≤ K (T ) ∆2 (1 + ‖Vn‖) .

Moreover, using (29) we deduce that the second (resp., third) moments of

Vn+1−Vn coincide with that of
(
B∆ +

∑m
k=1 σ

k
(
W k

(n+1)∆ −W
k
n∆

))
Vn, except

for terms of order O
(
∆2
)
‖Vn‖2 (resp., O

(
∆2
)
‖Vn‖3). Here, O

(
∆2
)

stands
for different random functions depending on ∆2 that are less than K (T ) ∆2.
Therefore, combining classical arguments [12, 18, 19] with (28) and (30) we
conclude that (19) holds (see also Theorem 14.5.2 of [11]).
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