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RAIMUND BÜRGERA, CHRISTOPHE CHALONSB, AND LUIS MIGUEL VILLADAC

Abstract. This paper focuses on the numerical approximation of the so-

lutions of multi-species kinematic flow models. These models are strongly
coupled nonlinear first-order conservation laws with various applications like

sedimentation of a polydisperse suspension in a viscous fluid, or traffic flow

modeling. Since the eigenvalues and eigenvectors of the corresponding flux
Jacobian matrix have no closed algebraic form, this is a challenging issue. A

new class of simple schemes based on a Lagrangian-Eulerian decomposition

(the so-called Lagrangian-remap (LR) schemes) was recently advanced in [4]
for traffic flow models with nonnegative velocities, and extended to models

of polydisperse sedimentation in [5]. These schemes are supported by a par-

tial numerical analysis when one species is considered only, and turned out to
be competitive in both accuracy and efficiency with several existing schemes.

Since they are only first-order accurate, it is the purpose of this contribu-

tion to propose an extension to second-order accuracy using quite standard
MUSCL and Runge-Kutta techniques. Numerical illustrations are proposed

for both applications and involving eleven species (sedimentation) and nine
species (traffic) respectively.

1. Introduction

This paper is concerned with the design of numerical methods for systems of
strongly coupled nonlinear first-order conservation laws

∂tΦ + ∂xf(Φ) = 0, x ∈ (0, L), t > 0, (1.1)

where Φ = (φ1, . . . , φN )T is the sought solution as a function of spatial position x
and time t, f(Φ) = (f1(Φ), . . . , fN (Φ))T is a vector of flux density functions

fi(Φ) = φivi(Φ), i = 1, . . . , N, (1.2)

and vi(Φ) is the velocity of particle species i, which is assumed to be a given function
of Φ. We will focus on applications to sedimentation of a polydisperse suspension
and traffic flows where such models naturally appear.

The numerical approximation of (1.1)–(1.2) is a challenge since the eigenvalues
and eigenvectors of Jf (Φ) are not available in closed form, so numerical schemes
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that rely on characteristic information become fairly involved (but are still com-
petitive in efficiency [6, 9]). Alternatively, one can construct easy-to-implement nu-
merical schemes for (1.1) by exploiting the concentration-times-velocity form (1.2)
of the fluxes. These properties were first used in [7] to design simple difference
schemes for (1.1)–(1.2).

In [4], one step Lagrangian–antidiffusive remap (L-AR) methods were applied to
the multiclass Lighthill-Whitham-Richards (MCLWR) model for vehicular traffic
which fall in the present framework. L-AR methods do not rely on spectral (char-
acteristic) information and are as easy to implement as the schemes introduced in
[7], but are more accurate and efficient. In [5] these schemes were extended to poly-
disperse sedimentation models. It is the goal of this paper to propose an extension
of L-AR schemes introduced in [4, 5] to second order accuracy for approximating
the solutions of equations (1.1)–(1.2).

To explain the main idea of L-AR schemes, consider the scalar continuity equa-
tion for a single species:

∂tφ+ ∂x
(
φv(φ)

)
= 0, x ∈ (0, L), t > 0. (1.3)

We formally rewrite (1.3) as

∂tφ+ φ∂x
(
v(φ)

)
+ v(φ)∂xφ = 0, x ∈ (0, L), t > 0. (1.4)

L-AR schemes for (1.3) are based on splitting (1.4) into two different equations,
which are solved successively for each time iteration. To advance the solution from
time t to t+ ∆t, we first apply a Lagrangian method [10] to solve

∂tφ+ φ∂xv(φ) = 0, (1.5)

and use this solution, evolved over a time interval of length ∆t, as the initial
condition for solving in a second step the transport equation

∂tφ+ v(φ)∂xφ = 0, (1.6)

whose solution, again evolved over a time interval of length ∆t, provides the sought
approximate solution of (1.3) valid for time t + ∆t. These steps will be identified
as “Lagrangian” and “remap” steps, respectively, which explains why the schemes
under study are addressed as “Lagrangian-remap” (LR) schemes. The specific idea
behind “Lagrangian-antidiffusive remap” L-AR schemes is to solve (1.6) by recent
antidiffusive techniques for transport equations [2, 3, 8], and thereby to increase
the overall efficiency of the proposed splitting strategy, while keeping its simplicity.
Importantly, these techniques are used and extended to our purpose in such a way
that the resulting scheme (first step followed by second step) is conservative.

2. Models under consideration

2.1. Multiclass Lighthill-Whitham-Richards (MCLWR) traffic model. The
multiclass Lighthill-Whitham-Richards traffic model, proposed by Benzoni-Gavage
and Colombo [1] and Wong and Wong [16], is an extension of the well-known LWR
kinematic traffic model for drivers having the same behavior to N classes of drivers,
where different classes of drivers are assumed to have different preferential veloc-
ities. The MCLWR model leads to a system of equation in the form (1.1)–(1.2),
where x is the horizontal distance and either I = R for an unbounded highway or
I = (0, L) for a traffic circle of length L > 0, t is the time, φi = φi(x, t) is the
local density of cars of class i, and vi(φ) is the velocity of cars of class i, which is
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assumed to be a function of the total density φ := φ1 + · · ·+ φN . We assume that
for all i, 0 ≤ φi ≤ φ ≤ φmax, where φmax is a maximum density corresponding to a
bumper-to-bumper situation, and that vi(Φ) = vmax

i V (φ) for i = 1, . . . , N , where
vmax
i is the preferential velocity of class i corresponding to a free highway and V (φ)

is a hindrance factor that takes into account drivers’ attitude to reduce speed in
presence of other cars. The function V is usually assumed to satisfy

V (0) = 1, V ′(φ) ≤ 0 for 0 ≤ φ ≤ φmax, V (φmax) = 0. (2.1)

2.2. Polydisperse sedimentation model. Models of sedimentation of polydis-
perse suspensions of N small spherical particles suspended in a viscous fluid can
be described in the form (1.1)–(1.2), where x denotes vertical distance, t is time,
φi = φi(x, t) is the local volume fraction of particles of species i having diameter
di and density %i, where we assume d1 ≥ d2 ≥ · · · ≥ dN . Batch sedimentation of a
suspension of given initial composition in a column of height L is then modeled by
(1.1) under the specific assumption (1.2) along with the initial condition

Φ(x, 0) = Φ0(x), x ∈ (0, L)

and zero-flux boundary conditions

fi|x=0 = fi|x=L = 0, i = 1, . . . , N,

where we assume that Φ0 ∈ (L1(0, L))N , and that Φ0 takes values in the set Dφmax

of physically relevant concentration vectors defined by

Dφmax
:=
{

(φ1, . . . , φN )T ∈ RN : φ1 ≥ 0, . . . , φN ≥ 0, φ1 + · · ·+ φN ≤ φmax

}
,

where φmax is a maximum total solids concentration. The MLB model of polydis-
perse sedimentation [11, 12] is based on the following velocity function for particles
of species i (having size di and density %i):

vi(Φ) = vMLB
i (Φ) = µV (φ)

[
δi(%̄i − %̄TΦ)−

N∑
l=1

δlφl(%̄l − %̄TΦ)

]
, i = 1, . . . , N.

(2.2)

Here µ = gd2
1/(18µf), where g denotes the acceleration of gravity, µf is the vis-

cosity of the fluid, δi := d2
i /d

2
1, %̄i := %i − %f , where %f is the density of the fluid,

%̄ := (%̄1, . . . , %̄N )T, and V (φ) is a so-called hindered settling factor, which is a
given function V = V (φ) of the total solids volume fraction φ := φ1 + · · · + φN
that is assumed to satisfy (2.1). For equal-density particles, we have %i =: %s for
i = 1, . . . , N . We define δ := (δ1, δ2, . . . , δN )T, δ1 = 1. Then (2.2) reduces to

vi(Φ) = µ(%s − %f)V (φ)(1− φ)(δi − δTΦ). (2.3)

Since φmax ≤ 1, the function φ 7→ V (φ)(1−φ) satisfies (2.1), we may absorb (%s−%f)
into the constant µ and the factor (1−φ) into V (φ) to obtain the following simplified
equation instead of (2.3):

vi(Φ) = µV (φ)(δi − δTΦ). (2.4)

A common expression for V (φ) appearing in (2.4) is the following Richardson-Zaki
[13] formula, where nRZ ≥ 2 is a material specific exponent:

V (φ) =

{
(1− φ)nRZ for 0 ≤ φ ≤ φmax,

0 for φ > φmax.
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3. Lagrangian-Antidiffusive Remap (L-AR) schemes

3.1. Spatial discretization. If ∆x = L/M denotes a spatial meshsize, xj = (j −
1/2)∆x for j = 1, . . . ,M , ∆t > 0 is a time step, tn := n∆t, and φnij denotes the
approximate cell average of φi on the cell [xj−1/2, xj+1/2]× [tn, tn+1). The ratio
λ := ∆t/∆x must satisfy a certain CFL condition that will be specified below. We
denote by vnj+1/2 an approximate value of v(φ) at the interface point x = xj+1/2 at
time tn. We focus first on the discretization of the scalar equation (1.3).

3.2. Lagrangian step for the scalar model (N = 1). Defining τ := 1/φ, we
obtain from (1.5) the conservation of mass equation in Lagrangian coordinates

φ∂tτ − ∂xv = 0. (3.1)

In other words, solving (1.5), or equivalently (3.1), means solving the original
equation (1.3) on a moving referential mesh with velocity v. Assume now that
φn = (φn1 , . . . , φ

n
M )T is an approximate solution of (1.3) at time t = tn and used as

the initial condition for (3.1). Then a numerical solution φn+1,− of (3.1) at time
∆t can be naturally computed by

φn+1,−
j

[
∆x+

(
vnj+1/2 − v

n
j−1/2

)
∆t
]

= φnj ∆x, j = 1, . . . ,M. (3.2)

In fact, (3.2) states that the initial mass in the cell [xj−1/2, xj+1/2] at time tn (the
right-hand side) equals the mass in the modified cell [x̄j−1/2, x̄j+1/2] at time ∆t (the
left-hand side), where x̄j+1/2 = xj+1/2 + vnj+1/2∆t, are the new interface positions.

A natural choice for the velocity values in the interface points is

vnj+1/2 =

{
v(φnj ) if (v(φnj+1)− v(φnj ))(φnj+1 − φnj ) > 0,

v(φnj+1) if (v(φnj+1)− v(φnj ))(φnj+1 − φnj ) ≤ 0,
(3.3)

which takes into account the possible change of sign of v′(φ).

3.3. Remap step: antidiffusive scheme for the scalar model (N = 1). After
the Lagrangian step, the new values φn+1,−

j represent approximate values of the
density on a moved mesh with new cells [x̄j−1/2, x̄j+1/2]. To avoid dealing with
moving meshes, a so-called remap step is necessary to define the new approxima-
tions φn+1

j on the uniform mesh with cells [xj−1/2, xj+1/2]. This step amounts to
“averaging” the density values at time ∆t on the cells [xj−1/2, xj+1/2]. This av-
erage step can equivalently be reformulated by using the solution of the transport
equation (1.6) with initial data defined by φn+1,−

j on each cell [xj−1/2, xj+1/2], i.e.,
we consider a numerical scheme in the form

φn+1
j = φn+1,−

j − V̄ nj λ
(
φn+1,−
j+1/2 − φ

n+1,−
j−1/2

)
, j = 1, . . . ,M. (3.4)

Here V̄ nj is a velocity value, defined in terms of available density values, which
will be chosen in such a way that the complete scheme (3.2), (3.4) is conservative
with respect to (1.3). The quantities φn+1,−

j+1/2 , j = 1, . . . ,M , are numerical fluxes
associated with the cell interfaces xj−1/2 and will be chosen in such a way that the
scheme (3.4) has certain stability and consistency properties.

There are different ways to define the quantities φn+1,−
j+1/2 ; see [2, 3, 8] and [4,

Section 4.2] for non-negative velocities, but we here proceed as in [4] and consider
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only the so-called N-Bee method described in [2], which is well-defined when veloc-
ities have variable signs and was shown to give the best results in [4]. This scheme
corresponds to the choice

φn+1,−
j+1/2 =



φL
j+1/2 := φn+1,−

j +
1− λ̄j

2
ϕNB(rj , λ̄j)

(
φn+1,−
j+1 − φn+1,−

j

)
if V̄j > 0 and V̄j+1 > 0,

φR
j+1/2 := φn+1,−

j+1 +
1− |λ̄j+1|

2
ϕNB(r−j+1, |λ̄j+1|)

(
φn+1,−
j − φn+1,−

j+1

)
if V̄j < 0 and V̄j+1 < 0,

φn+1,−
j+1 + φn+1,−

j

2
if V̄j · V̄j+1 < 0,

(3.5)

where λ̄j = λV̄j = max(vj+1/2, vj−1/2) and

rj :=
φn+1,−
j − φn+1,−

j−1

φn+1,−
j+1 − φn+1,−

j

, r−j :=
φn+1,−
j+1 − φn+1,−

j

φn+1,−
j − φn+1,−

j−1

=
1

rj
.

The limiter function is defined as

ϕNB(r, λ̄) := max

{
0,min

{
1,

2r

λ̄

}
,min

{
r,

2

1− λ̄

}}
.

3.4. Lagrangian-antidiffusive remap (L-AR) schemes for the scalar model
(N = 1). It was shown in [4] and [5] that the two steps (3.2) followed by (3.4)
actually define a conservative scheme of the form

φn+1
j = φnj − λ

(
Fnj+1/2 − F

n
j−1/2

)
, j = 1, . . . ,M. (3.6)

where the corresponding numerical fluxes Fnj+1/2 are computed as follow

Fnj+1/2 := φL
j+1/2 max

{
0, vnj+1/2

}
+ φR

j+1/2 min
{

0, vnj+1/2

}
. (3.7)

In other words, L-AR schemes can be implemented in a very simple manner in
the following three steps

(1) Compute vnj+1/2 according to (3.3) for j = 0, . . . ,M .
(2) Compute φn+1,− by the Lagrangian step (3.2).
(3) Calculate the intermediate fluxes φL

j+1/2 and φR
j+1/2, j = 0, . . . ,M , by the

NBee scheme (3.5), and apply (3.6)-(3.7).

3.5. Definition of L-AR schemes for N > 1. In order to define the L-AR
schemes in the system case N > 1, we first naturally propose to define the inter-
mediate velocities vni,j+1/2, i = 1, . . . , N , by applying (3.3) in a component-wise
manner, giving rise to

vni,j+1/2 =

{
vi(Φ

n
j ) if (vi(Φ

n
j+1)− vi(Φnj ))(φnj+1 − φnj ) > 0,

vi(Φ
n
j+1) if (vi(Φ

n
j+1)− vi(Φnj ))(φnj+1 − φnj ) ≤ 0,

i = 1, . . . , N.

(3.8)
Based on (3.8), Lagrangian values φn+1,−

i,j are computed by considering (3.2) for
each component, i.e.,

φn+1,−
i,j

[
∆x+

(
vni,j+1/2 − v

n
i,j−1/2

)
∆t
]

= φnij∆x, i = 1, . . . , N. (3.9)
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Finally, the numerical fluxes are given by

Fni,j+1/2 := φL
i,j+1/2 max

{
vni,j+1/2, 0

}
+ φR

i,j+1/2 min
{
vni,j+1/2, 0

}
, i = 1, . . . , N,

(3.10)
where φL

i,j+1/2 and φR
i,j+1/2 are computed according to (3.5) in each component.

Thus, we refer to the L-NBee scheme for N > 1 as the numerical scheme (3.6)
applied in a component-wise manner, with intermediate velocities (3.8), Lagrangian
values φn+1,−

i,j as in (3.9), and numerical fluxes (3.10).

4. Extension to second-order accuracy in space and time

4.1. Second-order accuracy in space. A standard device to upgrade a conser-
vative difference scheme to second-order accuracy in space is MUSCL-type variable
extrapolation [14, 15]. To implement it, we approximate φ(x, tn) by a piecewise
linear numerical solution in each cell, i.e., φ̂j(x, t

n) = φnj + σnj (x− xj), where the
slopes σnj are calculated via the standard minmod function, i.e.,

σnj =
1

∆x
minmod

(
φnj − φnj−1, φ

n
j+1 − φnj

)
, where

minmod(a, b) =

{
sgn(a) min{|a|, |b|} if sgn a = sgn b,

0 otherwise.

This extrapolation enables one to define left and right values defined by

φnj+1/2,L := φ̂nj

(
xj +

∆x

2

)
, vL

j+1/2 := v
(
φnj+1/2,L

)
,

φnj+1/2,R := φ̂j+1

(
xj+1 −

∆x

2

)
, vR

j+1/2 := v
(
φnj+1/2,R

)
, j = 1, . . . ,M.

(4.1)

Equations (4.1) can be applied in a component-wise manner. Then for N > 1 we
define intermediate velocities according to the formula

vni,j+1/2 =

{
vL
i,j+1/2 if (vR

i,j+1/2 − v
L
i,j+1/2)(φnj+1/2,R − φ

n
j+1/2,L) > 0,

vR
i,j+1/2 if (vR

i,j+1/2 − v
L
i,j+1/2)(φnj+1/2,R − φ

n
j+1/2,L) ≤ 0.

(4.2)

After that, Lagrangian values φn+1,−
i,j are computed as in (3.9) with vni,j+1/2 as in

(4.2). Next we compute φL
i,j+1/2 and φR

i,j+1/2 as in (3.5) with left and right values
j + 1/2, L and j + 1/2, R instead of j, j + 1. Finally the numerical fluxes (3.10) are
computing as

Fni,j+1/2 := φL
i,j+1/2 max

{
vni,j+1/2, 0

}
+ φR

i,j+1/2 min
{
vni,j+1/2, 0

}
, i = 1, . . . , N.

(4.3)

4.2. Second-order accuracy in time. To obtain second-order accuracy in time,
we propose to use a Runge-Kutta method that consists in writing the vector form
of (3.6) component-wise with (4.3) in the form Φn+1 = Φn + λLλ(Φn) and replace
it by the formula {

Φ(1) = Φn + λLλ(Φn)

Φn+1 = 1
2 (Φn + Φ(1)) + λ

2L
λ/2(Φ(1)).

(4.4)

Here, Lλ/2(Φ(1)) means that φL
i,j+1/2 and φR

i,j+1/2 are computed according to (3.5)
in each component using λ/2 instead of λ. A similar technique is used in [17].
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i 1 2 3 4 5 6 7 8 9 10 11

φ0
i [10

−3] 0.435 3.747 14.420 32.603 47.912 47.762 32.663 15.104 4.511 0.783 0.060

Di[10
−5] 8.769 8.345 7.921 7.497 7.073 6.649 6.225 5.801 5.377 4.953 4.529

di 1.000 0.952 0.903 0.855 0.807 0.758 0.710 0.662 0.613 0.565 0.516

Table 1. Example 1 (MLB model, N = 11): initial concentrations
φ0
i , real and normalized particles sizes Di and di.

From now on, we address as L-NBee-O2 scheme the numerical scheme (4.4)
applied in a component-wise manner with intermediate velocities (4.2), Lagrangian
values φn+1,−

i,j as in (3.9), and numerical fluxes (4.3).

5. Numerical examples

In the subsequent two examples, we solve system (1.1) numerically for 0 ≤
t ≤ T and 0 ≤ x ≤ L and start in each case with an initial condition, i.e.,
Φ0(x) = Φ0 ∈ Dφmax

for x ∈ [0, L]. We compare the numerical results obtained by
the L-NBee and L-NBee-O2 schemes with those obtained by a first-order scheme,
namely Scheme 4 of [7], and a second-order scheme, namely Scheme 10 of [7]. For
each model, the interval [0, 1] of normalized length x/L is subdivided into M subin-
tervals of equal length ∆x. For each iteration, ∆t is determined by the following
formula :

∆t =
∆x

2

(
max

i=1,...,N
max

Φ∈Dφmax

|vi(Φ)|
)−1

.

Reference solutions to compute approximate errors are computed by the WENO-
SPEC-INT scheme introduced in [6] with a fine mesh made of Mref = 12800 cells.
Total approximate L1 errors at different times for each scheme are computed as
follows. Let us denote by (φMj,i(t))

M
j=1 and (φref

l,i (t))Mref

l=1 the numerical solution for
the i-th component at time t calculated with M and Mref cells, respectively. We use
cubic interpolation from the reference grid to the M cells grid to compute φ̃ref

j,i (t)
for j = 1, . . . ,M . We calculate the approximate L1 error in species i by

ei(t) :=
1

M

M∑
j=1

∣∣φ̃ref
j,i (t)− φMj,i(t)

∣∣, i = 1, . . . , N.

The total approximate L1 error at time t is defined as etot(t) := e1(t) + · · ·+ eN (t).

5.1. Example 1 (MLB model N = 11). We consider the classical test [5, 6, 7] of
a settling of a suspension of N = 11 species in a column of (unnormalized) height
L = 0.935 m, the initial concentrations φ0

i , diameters Di, and normalized diameters
di = Di/D1 given in Table 1, the maximum total concentration φmax = 0.641.

In Figures 1 (a) and (b) we display the numerical solution at time T = 230s
obtained with L-NBee-O2 scheme with ∆x = 1/6400. We see that the scheme
capture the transient dynamics of the settling process. For this discretization level,
the shocks and rarefaction waves are adequately approximated by this scheme in
both each species and total concentration.

In Figures 2 (a), (b) and (c) we display details of the numerical solution with
a discretization size ∆x = 1/800 only for species φ1, φ5 and φ7, comparing the
results produced by schemes L-NBee-O2, L-NBee and Scheme 10 with the reference
solution. Shock waves are approximated adequately by L-NBee-O2 scheme and
the approximation is better than that of the L-NBee scheme in the rarefaction
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Figure 1. Example 1 (MLB model, N = 11): (a) numerical so-
lution with L-NBee-O2 scheme at simulated time T = 230 s with
∆x = 1/6400, (b) total concentration.

waves, and is similar to the approximation of the second-order Scheme 10. In
Figure 2 (d) we display L1-errors with respect to different levels of discretization
M = 100, 200, 400, 800, 1600. We observe that errors for L-NBee-O2 are smaller
than for L-NBee and Scheme 10, in particular we observe that the slope of the
interpolation curve in L-NBee-O2 scheme is comparable with respect to second
order Scheme 10 curve.

5.2. Example 2. We consider the MCLWR model (1.1) along with N = 9 and
hindrance function V (φ) = exp(−(φ/φ∗)2/2) with φ∗ = 50[cars/mi] and the nu-
merical test proposed in [16], where φ(x, 0) = φ0(x) describes an isolated platoon
and vmax

i = (52.5 + 7.5i) mi/h, i = 1, . . . , 9. We consider a road of length L = 5 mi,
i.e. we set I := [0, 5] and set Φ0(x) = 0.04p(x)φ0(1, 2, 3, 4, 5, 4, 3, 2, 1)T, where

p (x) =

{
10x for 0 < x ≤ 0.1,

−10(x− 1) for 0.9 < x ≤ 1,

1 for 0.1 < x ≤ 0.9,

0 otherwise.

We set φ0 = 100 cars/mi > φ∗, which leads to a congested regime.
In Figure 3 (a) we display the numerical solution obtained with L-NBee-O2

scheme at time T = 0.028h, the traffic phenomenon is represented adequately by
this scheme. In Figure 3 (b) we display L1-errors versus ∆x. As in Example 1,
we observe that errors for the L-NBee-O2 scheme are smaller than for the L-NBee
scheme and Scheme 10.

6. Conclusion

We have extended the L-NBee schemes proposed in [4, 5] to second-order accu-
racy by using quite standard MUSCL and Runge-Kutta techniques. The proposed
numerical scheme addressed as L-NBee-O2 turns out to be competitive with respect
to second-order schemes in the literature, which is especially interesting for large
values of N .
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Figure 2. Example 1 (MLB model, N = 11): (a, b, c) details of
the numerical solution for different schemes with ∆x = 1/800 only
for species φ1, φ5 and φ7, compared with the reference solution,
(d) total approximate L1-error versus ∆x for different values of M .
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