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Abstract In some AIDS clinical trials, the HIV-1 RNA measurements are collected irregularly
over time and are often subject to some upper and lower detection limits, depending on the quan-
tification assays. Linear and nonlinear mixed-effects models, with modifications to accommodate
censored observations, are routinely used to analyze this type of data (Vaida and Liu, 2009; Matos
et al, 2013a). The paper presents a framework for fitting LMEC/NLMEC with response variables
recorded at irregular intervals. To address the serial correlation among the within-subject errors, a
damped exponential correlation structure is considered in the random error and an EM-type algo-
rithm is developed for computing the maximum likelihood estimates, obtaining as a byproduct the
standard errors of the fixed effects and the likelihood value. The proposed methods are illustrated
with simulations and the analysis of two real AIDS case studies.

Keywords Censored data, EM Algorithm, HIV viral load, Irregularly observed data, Linear/
nonlinear mixed models

1 Introduction

Nowadays, the study of acquired immunodeficiency syndrome (AIDS) and understanding of
the dynamics of the human immunodeficiency virus (HIV) have become the focus of biomedical
and biostatistical research. As mentioned by many researchers, HIV is an extremely dynamic and
variable virus having new subtypes and recombinant forms, about which the scientific community
knows little or nothing. HIV/AIDS clinical trails aim to find new ways to prevent, detect and/or
treat AIDS by determining whether a new anti-retroviral (ARV) agent/therapy is safe and effective
in people. Most of these clinical trials assess the quantitative rates/changes of HIV-1 ribonucleic
acid (RNA) levels in plasma (or simply HIV-1 viral load), since is an important surrogate marker to
assess the risk of disease progression and to monitor response to ARV therapy in routine medical
care of infected patients.

However, modeling HIV-1 viral load presents many challenges from the statistical point of
view. Three are of particular importance. First, the viral load measurements are often left or right
censored (undetected) due to a lower and/or upper detection limit of quantification. This is because
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some quantification assays cannot accurately quantify HIV-1 RNA above/below a specific level.
Particularly, lower detection limits ranging from 400 to 500 RNA copies/mL are considered
for standard assays while the range is 50 to 100 RNA copies/mL for ultra-sensitive assays.
For example, the Amplicor HIV-1 monitor test 1.5 and Nuclisens HIV-1 QT assay consider
a lower detection limit of 400 copies/mL (Antunes et al, 2003), while the Roche Cobas Am-
plicor HIV-1 Monitor test (versions 1 and 1.5) considers a detection limit of 50 HIV-1 RNA
copies/ml and the TaqMan assay, version 1 and 2, considers a lower limit of quantification of
40 and 20 copies/ml respectively (see Swenson et al, 2014).

Second, as a result of unscheduled follow-up visits of patients and/or missed visits, the viral
loads are usually recorded at irregular intervals. As an example of this situation, Ciesielski and
Metler (1997) studied the duration of time between exposure and seroconversion in health-
care workers with occupationally acquired infection with HIV. In this study, the authors
mentioned that “because many of the healthcare workers had follow-up testing at irregular
intervals, with long periods between tests, it was not possible to define precisely when sero-
conversion occurred”. Another example of this situation was reported by Lopes de Azevedo
et al (2010), were a patient diagnosed with HIV-infection in 2003 during her first pregnancy
made follow-up visits at irregular intervals. In this particular case, the antiretrovirals were
given only for prophylaxis of HIV-infection vertical transmission during pregnancy. Finally,
since the viral load is measured longitudinally over time, the between-subject and within-subject
variations have to be taken into account.

Recently, some alternatives for modeling the irregular observation responses and correlations
induced by longitudinal data have been proposed in the statistical literature. These proposals con-
sider not only the correlation structure induced by the random effects term but also by other types
of correlation in the error term. Particularly, Wang (2013) propose a multivariate Student’s-t linear
mixed model for outcome variables recorded on irregular occasions considering a damping expo-
nential correlation (DEC) structure as proposed by Muñoz et al (1992). This correlation structure
takes into account the autocorrelation generated by the within-subject dependence among irregu-
lar occasions. On the other hand, Lin and Wang (2013) consider a multivariate Student’s-t
distribution for nonlinear mixed models with multiple outcomes in presence of missing data.
To capture the serial correlation among the observations, the authors consider a DEC struc-
ture of the error vector. Moreover, Wang and Fan (2011) consider the multivariate Student’s-t
linear mixed with autoregressive of order p (AR(p)) dependence structure for the within-subject
errors in the case of multiple outcomes.

In the case of censored responses, there are several alternatives proposed in the liter-
ature to deal with them. For example, Arellano-Valle et al (2012) extend the classic Tobit
model (Tobin, 1958) by considering a Student’s-t distribution for the error term and propos-
ing an EM-type algorithm for the parameter estimation. More recently, Rocha et al (2015)
propose an errors-in-variable Student’s-t censored model, obtaining the maximum likeli-
hood estimates (MLE) of the model through an EM algorithm, and Müller and Van de
Geer (2015) study a censored linear model for high dimensional data. In the context of
linear/nonlinear mixed-effects (LME/NLME) models, Hughes (1999) proposes a likelihood-
based Monte Carlo EM algorithm (MCEM) for LME with censored responses (LMEC). Wu
(2002) proposes a Monte Carlo EM and a linearization procedure to estimate the parame-
ters of a censored NLME model. In turn, Vaida et al (2007); Vaida and Liu (2009) extend
the work of Hughes, proposing a more efficient EM algorithm than Hughes’s algorithm. An
extended review of these proposals can be found in the book by Wu (2010). Recently, Matos
et al (2013a), Matos et al (2013b) and Matos et al (2015) have proposed a likelihood-based
estimation and influence analysis for LMEC/NLMEC models, respectively.

Moreover, stochastic versions of EM such as Monte Carlo EM (Levine and Casella, 2001),
SAEM (Deylon et al, 1999) and many other approximations have been proposed in the literature
to deal with NLME models under censoring. In fact, Samson et al (2006) propose an extension of
the SAEM algorithm to left-censored data in NLME model. However, to the best of the knowl-
edge there is no work considering irregular observations, damping exponential correlation and
censored longitudinal responses simultaneously in the context of LMEC/NLMEC models using
an exact EM algorithm. Consequently, the aim of this paper is to study the impact of censoring
and irregularly timed observed responses under Gaussian LMEC and NLMEC models.
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For this purpose, we consider the analysis of two AIDS case studies. The first one investi-
gated the effect of a highly active antiretroviral therapy (HAART) in persons with moderately
advanced HIV-1 infection. This case study presented 11% of observations below (left-censored)
the detection limits. The second case study evaluated the immune responses to HIV during acute
infection, presenting about 22% of measurements lying above (right-censored) the limits of assay
quantification. Moreover, in both studies, the viral loads were irregularly measured over time.

The rest of the paper is organized as follows. Section 2 describes the AIDS case studies that
motivate this paper. Section 3 introduces the model (DEC-LMEC) and the likelihood function. In
Section 4, the related likelihood-based inference is presented, including estimation of the random
effects and the expected information matrix. The method for predicting future observations is
presented in Section 5. Section 6 presents the extension to the nonlinear case (DEC-NLMEC).
The application of the proposed method is presented in Sections 7 and 8 through a simulation
study and the analysis of two case studies of HIV viral load. Finally, Section 9 concludes with a
short discussion of issues raised by this study and some possible directions for future research.

2 Case studies

In this section presents the two motivating datasets, which will be analyzed next.

2.1 ACTG 315 data

The ACTG 315 protocol considers 46 HIV-1 infected patients treated with a potent antiretro-
viral drug cocktail based on protease inhibitor ritonavir and reverse transcriptase inhibitor drugs
(zidovudine and lamivudine). Before initiating the antiretroviral therapy, all patients discontinued
their own antiretroviral regimen for five weeks as a “washout" period. The aim of this antiretrovi-
ral regimen is to show that immunity can be partially restored in people with moderately advance
HIV disease.

The viral load was quantified on days 0, 2, 7, 10, 14, 21, 28, 56, 84, 168 and 196 after starting
treatment. The dataset includes 361 observations. An immunologic marker known as CD4+ cell
count was also measured along with viral load and 72 out of 361 (20%) CD4 values were missing
due to a mismatch of the CD4 and the viral load measurement schedules. The number of measure-
ments per subject varied from 4 to 10. Viral load measurements below the detectable threshold
of 100 copies/mL (40 out of 361, 11%) were considered left-censored, and the censoring process
assumed independence of the complete data. The individual profiles are shown in Figure 1 (left
panel).
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Fig. 1 ACTG 315 data. (left panel) Individual profiles (in log10 scale) for HIV viral load at different follow-up
times. Trajectories for some censored individuals are indicated in different colors. (right panel) Variogram from
model residuals using an NLMEC model.
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Figure 1 (right panel) shows the variogram of the residuals under the nonlinear cen-
sored mixed model with independent errors. Note that, it indicates long-term autocorrela-
tion, which may be due a serial autocorrelation beyond the random effect model.

2.2 AIEDRP data

The second AIDS case study is from the AIEDRP program. This program, which is a large
multicenter observational study of subjects with acute and early HIV infection, covers areas such
as the evaluation of immune responses to HIV during acute infection, the assessment of thymic
function and T-cell turnover during acute HIV infection and the assessment of transmission and
prevalence of HIV resistance among treatment-naive subjects. The aim of this study was to help
design future vaccines and to learn the implications of new anti-HIV treatments.
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Fig. 2 AIEDRP data. (left panel) Individual profiles (in log10 scale) for HIV viral load at different follow-up times.
Trajectories for some censored individuals are indicated in different colors. (right panel) Variogram from model
residuals using an NLMEC model.

We consider 320 untreated individuals with acute HIV infection (See Vaida and Liu (2009)
for more details). Of the 830 recorded observations, 185 (22%) were above the limit of assay
quantification. The individual profiles are shown in Figure 2 (left panel).

As in the previous case, Figure 2 (right panel) presents the variogram of the residuals
under the nonlinear censored mixed model with independent errors, showing long-term au-
tocorrelation.

3 Model formulation

In the non-censored case, a Gaussian LME model is specified as follows:

yi = Xib +Zibi + e i, (1)

where bi
iid⇠ Nq(0,D) is independent of e i

ind.⇠ Nni(0,W i), i = 1, . . . ,n; the subscript i is the sub-
ject index; yi = (yi1, . . . ,yini)

> is an ni ⇥ 1 vector of observed continuous responses for subject i
measured at particular time points ti = (ti1, . . . , tni)

>; Xi is the ni ⇥ p design matrix corresponding
to the fixed effects, b , of dimension p⇥ 1; Zi is the ni ⇥ q design matrix corresponding to the
q⇥1 vector of random effects bi; e i of dimension (ni ⇥1) is the vector of random errors; and the
dispersion matrix D = D(a) depends on the unknown and reduced parameters a . The correlation
structure of the error vector is assumed to be W i = s2Ei, where the ni ⇥ni matrix Ei incorporates
a time-dependence structure. Consequently, to capture the serial correlation among irregularly ob-
served longitudinal data, such as the ACTG 315 and AIEDRP datasets, it is necessary to consider
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a parsimonious parameterization of the matrix Ei. Following Muñoz et al (1992), we adopt a DEC
structure for Ei, which is defined as:

Ei = Ei(f , ti) =


f |ti j�tik |f2

1

�
, i = 1, . . . ,n, j,k = 1, . . . ,ni, (2)

where f = (f1,f2)>, the parameter f1 describes the autocorrelation between observations sep-
arated by the absolute length of two time points, and the parameter f2 permits acceleration of
the exponential decay of the autocorrelation function, defining a continuous-time autoregressive
model.

For practical reasons, the parameter space of f1 and f2 is confined within F = {(f1,f1) : 0 <
f1 < 1, f2 > 0}. It is important to stress that different values of the damping parameter f2 produce
a variety of correlation structures for a given value of f1 > 0, as follows: (a) if f2 = 0, then Ei
generates the compound symmetry correlation structure; (b) when 0 < f2 < 1, then Ei presents a
decay rate between the compound symmetry structure and the first-order AR (AR (1)) model; (c) if
f2 = 1, then Ei generates an AR(1) structure; (d) when f2 > 1, Ei presents a decay rate faster than
the AR(1) structure; and (e) if f2 ! •, then Ei represents the first-order moving average model,
MA(1). A more detailed discussion of the DEC structure presenting more complex scenarios of
the parameter space F can be found in Muñoz et al (1992).

As mentioned earlier, the proposed model also considers censored observations, i.e., we as-
sume that the response Yi j is not fully observed for all i, j. Let (Vi,Ci) be the observed data for
the i-th subject, where Vi represents the vector of uncensored readings or censoring level and Ci
is the vector of censoring indicators, such that

yi j  Vi j if Ci j = 1,
yi j = Vi j if Ci j = 0. (3)

Note that since the observed response yi j is defined over the real line, extensions to right
censored data are straightforward. In fact, the right censored problem can be represented by a left
censored problem by simultaneously transforming the response yi j and censoring level Vi j to �yi j
and �Vi j. The model defined in (1)-(3), is henceforth called DEC-LMEC.

3.1 The log-likelihood function

Following Vaida and Liu (2009), classic inference on the parameter vector q =(b>,s2,a>,f>)>

is based on the marginal distribution of yi. For complete data, the marginal distribution of the vec-
tor yi, for i = 1, . . . ,n is Nni(Xib ,S i), where S i = W i +ZiDZ>

i . The strategy followed to compute
the likelihood function associated with model (1) and (2) is to treat separately the observed and
censored components of yi.

Let yo
i be the no

i -vector of observed outcomes and yc
i be the nc

i -vector of censored observations
for subject i with (ni = no

i +nc
i ) such that Ci j = 0 for all elements in yo

i , and Ci j = 1 for all elements
in yc

i . After reordering, yi, Vi, Xi, and S i can be partitioned as follows:

yi = vec(yo
i ,yc

i ), Vi = vec(Vo
i ,Vc

i ), X>
i = (Xo

i ,Xc
i ) and S i =

✓
S oo

i S oc
i

S co
i S cc

i

◆
.

In this setup, the operator vec(·) denotes the function with stack vectors or matrices of the same
number of columns. Consequently, from the marginal-conditional decomposition of the multi-
variate normal distribution, yo

i ⇠ Nno
i
(Xo

i b ,S oo
i ) and yc

i |yo
i ⇠ Nnc

i
(µ i,Si), where µ i = Xc

i b +

S co
i (S oo

i )�1(yo
i �Xo

i b ) and Si = S cc
i �S co

i (S oo
i )�1S oc

i . Now, let Fni(u;a,A) and fni(u;a,A) be
the cdf (left tail) and pdf, respectively, of Nni(a,A) computed at vector u. From Vaida and Liu
(2009) and Matos et al (2013a), the likelihood function for subject i (using conditional probability
arguments) is given by:

Li(q) = f (yc
i  Vc

i |yo
i = Vo

i ,q) f (yo
i = Vo

i |q),
= f (yc

i  Vc
i |yo

i ,q) f (yo
i |q)

= Fnc
i
(Vc

i ; µ i,Si)fno
i
(yo

i ;Xo
i b ,S oo

i ), (4)
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which can be easily evaluated computationally.
The log-likelihood function for the observed data, given by

`(q |y) =
n

Â
i=1

{logLi(q)},

is used to compute different model selection criteria, such as:

AIC = 2m�2`max and BIC = mlogN �2`max,

where m is the number of model parameters, N = Ân
i=1 ni and `max is the maximized log-likelihood

value.

4 The EM algorithm

This section describes in detail how the proposed model specified in (1)-(3) can be fitted by
using the ECM algorithm (Meng and Rubin, 1993). The EM algorithm (proposed originally by
Dempster et al (1977)) has several appealing features, such as stability of monotone convergence
with each iteration, increasing the likelihood and simplicity of implementation. Due to the com-
putational difficulty at the M-step, we use the ECM algorithm (an extension of the EM algorithm),
which shares the appealing features of the EM and presents faster convergence than the original
algorithm.

Let y = (y>1 , . . . ,y>n )>, b = (b>
1 , . . . ,b>

n )
>, V = vec(V1, . . . ,Vn) and C = vec(C1, . . . ,Cn).

Considering b as the hypothetical missing data, the complete data are denoted by

yc = (C>,V>,y>,b>)>.

Hence, the ECM algorithm is applied to the complete data log-likelihood function:

`i(q |yc) = �1
2


ni logs2 + log(|Ei|)+

1
s2 (yi �Xib �Zibi)

>E�1
i (yi �Xib �Zibi)

+ log |D|+b>
i D�1bi

i
+K, (5)

with K being a constant that does not depend on the parameter vector q . Given the current estimate
q = bq

(k)
, the E-step calculates the conditional expectation of the complete data log-likelihood

function, given by:

Q
✓

q |bq
(k)
◆

= E

`c(q |yc)|Q,C,bq

(k)
�

=
n

Â
i=1

Q1i

✓
b ,s2|bq

(k)
◆
+

n

Â
i=1

Q2i

✓
a|bq

(k)
◆
,

where

Q1i

✓
b ,s2,f |bq

(k)
◆

= �ni

2
logcs2

(k)
� 1

2
log(|bE(k)

i |)� 1

2cs2
(k)

h
ba(k)i (bf (k)

)

�2bb
(k)>

X>
i
bE�1(k)

i

⇣
by(k)i �Zibb(k)

i

⌘
+ bb

(k)>
X>

i
bE�1(k)

i Xi
bb
(k)
�
, (6)

Q2i

✓
a|bq

(k)
◆

= �1
2

log |bD(k)|� 1
2

tr
✓
dbib>

i

(k)bD�1(k)
◆
, (7)

and ba(k)i (f) = tr
✓
dyiy>i

(k)
E�1

i �2dyib>
i

(k)
Z>

i E�1
i + dbib>

i

(k)
Z>

i E�1
i Zi

◆
,

bbi
(k)

= E
⇢

bi|Vi,Ci,bq
(k)
�
= bj(k)

i (byi
(k)�Xi

bb
(k)
),

dbib>
i

(k)
= E

n
bib>

i |Vi,Ci, bq
(k)

}

= bL
(k)
i + bj(k)

i (dyiy>i
(k)

� byi
(k)bb

(k)>
X>

i �Xi
bb
(k)
byi
(k)>+Xi

bb
(k)bb

(k)>
X>

i )bj
(k)>
i ,

dyib>
i

(k)
= E{yib>

i |Vi,Ci,bq
(k)
}= (dyiy>i

(k)
� byi

(k)bb
(k)>

X>
i )bj

(k)>
i ,
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with bL
(k)
i = (bD�1(k) +Z>

i
bE�1(k)

i Zi/cs2
(k)
)�1 and bj(k)

i = bL
(k)
i Z>

i
bE�1(k)

i /cs2
(k)

.
It is easy to see from (6) and (7) that the E-step reduces only to the computation of

dyiy>i
(k)

= E{yiy>i |Vi,Ci,bq
(k)
} and byi

(k) = E{yi|Vi,Ci,bq
(k)
}.

These conditional expectations rely on the first and second moments of a multivariate truncated
normal distribution and can be determined in closed-form (for more details on the computation of
these moments see Vaida and Liu (2009)).

The conditional maximization step (CM) conditionally maximizes Q(q |bq
(k)
) with respect to

q obtaining a new estimate bq
(k+1)

, as follows:

bb
(k+1)

=

 
n

Â
i=1

X>
i
bE�1(k)

i Xi

!�1 n

Â
i=1

X>
i
bE�1(k)

i

⇣
byi
(k)�Zi bbi

(k)⌘
, (8)

cs2
(k+1)

=
1
N

n

Â
i=1


ba(k)i �2bb

(k+1)>
X>

i
bE�1(k)

i

⇣
byi
(k)�Zi bbi

(k)⌘

+bb
(k+1)>

X>
i
bE�1(k)

i Xi
bb
(k+1)

�
, (9)

bD(k+1) =
1
n

n

Â
i=1

dbib>
i

(k)
, (10)

f (k+1) = argmax
f2(0,1)⇥R+

 
�1

2
log(|Ei|)�

1

2cs2
(k+1)

h
ba(k)i (f)

�2bb
(k+1)>

X>
i E�1

i

⇣
by(k)i �Zibb(k)

i

⌘
+ bb

(k+1)>
X>

i E�1
i Xi

bb
(k+1)

�◆
.

(11)

4.1 Estimation of random effects and standard errors

To estimate the random effects, we consider the conditional mean of bi given the observed data
Vi and Ci, that is, E{bi|Vi,Ci}. Thus, for a given value of q = (b>,s2,a>,f>)>, the conditional
mean of bi given Vi and Ci is:

bbi(q) = E{bi|Vi,Ci}= j i(byi �Xib ), (12)

where j i =L iZ>
i E�1

i /s2 and L i = (D�1+Z>
i E�1

i Zi/s2)�1. Note that byi = E{yi|Qi,Ci} is given
by the first moment of a multivariate truncated normal distribution. In practice, the estimator of
bi, bbi, can be obtained by substituting the ML estimate bq into (12), leading to bbi = bbi(bq). On the
other hand, the conditional covariance matrix of bi given Vi and Ci is:

Var{bi|Qi,Ci}= E{bib>
i |Qi,Ci}�bbi(q)bbi(q)> = L i +j iVar(yi|Vi,Ci)j>

i .

Note that Var(yi|Vi,Ci) can be easily obtained as a byproduct of the proposed ECM algorithm
developed in Section 4.

The empirical information matrix

Following Lin (2010), we compute the asymptotic covariance of the ML estimates through the
empirical information matrix, which is computed as (Meilijson, 1989):

Ie(q |y) =
n

Â
i=1

s(yi | q)s>(yi | q)� 1
n

S(yi | q)S>(yi | q), (13)
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where S(yi | q) = Ân
i=1 s(yi | q) and s(yi | q) is the empirical score function for the subject i.

According Louis (1982), it is possible to relate the score function of the incomplete data log-
likelihood with the conditional expectation of the complete data log-likelihood function. There-
fore, the individual score can be determined as

s(yi | q) = ∂ log f (yi | q)
∂q

= E
✓

∂`i(q | yc)

∂q
| Vi,Ci,q

◆
, (14)

where `i(q | yc) is the complete data log-likelihood formed from the observation i. Using the ML
estimates bq , that is, S(yi | bq) = 0, it follows that (13) can be approximated by:

Ie(bq | y) =
n

Â
i=1
bsibs>i , (15)

where bsi = s(yi | bq) =
✓
bs>

i,b ,bsi,s2 ,bs>i,a ,bs>
i,f

◆>
has elements given by

bsi,b = (bsi,b1 , . . . ,bsi,bp)
> =

1
cs2

h
X>

i
bE�1

i

⇣
byi �Zi bbi

⌘
�X>

i
bE�1

i Xi
bb
i
,

bsi,s2 = � ni

2cs2
+

1

2cs4


bai �2bb

>
X>

i
bE�1

i

⇣
byi �Zibbi

⌘
+ bb

>
X>

i
bE�1

i Xi
bb
�
,

bsi,a = (bsi,a1 , . . . ,bsi,ar )
>,

bsi,f = (bsi,f1 ,bsi,f2)
>,

with bai = tr
⇣dyiy>i bE

�1
i �2dyib>

i Z>
i
bE�1

i + dbib>
i Z>

i
bE�1

i Zi

⌘
,bsi,ar =� 1

2 tr
⇣
bD�1Ḋ(r)bD�1(bD� dbib>

i )
⌘

,

bsi,fs =
1

2cs2

h
tr
⇣dyiy>i bE

�1
i Ėi(s)bE

�1
i �2dyib>

i Z>
i
bE�1

i Ėi(s)bE
�1
i + dbib>

i Z>
i
bE�1

i Ėi(s)bE
�1
i Zi

⌘

�2bb
>

X>
i
bE�1

i Ėi(s)bE
�1
i

⇣
byi �Zibbi

⌘
+ bb

>
X>

i
bE�1

i Ėi(s)bE
�1
i Xi

bb
�
� 1

2
tr
⇣
bE�1

i Ėi(s)
⌘
,

where Ḋ(r) = ∂D
∂ar

|a= ba , r = 1, . . . ,dim(a); and Ėi(s) =
∂Ei
∂fs

|f=bf , s = 1,2. For the DEC structure
we have that

∂Ei

∂f1
= |ti j � tik|f2 f |ti j�tik |f2�1

1 ,

∂Ei

∂f2
= |ti j � tik|f2 log(|ti j � tik|) log(f1)f

|ti j�tik |f2

1 .

5 Prediction of future observations

The problem related to the prediction of future values has a great impact in many practical
applications. Rao (1987) pointed out that the predictive accuracy of future observations can be
taken as an alternative measure of “goodness-of-fit”. In order to propose a strategy to generate
predicted values from the DEC-LMEC model, we use the approach proposed by Wang (2013).
Thus, let yi,obs be an observed response vector of dimension ni,obs ⇥1 for a new subject i over the
first portion of time and yi,pred be the corresponding ni,pred ⇥ 1 response vector over the future
portion of time. Let X̄i = (Xi,obs,Xi,pred) be the (ni,obs +ni,pred)⇥ p design matrix corresponding
to ȳi = (y>i,obs,y>i,pred).

To deal with the censored values existing in yi,obs, we use the imputation procedure, by replac-
ing the censored values by byi = E{yi|Vi,Ci,bq} obtained from the EM algorithm. Therefore, when
the censored values are imputed, a complete data set, denoted by yi,obs⇤ , is obtained. The reason
to use the imputation procedure is that it avoids computing truncated conditional expectations of
the multivariate normal distribution originated by the censoring scheme. Hence, we have that

ȳ⇤i =
⇣

y>i,obs⇤ ,y>i,pred

⌘>
⇠ Nni,obs+ni,pred (Xib ,S i) ,
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where the matrix S i, can be represented by S i =

 
S obs⇤,obs⇤

i S obs⇤,pred
i

S pred,obs⇤
i S pred,pred

i

!
. As mentioned in Wang

(2013), the best linear predictor of yi,pred with respect to the minimum mean squared error (MSE)
criterion is the conditional expectation of yi,pred given yi,obs⇤ , which is given by:

byi,pred(q) = Xi,predb +S pred,obs⇤
i S obs⇤,obs⇤�1

i

�
yi,obs⇤ �Xi,obs⇤b

�
. (16)

Therefore, yi,pred can be estimated directly by substituting bq into (16), leading to \byi,pred =byi,pred(bq).

6 The nonlinear case

As mentioned in the Introduction, some approximations based on the EM algorithm have been
proposed in the statistical literature to deal with NLME models. In this context, we use an approx-
imation of the nonlinear functions mentioned by Vaida and Liu (2009). It is important to stress
that this approximation (18) was considered by Matos et al (2013a) in the context of censored
nonlinear mixed effects models. In that paper, simulation studies revealed that the approximation
can efficiently estimate the model parameters. Recently, Wang (2013) used this approximation to
implement an ECM algorithm to carry out ML estimation in Student’-t nonlinear mixed-effects
models for multi-outcome longitudinal data with missing values. Consequently, we conclude that
this approximation is robust, stable, and does not anticipate any severe consequences in inference
when applied to other types of (censored) nonlinear models.

The NLME (without censoring) of Pinheiro and Bates (2000) is defined as:

yi = h(y i,Xi)+ e i, y i = Aib +Bibi, i = 1, . . . ,n, (17)

where bi
iid⇠ Nq(0,D) and e i

ind⇠ Nni(0,s2Ei) are independent; yi is an (ni ⇥ 1) vector of observed
responses for subject i; h is a nonlinear function of the individual random parameter y i; Ai and
Bi are known design matrices of dimensions r⇥ p and r⇥q, respectively, possibly depending on
some covariate values; b is the (p⇥1) vector of fixed effects and bi is the (q⇥1) vector of random
effects.

As mentioned by Vaida and Liu (2009), the linearization (L) procedure to obtain the approxi-
mate MLE of q = (b>,s2,a>,f>)> involves taking the first-order Taylor expansion of hi around
the current parameter estimate eb and the random effect estimates ebi (empirical predictors). This
procedure is equivalent to iteratively solving the following LME model (L-step):

eYi =fWib + eHibi + e i, i = 1, . . . ,n, (18)

where bi
iid⇠ Nq(0,D) and e i

ind⇠ Nni(0,s2Ei); and eYi = Yi �h(y(eb ,ebi),Xi), with

eHi =
∂h(Aib +Bibi,Xi)

∂b>
i

|bi=ebi
and fWi =

∂h(Aib +Bibi,Xi)

∂b>
i

|b i=
eb i
.

Thus, in the censored case, the model in (18) is an LME with censored data that can be fitted using
the strategy explained in Section 4. The model matrices in (18) depend on the current parameter
value, and need to be recalculated at each iteration. The algorithm iterates between the L-, E- and
CM-steps until convergence.

7 Analysis of case studies

This section illustrates the performance of the proposed methods with the analysis of two HIV
datasets, previously analyzed by Wu (2002) and Vaida and Liu (2009), respectively.
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7.1 ACTG 315 data

Here we reanalyze the HIV viral load data from clinical trial ACTG 315 Wu (2002), con-
sidering four different correlation structures, namely the uncorrelated structure (UNC), damped
exponential correlation (DEC), continuous-time autoregressive of order 1 (AR(1)) and compound
symmetric structure (SYM). As mentioned in Section 2, the dataset consists of 46 HIV-1 infected
patients treated with a potent ARV therapy. The viral load was repeatedly quantified on days 0,
2, 7, 10, 14, 21, 28, 56, 84, 168, and 196 after start of treatment, with a total of 361 observa-
tions. The viral load detectable limit is 100 copies/mL, and 40 out of 361 (11%) of all viral load
measurements are below the detection limit. Wu and Ding (1999) proposed the use of a biphasic
model:

V (t) = ej1�j2t + ej3�j4t , (19)

where V (t) is the viral load at time t. The parameters j2 and j4 are called the first and second
phase viral decay rates, which can represent the minimum turnover rate of productively infected
cells and that of latently or long-lived infected cells, respectively. The parameters j1 and j3 are
macro-parameters and ej1 + ej3 is the baseline viral load at time t = 0.

As noted by Wu and Ding (1999), the inter-subject variation of observed viral loads motivates
the use of a NLME model. The viral load trajectories initially exhibit rapid decay (known as first-
phase decay), followed by a phase of slow decay for some (the second-phase) with the others
rebounding back to the original levels Liu and Wu (2012). Therefore, following Wu (2002) we
consider the following NLME model to reflect the dynamics of the HIV viral load:

yi j = log10(e
j1i�j2iti j + ej3i�j4i jti j )+ ei j, (20)

b1i j = j1i = b1 +b1i, b3i j = j3i = b3 +b3i, (21)
b2i j = j2i = b2 +b2i, b4i j = j4i j = b4 +b5CD4i j +b4i, (22)

where yi j is the log10-transformation of the viral load for the ith subject at time ti j (i= 1,2, . . . ,n, j =
1,2, . . . ,ni) and e i = (ei1, . . . ,eini)

> represents the vector of within-individual random errors;
CD4i j indicates the observed CD4 values up to time ti j; b i j = (b1i j,b2i j,b3i j,b4i j)> and b =

(b 1, . . . ,b 5)
> are individual parameters for the i-th subject at time ti j and population parameters,

respectively and bi = (b1i, . . . ,b4i)> is the random effects vector for subject i.

Table 1 ACTG 315 data. Model selection criteria for the NLMEC model under different correlation structures.

NLMEC

Criteria UNC DEC AR(1) SYM

`max -281.31 -255.83 -264.99 -279.33
AIC 594.61 547.66 563.97 592.66

AIC corr 596.19 549.66 565.76 594.45
BIC 656.83 617.66 630.08 658.77

The values of `max, AIC and BIC for the four considered models are presented in Table 1.
Note that, based on these criteria, the model presenting the best fit is the model with a damped
exponential correlation structure (DEC). Further, the likelihood ratio test (LRT) for the hy-
pothesis H0 : f2 = 1 and H1 : f2 6= 1 is performed. The resulting LRT statistic is 18.32 with
p-value 0.00002, which is significant compared to c2

1,0.05, suggesting that the DEC structure
is more appropriate than the AR(1) for modeling the dependence among the within-subject
errors. Figure 3 shows some individual profiles (in log10 scale) for HIV viral load at different
follow-up times and the smooth means of residuals from model fits.

ML estimates corresponding to the best model are presented in Table 2. Using these estimates,
one can quantify the population decay rates and viral load parameters. The first- and second-
phase decay rates can be approximated as bj2 = 31.549 and bj4(t) = �0.994+ 0.612CD4. The
population viral load process can be represented as bV (t) = exp{11.552� bj2(t)t}+ exp{6.861�
bj4(t)t}. The SE for the parameters estimates are obtained using the empirical information
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matrix (Section 4.1). Finally, using a bootstrap procedure, one can conclude that all the fixed-
effects considered in the model are statistically significant at a = 0.05.

Table 2 ACTG 315 data. ML estimates with standard errors for the NLMEC model under DEC structure.

Fixed effects Between-subject variances Within-subject variances

Parameter Estimative SE Parameter Estimative SE Parameter Estimative SE

b1 11.552 0.266 a11 0.155 0.045 s 2 0.407 0.094
b2 31.549 0.040 a12 -0.808 0.127 f1 0.188 0.152
b3 6.861 0.325 a22 5.753 0.045 f2 0.647 0.084
b4 -0.994 0.810 a13 0.020 0.099
b5 0.612 0.195 a23 0.110 0.114

a33 0.258 0.215
a14 -0.714 0.11
a24 4.625 0.069
a34 0.598 0.121
a44 5.654 0.03
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Fig. 3 ACT315 data. (left panel) Individual profiles (in log10 scale) for HIV viral load at different follow-up times
for some subjects, the dashed line are the respective fitted profile. (right panel) Smooth means of residuals from
model fits. The residuals from the model with autoregressive of order 1 correlation appear as points.

7.2 AIEDRP data

The second case study is taken from the AIEDRP program, a large multicenter observational
study of subjects with acute and early HIV infection, which consist of 320 untreated individuals
with acute HIV infection. Of the 830 recorded observations, 185 (22%) were above the limit of
assay quantification. Therefore, in the spirit of Vaida and Liu (2009), we consider a right-censored
five-parameter NLME model (inverted S-shaped curve) as follows:

yi j = l1i +
l2

1+ exp((ti j �l3)/l4)
+l5i(ti j �50)+ ei j, (23)

where yi j is the log10 of the viral load for subject i at time ti j. The parameters l1i and l2 represent
the subject-specific set-point value and decrease from the maximum HIV-1 RNA. The location
parameter l3 indicates the time point at which half of the change in HIV-1 RNA is attained, l4 is a
scale parameter modeling the rate of decline and l5i allows increasing the HIV-1 RNA trajectory
after day 50. The reparameterization given by b1i = log(l1i) = b1 +b1i; bk = log(lk), k = 2,3,4,
and l5i = b5 +b2i is adopted to assure positive values for the model parameters.

As in Section 7.1, the correlation structures UNC, DEC, AR(1) and SYM are considered. Table
3 summarizes the values of `max, AIC and BIC for all considered models. Note that the values of
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Table 3 AIEDRP data. Model selection criteria for the NLMEC model under different correlation structures.

LMEC

Criteria UNC DEC AR(1) SYM

`max -783.79 -769.81 -770.10 -775.62
AIC 1585.59 1561.63 1560.19 1571.25

AIC corr 1585.81 1561.95 1560.46 1571.52
BIC 1628.08 1613.56 1607.41 1618.46

`max for the DEC and AR(1) models are close. This is explained because the estimated values of
f1 and f2 under the DEC model are 0.83 and 1.15 respectively. Based on this observation and the
criteria, the best (parsimonious) fit is obtained using the continuous-time autoregressive of order 1
correlation (AR(1)). The likelihood ratio test (LRT) for testing the hypothesis H0 : f2 = 1 and
H1 : f2 6= 1 are also performed. The resulting LRT statistic is 0.58. with p-value 0.446, which
is not significant compared to c2

1,0.05, suggesting that the AR(1) structure is more appropriate
than the DEC for modeling the dependence among the within-subject errors. Moreover, the
model fit of the AR(1) (and DEC) model is slightly better than the SYM model, with the smooth
mean residual curve in Figure 3 (right panel) always being closer to zero.

The ML estimates under this model are presented in Table 4. As in the previous case, the
SE for the parameters estimates are obtained using the empirical information matrix. One
can use the AR(1) model with reasonable confidence for predictions of viral load. For example,
at 6 months since infection, the average viral load is 4.537 log10 units. The individual 6-month
viral load estimates vary between 1.794 and 6.469, with 5th and 95th quantiles at 3.466 and 5.549.
The average slope after day 50 is negative, b5i = �0.004 log10HIV/day, with 95% CI(-0.006,-
0.002). And, for the individual slopes a5i the 5th and 95th quantiles are -0.0061 and -0.0015. We
performed a bootstrap procedure for hypothesis test for the significance of the fixed-effects
(a = 0.05), concluding that all of them are statistically significant (different from zero).

Table 4 AIEDRP data. ML estimates with standard errors for the NLMEC model under AR(1) structure.

Fixed effects Between-subject variances Within-subject variances

Parameter Estimative SE Parameter Estimative SE Parameter Estimative SE

b1 1.614 0.011 a11 0.01658 0.00307 s 2 0.308 0.024
b2 0.128 0.003 a12 0.00020 0.00016 f1 0.808 0.033
b3 3.516 0.025 a22 0.00003 0.00001
b4 1.118 0.001
b5 -0.004 0.001
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Fig. 4 AIEDRP data. (Left panel) Individual profiles (in log10 scale) for HIV viral load at different follow-up times
with the model fits. (Right panel) Smooth means of residuals from model fits. The residuals from the model with
autoregressive of order 1 correlation appear as points.
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8 Simulation Studies

In order to examine the performance of the proposed method, here we report three sim-
ulation studies to investigate: (a) the consequences for parameter estimation (b) the behavior
of the prediction when the correlation structure of the error term is misspecified, and (c) the
asymptotic behavior of the parameter estimates. For this purpose and simplicity reasons, we
consider a logistic model similar to that studied in Section 7.2, with random set-points l1i and
random decline rates l4i, as follows:

yi j = l1i +
l2

1+ exp((ti j �l3)/l4i)
+ ei j, (24)

with i = 1, . . . ,100, j = 1, . . . ,10, a1i = exp(b1 +b1i), bk = log(lk), k = 2,3, l4i = exp(b4 +b2i),
(b1i,b2i)

ind.⇠ N2 (0,D), and ei j
ind.⇠ Nni(0,W i).

The parameters are set at b = (1.6094,0.6931,3.8067,2.3026)>, s2 = 0.55, and D with ele-
ments a11 = 0.05 and a22 = 0.1.

For the first study, we simulated several datasets considering different values of the parameter
f1 under the correlation structure AR(1), with the aim to discover the effect of the correlation level
on the estimation. For each value of f1, we simulated 100 datasets. In addition, we considered
5% and 20% of censored observations for each value of f1. Once the simulated datasets were
generated, we fitted the proposed model assuming the uncorrelated (UNC) and AR(1) structures.
The model selection criteria (AIC and BIC) as well as the estimates of the model parameters were
stored for each simulation. Summary statistics such as the mean estimate (MC mean), the
mean of the approximate standard error obtained through the information-based method
described in Section 4.1 (IM SE), the empirical standard error (MC Sd) and the coverage
probability at 95% (MC CP) are presented in Tables 5 and 6.

From the results shown in Tables 5 and 6, one can observe that when the AR(1) is chosen as the
true model, the MC CP values are higher than those obtained under the uncorrelated model, even
when the correlation parameter f1 is small (0.3). Moreover, the biases of fixed effects estimates
under the AR(1) structure are lower than those obtained under the uncorrelated structure (see
Figures 5 and 6) for different values of the f1 parameter. The model selection criteria chose the
true model (AR(1)) for moderate values of the f1 parameter (greater than 0.5) for the two levels
of censoring considered.

The second simulation study analyzes the performance of the prediction of future values de-
scribed in Section 5. For this purpose, we compared the prediction of the NLMEC model in (24)
under the UNC and AR(1) structures. As in the first study, we generated 100 datasets of size
n = 100 under AR(1) structure with parameter f1 = 0.9, considering two different settings of
censoring proportions, say 5% and 20%. For the prediction, we excluded the last two measure-
ments of each simulated individual in the datasets. To compare the performance of the prediction,
we considered two empirical discrepancy measures, namely the MAE (mean absolute error) and
MSE (mean square error). These measures are given by:

MAE =
1

200 Â
i, j
|yi j � y?i j| and MSE =

1
200 Â

i, j
(yi j � y?i j)

2, (25)

where yi j is the original value and y?i j is the predicted value, for i = 1, . . . ,100 and j = 1, . . . ,2.
Table 7 shows the comparison between the predicted values and real ones under the NLMEC
model considering the UNC and AR(1) structures. One can see from these results that the model
with AR(1) structure generates predictive values close to the real ones.

Finally, we analyzed the absolute bias (Bias) and mean square error (MSE) of the fixed-
effects and variance components estimates obtained from the DEC-LMEC model with dif-
ferent sample sizes. The idea of this simulation is to provide empirical evidence about the
consistency of the ML estimates. The bias and MSE measures are defined as:

Bias = 1
J

J

Â
j=1

|bq
( j)
i �q i| and MSE =

1
J

J

Â
j=1

✓
bq
( j)
i �q i

◆2
, (26)

where bq
( j)
i is the ML estimate of the parameter qi for the j-th sample, j = 1, . . . ,J.



14 Larissa A. Matos et al.

Table 5 5% censored. Summary statistics based on 100 simulated AR(1) samples.

Parameter estimates Criteria

f1 Corr. Structure b1 b2 b3 b4 s 2 MC AIC MC BIC

0.3 UNC MC Mean 1.67 0.53 3.73 2.11 0.55 3020 3056
IM SE 0.04 0.11 0.05 0.20
MC Sd 0.02 0.07 0.03 0.15
MC CP 79% 78% 66% 89%

AR(1) MC Mean 1.61 0.71 3.83 2.27 0.55 3024 3065
IM SE 0.12 0.22 0.10 0.26
MC Sd 0.10 0.22 0.10 0.27
MC CP 84% 88% 94% 91%

0.5 UNC MC Mean 1.66 0.54 3.74 2.12 0.55 3015 3050
IM SE 0.04 0.11 0.05 0.20
MC Sd 0.02 0.07 0.03 0.16
MC CP 82% 80% 67% 91%

AR(1) MC Mean 1.60 0.71 3.83 2.27 0.55 3018 3058
IM SE 0.12 0.23 0.10 0.26
MC Sd 0.11 0.23 0.10 0.27
MC CP 84% 88% 93% 91%

0.6 UNC MC Mean 1.66 0.56 3.74 2.16 0.54 3004 3039
IM SE 0.04 0.11 0.05 0.20
MC Sd 0.02 0.08 0.03 0.17
MC CP 82% 86% 69% 92%

AR(1) MC Mean 1.60 0.71 3.83 2.27 0.55 3003 3044
IM SE 0.13 0.23 0.10 0.26
MC Sd 0.12 0.23 0.10 0.28
MC CP 84% 88% 93% 91%

0.7 UNC MC Mean 1.65 0.62 3.73 2.27 0.52 2978 30134
IM SE 0.04 0.11 0.05 0.19
MC Sd 0.02 0.09 0.03 0.18
MC CP 90% 91% 68% 94%

AR(1) MC Mean 1.59 0.72 3.84 2.27 0.55 2962 3002
IM SE 0.20 0.25 0.11 0.28
MC Sd 0.17 0.25 0.11 0.29
MC CP 84% 88% 91% 92%

0.8 UNC MC Mean 1.62 0.75 3.74 2.51 0.47 2912 2948
IM SE 0.04 0.10 0.04 0.17
MC Sd 0.03 0.08 0.05 0.17
MC CP 99% 96% 50% 76%

AR(1) MC Mean 1.60 0.72 3.84 2.27 0.55 2840 2881
IM SE 0.17 0.25 0.11 0.29
MC Sd 0.14 0.25 0.11 0.30
MC CP 84% 88% 93% 91%

0.9 UNC MC Mean 1.60 0.90 3.73 2.77 0.36 2673 2708
IM SE 0.03 0.07 0.03 0.14
MC Sd 0.04 0.09 0.06 0.16
MC CP 95% 17% 13% 12%

AR(1) MC Mean 1.61 0.70 3.83 2.26 0.53 2453 2493
IM SE 0.12 0.21 0.09 0.26
MC Sd 0.11 0.22 0.10 0.28
MC CP 83% 88% 94% 91%

The censoring proportion was fixed at 10% and different sample sizes were considered,
say, n = 50,100,200,400 and 600. Also we considered J = 100, i.e. we simulated 100 samples
of size n. For this simulation, an AR (1) structure with parameter f1 = 0.8 was considered.

Figures 7 and 8 show that the MSE of the parameter estimates of b , s2 and a tends to
zero as the sample size increase. Note that, similar results are obtained after the analysis of
the absolute bias. In conclusion, the results provide empirical evidence about the consistency
of the ML estimates of the DEC-LMEC model even considering the linearization procedure
described in (18).

9 Conclusions

The paper proposes a mixed effects model with censored observations based on the multivari-
ate normal distribution. A DEC structure as proposed by Muñoz et al (1992) to model the auto-
correlation existing among irregularly observed measures was adopted. This structure is flexible,
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Table 6 20% censored. Summary statistics based on 100 simulated AR(1) samples.

Parameter estimates Criteria

f1 Corr. Structure b1 b2 b3 b4 s 2 MC AIC MC BIC

0.3 UNC MC Mean 1.67 0.50 3.72 2.08 0.55 2796 2832
IM SE 0.04 0.12 0.05 0.21
MC Sd 0.02 0.07 0.03 0.16
MC CP 68% 69% 63% 87%

AR(1) MC Mean 1.59 0.72 3.84 2.28 0.55 2800 2841
IM SE 0.23 0.26 0.11 0.27
MC Sd 0.19 0.26 0.12 0.28
MC CP 87% 90% 92% 91%

0.5 UNC MC Mean 1.67 0.51 3.72 2.09 0.54 2791 2827
IM SE 0.04 0.12 0.05 0.21
MC Sd 0.02 0.07 0.03 0.16
MC CP 76% 73% 63% 87%

AR(1) MC Mean 1.60 0.71 3.83 2.27 0.55 2794 2835
IM SE 0.17 0.25 0.11 0.27
MC Sd 0.15 0.25 0.11 0.27
MC CP 87% 90% 92% 91%

0.6 UNC MC Mean 1.67 0.52 3.72 2.12 0.54 2781 2816
IM SE 0.04 0.12 0.05 0.21
MC Sd 0.02 0.08 0.03 0.18
MC CP 78% 77% 64% 88%

AR(1) MC Mean 1.60 0.71 3.83 2.27 0.55 2780 2821
IM SE 0.19 0.26 0.11 0.28
MC Sd 0.16 0.25 0.11 0.28
MC CP 87% 90% 91% 92%

0.7 UNC MC Mean 1.66 0.58 3.72 2.22 0.52 2757 2792
IM SE 0.04 0.12 0.05 0.20
MC Sd 0.02 0.09 0.04 0.20
MC CP 85% 87% 67% 92%

AR(1) MC Mean 1.59 0.72 3.83 2.27 0.55 2742 2783
IM SE 0.20 0.27 0.12 0.29
MC Sd 0.17 0.26 0.11 0.28
MC CP 86% 90% 91% 94%

0.8 UNC MC Mean 1.63 0.71 3.72 2.48 0.48 2703 2739
IM SE 0.04 0.11 0.04 0.18
MC Sd 0.03 0.09 0.06 0.21
MC CP 96% 99% 45% 80%

AR(1) MC Mean 1.62 0.68 3.82 2.24 0.55 2637 2677
IM SE 0.11 0.23 0.10 0.29
MC Sd 0.10 0.21 0.09 0.27
MC CP 86% 89% 93% 94%

0.9 UN MC Mean 1.61 0.85 3.72 2.73 0.36 2484 2520
IM SE 0.03 0.07 0.03 0.16
MC Sd 0.03 0.10 0.07 0.16
MC CP 98% 43% 24% 26%

AR(1) MC Mean 1.62 0.67 3.81 2.21 0.53 2290 2331
IM SE 0.09 0.20 0.09 0.26
MC Sd 0.08 0.20 0.09 0.25
MC CP 86% 89% 95% 94%

Table 7 Evaluation of the prediction accuracy for the NLMEC model with different correlation structures.

5% censored 20% censored

Corr. Structure MAE MSE MAE MSE

UNC 0.5507 0.4739 0.6418 0.6746
AR(1) 0.5169 0.4299 0.6073 0.6165

since the parameter f1 describes the autocorrelation between observations separated by the
absolute length of two time points, and the parameter f2 permits acceleration of the exponen-
tial decay of the autocorrelation function, defining a continuous-time autoregressive model.
An ECM algorithm to obtain the ML estimates was developed by using the statistical properties
of the multivariate truncated normal distribution. The proposed algorithm has a closed-form ex-
pression for the E-step, based on the first two moments of the truncated normal distribution. In
this context, it is important to stress that the DEC structure can be easily implemented using
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Fig. 5 Simulation study. 5% censored. Bias of b estimates under the uncorrelated and AR(1) models for 6 different
values of f1.

the exact EM algorithm, making the proposed approach easy to implement by practition-
ers. The R codes are available upon request. The proposed methods were applied to two AIDS
case studies and a simulation study was performed, showing the effects of misspecification on
the correlation structure over the fixed effects estimates. Better results were generated than the
uncorrelated structure in terms of estimation and prediction.

Although the LMEC/NLMEC models showed great flexibility to model symmetric data, they
can be seriously affected by the presence of outliers. Recently, Garay et al (2014) proposed a
remedy to accommodate outliers using a Student’-t regression model with DEC structure. Our
methods can be extended by considering the Student’s t in the context of LMEC/NLMEC models
as in Matos et al (2015), providing satisfactory results at the expense of additional complexity in
implementation. Further, it is also of interest to develop an effective Markov chain Monte Carlo
algorithm for the DEC-LMEC/NLMEC in a fully Bayesian treatment.
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finite element method for the Poisson problem with data in Lp, 2n/(n+2) < p < 2, n =
2, 3

2015-32 Gabriel N. Gatica, Filander A. Sequeira: A priori and a posteriori error
analyses of an augmented HDG method for a class of quasi-Newtonian Stokes flows
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