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Abstract

Polydisperse sedimentation models can be described by a strongly coupled
system of conservation laws for the concentration of each species of solids. Typ-
ical solutions for the sedimentation model considered for batch settling in a
column include stationary kinematic shocks separating layers of sediment of dif-
ferent composition. This phenomenon, known as segregation of species, is a
specially demanding task for numerical simulation due to the need of accurate
numerical simulations.

Very high-order accurate solutions can be constructed by incorporating char-
acteristic information, available due to the hyperbolicity analysis made in [R. Do-
nat and P. Mulet, A secular equation for the Jacobian matrix of certain mul-

tispecies kinematic flow models, Numer. Methods Partial Differential Equa-
tions, 26 (2010), pp. 159–175.] But characteristic-based schemes, see [R. Bürger,
R. Donat, P. Mulet, and C. A. Vega, On the implementation of WENO schemes

for a class of polydisperse sedimentation models, J. Comput. Phys., 230 (2011),
pp. 2322–2344], are very expensive in terms of computational time, since charac-
teristic information is not readily available, and they are not really necessary in
constant areas, where a less complex method can obtain similar results. With
this idea in mind, in this paper we develop a hybrid finite difference WENO
scheme that only uses the characteristic information of the Jacobian matrix of
the system in those regions where singularities exist or are starting to develop,
while it uses a component-wise approximation of the scheme in smooth regions.

Email addresses: guillaume.chiavassa@centrale-marseille.fr (G. Chiavassa),
mmarti@ci2ma.udec.cl (M.C. Mart́ı), mulet@uv.es (P. Mulet)

Preprint submitted to Elsevier November 19, 2015



We perform some experiments showing the computational gains that can be
achieved by this strategy.

Keywords: Finite difference WENO schemes, component-wise schemes,
polydisperse sedimentation

2000 AMS Subject Classifications: 35L65; 65M06; 76T20

1. Introduction

High Resolution Shock Capturing (HRSC) schemes are one of the most im-
portant tools used nowadays to compute accurate numerical approximations to
the solution of many hyperbolic systems of conservation laws. They are usually
developed combining an upwind framework, i.e, taking into account the direc-
tion of propagation of the information, and a high order interpolatory technique
to prevent the development of spurious numerical oscillations.

Most of these HRSC schemes require a specific knowledge of the spectral
decomposition of the Jacobian matrix of the system, since the eigenvalues and
eigenvectors are used to compute the numerical approximations by local projec-
tions to characteristic fields. The numerical solutions that we obtain are often
excellent in terms of resolution power. However, in many cases, as in sedimen-
tation models for polydisperse suspensions, the spectral information is quite
difficult to obtain, due to the lack of closed formulas for the eigenstructure of
the flux Jacobian. Therefore, the computational effort needed to apply these
complex techniques may be fairly considerable.

When solving hyperbolic systems of conservation laws, non-smooth struc-
tures might develop spontaneously and evolve in time. Resolving adequately
those regions of strong variation requires the use of very fine grids. But, taking
into account that we are working with uniform meshes, the solution will be over
resolved in regions where it is smooth.

It is well known that the costly numerical computations involved in these
schemes are only necessary at existing singularities or when these are about to
form. Consequently, we can reduce the computational cost of the scheme, while
maintaining its high-order properties, by using expensive resources only at the
neighborhood of a singularity.

Many adaptive techniques, which aim to concentrate the computational ef-
fort near singularities or sharp transition regions, have been developed in the
literature [9, 15, 19]. The most remarkable examples are the Multiresolution
strategy, based on the multilevel strategies first introduced by Harten in [12],
and the Adaptive Mesh Refinement (AMR) techniques [1, 2].

In this work, we propose a hybrid scheme that substitutes the costly char-
acteristic based computation of the numerical fluxes by a component-wise ap-
proach of the scheme when the solution is smooth enough. We use polydisperse
sedimentation models to test the efficiency of the hybrid scheme mainly for two
reasons: First, because of the high computational effort needed to compute the
spectral information which have to be computed in the SPECINT scheme. If
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the spectral information is easily available this hybrid scheme, as well as mul-
tiresolution schemes, can not improve the results obtained in terms of efficiency.
Secondly because it is near sharp transitions where we need to improve the ap-
proximate results without increasing the computational cost and we know that
the typical solutions for the sedimentation model considered for batch settling
in a column include stationary kinematic shocks separating layers of sediment of
different composition which is a special demanding task for numerical simulation
due to the need of accurate numerical simulations.

The paper is organized as follows: First of all, in section 2, we recall the
basic facts of the Masliyah-Lockett-Bassoon (MLB) polydisperse sedimentation
model [16, 17], its hyperbolicity and bounds on characteristic speeds. In section
3, we briefly describe the main ingredients of finite difference WENO schemes.
In section 4 we explain the basic strategy used in our cost-effective alternative
to characteristic-based schemes and in section 5 we perform some numerical
experiments and analyze the quality of the numerical approximations obtained
with the hybrid scheme and its efficiency. Finally, we draw some conclusions in
section 6.

2. Polydisperse sedimentation models

Polydisperse suspensions are mixtures composed of small solid particles be-
longing to M different species, that vary in size or density, and which are dis-
persed in a viscous fluid. We denote the diameter of the i-th species as Di and
we assume the species to be ordered so that D1 > D2 > · · · > DM . In this work,
we will only consider particles of the same density.

If we denote φi as the volume fraction of particle species i and vi for the
phase velocity of species i, then the continuity equations of the M species are

∂tφi + ∂x(φivi) = 0, i = 1, . . . ,M,

where t is time and x is depth.
The velocities v1, . . . , vM are assumed to be given functions of the vector

of local concentrations Φ := Φ(x, t) := (φ1(x, t), . . . , φM (x, t))T (kinematic as-
sumption). This yields nonlinear, strongly coupled systems of conservation laws
of the type

Φt + f(Φ)x = 0, (1)

where the components of the flux function f(Φ) = (f1(Φ), . . . , fM (Φ))T are
given by fi(Φ) := φivi(Φ), i = 1, . . . ,M .

We seek solutions Φ = Φ(x, t) such that φi ≥ 0, ∀i = 1, . . . ,M , and φ :=∑M

i=1 φi ≤ φmax, where the parameter φmax ∈ (0, 1] stands for a given maximum
solids concentration.

The velocity model for polydisperse sedimentation considered in this work is
the Masliyah-Lockett-Bassoon (MLB) model [16, 17], which is one of the most
commonly used velocity models for polydisperse sedimentation. It arises from
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the continuity and linear momentum balance equations for the solid species and
the fluid through suitable constitutive assumptions and simplifications (cf. [3]).
For particles that have the same density, the velocities v1(Φ), . . . , vM (Φ) are
given by

vi(Φ) = ν(1 − φ)V (φ)
(
d2i − (φ1d

2
1 + · · ·+ φMd2M )

)
, ν =

(̺s − ̺f)gD
2
1

18µf
,

where ̺s and ̺f are the solid and fluid densities respectively, g is the acceleration
of gravity, di are the normalized particle sizes di = Di/D1 for i = 1, . . . ,M , µf

is the fluid viscosity and V is an empirical hindered settling function assumed
to satisfy

V (0) = 1, V (φmax) = 0, V ′(φ) ≤ 0 for φ ∈ [0, φmax].

A standard choice for V (φ) is given by Richardson-Zaki’s hindered settling
function [20]:

V (φ) =

{
(1− φ)nRZ−2, 0 ≤ φ ≤ φmax;
0, otherwise.

with nRZ > 2, φmax < 1.
For the typical application of batch settling of a suspension in a column of

height L > 0, (1) is defined for (x, t) ∈ (0, L) × (0, T ) and zero-flux boundary
conditions are prescribed:

f |x=0 = f |x=L = 0.

As it can be seen in [3, 10], the MLB model is strictly hyperbolic whenever
φi > 0 for all i = 1, . . . ,M , and φ < φmax. The eigenvalues λi = λi(Φ) of the
Jacobian matrix f ′(Φ) satisfy the interlacing property

vM+1(Φ) < λM (Φ) < vM (Φ) < λM−1(Φ) < vM−1(Φ) < · · · < λ1(Φ) < v1(Φ)
(2)

where the lower bound is given by

vM+1(Φ) = ν
(
d2MV (Φ) +

(
(1− φ)V ′(φ)− 2V (φ)

)
(d21φ1 + · · ·+ d2MφM )

)
.

3. Finite difference WENO schemes

In order to simplify the notation, let us restrict ourselves to one-dimensional
scalar conservation laws with properly prescribed initial and boundary condi-
tions on some interval, which can be written as:

Φt + f(Φ)x = 0. (3)

Finite differences WENO schemes (see [23]) can be naturally extended to multi-
ple dimensions by design and to systems via local characteristic decompositions.
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First of all, we consider a uniform grid on [0, L] defined by the points xi =(
i− 1

2

)
∆x, i = 1, . . . , N , which are the centers of the cells whose boundaries

are given by xi+ 1

2

= xi +
∆x
2 , where ∆x = L/N is the uniform grid spacing, so

that, the boundaries of the interval [0, L] are 0 = x 1

2

and L = xN+ 1

2

.
In order to obtain high order finite difference conservative schemes to solve

(3), we use Shu and Osher’s technique [23], for which the conservative property
of the spatial discretization is obtained by implicitly defining, for fixed t,∆x,
the function ϕ as:

f(Φ(x, t)) =
1

∆x

∫ x+∆x

2

x−∆x

2

ϕ(ξ)dξ,

so that the spatial derivative in (3) is exactly obtained by a conservative finite
difference formula that involves values of ϕ at the cell boundaries,

f(Φ(x, t))x =
1

∆x

(
ϕ

(
x+

∆x

2

)
− ϕ

(
x−

∆x

2

))
.

We can compute highly accurate approximations to ϕ
(
x± ∆x

2

)
, denoted

by ϕ̂, using known grid values of f(Φ) (which are cell-averages of ϕ) and a
reconstruction method R (a function whose cell-averages coincide with the given
ones) as ϕ(xi+ 1

2

) = ϕ̂(xi+ 1

2

) + d(xi+ 1

2

)∆xr + O(∆xr+1), with d a Lipschitz
function, where

ϕ̂(x) = R(fi−p, . . . , fi+q;x), fl = f(Φ(xl, t)).

We can thus discretize the spatial derivative in Equation (3) as:

(f(Φ))x(xi) =
f̂i+ 1

2

− f̂i− 1

2

∆x
+O(∆xr), f̂i+ 1

2

= ϕ̂(xi+ 1

2

).

The spatially-discretized problem

Φ′

i(t) = D(Φ(t))i, Φk = [φ1,k, . . . , φM,k]
T , D(Φ)i =

f̂i+ 1

2

(Φ)− f̂i− 1

2

(Φ)

∆x
,

for approximations Φi(t) ≈ Φ(xi, t), can be solved using an appropriate ODE
solver. In this paper we use the third order TVD Runge-Kutta scheme proposed
in [22, 23]: 




Φ(1) = Φn −∆tD(Φn),

Φ(2) =
3

4
Φn +

1

4
Φ(1) −

1

4
∆tD(Φ(1)),

Φn+1 =
1

3
Φn +

2

3
Φ(2) −

2

3
∆tD(Φ(2)),

, (4)

where Φn
i ≈ Φi(tn).

To extend these schemes to systems of conservation laws, if we know the full
spectral decomposition of the Jacobian matrix f ′(Φ) then we can compute the
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numerical flux f̂i+ 1

2

:= ϕ̂(xi+ 1

2

) using an upwind characteristic-wise scheme as:

f̂i+ 1

2

=

M∑

k=1

rk
(
R+

(
lk · f+,k

i−2 , . . . , l
k · f+,k

i+2 ;xi+ 1

2

))

+

M∑

k=1

rk
(
R−

(
lk · f−,k

i−1 , . . . , l
k · f−,k

i+3 ;xi+ 1

2

))
,

(5)

where rk = rk(Φi+ 1

2

), lk = lk(Φi+ 1

2

), are the right and left normalized eigenvec-

tors corresponding to the eigenvalue λk(f
′(Φi+ 1

2

)) of the flux Jacobian f ′(Φi+ 1

2

),

respectively, computed at Φi+ 1

2

= 1
2

(
Φi + Φi+1

)
, for k = 1, . . . ,M . The func-

tions f±,k define a flux-splitting, i.e., they verify f+,k + f−,k = f , and are
upwind fluxes, i.e., ±λk

(
(f±,k(Φ))′

)
≥ 0. In (5) we denote f±,k

i := f±,k(xi)
and R± are upwind biased reconstruction operators, WENO5 reconstructions
in our case. We refer the reader to [13, 14] for further details about the WENO
method.

In this work we define the functions f±,k given by the Lax-Friedrichs (LF)
flux-splitting f±,k(Φ) = 1

2 (f(Φ)± αkΦ) with αk verifying:

max{|λk(f
′(Φ))| / k = 1, . . . ,M, Φ ∈ K} ≤ αk,

where K is some relevant range where this maximal k-characteristic velocity
is estimated. In many applications, specially when all characteristic fields are
either genuinely nonlinear or linearly degenerate, it is enough to consider K =
{Φi,Φi+1}.

The characteristic fields of the MLB model are not genuinely nonlinear nor
linearly degenerate, so a more sophisticated bound αk, based on the interlacing
property (2), was proposed in [6]:

αk = max{|vi(Φ)|, |vi+1(Φ)| / Φ ∈ [Φi,Φi+1]},

where [Φi,Φi+1] denotes the line segment determined by Φi,Φi+1 ∈ R
M . The

resulting scheme will be referred to as SPECINT.
Characteristic-wise schemes have a main disadvantage: the high computa-

tional cost needed to obtain the spectral decomposition of the Jacobian matrix
of some problems for which no closed formulas are available. To undertake this
shortcoming, a component-wise approach for these schemes was developed in
[24]. For these schemes, the value of the numerical flux vector f̂i+ 1

2

is computed

by setting lkl = rkl = δk,l in (5) and f±,k = f±, for any k, l = 1, . . . ,M . Then,
the numerical flux for the component-wise scheme reads as:

f̂i+ 1

2
,k = R+

(
f+
i−2,k, . . . , f

+
i+2,k;xi+ 1

2

)
+R−

(
f−

i−1,k, . . . , f
−

i+3,k;xi+ 1

2

)
. (6)

It is known that component-wise schemes obtained from global Lax-Friedrichs
flux splittings f± have an oscillatory behavior, see e.g. [10], and that their nu-
merical solutions tend to be quite diffusive, due to the global prescription of
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numerical viscosity, as it could be seen for example in [6, 10]. In this work,
we use a local LF flux-splitting which alleviates the excessive diffusion and the
oscillatory behavior showed by its global counterpart (see [18] for more details).

4. The hybrid algorithm

Once we have given the details of the constitutive elements of our algorithm,
we describe next the smoothness analysis and the corresponding computation
of the numerical fluxes f̂i+ 1

2

.

To determine the local smoothness of the solution on a uniform grid on [0, L]
we use the procedure defined by Chiavassa and Donat in [7], adapting it to our
problem. In their work, the authors presented a method based on point-value
multiresolution transform used to detect regions with singularities.

From the discrete computational data φj,i = φj(xi, t), for each component
j = 1, . . . ,M and spatial location i = 1, . . . , N , we can compute a set of interpo-
lated values of φj,i, denoted by φj,i, considering a 4-point centered interpolatory
technique as:

φj,i = I[xi;φj ] =
9

16
(φj,i+1 + φj,i−1)−

1

16
(φj,i+3 + φj,i−3). (7)

The values φj,i are extended when i /∈ {1, . . . , N} as follows:

φj,i =

{
φj,1−i i < 1

φj,2M+1−i i > N.
(8)

Using this set of interpolated values, we can define the coefficients γj,i as the
absolute value of the difference between exact and interpolated data:

γj,i =
∣∣φj,i − φj,i

∣∣ .

Note that the coefficients γj,i are interpolation errors which can be used directly
as “sensors” in order to localize non-smooth behavior.

Once this set of coefficients is computed, we use them to create a boolean
flag vector for each component, whose values (0 or 1) determine the choice of the

procedure to evaluate f̂i+ 1

2

. For each component and for each spatial location,

we define the flag vector bj = (bj,i)i=1,...,N as:

bj,i =




1, if max

k=−1,0,1
γj,i+k ≥ εmax

i
γj,i;

0, if max
k=−1,0,1

γj,i+k < εmax
i

γj,i,

where ε is a given tolerance parameter, 0 < ε < 1, which controls the differ-
ence between the numerical values and the interpolated values. Notice that by
considering maxk=−1,0,1γj,i+k we add a safety region of one cell surrounding
the cells that would have been flagged by only regarding the local detail γj,i.
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Finally, using all the boolean flag vectors computed for each component, we can
define the boolean flag vector Bi = ∨M

j=1bj,i.
The behavior of the solution of the problems we are focused on at the bound-

aries is well known: near the bottom boundary non-smooth structure is created
while at the top boundary the solution rapidly attains zero concentration. The
extrapolation defined for the computation of the interpolated values near the
boundaries (8) would be exact near the top boundary, due to the constancy of
the solution. At the bottom boundary the interpolated values φj,i would not be
accurate approximations of the real values φj,i assuring this region to be flagged
over time. Therefore, it is not necessary to use a higher-order extrapolation near
the boundaries.

Notice that this thresholding algorithm takes into consideration that large
values of the coefficients γj,i correspond to non-smooth regions of the solution
and produces a flagged region containing the singularities that are present in all
the components of the solution.

Finally, for each i = 1, . . . , N , we compute the numerical flux f̂i+ 1

2

depending
on the value of the boolean flags Bj as:

• If Bi = 1 or Bi+1 = 1, the location has been flagged as non-smooth and a

precise computation of the numerical flux is required, so we compute f̂i+ 1

2

with the characteristic based version (5).

• Otherwise we are located in a smooth region, so we compute f̂i+ 1

2

with

the component-wise version (6).

As Chiavassa and Donat stated in their work [7], when using a Runge-Kutta
ODE solver it is not necessary to compute the flag vector in each Runge-Kutta
stage in (4). As Φ(1) is an approximation of Φn+1, it contains similar non-
smooth structures at the same places, thus the flag coefficients obtained from
the computation of Φ(1) can be used to compute Φ(2) from Φ(1) and Φn+1 from
Φ(2), thus avoiding the computation of the flag coefficients in two of the three
stages of the Runge-Kutta ODE solver. With this modification, we can reduce
the computational cost of the hybrid scheme, without losing accuracy in the
numerical results.

The CPU gain of this algorithm stems from the fact that the cost of the
component-wise approximation of the scheme is significantly smaller than the
characteristic based approach cost. For example, for the polydisperse sedimen-
tation tests that we will see in the next section, the cost of the component-wise
approximation of the scheme is about 4.5 and 18 times smaller, respectively,
than the characteristic-based approach cost, as it could be seen in [18]. The
efficiency of the scheme depends on the problem.

5. Numerical experiments

In this section we present and analyze the results obtained with our hybrid
algorithm applied to two typical sedimentation experiments for batch settling
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in a column that one can find in the literature. The value of the threshold
parameter ε that we are going to use in all the subsequent tests is ε = 0.1.

We use a varying time step ∆t computed as:

∆t =
0.5∆x

C
,

where C is an estimate of the maximal characteristic velocity of the approxi-
mated solution at the given time step. The computation of this parameter de-
pends on the scheme used. For the SPECINT scheme, the estimate is based on
the computed eigenvalues. For the component-wise scheme, we use the bounds
on the eigenvalues quoted in (2). For our hybrid scheme we just merge both
strategies, using the computed eigenvalues, determined in trouble regions, and
the approximated eigenvalues, computed using the interlacing property (2) in
smooth regions, to compute the parameter C.

The edges of the spatial domain [0, L] are the cell interfaces x 1

2

= 0 and
xN+ 1

2

= L. In order to ensure the conservation of each species throughout the
time evolution, our implementation for the zero-flux boundary conditions is as
follows:

f̂ 1

2

= f̂N+ 1

2

= 0.

The L1−error for an approximation (φj,i), i = 1, . . . , N , j = 1, . . . ,M to the
solution at the cell centers xi and given time t, (φj(xi, t)), is computed as

1

N

N∑

i=1

M∑

j=1

|φref
j,i − φj,i|

where (φref
j,i ) is a reference solution computed at a fairly high resolution, with

SPECINT scheme in our case, and interpolated at the coarse cell centers.
In the following experiments we work with normalized depth, consequently,

the spatial coordinate x varies between x = 0 (surface of the suspension) and
x = 1 (bottom of the settling column).

Test 1.

We consider the standard test case, proposed by Greenspan and Ungarish in
[11], defined by an initially homogeneous suspension in a column of height L =
0.3 m with four different species of particles with same density ̺s = 2790kg/m3

and different normalized sizes d1 = 1, d2 = D2/D1 = 0.8, d3 = D3/D1 = 0.6
and d4 = D4/D1 = 0.4 with D1 = 4.96 · 10−4 m. The initial concentrations of
the particles are φ0

i = 0.05 for all i = 1, . . . , 4, the Richardson-Zaki exponent is
nRZ = 4.7 and the maximum total concentration is φmax = 0.68. The density
and viscosity of the fluid are ̺f = 1208kg/m3 and µf = 0.02416kg/(s · m),
respectively. This test was solved numerically, e.g., in [5, 6].

In Figure 1, we display the reference solutions φ1, . . . , φ4 and the global den-
sity φ =

∑
i φi, computed with the SPECINT scheme with N = 6400 cells and

t = 300s. In Fig. 2 we display some enlarged views of the numerical approx-
imations of φ4 computed with a local Lax-Friedrichs component-wise scheme
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(LLF), our hybrid scheme (HYB-LLF) and the characteristic-based SPECINT
scheme, using two meshes of N = 400 and N = 1600 cells.

It can be seen throughout those pictures that the approximations obtained
with the hybrid scheme are less oscillatory than their LLF counterparts, being
quite similar to the SPECINT approximations. The conclusions about the qual-
itative behavior of the approximations that we could draw from inspection of
the other components would be similar to those obtained for our choice.

In Figure 3 we show the numerical solutions and the flag vectors obtained
using meshes of N = 100, 400 and 1600 cells. As we expect, when we use
coarser meshes the flagged area is wider and could include some smooth regions,
specially small smooth regions located between shocks. But when we refine the
mesh, the flagged regions fit exactly with regions with sharp transitions and
strong shocks. In Figure 4 we can see how the numerical solutions and the flag
vectors evolve with time for a fine mesh of N = 1600 cells.

To perform quantitative assessments, in Table 1 and Figure 5 we show the
approximate L1−errors and the CPU times for this test. We have run each of
the schemes for N = 100, 200, 400, 800 and 1600 and recorded its CPU time
for the execution and approximate L1−error. Each symbol in a given graphic
corresponds to a number N of cells.

As could be expected from the previous comments, our hybrid scheme is more
accurate than the LLF scheme, the SPECINT being of course the most accurate.
But when we take into account computational times, our hybrid scheme takes
about 2.5 times less computational time to achieve a given error level and is
consequently more efficient than SPECINT scheme, as can be deduced from
Fig. 5.

The accuracy of the results depends on the value of the parameter ε. The
wider the flagged regions are the more accurate the approximations obtained are.
The parameter ε has to be tuned having in mind that we seek an equilibrium
between accuracy and computational time to obtain not only accurate results
but efficient methods. In these experiments by choosing a smaller value of
the parameter ε, ε < 0.1, the results in terms of accuracy do not improve
significantly but the computational times increase due to the use of wide flagged
regions.

As shown in Table 3, when the parameter ε increases, the number of fluxes
computed with the SPECINT scheme diminishes. As a consequence, the CPU
time diminishes too, but the errors increase, getting closer to the errors given
by LLF scheme as shown in Table 2.

We compare the results obtained with our hybrid scheme with those ob-
tained when using an adaptive multiresolution framework based on the work
developed in [4, 12]. This multilevel algorithm consists in substituting the di-

rect computation of the numerical divergences ∆x−1(f̂i+ 1

2

− f̂i− 1

2

) on the finest
grid by a multilevel strategy that saves computational time by interpolating
from coarse levels at regions not tagged by the same procedure that we have
used in our hybrid scheme to determine the boolean flag vector, see [8] for more
information about the multilevel strategy. We use grids of 800, 1600 and 3200
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nodes with 4, 5 and 6 levels of multiresolution respectively, in order to have a
coarser mesh with N0 = 100 nodes in all cases. We use two different values for
the tolerance parameter tol, which plays the same role as the parameter ε in
the hybrid scheme.

As it can be seen in Table 4, the hybrid scheme requires quite less compu-
tational effort than the multiresolution scheme to achieve a similar numerical
accuracy.
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Figure 1: Reference solutions of test 1. (a) φ1, . . . , φ4 and (b) φ =
∑

i φi computed with
SPECINT scheme for t = 300s and N=6400 cells.

N
LLF HYB-LLF SPECINT

CPU error CPU error CPU error
100 0.715 24.88 1.883 6.836 3.146 6.753
200 2.479 13.49 5.609 3.784 10.53 3.782
400 9.366 6.823 17.41 1.718 49.02 1.676
800 35.43 3.372 62.22 0.851 153.3 0.850
1600 145.3 1.596 240.1 0.366 665.3 0.369

Table 1: Approximate L1
−errors (×10−3) and CPU times (seconds) for test 1 with parameter

ε = 0.1 and t = 300s.

We describe now a reasonable strategy for the selection of the parameter ε.
Given some details γj,i, one can define the function βj(r) = βj [γ](r)

βj(r) =

∑
i{γj,i/γj,i > r}∑

i γj,i
. (9)

The value βj(r) ∈ [0, 1] is the ratio between the sum of the details γj,i that are
above the threshold r with respect to the sum of all the details. With these
functions and a number p ∈ (0, 1) we can compute

ε = ε(p) = max{r∗ > 0/min
j

βj(r∗) > p}. (10)
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Figure 2: Enlarged views of some discontinuities present in the numerical approximation of
φ4 for test 1 computed with t = 300s and N = 400 ((a) and (c)) and N = 1600 ((b) and(d)).

N
ε = 0.75 ε = 0.5 ε = 0.25

CPU error CPU error CPU error
100 1.423 10.18 1.684 8.221 1.642 6.800
200 4.831 6.116 5.012 4.453 5.231 3.771
400 16.01 3.106 16.23 2.715 16.99 1.739
800 57.95 1.072 58.41 0.874 60.07 0.852
1600 227.8 0.699 216.1 0.574 218.2 0.556

N
ε = 0.1 ε = 0.05 ε = 0.01

CPU error CPU error CPU error
100 1.883 6.836 2.011 6.849 2.455 6.853
200 5.609 3.784 6.010 3.781 6.974 3.782
400 17.41 1.718 17.64 1.721 18.82 1.687
800 62.22 0.851 63.84 0.848 65.02 0.845
1600 240.1 0.366 245.0 0.365 248.3 0.366

Table 2: Approximate L1
−errors (×10−3) and CPU times (seconds) for test 1 obtained by

the hybrid scheme with different values of the parameter ε and t = 300s.
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Figure 3: Numerical solutions and flag vectors for test 1 with t = 300s and (a) N = 100 and
(b) N = 400 and (c) N = 1600 cells.

N ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5 ε = 0.75
100 36.9 % 30.5 % 26.2 % 21.3 % 13.4 % 9.91 %
200 23.6 % 19.7 % 16.9 % 9.84 % 6.72 % 5.06 %
400 12.7 % 10.2 % 8.26 % 5.57 % 2.91 % 2.43 %
800 6.74 % 5.22 % 4.89 % 3.24 % 2.32 % 1.19 %
1600 3.03 % 2.71 % 2.01 % 1.33 % 0.81 % 0.58 %

Table 3: Percentage of numerical fluxes computed with SPECINT scheme in test 1 depending
on the value of the parameter ε with t = 300s.
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Figure 4: Time evolution of the numerical solutions and flag vectors of test 1 computed with
t = 300s and N = 1600 cells.
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Figure 5: CPU time - error comparison for test 1 using t = 300s.
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N
HYB-LLF ε = 0.1 MR tol = 10−2 MR tol = 10−3 SPECINT
CPU error CPU error CPU error CPU error

800 62.22 8.51 98.19 12.0 116.1 8.89 154.0 8.50
1600 240.1 3.66 223.3 5.16 265.3 4.03 669.6 3.69
3200 1287.7 1.43 628.3 3.64 867.7 2.16 4784.7 1.45

Table 4: Approximate L1
−errors (×10−4) and CPU times (seconds) for test 1 obtained by

the hybrid scheme and the scheme with a multiresolution framework with different values of
the parameter tol with t = 300s.

That is, ε is the maximal r∗ such that all the graphs of βj , j = 1, . . . ,M for
r ∈ [0, r∗] lies above p.

In Figure 6 we display the graph of βj , j = 1, 2, 3, 4, based on the details
obtained for N = 200 and t = 300s. We deduce that selecting ε between 0.074
and 0.14 would yield that the most important details would be flagged. Figure 7
shows the graph of β1 for N = 100, 200, 400, 800, 1600 and t = 300s and Figure
8 shows the graph of β1 for N = 1600 and t = 50, 100, 150, 200. These pictures
suggest that setting p ∈ [0.8, 0.9] yields a reasonable parameter ε = ε(p), in
terms of efficiency, in quite a robust manner with respect to resolution and
simulated time.
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Figure 6: Graph of βj function, j = 1, 2, 3, 4 for details computed with N = 200 and t = 300s.

Test 2.

The next experiment consists on the batch settling of an initially homoge-
neous suspension with eleven different species in a column of height L = 0.935
m, with initial concentrations φ0

i , diameters Di and normalized diameters di =
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Figure 7: Graph of β1 function for details computed with N = 100, 200, 400, 800, 1600 and
t = 300s.

Di/D1 of the particles given in Table 5. This test is based on experimental data
from [21].

We consider the Richardson-Zaki exponent nRZ = 4.65 and maximum total
concentration φmax = 0.641. The other parameters are those of the previous
test.

In Figure 9 we show the reference solutions for φ1, . . . , φ11 and φ =
∑

i φi,
computed with the SPECINT scheme with N = 6400 cells and t = 300s.

The appearance of very thin layers of sediment of the smaller particles at
the top of the sedimentation vessel poses severe difficulties for the numerical
schemes to capture them. Therefore, to obtain accurate results we need to use
an efficient shock capturing scheme and a very fine mesh as illustrates Figure 10
where we can see that when using a coarser mesh of N = 400 cells the results
are very imprecise with all the schemes, while when we use a finer mesh with
N = 1600 the quality of the results improve but they are far away from the
results obtained using a grid with N = 6400 cells.

In this specific experiment the main drawback of the characteristic-wise
scheme is the high computational cost needed to obtain the spectral decom-
position of the Jacobian matrix. We need to compute at least one eigenvalue
and one eigenvector for each component and for each spatial location. Since
we deal with eleven components and that a very fine mesh is mandatory, the
simulation requires a huge CPU time.

In Table 6 we display the computational times and the L1−errors obtained
by the component-wise LLF scheme, our hybrid scheme and the characteristic-
wise SPECINT scheme ran with very fine meshes of N = 1600, 3200 and 6400
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Figure 8: Graph of β1 function for details computed with N = 1600 and t = 50, 100, 150, 200s.
The graphs for t = 100, 150, 200 are coincident.

cells. As we expect, the SPECINT scheme is highly time consuming while our
hybrid scheme takes about 10 times less computational time to achieve the same
error level. Therefore, the proposed hybrid scheme represents a real alternative
when dealing with costly solvers applied to large problems on fine grids.

We observe in Table 7 that the hybrid scheme performs better than the
scheme with the multiresolution framework. When we use the multiresolution
technique with a tolerance parameter tol = 10−3 the errors obtained are slightly
smaller than the errors for the hybrid scheme but when considering CPU times,
the hybrid scheme takes approximately 3.5 times less computational time to
compute the numerical solutions. Thus, in this case, the hybrid scheme is more
efficient than the scheme with the multiresolution technique.

i 1 2 3 4 5 6
φ0
i [10

−3] 0.435 3.747 14.420 32.603 47.912 47.762
Di[10

−5] 8.769 8.345 7.921 7.497 7.073 6.649
di 1.000 0.952 0.903 0.855 0.807 0.758
i 7 8 9 10 11
φ0
i [10

−3] 32.663 15.104 4.511 0.783 0.060
Di[10

−5] 6.225 5.801 5.377 4.953 4.529
di 0.710 0.662 0.613 0.565 0.516

Table 5: Initial concentrations φ0

i
, real and normalized diameters Di and di of test 2.

In Figure 11 we display the graph of minj=1,...,11 βj , based on the details

17



0 0.05 0.1 0.15 0.2

0.4

0.5

0.6

0.7

0.8

0.9

1

φ
1
,  …  ,  φ

11

x

 

 
φ

1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ
10

φ
11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.8

0.9

1

φ

x

(a) (b)

Figure 9: Reference solutions of test 2. (a) φ1, . . . , φ11 and (b) φ =
∑

i φi computed by
SPECINT scheme with N = 6400 cells and t = 300s.
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Figure 10: Enlarged views of discontinuous regions of φ8, ((a) and (b)), and φ10, ((c) and
(d)), for test 2 computed with t = 300s and N = 400 (left) and N = 1600 (right).
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N
LLF HYB-LLF SPECINT

CPU error CPU error CPU error
1600 84.82 0.834 177.5 0.621 1507.5 0.594
3200 468.8 0.360 589.8 0.244 5920.2 0.227
6400 1789.0 2140.2 23713.1

Table 6: Approximate L1
−errors (×10−3) and CPU times (seconds) for test 2 with t = 300s.

N
HYB-LLF ε = 0.1 MR tol = 10−2 MR tol = 10−3 SPECINT
CPU error CPU error CPU error CPU error

800 59.34 13.8 167.2 13.9 175.6 13.6 401.3 13.6
1600 177.5 6.22 425.8 6.22 499.5 5.95 1507.5 5.94
3200 589.8 2.45 1508.2 2.86 2464.2 2.31 5920.2 2.27

Table 7: Approximate L1
−errors (×10−4) and CPU times (seconds) for test 2 obtained by

the hybrid scheme and the scheme with a multiresolution framework different values of the
parameter tol and t = 300s.

obtained for N = 1600 and t = 300s. We deduce that selecting ε between 0.04
and 0.09 would yield that the most important details would be flagged.

6. Conclusions

We have presented a cost-effective alternative to characteristic based HRSC
finite differenceWENO schemes for polydisperse sedimentation problems. Merg-
ing the characteristic based scheme with a component-wise approach for this
scheme, we have developed a hybrid scheme that uses characteristic informa-
tion only on a neighborhood of a discontinuity, where more accuracy is needed
to compute precise numerical solutions.

The numerical results showed in this paper point out that, although there are
no memory savings, there is a significant reduction of the computational time
when using the hybrid scheme proposed, which offers the possibility of obtaining
a high-resolution numerical solution on a very fine grid with a reasonable cost.
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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