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ENERGY DECAY TO TIMOSHENKO SYSTEM WITH INDEFINITE DAMPING

L. H. FATORI, T. O. SAITO, M. SEPÚLVEDA, AND E. R. TAKAHASHI

Abstract. We consider the classical Timoshenko system for vibrations of thin rods. The system has an
indefinite damping mechanism, i.e. it has a damping function a = a(x) possibly changing sign, present

only in the equation for the vertical displacement. We shall prove that exponential stability depends on
conditions regarding of the indefinite damping function a and a nice relationship between the coefficient of

the system. Finally, we give some numerical result to verify our analytical results.

1. Introduction

In this work we consider the Timoshenko system which models the transverse vibration of a thin rod of
length L by taking into account the shear forces given by

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,∞)× (0, L), (1.1)

ρ2ψtt − bψxx + k(ϕx + ψ) = 0 in (0,∞)× (0, L). (1.2)

Here t denotes the time variable, x is the distance until the beam’s centerline in equilibrium, the function
ϕ = ϕ(t, x) denotes the vertical displacement of the beam’s centerline and the function ψ = ψ(t, x) denotes
the rotation of the vertical fibers in the beam. Moreover, the coefficients ρ1, ρ2, b and k denote positive
constants and they depend on the density of the mass material, the area of the cross-section, the second
moment of the cross-section area, the Young’s model, the modulus of rigidity and the shear factor.

The system (1.1)-(1.2) is conservative. So, if we want to search about asymptotic behavior we must add a
damping term. In this direction, the main types of dissipative mechanisms considered are frictional, thermal,
viscoelastic and their combinations.

Recently, researches have shown that the exponential stability of the Timoshenko system is achieved
regardless of any specific relations between the coefficients when there are a dissipative mechanism in both
equations. We refer the reader to, e.g. [14, 8, 20, 22] and the reference therein.

However, if we consider only one damping term the scenery can be changed. Soufyane in [24] proved that
when there is a dissipation of the type αψt (α > 0) in the equation that models the rotation angle the system
is exponentially stable if only if

k

ρ1
=

b

ρ2
. (1.3)

Taking into account the condition (1.3) several extensions and generalizations were established, including
dissipations like viscoelastic, thermal, memory etc. Among the various references we can cite for example
[1, 2, 7, 6, 9, 11, 12, 13, 16, 23].

Still in this context there is only one work related to indefinite dissipation in the Timoshenko system given
by Rivera and Racke [17]. In this work, they considered an indefinite dissipation acting on the equation that
models the rotation angle, i.e., with a damping mechanism a(x)ψt where the function a(x) may change its
sign, present only in the (1.2) and proved that the system is exponentially stable under the same conditions
used in the positive damping case, and provided

ā =
1

L

∫ L

0

a(x) dx > 0 and ‖a− ā‖L2 < ε, for ε small enough . (1.4)
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In general, the aforementioned studies that considered one dissipation always did it in the rotation angle
equation. The first work that considered the dissipation in the transverse displacement was due to Almeida
Junior et al [3]. In this paper the authors studied the Timoshenko system with a constant frictional dissipation
acting only in the equation displacement (1.1), ie, they consider the following system

ρ1ϕtt − k(ϕx + ψ)x + āϕt = 0 in (0,∞)× (0, L), (1.5)

ρ2ψtt − bψxx + k(ϕx + ψ) = 0 in (0,∞)× (0, L), (1.6)

with boundary conditions given by

ϕx(·, 0) = ϕx(·, L) = ψ(·, 0) = ψ(·, L) = 0,

where ā, ρ1, ρ2, b, k > 0. The main result in [3] asserts that (1.3) is a necessary and sufficient condition for
exponentially stability to the system (1.5)-(1.6).

Keeping in mind the last results our aim is to complement early works by establishing the exponential
decay when we consider a Timoshenko system with a indefinite damping in the transverse displacement, that
is, we consider the following system

ρ1ϕtt − k(ϕx + ψ)x + a(x)ϕt = 0 in (0,∞)× (0, L), (1.7)

ρ2ψtt − bψxx + k(ϕx + ψ) = 0 in (0,∞)× (0, L), (1.8)

with initial conditions

ϕ(0, ·) = ϕ0, ϕt(0, ·) = ϕ1 ψ(0, ·) = ψ0, ψt(0, ·) = ψ1 in (0, L) (1.9)

and boundary conditions

ϕ(·, 0) = ϕ(·, L) = ψx(·, 0) = ψx(·, L) = 0 in (0,∞). (1.10)

We assume that a ∈ L∞(0, L) is a real function that may change its sign and satisfies (1.4) for the part
on the exponential stability. Our goal is to proof that the conditions (1.3) and (1.4) are sufficient to yield
exponential stability to the system (1.7)-(1.10).

The paper is organized as follows. In Section 2, we state the results on existence and global well posedness
to the system (1.7)-(1.10). In Section 3, firstly we discuss the exponential stability in the positive constant
damping case and then we finish with our main result to the original system. Finally, in Section 4 we show
some numerical results.

2. Existence and regularity

We will study the existence and uniqueness of solution for the Timoshenko system (1.7)-(1.10). Putting
U = (ϕ,Φ, ψ,Ψ)′ where the prime is used to denote the transpose. Then U satisfies{

Ut = AU t > 0,

U(0) = U0,
(2.1)

where U0 := (ϕ0, ϕ1, ψ0, ψ1)′ and A is the differential operator given by

A =


0 I 0 0
k
ρ1
∂2
x −a(x)

ρ1
I k ∂xρ1 0

0 0 0 I
− k
ρ2
∂x 0 b

ρ2
∂2
x − k

ρ2
I 0

 .

We denote

L2
∗(0, L) =

{
u ∈ L2(0, L);

∫ L

0

u(x) dx = 0

}
and H1

∗ (0, L) = H1(0, L) ∩ L2
∗(0, L)

and let us introduce the following Hilbert space

H = H1
0 (0, L)× L2(0, L)×H1

∗ (0, L)× L2
∗(0, L),

with the norm given by

‖U‖2H = ‖(ϕ,Φ, ψ,Ψ)‖2H = ρ1‖Φ‖2L2 + b‖ψx‖2L2 + k‖ϕx + ψ‖2L2 + ρ2‖Ψ‖2L2 . (2.2)
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The domain of A is given by

D(A) = {U ∈ H;ϕ ∈ H2(0, L),Φ ∈ H1
0 (0, L), ψ ∈ H1

∗ (0, L), ψx ∈ H1
0 (0, L),Ψ ∈ H1

∗ (0, L)}.

Setting

A∞ = A− a∞
ρ1
B,

where a∞ = ‖a‖L∞ and B : H → H is the continuous linear operator given by

B =


0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 .

Observe that, D(A∞) = D(A) and for all U ∈ D(A∞) we have that

Re
(
A∞U,U

)
H = −

∫ L

0

(a(x) + a∞)|Φ|2 dx ≤ 0,

which yields that the operator A∞ is dissipative in H. It is not difficult to prove that 0 ∈ ρ(A∞) (more
detail, see [21]). Thus, by Lummer-Phillips Theorem, we have that A∞ is an infinitesimal generator of a
C0-semigroup of contractions.

Now, using result about pertubation by bounded linear operators (see Theorem 1.1, chapter 3 in [19]) we
have that A is an infinitesimal generator of a C0-semigroup.

Therefore the well posedness of (1.7)-(1.10) is summarized by the following result

Theorem 2.1. Assume that U0 ∈ D(A), then exists an unique solution U = (ϕ,Φ, ψ,Ψ) to the system
(1.7)-(1.10) satisfying

U ∈ C([0,∞), D(A)) ∩ C1([0,∞),H).

Remark 2.1. The semigroup S(t) generated by A satisfies

‖S(t)‖ ≤ e
a∞
ρ1
t ∀ t ≥ 0.

In fact, S(t) = T (t)e
a∞
ρ1
Bt where T (t) is the C0-semigroup of contractions generated by A∞.

Remark 2.2. If we consider A for the arising constant coefficient operator instead of A when a(x) = ā
in (1.7) then A is an infinitesimal generator of a C0-semigroup of contractions associated (1.5)-(1.6) with
boundary condition given by (1.10). In particular, the system (1.5)-(1.6) with boundary condition given by
(1.10) is well posed.

3. Exponential stability

In this section we will see that the mathematical hypothesis ρ1
ρ2

= k
b , the average a > 0 and ‖a− ā‖L2 < ε

are sufficient to conclude that the semigroup S(t) = eAt associated to Timoshenko system with indefinite
damping is exponentially stable.

The main tool we use to show the exponential stability is given by the following result due to Gearhart,
Pruss and Greiner (see, Theorem 1.11, chapter V in [10]).

Theorem 3.1. The C0-semigroup of contractions S(t) = eAt over a Hilbert space H is exponentially stable
if and only if

ρ(A) ⊇ {λ ∈ C : Reλ > 0} and M := sup
Reλ>0

‖(λI −A)−1‖ <∞ (3.1)

hold, where ρ(A) is the resolvent set of a liner operator A and I is the identity.

In order to get (3.1) we first need to show the exponential stability to the positive constant damping case
which will be done in the next subsection.
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3.1. The constant coefficient case. In this subsection, we will show that the Timoshenko system given
by (1.5)-(1.6) is exponentially stable if ρ1

ρ2
= k

b is holds and a > 0 ( a is not necessarily the average of a). In

fact, we use the same techniques used in [3], with minor adjustments and presented here only for the sake
of making self-sufficient text.

The energy associated with the system (1.5)-(1.6) is given by

E(t) := ‖U‖2H = ρ1‖Φ‖2L2 + b‖ψx‖2L2 + k‖ϕx + ψ‖2L2 + ρ2‖Ψ‖2L2

and obeys the following dissipation law

d

dt
E(t) = −2ā‖Φ‖2L2 ≤ 0, ∀ t ≥ 0. (3.2)

Now, we will establish some lemmas. Let us introduce the functional

F1(t) := ρ1Re

{∫ L

0

Φp dx

}
where p = ϕ+

∫ L

0

ψ dx.

Lemma 3.1. For every δ > 0 there is a positive constant C1,δ such that

d

dt
F1(t) ≤ −k

2

∫ L

0

|ϕx + ψ|2 dx+ C1,δ

∫ L

0

|Φ|2 dx+ ρ1
δL2

2

∫ L

0

|Ψ|2 dx.

Proof. Multiplying the equation (1.5) by p̄, integrating by parts and using the boundary conditions, we have

ρ1

∫ L

0

Φtp̄ dx+ k

∫ L

0

|ϕx + ψ|2 dx+ ā

∫ L

0

Φp̄ dx = 0. (3.3)

Using that Φtp̄ = d
dt (Φp̄)− Φp̄t in (3.3) and taking the real part in both sides, we have

Re

{
ρ1
d

dt

∫ L

0

Φp̄ dx

}
= ρ1

∫ L

0

Φp̄t dx− k
∫ L

0

|ϕx + ψ|2 dx− āRe
{∫ L

0

Φp̄ dx

}
.

Hence, from Poincare, Holder and Young’s inequalities in the last term on the right we obtain

d

dt
F1(t) ≤ −k

2

∫ L

0

|ϕx + ψ|2 dx+

(
ρ1 +

ā2c2p
2k

)∫ L

0

|Φ|2 dx+ ρ1

∫ L

0

|Φ|
∣∣∣∣ ∫ x

0

Ψ ds

∣∣∣∣ dx︸ ︷︷ ︸
I1

,
(3.4)

where cp > 0 is Poincare’s constant.
Again from Holder and Young’s inequalities in I1, we have that for any δ > 0 there is Cδ > 0 such that

I1(t) ≤ Cδ
∫ L

0

|Φ|2 dx+
δL2

2

∫ L

0

|Ψ|2 ds.

Therefore, using the above estimate in (3.4) our conclusion follows with C1,δ = ρ1(1 + Cδ) +
ā2c2p
2k . �

Consider the functional

F2(t) := −ρ2Re

{∫ L

0

Ψ(ϕx + ψ)dx

}
− bρ1

k
Re

{∫ L

0

ψxΦdx

}
Lemma 3.2. Assuming that k

ρ1
= b

ρ2
. Then F2 satisfies

d

dt
F2(t) = −ρ2

∫ L

0

|Ψ|2 dx+ k

∫ L

0

|ϕx + ψ|2 dx+
bā

k
Re

{∫ L

0

Φψx dx

}
.

Proof. Multiplying the equation (1.6) by p̄x = (ϕx + ψ), integrating over (0, L), we have

ρ2

∫ L

0

Ψtϕx dx+ ρ2

∫ L

0

Ψtψ dx+ b

∫ L

0

ψx(ϕx + ψ)x dx+ k

∫ L

0

|ϕx + ψ|2 dx = 0. (3.5)

Note that

Ψtϕx =
d

dt
(Ψϕx)−ΨΦx =

d

dt

[
Ψ(ϕx + ψ)

]
−Ψtψ − |Ψ|2 −ΨΦx. (3.6)
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Replacing (3.6) and using (1.5) in the third term in (3.5) it yields

ρ2
d

dt

∫ L

0

Ψ(ϕx + ψ) dx = ρ2

∫ L

0

ΨΦx dx+ ρ2

∫ L

0

|Ψ|2 dx− k
∫ L

0

|ϕx + ψ|2 dx

− bā

k

∫ L

0

Φψx dx−
bρ1

k

∫ L

0

Φtψx dx︸ ︷︷ ︸
I2(t)

.

Rewritting I2(t) as

I2(t) =
bρ1

k

∫ L

0

Φtψx dx =
bρ1

k

d

dt

∫ L

0

Φψx dx+
bρ1

k

∫ L

0

ΨxΦ dx

we get

d

dt

[
ρ2

∫ L

0

Ψ(ϕx + ψ) dx+
bρ1

k

∫ L

0

Φψx dx
]

= ρ1

(
ρ2

ρ1
− b

k

)∫ L

0

ΨΦx dx+ ρ2

∫ L

0

|Ψ|2 dx

− k
∫ L

0

|ϕx + ψ|2 dx− bā

k

∫ L

0

Φψx dx.

Using k
ρ1

= b
ρ2

then taking the real part of the previous equality our result follows. �

Finally, let us consider the functional

F3(t) = ρ2Re

{∫ L

0

ψΨ dx

}
.

Lemma 3.3. The functional F3 satisfies

d

dt
F3(t) ≤ ρ2

∫ L

0

|Ψ|2 dx− 3b

4

∫ L

0

|ψx|2 dx+
c2pk

2

b

∫ L

0

|ϕx + ψ|2 dx.

Proof. Multiplying (1.6) by ψ, integrating by parts and using the boundary conditions, we have

ρ2
d

dt

∫ L

0

ψΨ dx = ρ2

∫ L

0

|Ψ|2 dx− b
∫ L

0

|ψx|2 dx− k
∫ L

0

ψ(ϕx + ψ) dx.

Taking the real part of the previous equality and using Cauchy-Schwarz and Young inequalities on the last
term on the right our conclusion follows. �

Now we are able to show the main result of this section. For this, we define the following functional

G(t) := N0E(t) +N1F1(t) +N2F2(t) + F3(t),

where N0, N1 and N2 are positive constants chosen conveniently so that the functional G(t) is equivalent to
the energy E(t).

Theorem 3.2. Suppose that k
ρ1

= b
ρ2
. So there are constants M > 0 and ω > 0, independent of the initial

conditions, such that
E(t) ≤ME(0)e−ωt.

Proof. Using the Lemmas 3.1, 3.2 and 3.3 we obtain

d

dt
G(t) ≤ −2āN0

∫ L

0

|Φ|2dx−N1
k

2

∫ L

0

|ϕx + ψ|2 dx+N1C1,δ

∫ L

0

|Φ|2 dx

+N1ρ1
δL2

2

∫ L

0

|Ψ|2 dx−N2ρ2

∫ L

0

|Ψ|2 dx+N2k

∫ L

0

|ϕx + ψ|2 dx

+N2
bā

k
Re

{∫ L

0

Φψx dx

}
+ ρ2

∫ L

0

|Ψ|2 dx− 3b

4

∫ L

0

|ψx|2 dx

+
c2pk

2

b

∫ L

0

|ϕx + ψ|2 dx.
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Applying Holder and Young’s inequalities we have

d

dt
G(t) ≤ − 1

ρ1

(
2āN0 −N1C1,δ −N2

2

bā2

k2

)
ρ1

∫ L

0

|Φ|2dx− 1

k

(
N1

k

2
−N2k −

c2pk
2

b

)
k

∫ L

0

|ϕx + ψ|2 dx

− 1

ρ2

(
−N1ρ1

δL2

2
+N2ρ2 − ρ2

)
ρ2

∫ L

0

|Ψ|2 dx− b

2

∫ L

0

|ψx|2 dx.

Taking N2 > 1 fixed. First, we choose N1 large enough

(
N1 > 2

k (N2k +
c2pk

2

b )

)
, δ small enough

(
δ <

2ρ2(N2−1)
N1ρ1L2

)
and finally taking N0 large enough

(
N0 > 1

2ā (N1C1,δ + N2
2
bā2

k2 )

)
we conclude that there is

k0 > 0, such that
d

dt
G(t) ≤ −k0E(t).

As G(t) is equivalent to the energy E(t), there are M > 0 and ω > 0 such that

E(t) ≤ME(0)e−ωt.

Therefore, the proof is complete. �

Remark 3.1. From (3.2) and (3.1) we have that, if U is a solution to (λ−Ā)U = F , then there is a positive
constant such that

‖U‖H ≤ c‖F‖H.

3.2. The Indefinite Case. We will show that the Timoshenko system given by (1.7)-(1.10) is exponentially
stable since ρ1

ρ2
= k

b and ‖a− ā‖L2 is small enough which will be guaranteed by verifying (3.1).

Firstly, we will show that for any λ ∈ C the operator (λI −A) is invertible, that is, for any F ∈ H exists
W ∈ D(A) such that (λI −A)W = F , which can be written as

ρ1λ
2ϕ− k(ϕx + ψ)x + āλϕ = ρ1λ

(
ā− a(x)

)
ϕ+ F1 (3.7)

ρ2λ
2ψ − bψxx + k

(
ϕx + ψ

)
= F2, (3.8)

where F1 = λρ1f1 + ρ1f2 − (ā− a(x))f1 + āf1 and F2 = ρ2f4 + ρ2λf3.
Our goal is to determine ϕ and using (3.8) deduce ψ.
So, from (3.7), we have that

ϕxx − α2ϕ =
ρ1λ

k
(a(x)− ā)ϕ− F1

k
− ψx,

with

α2 =
(ρ1λ

2 + āλ)

k
.

Now, for each (v, w) ∈ H1
0 (0, L)×H1

∗ (0, L), we define

g =
ρ1λ

k
(a(x)− ā)v − F1

k
− wx.

The Dirichlet Problem given by {
uxx(x)− α2u(x) = g(x),

u(0) = u(L) = 0,

has the following solution

u(x) = Dα(g) =
ρ1λ

k
Dα
(
(a(x)− ā)v

)
− 1

k
Dα(F1)−Dα(wx),

where

Dα(g) =
1

α

∫ x

0

sinh
(
α(x− s)

)
g(s) ds− 1

α

sinh(αx)

sinh(αL)

∫ L

0

sinh
(
α(L− s)

)
g(s) ds.

Therefore, for each (v, w) ∈ H1
0 (0, L)×H1

∗ (0, L) we consider the following system
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
ρ1λ

2ϕ− k(ϕx + ψ)x + āλϕ = ρ1λ
(
ā− a(x)

)
G(v, w) + F1

ρ2λ
2ψ − bψxx + k

(
ϕx + ψ

)
= F2

ϕ(0) = ϕ(L) = ψx(0) = ψx(L) = 0,

(3.9)

where

G(v, w) :=
ρ1λ

k
Dα
(
(a(x)− ā)v

)
− 1

k
Dα(F1)−Dα(wx).

Observe that (3.9) is related with spectral equation

(λI −A)W = F̃

where A is the operator A with a(x) = ā and F̃ = (ρ1λ
(
ā − a(x)

)
G(v, w) + F1, F2)′. From Remark 2.2 we

conclude that (3.9) has a solution (ϕ,ψ) ∈ H1
0 (0, L)×H1

∗ (0, L) for any λ ∈ C such that Reλ > 0.
Thus, for each λ ∈ C with Reλ > 0 we can say is well defined the following operator

P : H1
0 (0, L)×H1

∗ (0, L) −→ H1
0 (0, L)×H1

∗ (0, L)(
v, w

)
7−→ P

(
v, w

)
=
(
ϕ,ψ

)
,

where
(
ϕ,ψ

)
is a solution of (3.9), where H1

0 (0, L)×H1
∗ (0, L) is a Hilbert space with norm given by

‖(v, w)‖2λ :=

∫ L

0

(ρ1|λv|2 + ρ2|λw|2 + b|wx|2 + k|vx + w|2) dx. (3.10)

Now, we will show that P is a contraction. Before, we observe that, if we consider d1 ∈ R+ such that

d1 >
a∞
ρ1

+ 1

then from Remark 2.1 and Theorem 5.3, which can be found in Pazy’s book [19], we have that for all λ ∈ C
such that

Reλ > d1 we obtain λ ∈ ρ(A) and ‖(λI −A)−1‖ < 1.

It is easy to show that 0 ∈ ρ(A). As ρ(A) is an open set, we have that there is r1 > 0 such that for all
λ ∈ C, with |λ| ≤ r1, we have λ ∈ ρ(A), in other words, there is a c0 such that ‖(λI −A)−1‖ ≤ c0.

Henceforth, we will consider λ ∈ C such that

0 < Reλ ≤ d1 and |λ| ≥ r1. (3.11)

Since 0 < Reλ ≤ d1 there is CD > 0 such that the functional Dα defined in (3.2) satisfies

|Dα(g)| < CD
|λ|
‖g‖L1 (3.12)

(more details see Lemma 2.61 in [21] ).

Lemma 3.4. If ‖a− ā‖L2 < ε with ε > 0 small enough, then P is a contraction.

Proof. Let us consider (ϕi, ψi) = P (vi, wi) with i = 1, 2. Putting (ϕ,ψ) = (ϕ1 − ϕ2, ψ1 − ψ2) and (v, w) =
(v1 − v2, w1 − w2) then (ϕ,ψ) and (v, w) satisfy

ρ1λ
2ϕ− k(ϕx + ψ)x + āλϕ = ρ1λ

(
ā− a(x)

)
G1(v, w), (3.13)

ρ2λ
2ψ − bψxx + k

(
ϕx + ψ

)
= 0, (3.14)

ϕ(0) = ϕ(L) = ψx(0) = ψx(L) = 0, (3.15)

where G1(v, w) =
λ

k
Dα
(
(a(x)− ā)v

)
−Dα(wx).

Multiplying (3.13) by λϕ and (3.14) by λψ, respectively, and integrating
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ρ1λ

∫ L

0

|λϕ|2 dx+ ρ2λ

∫ L

0

|λψ|2 dx+ bλ

∫ L

0

|ψx|2 dx+ kλ

∫ L

0

|ϕx + ψ|2 dx

+ ā

∫ L

0

|λϕ|2 dx = ρ1λ

∫ L

0

(
ā− a(x)

)
G1(v, w)λϕdx.

Taking the real part in the last identity we have

Reλ‖(ϕ,ψ)‖2λ = −ā
∫ L

0

|λϕ|2 dx+ Re

{
ρ1λ

∫ L

0

(
a(x)− ā

)
G1(v, w)λϕdx

}
≤ −ā

∫ L

0

|λϕ|2 dx+ ρ1

∫ L

0

|a(x)− ā||λG1(v, w)||λϕ| dx. (3.16)

Multiplying (3.13) and (3.14) by ϕ and ψ in L2− norm, respectively, and taking into account (3.10), we
have

‖(ϕ,ψ)‖2λ = −λā
∫ L

0

|ϕ|2 dx+ ρ1λ

∫ L

0

(
ā− a(x)

)
G1(v, w)ϕdx

≤ ā

|λ|

∫ L

0

|λϕ|2 dx+ ρ1

∫ L

0

|ā− a(x)||λG1(v, w)||ϕ| dx.

From (3.11) we know that |λ| > |r1|, so

‖(ϕ,ψ)‖2λ ≤ ā

r1

∫ L

0

|λϕ|2 dx+ ρ1

∫ L

0

|ā− a(x)||λG1(v, w)||ϕ| dx

≤ c
(
ā

∫ L

0

|λϕ|2 dx+ ρ1

∫ L

0

|ā− a(x)||λG1(v, w)||ϕ| dx
)

where c = max{ 1
r1
, 1}, that is, for γ0 = 1

c > 0 we have

γ0‖(ϕ,ψ)‖2λ ≤ ā
∫ L

0

|λϕ|2 dx+ ρ1

∫ L

0

|a(x)− ā||λG1(v, w)||ϕ| dx. (3.17)

Adding (3.16) and (3.17)(
Reλ+ γ0

)
‖(ϕ,ψ)‖2λ ≤ ρ1

∫ L

0

|a(x)− ā||λG1(v, w)||ϕ| dx+ ρ1

∫ L

0

|a(x)− ā||λG1(v, w)||λϕ| dx

that is,

γ0‖(ϕ,ψ)‖2λ ≤ ρ1

∫ L

0

|a(x)− ā||λG1(v, w)|
(
|ϕ|+ |λϕ|

)
dx (3.18)

once Reλ > 0.
From (3.12) we can estimate |λG1(v, w)| as follows∣∣λG1(v, w)

∣∣ ≤ |λ|2
k

∣∣Dα((a(x)− ā)v
)∣∣+ |λ|

∣∣Dα(wx)
∣∣

≤ √ρ1
CD√
ρ1k
‖a− ā‖L2‖λv‖L2 +

√
b
CD√
bk
‖wx‖L2

≤ C(
√
ρ1‖a− ā‖L2‖λv‖L2 +

√
b‖wx‖L2)

where C = CD
k max

{
1√
ρ1
, 1√

b

}
.

Now, if ‖a− ā‖L2 ≤ 1, then ∣∣λG1(v, w)
∣∣ ≤ C‖(v, w)‖λ.

Using (3.18), we obtain
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γ0‖(ϕ,ψ)‖2λ ≤ C‖(v, w)‖λ
(∫ L

0

|a(x)− ā|(|ϕ|+ |λϕ|) dx
)

≤ C‖(v, w)‖λ‖a− ā‖L2(‖ϕ‖L2 + ‖λϕ‖L2). (3.19)

Note that, from |λ| ≥ r1 we have

‖ϕ‖2L2 =
1

|λ|2

∫ L

0

|λϕ|2 dx ≤ 1

r2
1

‖λϕ‖2L2 ,

thus, using the last estimate in (3.19) we conclude that

‖(ϕ,ψ)‖2λ ≤
[

1

γ0
√
ρ1

(
1

r1
+ 1

)
C

]
‖a− ā‖L2‖(v, w)‖λ‖(ϕ,ψ)‖λ.

Therefore, if ‖a− ā‖L2 < min

{
1,

[
1

γ0
√
ρ1

(
1
r1

+ 1

)
C

]−1
}

then there is a constant d < 1 such that

‖(ϕ,ψ)‖λ ≤ d‖(v, w)‖λ, (3.20)

that is, P is a contraction. �

Lemma 3.5. Under the same hypothesis as lemma 3.4, if
(
ϕ,ψ

)
is a fixed point of P , then

(
ϕ,ψ

)
is solution

of (3.7)-(3.8).

Proof. Consider

ϕ̂ := G(ϕ,ψ) =
ρ1λ

k
Dα
(
(a(x)− ā)ϕ

)
− 1

k
Dα(F1)−Dα(ψx).

As
(
ϕ,ψ

)
is a fixed point of P , then it is solution of (3.9), that is

ϕxx − α2ϕ =
λ

k
(a(x)− ā)ϕ̂− 1

k
F1 − ψx. (3.21)

Futhermore, ϕ̂ satisfies

ϕ̂xx − α2ϕ̂ =
λ

k
(a(x)− ā)ϕ− 1

k
F1 − ψx. (3.22)

Taking Φ̃ = ϕ− ϕ̂ and subtracting (3.21) from (3.22), we have Φ̃xx − α2Φ̃ =
λ

k

(
ā− a(x)

)
Φ̃

Φ̃(0) = Φ̃(L) = 0.

(3.23)

Observe that, Φ̃ is a solution of Dirichlet Problem, so its is given by

Φ̃ = Dα
(
λ

k

(
ā− a(x)

)
Φ̃

)
.

Now, using (3.12) we can estimate∣∣Φ̃∣∣ =

∣∣∣∣λkDα
(

(a(x)− ā)Φ̃

)∣∣∣∣ ≤ CD
k
‖(a− ā)Φ̃‖L1 ,

which give us

‖Φ‖L2

(
1− CD

√
L

k
‖a− ā‖L2

)
≤ 0.

If ‖a− ā‖L2 < k
CD
√
L

, then ‖Φ̃‖L2 = 0. Therefore, our conclusion follows. �

Now we are able to prove the main result of this work.

Theorem 3.3. Assume (1.3) and (1.4). If ‖a − ā‖L2 < ε with ε > 0 small enough then the semigroup
associated to the system (1.7)-(1.10) is exponentially stable.



10 L. H. FATORI, T. O. SAITO, M. SEPÚLVEDA, AND E. R. TAKAHASHI

Proof. Using the previous lemmas and keeping in mind (3.11) we have that for all λ ∈ C with Reλ > 0 and
any F ∈ H there is a unique solution W to (λ − A)W = F , that is, (λI − A)−1 exist. Now, our goal is to
show that this operator is bounded, more specifically, to show that the second condition of (3.1) is satisfied.
So, consider W = (ϕ,Φ, ψ,Ψ) = (λI −A)−1F , where F = (f1, f2, f3, f4) ∈ H, that is

W = (ϕ, λϕ− f1, ψ, λψ − f3) = (ϕ, λϕ, ψ, λψ) + (0,−f1, 0,−f3).

Thus,

‖(ϕ,ψ)‖λ = ‖(ϕ, λϕ, ψ, λψ)‖H = ‖W − (0,−f1, 0,−f3)‖H ≤ ‖W‖H + ‖F‖H. (3.24)

On the other hand, let W̃ be the solution to (λI − Ā)W̃ = F , that is,

W̃ = (ϕ̃, Φ̃, ψ̃, Ψ̃) = (ϕ̃, λϕ̃, ψ̃, λψ̃)− (0,−f1, 0− f3).

Then,

‖W‖H − ‖W̃‖H ≤ ‖W − W̃‖H
= ‖(ϕ, λϕ, ψ, λψ)− (ϕ̃, λϕ̃, ψ̃, λψ̃)‖H
= ‖(ϕ,ψ)− (ϕ̃, ψ̃)‖λ.

From P (0, 0) = (ϕ̃, ψ̃), P (ϕ,ψ) = (ϕ,ψ) and the fact that P is a contraction, we have that

‖W‖H − ‖W̃‖H ≤ ‖P (ϕ,ψ)− P (0, 0)‖λ ≤ d‖(ϕ,ψ)‖λ. (3.25)

Hence, from (3.24) and (3.25) follow

‖W‖H − ‖W̃‖H ≤ d‖W‖H + d‖F‖H,
that is,

(1− d)‖W‖H ≤ ‖W̃‖H + d‖F‖H.
Finally, from Remark 3.1 follows that there is a positive constant c̄ such that

‖W‖H ≤ c̄‖F‖H,
that is, (λI −A)−1 is bounded. This completes our proof. �

4. Numerical Results

In this section, we present some numerical results illustrating the asymptotic behavior of the energy and
as well as the relevance of the condition (1.4) for the exponential decay.

We study numerically here, the decay of the energy. For this, we use Finite Difference (of second order in
space and time). Furthermore, the method of β−Newmark is a second order method preserving the discrete
energy always when the discrete system of equations of motion is symmetric (i.e. matrices associated to the
system should be symmetric).

4.1. Finite difference method. We consider J an integer non-negative and h = L/(J + 1) an spatial
subdivision of the interval (0, L) given by 0 = x0 < x1 < . . . < xJ < xJ+1 = L, with xj = jh each node
of the mesh. We use ϕj(t), ψj(t), for all j = 1, 2, . . . , J and t > 0 to denote the approximate values of

ϕ(jh, t) and ψ(jh, t), respectively. In addition, we denote the discrete operator ∆hϑj =
ϑj+1−2ϑj+ϑj−1

h2 and

δhϑj =
ϑj+1−ϑj−1

2h . We assume the following finite difference scheme applied to system (1.7)-(1.10)

ρ1ϕ
′′
j − κ∆hϕj − κ

ψj+1 − ψj−1

2h
+ aj

ψ′j+1 + 2ψ′j + ψ′j−1

4
= 0, (4.1)

ρ2ψ
′′
j − b∆hψj + κ

ϕj+1 − ϕj−1

2h
+ κ

ψj+1 + 2ψj + ψj−1

4
= 0, j = 1, . . . , J, (4.2)

ϕ0 = ϕJ = ψ1 − ψ0 = ψJ+1 − ψJ = 0, (4.3)

ϕj(0) = ϕ0
j , ϕ

′
j(0) = ϕ1

j , ψj(0) = ψ0
j , ψ

′
j(0) = ψ1

j , j = 1, . . . , J, (4.4)
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where aj = a(xj), for j = 1, . . . , J . We note that ψ(xj) and ψ′(xj) are approximated by

ψ(xj) ≈ Θh
1/4ψj :=

ψj+1 + 2ψj + ψj−1

4
, ψ′(xj) ≈ Θh

1/4ψ
′
j :=

ψ′j+1 + 2ψ′j + ψ′j−1

4
,

respectively. These approaches are particular cases of the well known θ-scheme with θ = 1/4, in order to
obtain uniform observability for the discrete Timoshenko System (see for more details [2, 3]). The discrete
Energy of (4.1)-(4.4) is given by

E∆(t) = ρ1
h

2

J∑
j=0

|ϕ′j |2 + ρ2
h

2

J∑
j=0

|ψ′j |2 +
h

2

[
b

∣∣∣∣ψj+1 − ψj
h

∣∣∣∣2 + κ

∣∣∣∣ϕj+1 − ϕj
h

+
ψj+1 + ψj

2

∣∣∣∣2
]
. (4.5)

4.2. Equation of motion and time discretization. The system (4.1)-(4.3) can be rewritten as

M

[
ϕ̈h
ψ̈h

]
+ C

[
ϕ̇h
ψ̇h

]
+ K

[
ϕh
ψh

]
= 0, (4.6)

where M, C and K are the mass, damping and stiffness matrices of the system in M2J(R), and ϕh =
(ϕ1, . . . , ϕJ)>, ψh = (ψ1, . . . , ψJ)> ∈ RJ .

The Newmark algorithm [18] is based on a set of two relations expressing the forward displacement

[ϕn+1
h , ψn+1

h ]> and velocity [Φn+1
h ,Ψn+1

h ]> = [ϕ̇n+1
h , ψ̇n+1

h ]>. The method consists in updating the displace-
ment, velocity and acceleration vectors from current time tn = nδt to the time tn+1 = (n+ 1)δt,

Φn+1
h = Φnh + (1− γ)δt Φ̇nh + γδt Φ̇n+1

h (4.7)

ϕn+1
h = ϕnh +

(
1

2
− β

)
δt2 Φ̇nh + βδt2 Φ̇n+1

h (4.8)

Ψn+1
h = Ψn

h + (1− γ)δt Ψ̇n
h + γδt Ψ̇n+1

h (4.9)

ψn+1
h = ψnh +

(
1

2
− β

)
δt2 Ψ̇n

h + βδt2 Ψ̇n+1
h , (4.10)

where β and γ are parameters of the methods that will be fixed later. Replacing (4.7)-(4.10) in the equation
of motion (4.6), we obtain

(
M + γδtC + βδt2K

) [ Φ̇n+1
h

Ψ̇n+1
h

]
= −C

([
Φnh
Ψn
h

]
+ (1− γ)δt

[
Φ̇nh
Ψ̇n
h

])
−K

([
ϕnh
ψnh

]
+ δt

[
Φnh
Ψn
h

]
+

(
1

2
− β

)
δt2
[

Φ̇nh
Ψ̇n
h

])
. (4.11)

The acceleration [Φ̇n+1
h , Ψ̇n+1

h ]> is computed from (4.11), and the velocities [Φn+1
h ,Ψn+1

h ]> are obtained from

(4.7) and (4.9), respectively. Finally, the displacement [ϕn+1
h , ψn+1

h ]> follows from (4.8) and (4.10), by simple
matrix operations. Thus, the fully discrete energy of the system (4.7)-(4.11) is given by

Enh :=
1

2

[
Φ>h ,Ψ

>
h

]
M

[
Φh
Ψh

]
+

1

2

[
ϕ>h , ψ

>
h

]
K

[
ϕh
ψh

]
(4.12)

which is an approximation of energy for the continuous case. The increment of this energy can be expressed
in terms of mean values and increments of the displacement and velocity. Then, we choose γ = 1

2 and β = γ
2 ,

reducing the above expression to

En+1
δ − Enδ = −1

2

{[
∆ϕ>h ,∆ψ

>
h

]
C

[
∆ϕh
∆ψh

]
+ δt

[
Φ
n+ 1

2 ,>
h ,Ψ

n+ 1
2 ,>

h

]
C

[
Φ
n+ 1

2

h

Ψ
n+ 1

2

h

]}
6 0.

With this, the fully discrete energy obtained by the β−Newmark method is decreasing and we expect
that its asymptotic behavior be a reflection of the continuous case (see [15] and also [4, 5]).
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Figure 1. Asymptotic behavior of the energies for different cases of indefinite dissipation
functions; Exponential decay is observed for α < 0.4.

4.3. Numerical examples. We make simulations with parameters ρ1 = ρ2 = β = κ = 1, taking into
account the condition (1.3). Our purpose here is to test the asymptotic behavior of the energy for different
kinds of indefinite damping of type a(x)ψt. More precisely, we focus on the following family of damping
functions (see Figure 1(A)):

a(x) =

 h =
1/L+ 2α

1− 2α
if α 6

x

L
6 1− α

−1 otherwise,

where α ∈ (0, 1
2 ). This family of damping functions changes its sign and

Lā =

∫ L

0

a(x) dx = 1 > 0,

which is compatible with the condition (1.4). On the other hand, The condition ‖a − ā‖L2 < ε, for ε small
enough, is satisfied or not, depending on the value of α, where the distance between a(x) and ā in L2-norm
is determined according to Table 1.

α 0.0 0.2 0.3 0.4 0.41 0.43 0.45
‖a− ā‖L2 0.0 2.0412 3.0619 5.0 5.3359 6.1962 7.5

Table 1. Table of distance from the indefinite dissipation function in relation with its average.

4.4. Numerical simulation of critical cases and initial conditions. In order to evidence the impor-
tance of the second condition (1.4), which guarantee the exponential decay of energy, we perform here several
numerical experiments for different indefinite dissipation functions and a simple initial condition given by

ϕ(0, x) = sin
2πx

L
, ψ(0, x) = x− L

2
, ϕt(0, x) = ψt(0, x) = 0. (4.13)

Furthermore, we consider L = 0.25, J = 1000, h = L/(J + 1), T = 10.000, δt = 1.
Considering the family of indefinite dissipation functions for different values of α, the results of these

simulations are observed in Figure 1(B), where we see exponential decay of the energy for α 6 0.4, and lack
of exponential decay for α > 0.4, reaching even an increase of energy due to a phenomenon of anti-dissipation
for cases α = 0.43 and α = 0.45.

From this graph and based in Table 1, we can interpret the second condition (1.4) for the exponential
decay of the energy of a numerical point of view.
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(c) a(x) =

{
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−1 otherwise.
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(d) a(x) =
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Figure 2. Eigenvalues for different indefinite dissipations (L = 0.25, and
∫ L

0
a(x)dx = 1).

In the proof of Lemma 3.4, it was necessary at least ‖a − ā‖L2 < 1 to obtain the exponential decay of
energy. On the other hand, in this section we check numerically that if ‖a− ā‖L2 > 5, then the energy grows
(see curve for α = 0.41 in Figure 1(B), and Table 1). As an open problem, it remains the critical value of
ε > 0 for which there is no longer exponential decay of the energy, independent of the initial condition and the
shape of the indefinite damping function. Indeed, it is likely that for a not so smooth initial condition, and
perhaps for other family of indefinite damping functions, the energy grows with a smaller value of ‖a− ā‖L2 .
These numerical examples are not intended to find the critical value of ε > 0, but simply to highlight that
indeed there exists ε > 0 small enough, such that the condition (1.4) is necessary for the exponential decay
of the energy.

Now, we made another approach through a numerical analysis of the eigenvalues associated to the Timo-
shenko System (1.7)-(1.10).

4.5. Plotting Eigenvalues. We present numerical results on the linear stability of our system. We use
normal mode analysis and set

ϕ(x, t) = eλtP (x), ψ(x, t) = eλtQ(x).
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Thus, (1.7)-(1.10) become the following eigenvalues problem:

κ(Px +Q)x + a(x)λP = λ2ρ1P (4.14)

bQxx − κ(Px +Q) = λ2ρ2Q (4.15)

P (0) = P (L) = Qx(0) = Qx(L) = 0 (4.16)

We approximate P (xj), Q(xj) with j = 1, . . . , J , by p, q ∈ RJ , and we discretize (4.14)-(4.16) by finite
difference as in (4.1)-(4.4), obtaining a 4J × 4J matrix equation given by

O 1
ρ1

I O O

K1 C K2 O
O O O 1

ρ2
I

K4 O K3 O




p
r
q
z

 = λ


p
r
q
z

 (4.17)

where Ki, with i = 1, . . . , 4 are the J × J hyperbolic terms matrices given by K1 = κ∆h, K2 = Kt
4 = κδh,

K3 = b∆h − κΘh
1/4. On the other hand, C = diag(aj)Θ

h
1/4 correspond to the indefinite dissipation matrix,

O is the null matrix, and I is the identity.
We obtain results for different values of α, in Figure 2. The case α = 0 (see Figure 2(A)), corresponds to

the possitive and constant damping a(x) = 4. In this case, all the eigenvalues are away from the imaginary

axis, except the case λ = ±i
√
κ/ρ2, where the eigenfunction corresponds to a constant different to zero. This

eigenfunction is easy to avoid in the study of the decay of energy, imposing
∫
ψ(x, t)dx = 0. It is inevitably

seen in the graph of the figure 2(A) but since it was not the goal of our study, it was discarded.
The case α = 0.3 (see Figure 2(B)), correspond to the damping a(x) = 11.5, if 0.075 6 x 6 0.175,

and a(x) = −1, otherwise (see Figure 1(A)). This case is similar to the preceding: all the eigenvalues are

away from the imaginary axis, except the case λ = ±i
√
κ/ρ2, which was discarded, due to the aim of our

study. On the other hand, the case α = 0.41 (see Figure 2(C)), correspond to the damping a(x) = 26.8,
if 0.1025 6 x 6 0.1475, and a(x) = −1, otherwise. In this case we observe four eigenvalues close to the

imaginary axis. In fact two of them are on the imaginary axis (λ1,2 = ±i
√
κ/ρ2) and the other two have

slightly positive real part: λ3,4 = 0.0007± i25.63. Finally, in the case α = 0.45 (see Figure 2(D)), there are
many eigenvalues with real part postive which is not surprising by the fact that energy is strictly increasing
in time, as seen in Figure 1(B).

4.6. Graph of the solution. Finally, in this subsection, we show the graph of the complete solution ϕ(x, t)
and ψ(x, t) for the case α = 0.4, and with the initial condition (4.13). This example corresponds to a critical
case when the energy slowly decays according to the graph in Figure 1(B). We observe the decay of both ϕ
and ψ in time in Figure 3. The asymptotic behavior of ϕt and ψt is completely analogous.

(a) ϕ(x, t) (b) ψ(x, t)

Figure 3. Asymptotic behavior of the solution ϕ(x, t) and ψ(x, t) for the case α = 0.4.
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[3] Almeida Júnior D. S., Santos M. L. and Muñoz Rivera J. E. (2013), Stability to weakly dissipative Timoshenko systems,

Mathematical Methods in the Applied Sciences , 1965-1976.
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analysis of a fully-mixed formulation for the Navier-Stokes/Darcy coupled problem with
nonlinear viscosity

2016-24 Jessika Camaño, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo Ruiz-
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