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Abstract

The paper deals with the a posteriori error analysis of a virtual element method for the Steklov
eigenvalue problem. The virtual element method has the advantage of using general polygonal
meshes, which allows implementing very efficiently mesh refinement strategies. We introduce a
residual type a posteriori error estimator and prove its reliability and efficiency. We use the
corresponding error estimator to drive an adaptive scheme. Finally, we report the results of a
couple of numerical tests, that allow us to assess the performance of this approach.
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1. Introduction

The Virtual Element Method (VEM), introduced in [7, 8], is a recent generalization of the
Finite Element Method, which is characterized by the capability of dealing with very general
polygonal/polyhedral meshes. The interest in numerical methods that can make use of general
polytopal meshes has recently undergone a significant growth in the mathematical and engineering
literature; among the large number of papers on this subject, we cite as a minimal sample [7, 9, 20,
26, 35, 36, 37]. Indeed, polytopal meshes can be very useful for a wide range of reasons including
meshing of the domain, automatic use of hanging nodes, moving meshes and adaptivity. VEM has
been applied successfully in a large range of problems; see for instance [1, 3, 6, 7, 8, 10, 12, 13, 16,
18, 29, 31, 32, 33].

The object of this paper is to introduce and analyze an a posteriori error estimator of residual
type for the virtual element approximation of the Steklov eigenvalue problem. In fact, due to the
large flexibility of the meshes to which the virtual element method is applied, mesh adaptivity be-
comes an appealing feature as mesh refinement strategies can be implemented very efficiently. For
instance, hanging nodes can be introduced in the mesh to guarantee the mesh conformity without
spreading the refined zones. In fact hanging nodes introduced by the refinement of a neighboring
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element are simply treated as new nodes since adjacent non matching element interfaces are per-
fectly acceptable. On the other hand, polygonal cells with very general shapes are admissible thus
allowing us to adopt simple mesh coarsening algorithms.

The approximation of eigenvalue problems has been the object of great interest from both
the practical and theoretical points of view, since they appear in many applications. We refer to
[17] and the references therein for the state of art in this subject area. In particular, the Steklov
eigenvalue problem, which involves the Laplace operator but is characterized by the presence of
the eigenvalue in the boundary condition, appears in many applications; for example, the study
of the vibration modes of a structure in contact with an incompressible fluid (see [14]) and the
analysis of the stability of mechanical oscillators immersed in a viscous media (see [34]). One of its
main applications arises from the dynamics of liquids in moving containers, i.e., sloshing problems
(see [15, 19, 23, 24, 28, 39]).

On the other hand, adaptive mesh refinement strategies based on a posteriori error indicators
play a relevant role in the numerical solution of partial differential equations in a general sense.
For instance, they guarantee achieving errors below a tolerance with a reasonable computer cost
in presence of singular solutions. Several approaches have been considered to construct error
estimators based on the residual equations (see [2, 27, 38] and the references therein). In particular,
for the Steklov eigenvalue problem we mention [4, 5, 25, 30, 40]. On the other hand, the design
and analysis of a posteriori error bounds for the VEM is a challenging task. References [11, 21]
are the only a posteriori error analyses for VEM currently available in the literature. In [11], a
posteriori error bounds for the C1-conforming VEM for the two-dimensional Poisson problem are
proposed. In [21], a posteriori error bounds are introduced for the C0-conforming VEM proposed
in [22] for the discretization of second order linear elliptic reaction-convection-diffusion problems
with non constant coefficients in two and three dimensions.

We have recently developed in [31] a virtual element method for the Steklov eigenvalue prob-
lem. Under standard assumptions on the computational domain, we have established that the
resulting scheme provides a correct approximation of the spectrum and proved optimal order error
estimates for the eigenfunctions and a double order for the eigenvalues. In order to exploit the
capability of VEM in the use of general polygonal meshes and its flexibility for the application of
mesh adaptive strategies, we introduce and analyze an a posteriori error estimator for the virtual
element approximation introduced in [31]. Since normal fluxes of the VEM solution are not com-
putable, they will be replaced in the estimators by a proper projection. As a consequence of this
replacement, new additional terms appear in the a posteriori error estimator, which represent the
virtual inconsistency of VEM. Similar terms also appear in the other papers for a posteriori error
estimates of VEM (see [11, 21]). We prove that the error estimator is equivalent to the error and
use the corresponding indicator to drive an adaptive scheme.

The outline of this article is as follows: in Section 2 we present the continuous and discrete
formulations of the Steklov eigenvalue problem together with the spectral characterization. Then,
we recall the a priori error estimates for the virtual element approximation analyzed in [31]. In
Section 3, we define the a posteriori error estimator and proved its reliability and efficiency. Finally,
in Section 4, we report a set of numerical tests that allow us to assess the performance of an adaptive
strategy driven by the estimator. We have also made a comparison between the proposed estimator
and the standard edge-residual error estimator for a finite element method.

Throughout the article we will denote by C a generic constant independent of the mesh pa-
rameter h, which may take different values in different occurrences.
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2. The Steklov eigenvalue problem and its virtual element approximation

Let Ω ⊂ R
2 be a bounded domain with polygonal boundary ∂Ω. Let Γ0 and Γ1 be disjoint

open subsets of ∂Ω such that ∂Ω = Γ̄0 ∪ Γ̄1 with Γ0 6= ∅. We denote by n the outward unit normal
vector to ∂Ω.

We consider the following eigenvalue problem:

Find (λ,w) ∈ R×H1(Ω), w 6= 0, such that





∆w = 0 in Ω,

∂w

∂n
=

{
λw on Γ0,
0 on Γ1.

By testing the first equation above with v ∈ H1(Ω) and integrating by parts, we arrive at the
following equivalent weak formulation:

Problem 1. Find (λ,w) ∈ R×H1(Ω), w 6= 0, such that
∫

Ω

∇w · ∇v = λ

∫

Γ0

wv ∀v ∈ H1(Ω).

According to [31, Theorem 2.1], we know that the solutions (λ,w) of the problem above are:

• λ0 = 0, whose associated eigenspace is the space of constant functions in Ω;

• a sequence of positive finite-multiplicity eigenvalues {λk}k∈N such that λk → ∞.

The eigenfunctions corresponding to different eigenvalues are orthogonal in L2(Γ0). Therefore the
eigenfunctions wk corresponding to λk > 0 satisfy

∫

Γ0

wk = 0. (2.1)

We denote the bounded bilinear symmetric forms appearing in Problem 1 as follows:

a(w, v) :=

∫

Ω

∇w · ∇v, w, v ∈ H1(Ω),

b(w, v) :=

∫

Γ0

wv, w, v ∈ H1(Ω).

Let {Th}h be a sequence of decompositions of Ω into polygonsK. We assume that for every mesh
Th, Γ0 and Γ1 are union of edges of elements K ∈ Th. Let hK denote the diameter of the element
K and h the maximum of the diameters of all the elements of the mesh, i.e., h := maxK∈Th

hK .

For the analysis, we will make as in [7, 31] the following assumptions.

• A1. Every mesh Th consists of a finite number of simple polygons (i.e., open simply connected
sets with non self intersecting polygonal boundaries).

• A2. There exists γ > 0 such that, for all meshes Th, each polygon K ∈ Th is star-shaped
with respect to a ball of radius greater than or equal to γhK .

• A3. There exists γ̂ > 0 such that, for all meshes Th, for each polygon K ∈ Th, the distance
between any two of its vertices is greater than or equal to γ̂hK .

3



We consider now a simple polygon K and, for k ∈ N, we define

Bk(∂K) :=
{
v ∈ C0(∂K) : v|ℓ ∈ Pk(ℓ) for all edges ℓ ⊂ ∂K

}
.

We then consider the finite-dimensional space defined as follows:

V K
k :=

{
v ∈ H1(K) : v|∂K ∈ Bk(∂K) and ∆v|K ∈ Pk−2(K)

}
, (2.2)

where, for k = 1, we have used the convention that P−1(K) := {0}. We choose in this space the
degrees of freedom introduced in [7, Section 4.1]. Finally, for every decomposition Th of Ω into
simple polygons K and for a fixed k ∈ N, we define

Vh :=
{
v ∈ H1(Ω) : v|K ∈ V K

k ∀K ∈ Th
}
.

In what follows, we will use standard Sobolev spaces, norms and seminorms and also the broken
H1-seminorm

|v|21,h :=
∑

K∈Th

‖∇v‖20,K ,

which is well defined for every v ∈ L2(Ω) such that v|K ∈ H1(K) for each polygon K ∈ Th.

We split the bilinear form a(·, ·) as follows:

a(u, v) =
∑

K∈Th

aK(u, v), u, v ∈ H1(Ω),

where

aK(u, v) :=

∫

K

∇u · ∇v, u, v ∈ H1(K).

Due to the implicit space definition, we must have into account that we would not know how
to compute aK(·, ·) for uh, vh ∈ Vh. Nevertheless, the final output will be a local matrix on each
element K whose associated bilinear form can be exactly computed whenever one of the two entries
is a polynomial of degree k. This will allow us to retain the optimal approximation properties of
the space Vh.

With this end, for any K ∈ Th and for any sufficiently regular function ϕ, we define first

ϕ :=
1

NK

NK∑

i=1

ϕ(Pi),

where Pi, 1 ≤ i ≤ NK , are the vertices of K. Then, we define the projector ΠK
k : V K

k −→ Pk(K) ⊆
V K
k for each vh ∈ V K

k as the solution of

aK
(
ΠK

k vh, q
)
= aK(vh, q) ∀q ∈ Pk(K),

ΠK
k vh = vh.

On the other hand, let SK(·, ·) be any symmetric positive definite bilinear form to be chosen
as to satisfy

c0 a
K(vh, vh) ≤ SK(vh, vh) ≤ c1 a

K(vh, vh) ∀vh ∈ V K
k with ΠK

k vh = 0 (2.4)

for some positive constants c0 and c1 independent of K. Then, set

ah(uh, vh) :=
∑

K∈Th

aKh (uh, vh), uh, vh ∈ Vh,
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where aKh (·, ·) is the bilinear form defined on V K
k × V K

k by

aKh (uh, vh) := aK
(
ΠK

k uh,Π
K
k vh

)
+ SK

(
uh −ΠK

k uh, vh −ΠK
k vh

)
, uh, vh ∈ V K

k .

Notice that the bilinear form SK(·, ·) has to be actually computable for uh, vh ∈ V K
k .

The following properties of aKh (·, ·) have been established in [7, Theorem 4.1].

• k-Consistency :
aKh (p, vh) = aK(p, vh) ∀p ∈ Pk(K), ∀vh ∈ V K

k . (2.5)

• Stability : There exist two positive constants α∗ and α∗, independent of K, such that:

α∗a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗aK(vh, vh) ∀vh ∈ V K

k . (2.6)

Now, we are in a position to write the virtual element discretization of Problem 1.

Problem 2. Find (λh, wh) ∈ R× Vh, wh 6= 0, such that

ah(wh, vh) = λhb(wh, vh) ∀vh ∈ Vh.

According to [31, Theorem 3.1] we know that the solutions (λh, wh) of the problem above are:

• λh0 = 0, whose associated eigenfunction are the constant functions in Ω.

• {λhk}
Nh

k=1, with Nh := dim {vh|Γ0
, vh ∈ Vh} − 1, which are positive eigenvalues repeated

according to their respective multiplicities.

Moreover, the eigenfunctions corresponding to different eigenvalues are orthogonal in L2(Γ0).
Therefore the eigenfunctions wk

h corresponding to λhk > 0 satisfy
∫

Γ0

wk
h = 0. (2.7)

Let (λ,w) be a solution to Problem 1. We assume λ > 0 is a simple eigenvalue and we normalize
w so that ‖w‖0,Γ0

= 1. Then, for each mesh Th, there exists a solution (λh, wh) of Problem 2 such
that λh → λ, ‖wh‖0,Γ0

= 1 and ‖w − wh‖1,Ω → 0 as h → 0. Moreover, according to (2.1) and
(2.7), we have that w and wh belong to the space

V :=

{
v ∈ H1(Ω) :

∫

Γ0

v = 0

}
.

Let us remark that the following generalized Poincaré inequality holds true in this space: there
exists C > 0 such that

‖v‖1,Ω ≤ C|v|1,Ω ∀v ∈ V. (2.8)

The following a priori error estimates have been proved in [31, Theorems 4.2–4.4]: there exists
C > 0 such that for all r ∈ [ 12 , rΩ)

‖w − wh‖1,Ω ≤ Chmin{r,k}, (2.9)

|λ− λh| ≤ Ch2min{r,k}, (2.10)

‖w − wh‖0,Γ0
≤ Chmin{r,1}/2+min{r,k}, (2.11)

where the constant rΩ > 1
2 is the Sobolev exponent for the Laplace problem with Neumann

boundary conditions. Let us remark that rΩ > 1, if Ω is convex, and rΩ := π
ω with ω being the

largest re-entrant angle of Ω, otherwise.
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3. A posteriori error analysis

The aim of this section is to introduce a suitable residual-based error estimator for the Steklov
eigenvalue problem which be fully computable, in the sense that it depends only on quantities
available from the VEM solution. Then, we will show its equivalence with the error. For this
purpose, we introduce the following definitions and notations.

For any polygon K ∈ Th, we denote by EK the set of edges of K and

E :=
⋃

K∈Th

EK .

We decompose E = EΩ ∪ EΓ0
∪ EΓ1

, where EΓ0
:= {ℓ ∈ E : ℓ ⊂ Γ0}, EΓ1

:= {ℓ ∈ E : ℓ ⊂ Γ1} and
EΩ := E\(EΓ0

∪ EΓ1
). For each inner edge ℓ ∈ EΩ and for any sufficiently smooth function v, we

define the jump of its normal derivative on ℓ by
[[
∂v

∂n

]]

ℓ

:= ∇(v|K) · nK +∇(v|K′) · nK′ ,

where K and K ′ are the two elements in Th sharing the edge ℓ and nK and nK′ are the respective
outer unit normal vectors.

As a consequence of the mesh regularity assumptions, we have that each polygon K ∈ Th
admits a sub-triangulation T K

h obtained by joining each vertex of K with the midpoint of the ball

with respect to which K is starred. Let T̂h :=
⋃

K∈Th
T K
h . Since we are also assuming A3,

{
T̂h
}
h

is a shape-regular family of triangulations of Ω.

We introduce bubble functions on polygons as follows (see [21]). An interior bubble function
ψK ∈ H1

0 (K) for a polygon K can be constructed piecewise as the sum of the cubic bubble
functions for each triangle of the sub-triangulation T K

h that attain the value 1 at the barycenter of
each triangle. On the other hand, an edge bubble function ψℓ for ℓ ∈ ∂K is a piecewise quadratic
function attaining the value 1 at the barycenter of ℓ and vanishing on the triangles T ∈ T̂h that
do not contain ℓ on its boundary.

The following results which establish standard estimates for bubble functions will be useful in
what follows (see [2, 38]).

Lemma 3.1 (Interior bubble functions). For any K ∈ Th, let ψK be the corresponding interior
bubble function. Then, there exists a constant C > 0 independent of hK such that

C−1‖q‖20,K ≤

∫

K

ψKq
2 ≤ ‖q‖20,K ∀q ∈ Pk(K),

C−1‖q‖0,K ≤ ‖ψKq‖0,K + hK‖∇(ψKq)‖0,K ≤ C‖q‖0,K ∀q ∈ Pk(K).

Lemma 3.2 (Edge bubble functions). For any K ∈ Th and ℓ ∈ EK , let ψℓ be the corresponding
edge bubble function. Then, there exists a constant C > 0 independent of hK such that

C−1‖q‖20,ℓ ≤

∫

ℓ

ψℓq
2 ≤ ‖q‖20,ℓ ∀q ∈ Pk(ℓ).

Moreover, for all q ∈ Pk(ℓ), there exists an extension of q ∈ Pk(K) (again denoted by q) such that

h
−1/2
K ‖ψℓq‖0,K + h

1/2
K ‖∇(ψℓq)‖0,K ≤ C‖q‖0,ℓ.

Remark 3.1. A possible way of extending q from ℓ ∈ EK to K so that Lemma 3.2 holds is as
follows: first we extend q to the straight line L ⊃ ℓ using the same polynomial function. Then, we
extend it to the whole plain through a constant prolongation in the normal direction to L. Finally,
we restrict the latter to K.
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The following lemma provides an error equation which will be the starting point of our error
analysis. From now on, we will denote by e := (w − wh) ∈ V the eigenfunction error and by

Jℓ :=





1

2

[[
∂(ΠK

k wh)

∂n

]]

ℓ

, ℓ ∈ EΩ,

λhwh −
∂(ΠK

k wh)

∂n
, ℓ ∈ EΓ0

,

−
∂(ΠK

k wh)

∂n
, ℓ ∈ EΓ1

,

(3.1)

the edge residuals. Notice that Jℓ are actually computable since they only involve values of wh

on Γ0 (which are computable in terms of the boundary degrees of freedom) and ΠK
k wh ∈ Pk(K)

which is also computable.

Lemma 3.3. For any v ∈ H1(Ω), we have the following identity:

a(e, v) = λb(w, v)− λhb(wh, v)−
∑

K∈Th

aK(wh −ΠK
k wh, v) +

∑

K∈Th

[∫

K

∆(ΠK
k wh)v +

∑

ℓ∈EK

∫

ℓ

Jℓv

]
.

Proof. Using that (λ,w) is a solution of Problem 1, adding and subtracting ΠK
k wh and integrating

by parts, we obtain

a(e, v) = λb(w, v)− a(wh, v)

= λb(w, v)−
∑

K∈Th

[
aK(wh −ΠK

k wh, v) + aK(ΠK
k wh, v)

]

= λb(w, v)−
∑

K∈Th

aK(wh −ΠK
k wh, v)−

∑

K∈Th

[
−

∫

K

∆(ΠK
k wh) v +

∫

∂K

∂(ΠK
k wh)

∂n
v

]

= λb(w, v)−
∑

K∈Th

aK(wh −ΠK
k wh, v)

+
∑

K∈Th



∫

K

∆(ΠK
k wh) v −

∑

ℓ∈EK∩(EΓ0
∪EΓ1

)

∫

ℓ

∂(ΠK
k wh)

∂n
v +

1

2

∑

ℓ∈EK∩EΩ

∫

ℓ

[[
∂(ΠK

k wh)

∂n

]]

ℓ

v


 .

Finally, the proof follows by adding and subtracting the term λhb(wh, v).

For all K ∈ Th, we introduce the local terms θK and RK and the local error indicator ηK by

θ2K := aKh (wh −ΠK
k wh, wh −ΠK

k wh),

R2
K := h2K‖∆(ΠK

k wh)‖
2
0,K ,

η2K := θ2K +R2
K +

∑

ℓ∈EK

hK‖Jℓ‖
2
0,ℓ.

We also introduce the global error estimator by

η2 :=
∑

K∈Th

η2K .

Remark 3.2. The indicators ηK include the terms θK which do not appear in standard finite
element estimators. This term, which represent the virtual inconsistency of the method, has been
introduced in [11, 21] for a posteriori error estimates of other VEM. Let us emphasize that it can
be directly computed in terms of the bilinear form SK(·, ·). In fact,

θ2K = aKh (wh −ΠK
k wh, wh −ΠK

k wh) = SK(wh −ΠK
k wh, wh −ΠK

k wh).

7



3.1. Reliability of the a posteriori error estimator

First, we provide an upper bound for the error.

Theorem 3.1. There exists a constant C > 0 independent of h such that

|w − wh|1,Ω ≤ C

(
η +

λ+ λh
2

‖w − wh‖0,Γ0

)
.

Proof. Since e = w − wh ∈ V ⊂ H1(Ω), there exists eI ∈ Vh satisfying (see [31, Proposition 4.2])

‖e− eI‖0,K + hK |e− eI |1,K ≤ ChK‖e‖1,K . (3.2)

Then, we have that

|w − wh|
2
1,Ω = a(w − wh, e)

= a(w − wh, e− eI) + a(w, eI)− ah(wh, eI) + ah(wh, eI)− a(wh, eI)

= λb(w, e)− λhb(wh, e)︸ ︷︷ ︸
T1

+
∑

K∈Th

[∫

K

∆(ΠK
k wh)(e− eI) +

∑

ℓ∈EK

∫

ℓ

Jℓ(e− eI)

]

︸ ︷︷ ︸
T2

−
∑

K∈Th

aK(wh −ΠK
k wh, e− eI)

︸ ︷︷ ︸
T3

+ ah(wh, eI)− a(wh, eI)︸ ︷︷ ︸
T4

,

(3.3)

the last equality thanks to Lemma 3.3. Next, we bound each term Ti separately.

For T1, we use the definition of b(·, ·), the fact that ‖w‖0,Γ0
= ‖wh‖0,Γ0

= 1, a trace theorem
and (2.8) to write

T1 = λ+ λh − (λ+ λh)

∫

Γ0

wwh =
λ+ λh

2
‖e‖20,Γ0

≤ C
λ+ λh

2
‖e‖0,Γ0

|e|1,Ω. (3.4)

For T2, first, we use a local trace inequality (see [13, Lemma 14]) and (3.2) to write

‖e− eI‖0,ℓ ≤ C
(
h
−1/2
K ‖e− eI‖0,K + h

1/2
K |e− eI |1,K

)
≤ Ch

1/2
K ‖e‖1,K .

Hence, using (3.2) again, we have

T2 ≤ C
∑

K∈Th

[
‖∆(ΠK

k wh)‖0,K‖e− eI‖0,K +
∑

ℓ∈EK

‖Jℓ‖0,ℓ‖e− eI‖0,ℓ

]

≤ C
∑

K∈Th

[
hK‖∆(ΠK

k wh)‖0,K‖e‖1,K +
∑

ℓ∈EK

h
1/2
K ‖Jℓ‖0,ℓ‖e‖1,K

]

≤ C

{
∑

K∈Th

[
h2K‖∆(ΠK

k wh)‖
2
0,K +

∑

ℓ∈EK

hK‖Jℓ‖
2
0,ℓ

]}1/2

|e|1,Ω, (3.5)

where for the last estimate we have used (2.8).

To bound T3, we use the stability property (2.6) and (3.2) to write

T3 ≤ C
∑

K∈Th

aKh (wh −ΠK
k wh, wh −ΠK

k wh)
1/2‖e‖1,K ≤ C

(
∑

K∈Th

θ2K

)1/2

|e|1,Ω, (3.6)

8



where for the last estimate we have used Remark 3.2 and (2.8) again.

Finally, to bound T4, we add and subtract ΠK
k wh on each K ∈ Th and use the k-consistency

property (2.5):

T4 =
∑

K∈Th

[
aKh (wh −ΠK

k wh, eI)− aK(wh −ΠK
k wh, eI)

]

≤
∑

K∈Th

aKh (wh −ΠK
k wh, wh −ΠK

k wh)
1/2aKh (eI , eI)

1/2

+
∑

K∈Th

aK(wh −ΠK
k wh, wh −ΠK

k wh)
1/2aK(eI , eI)

1/2

≤ C
∑

K∈Th

aKh (wh −ΠK
k wh, wh −ΠK

k wh)
1/2|eI |1,K

≤ C

(
∑

K∈Th

θ2K

)1/2

|e|1,Ω, (3.7)

where we have used the stability property (2.6), (3.2) and (2.8) for the last two inequalities.

Thus, the result follows from (3.3)–(3.7).

Although the virtual approximate eigenfunction is wh, this function is not known in practice.
Instead of wh, what can be used as an approximation of the eigenfunction is Πhwh, where Πh is
defined for vh ∈ Vh by

(Πhvh)|K := ΠK
k vh ∀K ∈ Th.

Notice that Πhwh is actually computable. The following result shows that an estimate similar to
that of Theorem 3.1 holds true for Πhwh.

Corollary 3.1. There exists a constant C > 0 independent of h such that

|w − wh|1,Ω + |w −Πhwh|1,h ≤ C

(
η +

λ+ λh
2

‖w − wh‖0,Γ0

)
.

Proof. For each polygon K ∈ Th, we have that

|w −ΠK
k wh|1,K ≤ |w − wh|1,K + |wh −ΠK

k wh|1,K .

Then, summing over all polygons we obtain

|w −Πhwh|1,h ≤ C

(
∑

K∈Th

|w − wh|
2
1,K +

∑

K∈Th

|wh −ΠK
k wh|

2
1,K

)1/2

.

Now, using (2.4) together with Remark 3.2, we have that

|wh −ΠK
k wh|

2
1,K ≤

1

c0
SK(wh −ΠK

k wh, wh −ΠK
k wh) =

1

c0
θ2K ≤

1

c0
η2K .

Thus, the result follows from Theorem 3.1.

In what follows, we prove a convenient upper bound for the eigenvalue approximation.
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Corollary 3.2. There exists a constant C > 0 independent of h such that

|λ− λh| ≤ C

(
η +

λ+ λh
2

‖w − wh‖0,Γ0

)2

.

Proof. From the symmetry of the bilinear forms together with the facts that a(w, v) = λb(w, v)
for all v ∈ H1(Ω), ah(wh, vh) = λhb(wh, vh) for all vh ∈ Vh and b(wh, wh) = 1, we have

|λ− λh| =
|a(w − wh, w − wh)− λb(w − wh, w − wh) + ah(wh, wh)− a(wh, wh)|

b(wh, wh)

≤ C
[
|w − wh|

2
1,Ω + ‖w − wh‖

2
0,Γ0

+ |ah(wh, wh)− a(wh, wh)|
]

≤ C
[
|w − wh|

2
1,Ω + |ah(wh, wh)− a(wh, wh)|

]
, (3.8)

where we have also used a trace theorem and (2.8). We now bound the last term on the right-hand
side above using the definition of ah(·, ·) and (2.4):

|ah(wh, wh)− a(wh, wh)|

=

∣∣∣∣∣
∑

K∈Th

[
aK(ΠK

k wh,Π
K
k wh) + SK

(
wh −ΠK

k wh, wh −ΠK
k wh

)]
−
∑

K∈Th

aK(wh, wh)

∣∣∣∣∣

≤

∣∣∣∣∣
∑

K∈Th

[
aK
(
ΠK

k wh,Π
K
k wh

)
− aK(wh, wh)

]
∣∣∣∣∣+

∑

K∈Th

c1 a
K
(
wh −ΠK

k wh, wh −ΠK
k wh

)

=
∑

K∈Th

(1 + c1) a
K
(
wh −ΠK

k wh, wh −ΠK
k wh

)

≤ (1 + c1)
∑

K∈Th

(
|wh − w|21,K +

∣∣w −ΠK
k wh

∣∣2
1,K

)
.

Finally, from the above estimate and (3.8) we obtain

|λ− λh| ≤ C
(
|w − wh|

2
1,Ω + |w −Πhwh|

2
1,h

)
. (3.9)

Hence, we conclude the proof thanks to Corollary 3.1.

According to (2.9) and (2.11), it seems reasonable to expect the term ‖w − wh‖0,Γ0
in the

estimate of Theorem 3.1 to be of higher order than |w−wh|1,Ω and hence asymptotically negligible.
However this cannot be rigorously derived from (2.9) and (2.11), which are only upper error bounds.
In fact, the actual error |w − wh|1,Ω could be in principle of higher order than the estimate (2.9).

Our next goal is to prove that the term ‖w − wh‖0,Γ0
is actually asymptotically negligible in

the estimates of Corollaries 3.1 and 3.2. With this aim, we will modify the estimate (2.11) and
prove that

‖w − wh‖0,Γ0
≤ Chmin{r,1}/2 (|w − wh|1,Ω + |w −Πhwh|1,h) . (3.10)

This proof is based on the arguments used in Section 4 from [31]. To avoid repeating them step
by step, in what follows we will only report the changes that have to be made in order to prove
(3.10).

We define in H1(Ω) the bilinear form â(·, ·) := a(·, ·) + b(·, ·), which is elliptic [31, Lemma 2.1].
Let u ∈ H1(Ω) be the solution of

â(u, v) = b(w, v) ∀v ∈ H1(Ω).
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Since a(w, v) = λb(w, v) we have that u = w/(λ + 1). We also define in Vh the bilinear form
âh(·, ·) := ah(·, ·) + b(·, ·), which is elliptic uniformly in h [31, Lemma 3.1]. Let uh ∈ Vh be the
solution of

âh(uh, vh) = b(w, vh) ∀vh ∈ Vh. (3.11)

The arguments in the proof of Lemma 4.3 from [31] can be easily modified to prove that

‖u− uh‖0,Γ0
≤ Chmin{r,1}/2 (|u− uh|1,Ω + |u−Πhuh|1,h) .

Then, using this estimate in the proof of Theorem 4.4 from [31] yields

‖w − wh‖0,Γ0
≤ Chmin{r,1}/2 (|u− uh|1,Ω + |u−Πhuh|1,h) . (3.12)

Now, since as stated above u = w/(λ+ 1), we have that

|u− uh|1,Ω ≤
|w − wh|1,Ω

|λ+ 1|
+

∣∣∣∣
1

λ+ 1
−

1

λh + 1

∣∣∣∣ |wh|1,Ω +

∣∣∣∣
wh

λh + 1
− uh

∣∣∣∣
1,Ω

. (3.13)

For the second term on the right hand side above, we use (3.9) to write

∣∣∣∣
1

λ+ 1
−

1

λh + 1

∣∣∣∣ =
|λ− λh|

|λ+ 1||λh + 1|
≤ C

(
|w − wh|

2
1,Ω + |w −Πhwh|

2
1,h

)
. (3.14)

To estimate the third term we recall first that

âh(wh, vh) = (λh + 1)b(wh, vh) ∀vh ∈ Vh.

Then, subtracting this equation divided by λh + 1 from (3.11) we have that

âh

(
uh −

wh

λh + 1
, vh

)
= b(w − wh, vh) ∀vh ∈ Vh.

Hence, from the uniform ellipticity of âh(·, ·) in Vh, we obtain

∥∥∥∥uh −
wh

λh + 1

∥∥∥∥
2

1,Ω

≤ C‖w − wh‖0,Γ0

∥∥∥∥uh −
wh

λh + 1

∥∥∥∥
0,Γ0

≤ C‖w − wh‖0,Γ0

∥∥∥∥uh −
wh

λh + 1

∥∥∥∥
1,Ω

.

Therefore
∥∥∥∥uh −

wh

λh + 1

∥∥∥∥
1,Ω

≤ C‖w − wh‖0,Γ0
≤ C‖w − wh‖1,Ω ≤ C|w − wh|1,Ω, (3.15)

the last inequality because of Poincaré inequality (2.8). Then, substituting (3.14) and (3.15) into
(3.13) we obtain

|u− uh|1,Ω ≤ C (|w − wh|1,Ω + |w −Πhwh|1,h) . (3.16)

For the other term on the right hand side of (3.12) we have

|u−Πhuh|1,h ≤ |u− uh|1,Ω + |uh −Πhuh|1,h, (3.17)

whereas

|uh −Πhuh|1,h ≤

∣∣∣∣uh −
wh

λh + 1

∣∣∣∣
1,Ω

+
|wh −Πhwh|1,h

λh + 1
+

∣∣∣∣Πh

(
wh

λh + 1
− uh

)∣∣∣∣
1,h

11



≤ 2

∣∣∣∣uh −
wh

λh + 1

∣∣∣∣
1,Ω

+
|w − wh|1,Ω
λh + 1

+
|w −Πhwh|1,h

λh + 1

≤ C (|w − wh|1,Ω + |w −Πhwh|1,h) ,

where we have used (3.15) for the last inequality. Substituting this and estimate (3.16) into (3.17)
we obtain

|u−Πhuh|1,h ≤ C (|w − wh|1,Ω + |w −Πhwh|1,h) .

Finally, substituting the above estimate and (3.16) into (3.12), we conclude the proof of the fol-
lowing result.

Lemma 3.4. There exists C > 0 independent of h such that

‖w − wh‖0,Γ0
≤ Chmin{r,1}/2 (|w − wh|1,Ω + |w −Πhwh|1,h) .

Using this result, now it easy to prove that the term ‖w−wh‖0,Γ0
in Corollaries 3.1 and 3.2 is

asymptotically negligible. In fact, we have the following result.

Theorem 3.2. There exist positive constants C and h0 such that, for all h < h0, there holds

|w − wh|1,Ω + |w −Πhwh|1,h ≤ Cη; (3.18)

|λ− λh| ≤ Cη2. (3.19)

Proof. From Lemma 3.4 and Corollary 3.1 we have

|w − wh|1,Ω + |w −Πhwh|1,h ≤ C
(
η + hmin{r,1}/2 (|w − wh|1,Ω + |w −Πhwh|1,h)

)
.

Hence, it is straightforward to check that there exists h0 > 0 such that for all h < h0 (3.18) holds
true.

On the other hand, from Lemma 3.4 and (3.18) we have that for all h < h0

‖w − wh‖0,Γ0
≤ Chmin{r,1}/2η.

Then, for h small enough, (3.19) follows from Corollary 3.2 and the above estimate.

3.2. Efficiency of the a posteriori error estimator

We will show in this section that the local error indicators ηK are efficient in the sense of
pointing out which polygons should be effectively refined.

First, we prove an upper estimate of the volumetric residual term RK .

Lemma 3.5. There exists a constant C > 0 independent of hK such that

RK ≤ C (|w − wh|1,K + θK) .

Proof. For any K ∈ Th, let ψK be the corresponding interior bubble function. We define v :=
ψK∆(ΠK

k wh). Since v vanishes on the boundary of K, it may be extended by zero to the whole
domain Ω. This extension, again denoted by v, belongs to H1(Ω) and from Lemma 3.3 we have

aK(e, v) = −aK
(
wh −ΠK

k wh, ψK∆(ΠK
k wh)

)
+

∫

K

∆(ΠK
k wh)ψK∆(ΠK

k wh).

12



Since ∆(ΠK
k wh) ∈ Pk−2(K), using Lemma 3.1 and the above equality we obtain

C−1‖∆(ΠK
k wh)‖

2
0,K ≤

∫

K

ψK∆(ΠK
k wh)

2

= aK
(
e, ψK∆(ΠK

k wh)
)
+ aK

(
wh −ΠK

k wh, ψK∆(ΠK
k wh)

)

≤ C
(
|e|1,K +

∣∣wh −ΠK
k wh

∣∣
1,K

) ∣∣ψK∆(ΠK
k wh)

∣∣
1,K

≤ Ch−1
K

(
|e|1,K + θK

)∥∥∆(ΠK
k wh)

∥∥
0,K

, (3.20)

where, for the last inequality, we have used again Lemma 3.1 and (2.4) together with Remark 3.2.
Multiplying the above inequality by hK allows us to conclude the proof.

Next goal is to obtain an upper estimate for the local term θK .

Lemma 3.6. There exists C > 0 independent of hK such that

θK ≤ C
(
|w − wh|1,K + |w −ΠK

k wh|1,K
)
.

Proof. From the definition of θK together with Remark 3.2 and estimate (2.4) we have

θK ≤ C|wh −ΠK
k wh|1,K ≤ C

(
|wh − w|1,K + |w −ΠK

k wh|1,K
)
.

The proof is complete.

The following lemma provides an upper estimate for the jump terms of the local error indicator.

Lemma 3.7. There exists a constant C > 0 independent of hK such that

h
1/2
K ‖Jℓ‖0,ℓ ≤ C

(
|w − wh|1,K + θK

)
∀ℓ ∈ EK ∩ EΓ1

, (3.21)

h
1/2
K ‖Jℓ‖0,ℓ ≤ C

(
|w − wh|1,K + θK + h

1/2
K ‖λw − λhwh‖0,ℓ

)
∀ℓ ∈ EK ∩ EΓ0

, (3.22)

h
1/2
K ‖Jℓ‖0,ℓ ≤ C

∑

K′∈ωℓ

(
|w − wh|1,K′ + θK′

)
∀ℓ ∈ EK ∩ EΩ, (3.23)

where ωℓ := {K ′ ∈ Th : ℓ ∈ EK′}.

Proof. First, for ℓ ∈ EK ∩ EΓ1
, we extend Jℓ ∈ Pk−1(ℓ) to the element K as in Remark 3.1. Let

ψℓ be the corresponding edge bubble function. We define v := Jℓψℓ. Then, v may be extended
by zero to the whole domain Ω. This extension, again denoted by v, belongs to H1(Ω) and from
Lemma 3.3 we have that

aK(e, v) = −aK(wh −ΠK
k wh, Jℓψℓ) +

∫

K

∆
(
ΠK

k wh

)
Jℓψℓ +

∫

ℓ

J2
ℓ ψℓ.

For Jℓ ∈ Pk−1(ℓ), from Lemma 3.2 and the above equality we obtain

C−1 ‖Jℓ‖
2
0,ℓ ≤

∫

ℓ

J2
ℓ ψℓ ≤ C

[(
|e|1,K + |wh −ΠK

k wh|1,K
)
|ψℓJℓ|1,K +

∥∥∆(ΠK
k wh)

∥∥
0,K

‖Jℓψℓ‖0,K

]

≤ C
[(
|e|1,K + |wh −ΠK

k wh|1,K
)
h
−1/2
K ‖Jℓ‖0,ℓ + h−1

K (θK + |e|1,K)h
1/2
K ‖Jℓ‖0,ℓ

]

≤ Ch
−1/2
K ‖Jℓ‖0,ℓ

(
|e|1,K + θK

)
,
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where we have used again Lemma 3.2 together with estimate (3.20). Multiplying by h
1/2
K the above

inequality allows us to conclude (3.21).

Secondly, for ℓ ∈ EK ∩ EΓ0
, we extend v := Jℓψℓ to H

1(Ω) as in the previous case. Taking into
account that in this case Jℓ ∈ Pk(ℓ) and ψℓ is a quadratic bubble function in K, from Lemma 3.3
we obtain

aK(e, v) = λ

∫

ℓ

wJℓψℓ − λh

∫

ℓ

whJℓψℓ − aK
(
wh −ΠK

k wh, Jℓψℓ

)
+

∫

K

∆
(
ΠK

k wh

)
Jℓψℓ +

∫

ℓ

J2
ℓ ψℓ.

Then, repeating the previous arguments we obtain

∣∣∣∣
∫

ℓ

J2
ℓ ψℓ

∣∣∣∣ ≤ C

[∣∣∣∣λh
∫

ℓ

whJℓψℓ − λ

∫

ℓ

wJℓψℓ

∣∣∣∣+ h
−1/2
K ‖Jℓ‖0,ℓ (θK + |e|1,K)

]
.

Hence, using Lemma 3.2 and a local trace inequality we arrive at

‖Jℓ‖
2
0,ℓ ≤ C

[
‖λw − λhwh‖0,ℓ ‖ψℓJℓ‖0,ℓ + h

−1/2
K (θK + |e|1,K) ‖Jℓ‖0,ℓ

]

≤ Ch
−1/2
K ‖Jℓ‖0,ℓ

(
θK + |e|1,K + h

1/2
K ‖λw − λhwh‖0,ℓ

)
,

where we have used Lemma 3.2 again. Multiplying by h
1/2
K the above inequality yields (3.22).

Finally, for ℓ ∈ EK ∩ EΩ, we extend v := Jℓψℓ to H1(Ω) as above again. Taking into account
that Jℓ ∈ Pk−1(ℓ) and ψℓ is a quadratic bubble function in K, from Lemma 3.3 we obtain

a(e, v) = −
∑

K′∈ωℓ

aK
′

(wh −ΠK′

k wh, Jℓψℓ) +
∑

K′∈ωℓ

∫

K′

∆
(
ΠK′

k wh

)
Jℓψℓ +

∑

K′∈ωℓ

∫

ℓ

J2
ℓ ψℓ.

Then, proceeding analogously to the previous case we obtain

‖Jℓ‖
2
0,ℓ ≤ Ch

−1/2
K ‖Jℓ‖0,ℓ

[
∑

K′∈ωℓ

(|e|1,K′ + θK′)

]
.

Thus, the proof is complete.

Now, we are in a position to prove an upper bound for the local error indicators ηK .

Theorem 3.3. There exists C > 0 such that

η2K ≤ C


 ∑

K′∈ωK


|w −ΠK′

k wh|
2
1,K′ + |w − wh|

2
1,K′ +

∑

ℓ∈EK∩EΓ0

hK‖λw − λhwh‖
2
0,ℓ




 ,

where ωK := {K ′ ∈ Th : K ′ and K share an edge}.

Proof. It follows immediately from Lemmas 3.5–3.7.

According to the above theorem, the error indicators η2K provide lower bounds of the error terms
∑

K′∈ωK

(
|w −ΠK′

k wh|
2
1,K′ + |w − wh|

2
1,K′

)
in the neighborhood ωK of K. For those elements K

with an edge on Γ0, the term hK‖λw− λhwh‖
2
0,ℓ also appears in the estimate. Let us remark that

it is reasonable to expect this terms to be asymptotically negligible. In fact, this is the case at
least for the global estimator η2 =

∑
K∈Th

η2K as is shown in the following result.
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Corollary 3.3. There exists a constant C > 0 such that

η2 ≤ C
(
|w − wh|

2
1,Ω + |w −Πhwh|

2
1,h

)
.

Proof. From Theorem 3.3 we have that

η2 ≤ C
(
|w − wh|

2
1,Ω + |w −Πhwh|

2
1,h + h‖λw − λhwh‖

2
0,Γ0

)
.

The last term on the right hand side above is bounded as follows:

‖λw − λhwh‖
2
0,Γ0

≤ 2λ2‖w − wh‖
2
0,Γ0

+ 2|λ− λh|
2,

where we have used that ‖wh‖0,Γ0
= 1. Now, by using a trace inequality and Poincaré inequality

(2.8) we have
‖w − wh‖0,Γ0

≤ C|w − wh|1,Ω.

On the other hand, using the estimate (3.9), we have

|λ− λh|
2 ≤ (|λ|+ |λh|)|λ− λh| ≤ C

(
|w − wh|

2
1,Ω + |w −Πhwh|

2
1,h

)
.

Therefore,
η2 ≤ C

(
|w − wh|

2
1,Ω + |w −Πhwh|

2
1,h

)

and we conclude the proof.

4. Numerical results

In this section, we will investigate the behavior of an adaptive scheme driven by the error
indicator in two numerical tests that differ in the shape of the computational domain Ω and,
hence, in the regularity of the exact solution. With this aim, we have implemented in a MATLAB
code a lowest-order VEM (k = 1) on arbitrary polygonal meshes following the ideas proposed in
[8].

To complete the choice of the VEM, we had to choose the bilinear forms SK(·, ·) satisfying (2.4).
In this respect, we proceeded as in [7, Section 4.6]: for each polygon K with vertices P1, . . . , PNK

,
we used

SK(u, v) :=

NK∑

r=1

u(Pr)v(Pr), u, v ∈ V K
1 .

In all our tests we have initiated the adaptive process with a coarse triangular mesh. In order
to compare the performance of VEM with that of a finite element method (FEM), we have used
two different algorithms to refine the meshes. The first one is based on a classical FEM strategy
for which all the subsequent meshes consist of triangles. In such a case, for k = 1, VEM reduces
to FEM. The other procedure to refine the meshes is described in [11]. It consists of splitting
each element into n quadrilaterals (n being the number of edges of the polygon) by connecting the
barycenter of the element with the midpoint of each edge as shown in Figure 1 (see [11] for more
details). Notice that although this process is initiated with a mesh of triangles, the successively
created meshes will contain other kind of convex polygons, as can be seen in Figures 3 and 7.
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(a) Triangle K refined into
3 quadrilaterals.

(b) Pentagon K refined into
5 quadrilaterals.

Figure 1: Example of refined elements for VEM strategy.

Since we have chosen k = 1, according to the definition of the local virtual element space V K
1

(cf. (2.2)), the term R2
K := h2K‖∆wh‖

2
0,K vanishes. Thus, the error indicators reduce in this case

to
η2K = θ2K +

∑

ℓ∈EK

hK‖Jℓ‖
2
0,ℓ ∀K ∈ Th.

Let us remark that in the case of triangular meshes, the term θ2K := aKh (wh −ΠK
k wh, wh −ΠK

k wh)
vanishes too, since V K

1 = P1(K) and hence ΠK
k is the identity. By the same reason, the projection

ΠK
k also disappears in the definition (3.1) of Jℓ. Therefore, for triangular meshes, not only VEM

reduces to FEM, but also the error indicator becomes the classical well-known edge-residual error
estimator (see [5]):

η2K :=
∑

ℓ∈EK

hK‖Jℓ‖
2
0,ℓ with Jℓ :=





1

2

[[
∂wh

∂n

]]

ℓ

, ℓ ∈ EΩ,

λhwh −
∂wh

∂n
, ℓ ∈ EΓ0

,

−
∂wh

∂n
, ℓ ∈ EΓ1

.

In what follows, we report the results of a couple of tests. In both cases, we will restrict our
attention to the approximation of the eigenvalues. Let us recall that according to Corollary 3.2,
the global error estimator η2 provides an upper bound of the error of the computed eigenvalue.

4.1. Test 1: Sloshing in a square domain.

We have chosen for this test a problem with known analytical solution. It corresponds to the
computation of the sloshing modes of a two-dimensional fluid contained in the domain Ω := (0, 1)2

with a horizontal free surface Γ0 as shown in Figure 2. The solutions of this problem are

λn = nπ tanh(nπ), wn(x, y) = cos(nπx) sinh(nπy), n ∈ N.
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Γ0

Ω

Γ1

Figure 2: Test 1. Sloshing in a square domain.

We have used the two refinement procedures (VEM and FEM ) described above. Both schemes
are based on the strategy of refining those elements K which satisfy

ηK ≥ 0.5 max
K′∈Th

{ηK′}.

Figures 3 and 4 show the adaptively refined meshes obtained with VEM and FEM procedures,
respectively.

(a) Initial mesh. (b) Step 1.

(c) Step 3. (d) Step 6.

Figure 3: Test 1. Adaptively refined meshes obtained with VEM scheme at refinement steps 0, 1, 3 and 6.
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(a) Initial mesh. (b) Step 1.

(c) Step 3. (d) Step 6.

Figure 4: Test 1. Adaptively refined meshes obtained with FEM scheme at refinement steps 0, 1, 3 and 6.

Since the eigenfunctions of this problem are smooth, according to (2.9) we have that |λ−λh| =
O(h2). Therefore, in case of uniformly refined meshes, |λ− λh| = O

(
N−1

)
, where N denotes the

number of degrees of freedom which is the optimal convergence rate that can be attained.

Figure 5 shows the error curves for the computed lowest eigenvalue on uniformly refined meshes
and adaptively refined meshes with FEM and VEM schemes. The plot also includes a line of slope
−1, which correspond to the optimal convergence rate of the method O

(
N−1

)
.
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Figure 5: Test 1. Error curves of |λ1 − λh1| for uniformly refined meshes (“Uniform FEM”), adaptively refined
meshes with FEM (“Adaptive FEM”) and adaptively refined meshes with VEM (“Adaptive VEM”).
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It can be seen from Figure 5 that the three refinement schemes lead to the correct convergence
rate. Moreover, the performance of adaptive VEM is slightly better than that of adaptive FEM,
while this is also better than uniform FEM.

We report in Table 1, the errors |λ1 − λh1| and the estimators η2 at each step of the adaptive
VEM scheme. We include in the table the terms θ2 :=

∑
K∈Th

θ2K which arise from the inconsis-

tency of VEM and J2 :=
∑

K∈Th

(∑
ℓ∈EK

hK‖Jℓ‖
2
0,ℓ

)
which arise from the edge residuals. We also

report in the table the effectivity indexes |λ1 − λh1|/η
2.

Table 1: Test 1. Components of the error estimator and effectivity indexes on the adaptively refined meshes with
VEM.

N λh1 |λ1 − λh1| θ2 J2 η2
|λ1 − λh1|

η2

38 3.2499 0.1200 0 0.8245 0.8245 0.1456
167 3.1644 0.0345 0.0111 0.2469 0.2580 0.1339
313 3.1450 0.0151 0.0117 0.1108 0.1225 0.1234
745 3.1355 0.0056 0.0054 0.0427 0.0481 0.1171
1540 3.1327 0.0028 0.0033 0.0216 0.0249 0.1113
3392 3.1311 0.0013 0.0015 0.0102 0.0117 0.1069
5806 3.1307 0.0008 0.0009 0.0064 0.0073 0.1069
11973 3.1303 0.0004 0.0005 0.0032 0.0037 0.1075

19



It can be seen from Table 1 that the effectivity indexes are bounded above and below far from
zero and that the inconsistency and edge residual terms are roughly speaking of the same order,
none of them being asymptotically negligible.

4.2. Test 2:

The aim of this test is to assess the performance of the adaptive scheme when solving a problem
with a singular solution. In this test Ω consists of a unit square from which it is subtracted an
equilateral triangle as shown in Figure 6. In this case Ω has a reentrant angle ω = 5π

3 . Therefore,
the Sobolev exponent is rΩ := π

ω = 3/5, so that the eigenfunctions will belong to H1+r(Ω) for

all r < 3/5, but in general not to H1+3/5(Ω). Therefore, according to (2.9), using quasi-uniform
meshes, the convergence rate for the eigenvalues should be |λ− λh| ≈ O

(
h6/5

)
≈ O

(
N−3/5

)
. An

efficient adaptive scheme should lead to refine the meshes in such a way that the optimal order
|λ− λh| = O

(
N−1

)
could be recovered.

Γ0

Γ1

Γ1

Γ1

Ω

Γ1

Figure 6: Test 2. Domain Ω.

Figures 7 and 8 show the adaptively refined meshes obtained with the VEM and FEM adaptive
schemes, respectively.
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(a) Initial mesh. (b) Step 1.

(c) Step 4. (d) Step 6.

Figure 7: Test 2. Adaptively refined meshes obtained with VEM scheme at refinement steps 0, 1, 4 and 6.

(a) Initial mesh. (b) Step 1.

(c) Step 4. (d) Step 6.

Figure 8: Test 2. Adaptively refined meshes obtained with FEM scheme at refinement steps 0, 1, 4 and 6.
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In order to compute the errors |λ1 − λh1|, due to the lack of an exact eigenvalue, we have used
an approximation based on a least squares fitting of the computed values obtained with extremely
refined meshes. Thus, we have obtained the value λ1 = 1.9288, which has at least four correct
significant digits.

We report in Table 2 the lowest eigenvalue λh1 computed with each of the three schemes. Each
table includes the estimated convergence rate.

Table 2: Test 2. Eigenvalue λh1 computed with different schemes: uniformly refined meshes (“Uniform FEM”),
adaptively refined meshes with FEM (“Adaptive FEM”) and adaptively refined meshes with VEM (“Adaptive
VEM”).

Uniform FEM Adaptive VEM Adaptive FEM

N λh1 N λh1 N λh1
38 2.3083 38 2.3083 38 2.3083

123 2.0686 58 2.0721 60 2.1067

437 1.9828 106 1.9960 85 2.0362

1641 1.9505 229 1.9592 148 1.9810

6353 1.9377 350 1.9467 185 1.9678

14137 1.9341 666 1.9384 280 1.9530

24993 1.9325 909 1.9354 458 1.9427

38291 1.9316 1340 1.9329 646 1.9382

55921 1.9310 2141 1.9315 895 1.9356

75993 1.9306 3438 1.9306 1593 1.9325

99137 1.9303 5172 1.9300 2122 1.9315

125353 1.9301 8014 1.9296 3178 1.9306

154641 1.9299 12365 1.9293 5341 1.9298

187001 1.9298 19153 1.9291 7522 1.9295

222433 1.9297 29403 1.9290 11124 1.9292

Order O
(
N−0.68

)
Order O

(
N−1.10

)
Order O

(
N−1.16

)

λ1 1.9288 λ1 1.9288 λ1 1.9288

It can be seen from Table 2, that the uniform refinement leads to a convergence rate close to
that predicted by the theory O

(
N−3/5

)
. Instead, Tables 2 show that the adaptive VEM and FEM

schemes allow us to recover the optimal order of convergence O
(
N−1

)
. This can be clearly seen

from Figure 9, where the three error curves are reported. The plot also includes lines of slopes −1
and −3/5, which correspond to the convergence rates of each scheme.
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Figure 9: Test 2. Error curves of |λ1 − λh1| for uniformly refined meshes (“Uniform FEM”), adaptively refined
meshes with FEM (“Adaptive FEM”) and adaptively refined meshes with VEM (“Adaptive VEM”).
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Finally, we report in Table 3 the same information as in Table 1 for this test. Similar conclusions
as in the previous test follow from this table.

Table 3: Test 2. Components of the error estimator and effectivity indexes on the adaptively refined meshes with
VEM.

N λh1 |λ1 − λh1| θ2 J2 η2
|λ1 − λh1|

η2

38 2.3083 0.3795 0 2.3181 2.3181 0.1637

58 2.0721 0.1433 0.0379 0.8231 0.8609 0.1664

106 1.9960 0.0672 0.0368 0.4188 0.4556 0.1475

229 1.9592 0.0304 0.0216 0.1942 0.2158 0.1408

350 1.9467 0.0179 0.0164 0.1359 0.1522 0.1173

666 1.9384 0.0096 0.0094 0.0749 0.0844 0.1143

909 1.9354 0.0066 0.0068 0.0556 0.0624 0.1052

1340 1.9329 0.0041 0.0047 0.0408 0.0454 0.0907

2141 1.9315 0.0027 0.0032 0.0275 0.0308 0.0891

3438 1.9306 0.0018 0.0022 0.0178 0.0199 0.0904
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Conclusions

We have derived an a posteriori error indicator for the VEM solution of the Steklov eigenvalue
problem. We have proved that it is efficient and reliable. For lowest order elements on triangular
meshes, VEM coincides with FEM and the a posteriori error indicators also coincide with the
classical ones. However VEM allows using general polygonal meshes including hanging nodes,
which is particularly interesting when designing an adaptive scheme. We have implemented such
a scheme driven by the proposed error indicators. We have assessed its performance by means
of a couple of tests which allow us to confirm that the adaptive scheme yields optimal order of
convergence for regular as well as singular solutions.
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[14] A. Bermúdez, R. Rodŕıguez and D. Santamarina, A finite element solution of an added
mass formulation for coupled fluid-solid vibrations, Numer. Math., 87, (2000), pp. 201–227.
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[27] R. Durán, C. Padra and R. Rodŕıguez, A posteriori error estimates for the finite element
approximation of eigenvalue problems, Math. Models Methods Appl. Sci., 13, (2003), pp. 1219–
1229.

[28] D.V. Evans and P. McIver, Resonance frequencies in a container with a vertical baffle, J.
Fluid Mech., 175, (1987), pp. 295–307.

[29] A.L. Gain, C. Talischi and G.H. Paulino, On the virtual element method for three-
dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl.
Mech. Engrg., 282, (2014), pp. 132–160.

[30] E.M. Garau and P. Morin, Convergence and quasi-optimality of adaptive FEM for Steklov
eigenvalue problems, IMA J. Numer. Anal., 31, (2011), pp. 914–946.
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