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Abstract

In this paper we introduce and analyze new Banach spaces-based mixed finite element methods for
the stationary nonlinear problem arising from the coupling of the convective Brinkman-Forchheimer
equations with a double diffusion phenomenon. Besides the velocity and pressure variables, the
symmetric stress and the skew-symmetric vorticity tensors are introduced as auxiliary unknowns of
the fluid. Thus, the incompressibility condition allows to eliminate the pressure, which, along with
the velocity gradient and the shear stress, can be computed afterwards via postprocessing formulae
depending on the velocity and the aforementioned new tensors. Regarding the diffusive part of
the coupled model, and additionally to the temperature and concentration of the solute, their
gradients and pseudoheat/pseudodiffusion vectors are incorporated as further unknowns as well.
The resulting mixed variational formulation, settled within a Banach spaces framework, consists
of a nonlinear perturbation of, in turn, a nonlinearly perturbed saddle-point scheme, coupled with
a usual saddle-point system. A fixed-point strategy, combined with classical and recent solvability
results for suitable linearizations of the decoupled problems, including in particular, the Banach-
Necas-Babuska theorem and the Babuska-Brezzi theory, are employed to prove, jointly with the
Banach fixed-point theorem, the well-posedness of the continuous and discrete formulations. Both
PEERS and AFW elements of order ¢ > 0 for the fluid variables, and piecewise polynomials of
degree < ¢ together with Raviart-Thomas elements of order ¢ for the unknowns of the diffusion
equations, constitute feasible choices for the Galerkin scheme. In turn, optimal a priori error
estimates, including those for the postprocessed unknowns, are derived, and corresponding rates
of convergence are established. Finally, several numerical experiments confirming the latter and
illustrating the good performance of the proposed methods, are reported.
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1 Introduction

The multiphysics problem of double-diffusive convection in which two scalar fields, such as heat and
concentration of a solute, affect the density distribution in a fluid-saturated highly porous medium,
has been intensively studied in recent years (see, e.g., [30], [33], [34], [15], [13], and references therein).
Applications include predicting and controlling processes arising in geophysics, oceanography, chemical
engineering, and energy technology, to name a few. In particular, some of them includes groundwater
system in karst aquifers, fast flows in fractured or vuggy aquifers or reservoirs, chemical processing,
convective flow of carbon nanotubes, and propagation of biological fluids (see, for instance, [2], [6],
[22], and [36]). In this regard, we remark that much of the research in porous medium has been focused
on the use of Darcy’s law. However, this fundamental equation may be inaccurate for modeling fluid
flow through porous media with high Reynolds numbers or through media with high porosity. To
overcome this limitation, it is possible to consider the convective Brinkman—Forchheimer equations
(see, e.g., [17], [35], [31], [11], and [12]), where terms are added to Darcy’s equation in order to take into
account the above described physical aspects. Moreover, this fact has motivated the introduction of
the corresponding coupling with a system of advection-diffusion equations (also called double-diffusion
equations), through convective terms and the body force.

Concerning literature devoted to studying the coupling of the Brinkman—Forchheimer and double-
diffusion equations, we first highlight that, up to the authors’ knowledge, [30] constitutes one of the first
works in analyzing the well-posedness and regularity of solution for a velocity-pressure-temperature-
concentration variational formulation. Later on, a finite volume method to solve the coupling of the
time-dependent Brinkman—Forchheimer and double-diffusion equations was adopted in [34]. The focus
of this work was on the validity of the Brinkman—Forchheimer model when various combinations of the
thermal Rayleigh number, permeability ratio, inclination angle, thermal conductivity and buoyancy
ratio are considered. More recently, an augmented fully-mixed formulation based on the introduc-
tion of the fluid pseudostress tensor, and the pseudoheat and pseudodiffusive vectors (besides the
velocity, temperature and concentration fields) was analyzed in [I5]. Meanwhile, a non-augmented
Banach spaces-based fully-mixed formulation was proposed and analyzed in [I3]. In particular, this
latter scheme is written equivalently as a fixed-point equation, so that the well-known Banach theo-
rem, combined with classical results on nonlinear monotone operators and Babuska-Brezzi’s theory in
Banach spaces, are applied to prove the unique solvability of the continuous and discrete systems.

Regarding literature focused on the analysis of the convective Brinkman—Forchheimer (CBF) equa-
tions, we start referring to [I7], where the authors analyze the continuous dependence of solutions
of the CBF equations written in velocity-pressure formulation on the Forchheimer coefficient in H!
norm. In turn, an approximation of solutions for the incompressible CBF equations via the artificial
compressibility method was proposed and developed in [35], where a family of perturbed compressible
CBF equations that approximate the incompressible CBF equations is introduced. Furthermore, the
well-posedness of the corresponding velocity-pressure variational formulation of the two-dimensional
stationary CBF equations was analyzed in [3I]. In addition, error estimates for a mixed finite el-
ement approximation were obtained, and a one-step Newton iteration algorithm initialized using a
fixed-point iteration, was proposed. Recently, an augmented mixed pseudostress-velocity formula-
tion was analyzed in [II]. In there, the well-posedness of the problem is achieved by combining a
fixed-point strategy, the Lax—Milgram theorem, and the well-known Schauder and Banach fixed-point
theorems. We also mention [12], where a Banach spaces-based mixed formulation was proposed and
analyzed for the CBF problem, but differently from the techniques previously developed in [I1], no
augmentation procedure was needed for the formulation nor for the solvability analysis. The resulting
non-augmented scheme is then written equivalently as a fixed-point equation, so that results recently



established in [19] for perturbed saddle-point problems in Banach spaces, along with the well-known
Banach—Necas—Babugka and Banach theorems, are applied to prove the well-posedness of the contin-
uous and discrete systems.

We point out that the motivation of employing an augmented approach, as in [I5] and [I1], is
originated by the wish of performing the respective solvability analysis of the equations within a
Hilbertian framework. However, it is well known that the introduction of additional terms into the
formulation, while having some advantages, also leads to much more expensive schemes in terms of
complexity and computational implementation. In order to overcome this, in recent years there has
arisen an increasing development on Banach spaces-based mixed finite element methods to solve a
wide family of single and coupled nonlinear problems in continuum mechanics. In particular, we
refer to [9], [8], [16], [18], [5], [25], and [I0], for the analysis of mixed formulations within a Banach
framework of the Poisson, Navier—Stokes, Brinkman—Forchheimer, Boussinesq, coupled flow-transport,
Navier—Stokes—Brinkman, and chemotaxis-Navier—Stokes equations. This kind of procedures shows
two advantages at least: no augmentation is required, and the spaces to which the unknowns belong
are the natural ones arising from the application of the Cauchy—Schwarz and Holder inequalities to
the terms resulting from the testing and integration by parts of the equations of the model. As a
consequence, simpler and closer to the original physical model formulations are obtained.

According to the previous discussion, and aiming to continue extending the applicability of the
aforementioned framework, the goal of the present paper is to develop and analyze a new Banach
spaces-based fully-mixed formulation, augmentation free, for the coupling of the convective Brinkman—
Forchheimer and double-difusion equations, and study its numerical approximation by the associated
mixed finite element method. To this end, and unlike [I1] and [I2], where only the pseudostress
is employed, here we introduce the symmetric stress and the skew-symmetric vorticity tensors as
auxiliary unknowns in the CBF equations, and subsequently eliminate the pressure unknown using
the incompressibility condition. In turn, we follow [I3| [I8] and adopt a dual-mixed formulation
for the double-difussion equations making use of the temperature/concentration gradients and the
pseudoheat /pseudodiffusion vectors as further unknowns. The resulting mixed formulation is written
as a nonlinear perturbation of, in turn, a nonlinearly perturbed saddle-point scheme, coupled with
a usual saddle-point system. Then, similarly to [I3], [20], [25], and [10], we combine a fixed-point
argument, the abstract results provided in [19], the Banach—Nec¢as-Babuska theorem, Babuska-Brezzi’s
theory in Banach spaces, sufficiently small data assumptions, and the Banach theorem, to establish
existence and uniqueness of solution of both the continuous and discrete formulations. In this regard,
and since the formulation is similar to the ones considered in [13], [19], and [20], our present analysis
certainly makes use of the corresponding results available there. In addition, applying an ad-hoc
Strang-type lemma in Banach spaces established in [15], we are able to derive the corresponding a
priori error estimates for arbitrary discrete subspaces. Next, employing PEERS and AFW elements
of order ¢ > 0 for approximating the fluid variables, and piecewise polynomials of degree < ¢ together
with Raviart—Thomas elements of order ¢ for the unknowns of the double-diffusion equations, we prove
that the corresponding discrete methods are convergent with optimal rates.

The paper is organized as follows. The remainder of this section describes standard notation and
functional spaces to be employed throughout the paper. The model problem is introduced in Section
and all the auxiliary variables to be employed in the setting of the formulation are defined there.
Next, in Section [3| we derive the corresponding fully-mixed variational formulation in Banach spaces,
whereas, the well-posedness of this continuous scheme is established in Section 4} The corresponding
Galerkin system is introduced and analyzed in Section [b| where the discrete analogue of the theory
used in the continuous case is employed to prove existence and uniqueness of solution. A priori error
estimates for arbitrary finite element subspaces are also obtained there. In Section [6] we establish the



corresponding rates of convergence for specific discrete subspaces. Finally, the performance of the
method is illustrated in Section [7] throughout several numerical examples in 2D and 3D, with and
without manufactured solutions, which confirm the accuracy and flexibility of our fully-mixed finite
element method.

Preliminary notations

Let © < R™,n € {2,3}, be a bounded domain with polyhedral boundary I', and let v be the outward
unit normal vector on I'. Standard notation will be adopted for Lebesgue spaces LP(€2) and Sobolev
spaces W*P(Q), with s € R and p > 1, whose corresponding norms, either for the scalar, vectorial, or
tensorial case, are denoted by | - [0 p.0 and | - [|s p:0, respectively. In particular, given a non-negative
integer m, W™2(Q) is also denoted by H™(Q2), and the notations of its norm and seminorm are
simplified to || - |[m.q and | - [;n.q, respectively. In addition, H'/?(T') is the space of traces of functions
of H'(€), and H~/2(T") denotes its dual. On the other hand, given any generic scalar functional space
S, we let S and S be the corresponding vectorial and tensorial counterparts, whereas | - |, with no
subscripts, will be employed for the norm of any element or operator whenever there is no confusion
about the space to which they belong. Also, |- | denotes the Euclidean norm in both R™ and R™*"™,
and as usual, I stands for the identity tensor in R™*". In turn, for any vector fields v = (v;)i=1, and
w = (wi)izlyn, we set the gradient, divergence, and tensor product operators, as

ov; 2 Ovj
Vv = - div(v) := E - d v = (Viwj)ij=1,n 5
< fL‘j>m 17n, iv(v) 2 2’ an QW = (Viw;)i j—1,

whereas for any tensor fields 7 = (73;)ij=1.n and ¢ = (ij)ij=1,n, We let div(7) be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the deviatoric tensor, and
the tensor inner product, respectively, as

n

n
1
T8 = (Tji)ijetm, tr(T):= Z Ty T =T — ﬁtr(T) I, and 7:¢:= Z Tij Gij -
i=1 Q=1

Furthermore, for each t € [1, +00) we introduce the Banach spaces
H(divy; Q) := {T eL2(Q): div(r)e Lt(Q)} , and
H(divy; Q) := {T eLX(Q): div(r)e Lt(Q)} ,

equipped with the natural norms

0.0+ [div(T) oo V7 e H(divy; ), and

lo.0 + |div(T)|loe V7T € H(divg; Q).

Additionally, we recall that, proceeding as in [23] eq. (1.43), Section 1.3.4] (see also [9, Section 4.1]
(1, +00] in R2,
[g, +o0] in R3,

|7 == |7

I laivio = |7

and [I8], Section 3.1]), one can prove that for t € there holds

(T-v,v) = JQ {7’ -Vou + ?}diV(T)} VY (1,v) € H(divi; Q) x H(Q), (1.1)

and
(tr,v) = JQ {T Vv +v. diV(T)} V(7,v) e H(divy; Q) x HY(Q), (1.2)

where (-,-) denotes in (L.1)) (resp. (T.2)) the duality pairing between HY2(T") (resp. HY?(I')) and
H~Y2(') (resp. HY2(T)).



2 The model problem

In what follows we consider the steady convective Brinkman—Forchheimer equations introduced in [31]
(see also [35] [11]) coupled with double-diffusion equations, similarly as done in [I3]. More precisely,
we focus on finding a velocity field u, a pressure field p, a temperature field ¢1, and a concentration
field ¢, the latter two defining a vector unknown ¢ := (¢1, ¢2), such that

—div(pe(u)) + (Vu)ju + Du + Fluf/>u+ Vp = f(¢) in Q,
div(u) = 0 in Q,
—div(Q1V¢1) + Riu-Vér = g in Q, (2.1)
—div(Q2V¢2) + Rou- Voo = ¢ in Q,
u=up, ¢ =¢ip, and ¢2 = ¢p on T,

where 1 is the Brinkman coefficient (or effective viscosity), which is assumed to be eventually variable,
and bounded, that is there exist constants pg, @1 > 0, such that

po < p(x) < Vxe. (2.2)

In addition, e(u) := 3 (Vu+ (Vu)*) is the symmetric part of Vu, also named strain rate tensor, D > 0
is the Darcy coefficient, F > 0 is the Forchheimer coefficient, p is a given number in [3,4], and f(¢) is
an external force defined by

B() == — (61— dra)g+ z (62— d22) & (2.3)

where g represents the potential type gravitational acceleration, ¢, and ¢g r are the reference tem-
perature and concentration of a solute, respectively, and ¢ is a parameter experimentally valued that
can be assumed to be > 1 (see [30} Section 2] for details). The spaces to which ¢;, and ¢, belong
will be specified later on. In turn, Q; and Qs denote the thermal and concentration diffusion tensors,
respectively, which are assumed to belong to L*(2), whereas Ry is the thermal Rayleigh number and
Ro is the solute Rayleigh number. In addition, Q1 and Qs are assumed to be uniformly positive definite
tensors, which means that there exist positive constants C7 and Cs, such that

v-Qj(x)v = C;|v|]> VveR", VxeQ, je{l,2}, (2.4)

and g1 and g» are given source terms in suitable spaces to be specified later on. Finally, up € HY/?2 ()
and ¢;p € Hl/z(F), 1€ {1, 2}, are given Dirichlet data.

Owing to the incompressibility of the fluid and the Dirichlet boundary condition for u, the datum
up must satisfy the compatibility condition

LuD‘Vzo. (2.5)

In addition, due to the pressure gradient in (2.1]), and in order to guarantee uniqueness of this unknown,
p will be sought in the space

L3(Q) := {qeLQ(Q): jQq=O}.

Now, in order to derive a fully mixed formulation for (2.1)), thus yielding the Dirichlet boundary
conditions to become natural, we proceed similarly to [25] (see also [§] for related approaches), and
introduce as a further unknown the symmetric tensor o defined by

o :=pe(u) — (u®u) — pl. (2.6)



In this way, the first equation of ({2.1]) can be rewritten as
Du + Flu//?u — div(e) = f(¢) in Q, (2.7)

whereas applying the trace operator to o and utilizing the incompressibility condition div(u) = 0 in
), we obtain

1
p= —ﬁtr(a + (u®u)). (2.8)
Moreover, applying the deviatoric operator to (2.6) and dividing by u, we find that
1 1
~o? + ~(u®u)? = e(u) = Vu — 7, (2.9)
Iz H
where the vorticity
1
V=5 (Vu - (Vu)t) (2.10)

is introduced as a further unknown.

Next, for the double-diffusion equations we consider for each j € {1, 2} the temperature (or concen-
tration) gradient t;, and the corresponding pseudoheat (or pseudodiffusion) ¥, as auxiliary unknowns,
which are defined, respectively, by

1
t]' = ngj, 19j = thj - §Rj gbj u, V]E {1,2}, in Q, (211)

whence the third and fourth equations of (2.1)) can be rewritten as

1
sRiu-t; —div(d;) =g; in Q, je {1,2}. (2.12)

Consequently, gathering (2.7, (2.9), (2.11), and (2.12]), and incorporating the Dirichlet boundary
conditions, we find that (2.1)) can be rewritten, equivalently, as follows: Find (o, u, ) and (¢;, t;,9;),

j € {1,2}, in suitable spaces to be indicated below, such that

1 1
—ol+ —(uu)! +4 = Vu in Q,
p p
Du+F|uf/u—div(e) = f(¢) in Q,
t; = Vo, in Q, je{1,2},
1
Qjtj — SRjdju = 9, in Q, je{1,2}, (2.13)
1
iRju'tj_diV('ﬂj) = gj in Q, jE{1,2},
u=up, ¢1=¢1p, and ¢2 = ¢2p on I,
ftr(a’—i—(u@u)) = 0 in
Q

We stress here that, as suggested by ([2.8]), p is eliminated from the present formulation and computed
afterwards in terms of o and u by using that identity. This fact justifies the last equation in ([2.13]),
which aims to ensure that the resulting p does belong to L%(Q). Notice also that further variables of

interest, such as the velocity gradient Vu, and the shear stress tensor & := pe(u) — pl, can be easily
computed, respectively, as follows
1 4 1 d N
Vu=—-0"+—-—(u®u)*+v and o =0 + (u®u). (2.14)
H H



3 The variational formulation

In this section we follow [§] and [18] (see also [12], [13] 25, 26, 27]) to derive a mixed formulation for
(2.13]) within a Banach spaces framework. We begin by testing the first equation of (2.13]) against a

tensor T associated with the unknown o, so that, using the identity o9 : 7 = o4 : 79, we formally get
1 1
Ja'd:Td+J(u@u)d:7'+f’y:T=fVu:T. (3.1)
QM QM Q Q

We observe that the first and third expressions on the left hand side of make sense for o, T, v €
L2(9). In turn, seeking originally u € H!(2), which is in line with the condition that up € HY?(T),
and assuming that 7 is taken in H(divy; 2), with ¢ fitting the ranges for the validity of and ,
we can apply the latter, and employ the Dirichlet boundary condition on u, to obtain

f Vu:r = —f u-div(tT) + (tv,up)r. (3.2)
Q Q
In this way, replacing (3.2)) back into (3.1]), we arrive at
1 1
J —od: 7 +f u - div(T) +J “(u®u)?: T-I-J ~y:71 = {Tv,up)r (3.3)
QM Q QM Q

for all 7 € H(divy; Q). Now, knowing that div(7) € L{(Q), and using Hélder’s inequality, we con-
clude from the second term in that it suffices to look for u in L¥ () instead of H' (), where
t, t' € (1,+00) are conjugate to each other. In addition, employing the Cauchy—Schwarz and Holder
inequalities, we readily deduce that the convective nonlinear term is well defined if u € L*(£2), which
yields to choose t' = 4, and thus ¢ = 4/3, whence the test space for 7 becomes H(div/s;(2).

On the other hand, linking the spaces to which the unknown o and its test functions 7 belong,
we impose to look for o in H(divy/s;(2) as well. Hence, testing the second equation of (2.13) against
v e L4(Q), formally yields

Lv.div(a) —DLu-v—FLmV—?u.v = —L f(¢)-v (3.4)

for all v € L*(Q), from which the first term is bounded thanks to the fact that div(o) € L*¥3(Q). Next,
noting that for p € [3,4] there holds 2(p—2) < 4, we consider the continuous injection iz, o) : L*(Q2) —
L2(r=2)(Q) and observe that lig(p—2)ll < |Q|(4=,)/4(P=2)  In this way, applying the Cauchy—Schwarz and
Holder inequalities to the third term on the left-hand side of , we find that

U wlP2u-v
Q

which proves that the aforementioned term is well-defined for u, w, v € L*(Q2). In turn, being L*(£2)
certainly contained in L2(f2) guarantees that the second term in (3.4)) is bounded as well, whereas the
right hand side of (3.4) becomes well defined if f(¢) (cf. ([2.3)) belongs to L¥3(Q), which is assumed

from now on. We will refer again to this issue later on.
Finally, the symmetry of o (cf. (2.6]) is imposed weakly as

2

— — —2
b2 oan < 1204 [w]22 u

[u

< w 0,40V 0,40 Ivloa0,

skew

Jé:azo Vé e L2, (), (3.5)
Q

where

skew

L2 (Q) = {66L2(Q): 8t = —5}.

7



According to the previous analysis, the weak formulation of the convective Brinkman—Forchheimer
problem (2.13) reduces at first instance to: Find (o, y,u) € H(divy3; Q) x L2, () x L*(Q) such that

skew
(B-3), (-4) and (3.5) hold for all (7,8, v) € H(div,s; Q) x L2, () x L*(Q). However, similarly as in
[8] (see also [12], [18]), we consider the decomposition

H(divy3; ) = Ho(divyss; Q) ORI, (3.6)

where

Ho(divy/3; Q) := {T € H(divy/s; Q) : f tr(7r) = 0},
Q

which means that each 7 € H(div, /35 Q) can be uniquely decomposed as
T=79+dol with 7o€Hp(divys;€2) and dp:= n|1Q JQ tr(t) € R.
In particular, using the last equation of , we obtain
o=o0+cl with ogeHy(divys;Q) and co:= _n\lﬁl fQ tr(lu®u), (3.7)

which says that ¢y is know explicitly in terms of u. Therefore, in order to fully determine o, it only
remains to find its Ho(divy /33 )-component o, which is renamed from now on simply as o.

Next, using the compatibility condition ([2.5)), we observe that both sides of (3.3) vanish when
7 = I, and hence testing against 7 € H(divy,/3;(2) is equivalent to doing it against 7 € Ho(div,/3; ).
Therefore, bearing in mind the foregoing discussion, denoting

H := Ho(divys;Q), Q:=L"(Q) x L. (Q),

skew

and setting

i=(uy), Vv=(v,0), Z=(zx) € Q,
we arrive at the following mixed formulation for the convective Brinkman—Forchheimer equations:
Find (o, 1) € H x Q such that

a(o, )+ b(T,4) + b(u;u,7) = G(7) VT e H,

(3.8)
b(o, V) — c(u; U, V) = Fyu(V) Vv e Q,
where the bilinear forms a : H x H— R and b : H x Q — R are defined as
[ Lpa, pa
a(,T) = ¢ V(¢, 7)) e HxH, (3.9)
QM
and
b(t,v) = f v-div(T) + J o: 71 V(r,v) e Hx Q, (3.10)
Q Q
whereas, for each w € L*(£2), the bilinear forms b(w;-,-) : L*(Q) x Ho(div,/s; Q) — R and
c(w;-, ) : Q x Q — R are given by
1
b(w;v,T) = f " (W®vV):T V(v,T) € LYQ) x Ho(divy/s;Q), (3.11)
Q
and
c(w; U, V) :=DJu~v+FJ w|P?u-v V(u,v) e QxQ. (3.12)
Q Q

8



Finally, the linear and bounded functionals G : H — R and Fy : Q — R reduce to

G(1) := (tv,up) VreH and Fg(V) := J f(o) v Vv e Q. (3.13)
Q

On the other hand, for the double diffusion equations, which are described by the third up to the

fifth rows of , we proceed similarly as for the convective Brinkman-Forchheimer equations, and

look originally for ¢; € H(Q), which, besides yielding t; € L*(Q), is in line as well with the fact

that the data ¢;p € Hl/Q(F), 1€ {1,2}. Then, testing the aforementioned third equation against

n; € H(div; 2), with ¢ as before, applying now , and using the Dirichlet boundary condition on
¢j, we get

Ltj "1, +L ¢jdiv(n;) = (n;-v,¢jp) j € {1,2}. (3.14)

In this way, knowing that div(n;) € L*(Q), we realize from the second term of and Holder’s
inequality that it suffices to look for ¢; in Lt/(Q). Needless to say, it is clear that the first term makes
sense since both t; and n; belong to L*(Q2). Next, letting L*(€2) be as well the space of test functions
associated with the unknown t;, the corresponding testing of the fourth row of formally gives

1
ijtj-I‘j—QRjj gbju-rj—fﬂj-rjzo (315)
Q Q Q

for all r; € L%(12), so that the third term of is well-defined if 9; € L%(Q). In turn, regarding
the second term, and bearing in mind that from the analysis of the Brinkman—Forchheimer equations
we know that u must be sought in L*(2), direct applications of the Cauchy-Schwarz and Hélder
inequalities imply

| oyuen] < 19slbsn luloan o, (3.16)

from which it is natural to fix the seeking space for ¢; as L*(Q), that is ¢ = 4, which yields ¢t = 4/3.
In this way, letting H(div,/3;2) and L4(Q2) be as well the spaces where 9, is sought and where the
test functions associated with ¢; belong to, respectively, we can test the fifth row of against
¥j € L4(Q) to obtain

%Rj L e (u-ty) — JQ ¥ div(d;) = L 95 ¥ - (3.17)

Note that the first and second terms of (3.17) are well-defined thanks to the analogue estimate (3.16))
and the fact that div(9;) € LY3(Q), whereas the expression on the right-hand side makes sense if
g; € LY3(Q), which we assume from now on. Therefore, introducing the spaces

H:= LYQ) x L*(Q) and Q := H(divys;Q),

setting the variables

b; = (0j,t5), U = (Wj,r;), & = (&,s) € H,

and grouping conveniently (3.14), (3.15]), and (3.17)), we arrive at the weak formulation: Find (gi;;, 9;)
€ H x Q, j € {1,2}, such that

aj(05,05) + &(w dy,5) + b(y,9;) = Fj(dy) Vi e H,
b(

(f N (3.18)
¢]’TI] VT)J € Qa

I
Q2
<.
3
o



where, for j € {1,2}, the bilinear forms @ : HxH- R, b:H x Q — R, and the linear and bounded
functionals F; : H — R and G, : Q — R are defined, respectively, as:

W) = | Qs VG e BxHL (3.19)
WGy = = | somy— | Gaivny) V(G < Fx Q. (3.20)
Fi§) = | o6 vEeR, and 321)
Gi(ny) == —(n;-v,¢ip)  Ym; e Q, (3.22)

whereas, given w € L4(2), the bilinear form &;(w;-,-) : H x H — R is given by
~ o 7 1 o ~
Cj(W;fj,I/Jj) = 2Rj{fg’l/)j (W-Sj)—fﬂfj (W-I‘j)} ng,’l/Jj e H. (3.23)
Summarizing, the fully mixed formulation of the Brinkman—Forchheimer equations coupled with

double diffusion equations (cf. (2.13])) reads: Find (o, 1) € H x Q and (qgj,ﬂj) ceHxQ, je {1,2},
such that

a(o,T) + b(T,d) + b(u;u, 1) = G(7) Ve H,
b(a’j’): c(u; ﬁ,\7)ﬁ . N = Tcp(f) V\ie QN, (3.24)
aj(d5,%5) + G gj,v5) + by, 9;) = Fi(v;) Vo € H,
5(5@%-) = éj(nj) an € Q

4 Analysis of the coupled problem

In this section we combine classical and new results on the solvability of variational formulations in
Banach spaces to establish the well-posedness of ([3.24)).

4.1 Preliminaries

The stability properties of the operators and functionals involved in are provided first. In fact,
direct applications of the Cauchy-Schwarz and Holder inequalities, along with the upper bounds of
p (cf. ([2.2)), the continuity of the normal trace operator in H(div,/3;€2), and the continuity of the
injection iy : H'(Q) — L*(Q) and its vectorial version 44, yield the existence of positive constants,
denoted and given as:

1 R N
la| == —, o] :== 1, |a;] := |Qjlom, b := 2,
Ho
|G| == [uplijor [all, [Fell = Hg!o,ﬂ{HMOA;QJF H¢I\|o,4;9}, (4.1)
LE I = lgiloasze, and |Gyl = |¢jpli2r lial,

10



where j € {1,2} and ¢ = (1, v2) € L*(Q) x L*(Q), such that there hold

la(¢, T <l <] ] V(.7 € H,
b9 < (8] [l [¥]q ¥(r,¥) e Hx Q,

@565, 00 < 185l 155 1050y Ve, ¥ € H,

bl < 1Bl IG5l Injleg ¥ (0m;) e HxQ, w2
G| < [G][]a Vr e H,

Fo(¥)| < [Fy||¥]q vV e QqQ,

IF@)l < 1F) 19 ¥i; € H, and

Gim)l < 1G5l Iyl ¥n; e Q.

In turn, given w € L4(€), we apply the Cauchy-Schwarz and Holder inequalities, similarly as we

did in (4.1]) - (4.2), and previously in (3.16)), to derive the following bounds for b (cf. (3.11)), ¢ (cf.
B12), and & (. (323))

1 .
b(w;v,7)| < m Iwlos [Vioae [Tldiv,se YV (v,7) € LHQ) x Ho(divys;Q),
le(w; ¥,2)] < QY2 (D + Flw|§ %) [FlalZlq V¥.Z€ Q, and (4.3)

0,4:0 1051 ¢ 105 | Vej,; € H.

& (w; dj,905)] < Rjfw

Moreover, noting from the definition of ¢; (cf. (3.23)) that ¢;(-; @, 1/73) is linear, we readily deduce
from the third row of (4.3) that

0,4:0 194l 5 105l & (4.4)

for all w,z € L*(Q) and for all d_;j ,1/_;3- e H, and it is also clear from (3.23) that there holds

i (W; dj,05) — Cj(2; ¢5,¢05)] < Rj|w — 2

&(witj, ) = 0 (4.5)

for all w € L*(Q) and for all 1[_}} e H.

4.2 A fixed point strategy

In what follows, we proceed similarly to [13] (see also [12]) and adopt a fixed-point strategy to address
the well-posedness of (3.24). We begin by letting S : L*(Q) x (L*(Q) x L4(Q)) — L*(Q) be the
operator defined as

S(w,p) :=u Y (w, ) € LYQ) x (LY(Q) x LYQ)), (4.6)

where (o,1d) := (o, (u,7v)) € H x Q is the unique solution (to be confirmed below) of the problem
arising from the first two rows of (3.24)) after replacing b(u; -, -), ¢(u; -, -), and Fg by b(w; -, ), ¢(w; -, -),
and Fp, respectively, that is

a(o, )+ b(T,4) + b(w;u,7) = G(1) VT e H,

Fo(V) VveQ. 4.7)

=
Q
N
|
o
z
£l
~
Il
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Equivalently, introducing the bilinear form Ay, : (H x Q) x (H x Q) — R given by
Ay ((o,d),(T,V)) := a(o,T) + b(T,10) + b(o, V) — c(w; U, V) (4.8)
for all (o, d), (7,V) € H x Q, the uncoupled problem (4.7)) can be rewritten as
Ay((o,1),(T,¥)) + b(w;u,7) = G(7) + Fp(V) V(r,v) e Hx Q. (4.9)
In turn, for each j € {1,2} we define the operator §j : L4(Q) — L*(Q) given by

Sj(w) = ¢; V¥YweL{Q),

where (ggj, 9;) = ((¢5,t5),9;) € H x Q is the unique solution (to be confirmed below) of the problem
arising from the third and fourth rows of (3.24)) after replacing ¢;(u; 5;‘7 1/7]) by ¢;(w; ¢?j, Jj), that is

(65, 05) + S(widy ) + bWy, 9;) = Fi(v;) Vi e H,

o N N (4.10)
b(¢j7’7j) = Gj(nj) an € Q.
Similarly as for , for each j € {1, 2} we define the bilinear form @; v : Hx H— R as
Ui (05,0) 1= 8;(05,5) + &(Wibj.0h)) Yy, ¥y € H, (4.11)
which allows us to restate as
%j,_vy(@a&j) + by, 9;) = :j(lﬁj) Vi e 1:1, (4.12)
b(¢j777j) = Gj(nj) an € Q,
Hence, defining S : L*(Q) — (L*(Q) x LY(Q)) as
S(w) = (S1(w),S5(w))  VweL4Q), (4.13)
and letting T : L*(Q) — L*(Q) be the operator defined by
T(w) := S(w,S(w)) Vw e LYQ), (4.14)

we see that solving (3.24]) is equivalent to seeking a fixed-point of T, that is u € L*(2) such that

T(u) = u. (4.15)

4.3 Well posedness of the uncoupled problems

In this section we utilize the Banach-Necas-Babuska Theorem (cf. [2I, Theorem 2.6]), along with
recent solvability results for perturbed saddle-point problems in Banach spaces (cf. [19], [20]), and the
Banach version of the Babuska-Brezzi theory (cf. [2I, Theorem 2.34]), to show that the uncoupled
problems £or ) and are well-posed, which means, equivalently, that the operators S
(cf. ({£.6)) and S (cf. (4.13)) are well-defined. We begin by remarking that, being L?({2) reflexive for
each p € (1,4), all the spaces involved in the formulations and (4.12)), namely L2(Q), L4(Q),
L2 (), H(divys;Q), and Ho(divy/s; Q), are easily shown to be reflexive as well.

skew

In what follows we address the solvability of (4.7]), for which we first show that the bilinear forms a
(cf. (3.9)), b (cf. (3.10)), and c(w;-,-) (cf. (3.12)), for each w € L*(€2), which define the bilinear form

12



Ay (cf. (4.8)), satisfy the hypotheses of [19, Theorem 3.4]. In fact, it is clear from their respective
definitions that a and ¢(w; -, -) are symmetric and positive semi-definite, which confirms the hypothesis
i) of [19, Theorem 3.4]. Now, letting V be the null space of the linear and bounded operator induced

by b, we readily see (cf. (3.10])) that
A {ceH: ¢ = ¢t and div(e) = o}. (4.16)

In addition, it is already well-known that a slight modification of [23, Lemma 2.3] (see also [7, Proposi-
tion IV.3.1], [24, Lemma 3.3], and [§, Lemma 3.1]) allows to prove the existence of a positive constant
c1, depending on € and the norm of the continuous injection iy : H*(Q) — L*(9), such that

cil¢loe < I¢%oe + [div(Q)oama  VC € Ho(divys; Q). (4.17)

Thus, thanks to the boundedness of p (cf. (2.2)) and the inequality (4.17), we deduce that

a(¢,0) > Hllucd 2, > alClh VeV, (4.18)

with a := Cil, which easily implies the verification of the continuous inf-sup condition for a required
by the hypothesis ii) of [19, Theorem 3.4]. On the other hand, letting cp be the positive constant
yielding Poincaré’s inequality, that is such that HVH%Q < cp \v\%ﬂ Vv e H}(Q), and recalling that
i4 is the continuous injection of H!(Q) into L*(Q2), it can be proved (cf. [27, Lemma 3.5]) that there
exists a positive constant 3, depending only on cp and |i4], such that

-
sup 209 S s19lq W e Q,
ey [Tla

T#0

which accomplishes the hypothesis iii) of [19, Theorem 3.4]. Furthermore, letting § > 0 be an arbitrary
radius, we introduce the ball

W(s) = {w e LYQ):  |wlose < 5}, (4.19)
so that for each w € W(d) the boundedness estimate for ¢(w;-,-) becomes (cf. (4.3))
e(w; 9,2)| < 972 (0 + F5?) [¥qlZlq VV.7 € Q. (4.20)

Hence, bearing also in mind the expression for |al (cf. (4.1])), a straightforward application of [19]
Theorem 3.4] ensures the existence of a positive constant aa, depending only on wug, ||, D, F, J, p, a,
and 3, such that for each w € W (¢) there holds

wp Awl(r9).(65)

(¢,2)eHxQ 1(¢;Z)[rxq
(¢.Z)+#0

> aa |(1,V)|axq  Y(T,¥) e Hx Q. (4.21)

Then, combining (4.21]) with the boundedness estimate for b(w;-,-) (cf. (4.3))), we arrive at

Aw((7,V),(¢,Z)) + b(w;v,() 1 ﬂ
sup = = qan — — [wloga (7, V)a
(¢,Z)eHxQ H(CaZ)HHXQ { Ho } *Q
(¢€,2)#0
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for all (7,v) € H x Q, from which, under the additional assumption that |w|os0 < 54, we
conclude that

Aw((1,V),(¢,2)) + b(w;v, .

ap ATV GE) LDV o 0y gy (1.22)
(¢.2)eHxQ 1(¢; Z)[mxq 2

(¢,7)#0

for all (7,v) € H x Q. Similarly, noting that A, is symmetric (since a and ¢ are), using again the
boundedness estimate for b(w;-,-) (cf. (4.3])), and under the same assumption on w, we obtain

wp Aw(r9).(6.2) + Bwiv.0) _ an

(r,.9)eHxQ I(7,V)|axQ = 2
(m,¥)#0

for all (¢,Z) € H x Q.

We are now in position of establishing next the well-posedness of (4.9)), thanks to which the operator
S is well-defined.

1€, Z) [axq (4.23)

Theorem 4.1 Given § > 0, let r € (0,r], with

ro := min {5, “O;‘A}. (4.24)

Then, for each (w,p) € L*(Q) x (L*(Q) xL*(Q)) such that |w(o 40 < r, (L9) (equivalently, (£.7)) has

a unique solution (o, 1) := (o, (u,v)) € H x Q, and hence one can define S(w, ) := u. Moreover,
there exists a positive constant Cs, depending only on |i4], |gloq, and aa, such that

8w, @)loan = [ulosa < (@ Dlsq < Cs {luplyer +Id:losa + lelosa} . (4.25)

Proof. 1t is clear from and that the bilinear form Ay, +b(w;-, ) satisfies the assumptions
of the Banach-Necas-Babuska Theorem (cf. [2I, Theorem 2.6]), and hence, knowing from and
that G € H and F, € Q’, the proof reduces to a straightforward application of that theorem. In
particular, the a priori estimate follows from [21, Theorem 2.6, eq. (2.5)] and the upper bounds

for |Gl and [Felq (cf. @EI)). -

On the other hand, in order to derive the well-posedness of , equivalently , we aim to
prove that the bilinear forms @ (cf. (4.11)) and b (cf. (3-20)) satisfy the hypotheses of [21, Theorem
2.34]. In this way, letting V be the null space of the linear and bounded operator induced by the
bilinear form b, we first observe that (cf. [13, eq. (3.35)])

\”f:{zﬁ:: (W,r) e H: < e HYQ) and rsz}.

Next, according to the definition of ;. (cf. (£11))), with a given w € L*(2), and employing (&.5)

and (2.4), we obtain, similarly as in the proof of [13, Lemma 3.2], that for each Jj = (¢j,r;) € V
there holds

T (5, 05) = (4, 05) = L Q;lrs* = a;[451% , (4.26)

where &; is a positive constant depending only on C; (cf. (2.4)), [is], and cp. Then, it is easily seen
that implies the hypotheses on @; w required in [21, Theorem 2.34, eq. (2.28)]. Furthermore, we
recall from [I8, Lemma 3.3] that b satisfies the continuous inf-sup condition required in [2I, Theorem
2.34, eq. (2.29)], that is, there exists a positive constant 5, depending only on ||, such that

’51/7777 Py AN
sup 221 > B pls vne @,
P #0
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Consequently, the well-posedness of (4.12)), and thus the well-definedness of the operator S (cf.
(4.13))), is stated as follows.

Theorem 4.2 For each w € L4(Q), and for each j € {1,2}, there exists a unique. (qﬁj, i) =
((¢5,%5),9;) € Hx Q solution to [4.12)) (equivalently, (4.10)), and hence one can define Sj( ) = ;.

Moreover, there exists a positive constant Cg, depending only on &j, B, 1Qjll0,00:0, |2all, and R;,
jeE {1,2}, such that

IS(w) = [[(S1(w), S2(w))

2
< Cg Y {llgilo.yse + (
j=1

(4.27)
a02) 50l 2} -

Proof. Bearing in mind the previous discussion on d;. and 5, for each w € L*(Q) and for each
j € {1,2}, and recalling from and that ﬁj e H and éj € Ql, the proof follows from a direct
application of [2I, Theorem 2.34]. In this way, the corresponding a priori estimate (cf. [2I Theorem
2.34, eq. (2.30)]) yields

1S;(w)

1 165w |
= | ¢jloasn < |85lg < 5 HF I+ = (1 + ) @),
Qo 3 @

and employing the expres-

so that, noting from (4.1 and (4.3) that aw] < 1Qj
sions for HFJH and HG H prov1ded in ([4.1]), the foregoing estimate becomes

IS;(w)

< 165l < G {lgs a+wmmwmmny (4.28)

where C is a positive constant depending on &, ﬁ H |44]|, and R;. Finally, summing up in
(4.28) over j € {1 2} we arrive at (4.27) with Cy = Ch + 02 =

For sake of completeness, we provide next the upper bound for the component 49, of the solution of
(4.12)). In fact, according now to the second inequality in [21, Theorem 2.34, eq. (2.30)], we find that

HﬂHN < i 1+ HGLWH ”F H + ” ]W” 1+ H ]WH HG H
11Q o
B & B a;

which yields

|9,

ilg < M; (1

43 ){”93

with a positive constant JV[JJ depending as well on &;, 5 , 1Qj

(1 + Iwlose) lé50lyar} - (4.29)

|24], and R;.

4.4 Solvability analysis of the fixed—point equation

Having proved the well-posedness of the uncoupled problems (4.7) and (4.10f), in particular the former

under the assumption on w specified in Theorem 4.1} -, thus ensuring that the operators S (cf. .
(cf. - and hence T (cf. - are well-defined, our next goal is to establish the existence

of a unique fixed—point of T For this purpose, in what follows we aim to verify the hypotheses of
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the Banach theorem, starting by providing a suitable condition guaranteeing that T maps a ball into
itself. Indeed, given r € (0,79], with ro as in (4.24]), we let, as in (4.19),

W(r) = {w e LYQ):  |wlowe < r}, (4.30)
and observe, thanks to the a priori estimates (4.25) and (4.27)), that for each w € W(r) there holds

IT(w)lo.40 = [S(w,S(w)) o0}

040 < Cs {[unlysr + |:los0 + [8(w)

2 (4.31)
< Cr {|UD|1/2,F + | @eloa0 + Z {|\9j|0,4/3;9 +(1+7) |¢j,D1/2,F}} ;
j=1
where Ct := Cg max {1, Cg}. Then, we have the following result.
Lemma 4.3 Given r € (0,7¢], with ro as in (4.24)), assume that the data satisfy
2
Cr {|UD|1/2,F + @040 + 2 {ng lo,4/3:0 + (L+7) ||¢j,D||1/2,r}} <. (4.32)
j=1
Then, there holds T(W(r)) = W(r).
Proof. It is a direct consequence of the estimate (4.31]). o

Next, we aim to show that the operator T is Lipschitz continuous, for which, according to (4.14)),
it suffices to prove suitable continuity properties for S and S. In order to derive the corresponding
result for S, we need the technical estimate for ¢ provided by the following lemma.

Lemma 4.4 For each p € [3,4] there exists a positive constant L., depending only on F, ||, and p,
such that

- - - p_3
e(wi,9) — (6, 9)| < Le{Iwloe + [zlowa) 1w = 2o lulosn viose  (433)
for all w, z € L*(), and for all i, V € Q.

Proof. We begin by noticing from the definition of ¢ (cf. (3.12)) that, given w, z € L*(Q2), and
u:= (u,7v), v:= (v,d) € Q, there holds

le(w;d, V) — c(z;u, V)| < F JQ “W|p_2 - |z|p_2’ lu-v|. (4.34)
Next, defining w := (|W|,0)7 Z = (|z|,0) e R”, with 0 e R" !, we observe that
wlP™ — |22 = [[W] % — (2P~ 2], (4.35)
and recall from [28, Lemma 5.3] that for each ¢ > 2 there exists a positive constant C; such that
<" x = Iy y] < Ce(lxl + y]) Ik —yl Yx yeR”,
so that applying the foregoing inequality with ¢ = p — 1, and denoting C'(p) := Cp—1, we deduce that
||v~v|”_3v~v — |§|p_3%| < C(p) (|v7/| + |2|)p_3 |w — 2Z|. (4.36)
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Thus, replacing (4.36)) back into (4.35), and then the resulting estimate back into (4.34)), returning to
the original variables, and using, in particular, that |[W — Z| = ||w| — |z|| < |w — 2|, we arrive at

o(wi@,9) — c(ai.9)| < CEIF | (wl + [al) pw ~ 2l [u-vi,
Q

from which, applying Cauchy-Schwarz’s inequality, we deduce that

le(w; @, %) — o(zd,V)| < Cp)F|(jw| + |2)°° (4.37)

“0,4;9 |w — 2

It remains to estimate the expression |(|w| + ]z\)p_g The case p = 3 is straightforward since

HO,4;Q'

|(jw| + |z|)p_3H04,Q becomes |Q|'/4, which yields (#.33) with L. := C(p)F |Q|"*. In turn, when p = 4,
we get by triangle inequality that H(!W| + |z|)p_3}|04.(2 = ||w] + |20,

which implies (4.33) with L. := C(p)F. Finally, if p € (3,4), we apply Holder’s inequality with
! to obtain
)"

ri= 1 € (1,+00) and its conjugate 1’ :=
which, along with ([#.37), gives ([#.33) with L. := C(p)F|Q|*~?/4 Summarizing, (#.33) holds with
this latter value of L, for all p € [3,4]. o

93’

[(wl + 1)y 0 < 199422 [w] + |2 1575 < 1210/ (

The announced property for S is established next.

Lemma 4.5 Letr € (0,rg], with ro as in (4.24). Then, there exists a positive constant Lg, depending
only on ap, o, Le, and v, such that

IS(w. ) — S(z.€) Ls {le - €

for all (w, ), (z,€) € W(r) x (L*(Q) x L*(2)).

(2,8)loan lw—zloae}  (438)

Proof. Let (w, ), (z,€) € W(r) x (L*(Q) x L*(Q)) such that S(w,¢) = uy and S(z,£) = uy, where,
for each i € {1,2}, (o4, U;) := (o4, (u;,7;)) € H x Q is the corresponding unique solution of (4£.9)
(equivalently, (4.7))), that is

Ay ((o1, 1), (T,¥)) + b(w;uy,7) = Fp((V) + G(1) V(r,v) e Hx Q,

(4.39)
Az((027ﬁ2)7(77‘7‘)) + b(Z;ug,T) = Fﬁ(‘_;) + G(T) V(Ta‘?) € H x Q
Then, applying (4.22) to (o1,1U;) — (02, U2) € H x Q, we obtain
IS(w, %) — S(z,€) < (o1, 11) = (o2, U2)[HxqQ
-2 sup Ay ((o1,11) — (02,12), (T,V)) + b(w;u; — uy,7) (4.40)
04 (r9eHxQ [ ¥)lixq '
(1,V)#0

Now, adding and subtracting AZ(<GQ,ﬁ2>, (T,\_f')), and using (4.39) and the fact that there holds
(Az — AW) ((0'2, us), (T, \7’)) = c¢(w; s, V) — c(z; U, V), we get after some algebraic manipulations

AW((Ul,ﬁl) — (0’2,112), (7',\7)) + b(w;u1 — IIQ,T)

(4.41)
= (Fp —F¢)(V) + b(z — w;ug, 7) + c(w; Uz, V) — c(2; Uz, V) .
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Next, it readily follows from the definitions of the function f (cf. (2.3)) and the functional Fg (cf.
B13)) that

(Fo —F¢) (V) < (4.42)
whereas it is clear from the first row of (4.3 that
1
b(z — wyuz, 7) < — |w (4.43)
Ko

In turn, applying Lemma and using that both ||[w|o 4.0 and |z]p 4,0 are bounded by r, we find
that

e(withs, V) —c(z: s, 9) < Le{[Wlowo + lzlosaf | )

< L (2r)P”

Finally, replacing (4.41)) back into (4.40[), employing the upper bounds provided by (4.42]), ,
and (4.44)), and recalling that uy = S(z, &), we arrive a the required inequality (4.38) with a positive

constant Lg as indicated. o

The following lemma proves the Lipschitz continuity of the operator S.

Lemma 4.6 Let r € (0,ro], with ro as in (4.24). Then, there exists a positive constant Lg, depending
only on 5’j (cf. (4.28)), R;, and &, j € {1,2}, such that
IS(w) —S(z)

40) 185lar W (4.45)

2
<15 {lgilo.se + (

for all w, ze W(r).

Proof. We proceed similarly to the proof of [13, Lemma 3.11]. Indeed, given r € (0,79] and w, z €
W(r), we let S(w) = (¢1,¢2) € LY(Q) x LY(Q) and S(z) := (&,&) € LY(Q) x LY(R), where, for
eachj € {1,2}, (d_;jaﬂj) = ((¢j>tj)>19j) e H x Q and (gj,cj) = ((fj,Sj),Cj) e H x Q are the
unique solutions of 0) (equivalently, (4.12))) with ¢;(w;-,-) and ¢;(z;-,-) (equivalently, with @;w
and @ aj, z), respectlvely It follows from the subtraction of the corresponding second equatlons of (4.10] -

that gb] fj eV. In addition, testing the first equations of - ) against d)] = gb] 5], and then
subtracting them, we deduce that

&j(gj_gja$j_gj)zgj(z?gjv¢1 5]) cj(w ¢J7¢J @)7

from which, subtracting and adding q@- in the second component of the first term on the right hand-side,
and using the identity (4.5)), we get

Gj(6; — & 05 — &) = (7 65, 65 — &) — (w6, b5 — &)

In this way, employing now the ellipticity of @; (cf. (4.26))), the foregoing identity, and the continuity
property for ¢; provided by (4.4]), we find that

5‘]’”% fJHQ N( fjvﬁbj é)zaj(z§$jv¢J f]) cj(w ¢37¢J 5_;)

< Rj|w e 165 = &l
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which, along with the a priori estimate for Hﬁngﬁ given by (4.28)), yields

1Sj(w) = Sj(@)oan = 65— &ilowa < 97 — &l < & Ry |95l Iw — zlos0
o (4.46)
< &' ®; Gy {lg, (1+ IWlo.s0) 65l x| Iw
Finally, summing up in (4.46]) over j € {1, 2}, we get (4.45) with Ly := max {a R; 6']} =

je{1,2}

As a consequence of Lemmas [4.5] and [4.6] we are able now to prove the Lipschitz continuity of T.

Lemma 4.7 Letr € (0,r¢], with ro as in (4.24]). Then, there exists a positive constant L, depending
only on Ls, Ly, Cs, and Cy, such that

|T(w) —T(2)

2 (4.47)

< Lt {|11D|1/2,r + [ &y {H!Jj loaszo + (1+7) |¢j,D\1/2,r}} lw —z]o,40

j=1

for allw, z € W(r).

Proof. Given w, z € W(r), we first deduce from the definition of T (cf. (4.14])) and the continuity
property of S (cf. Lemma that

|T(w) —T(2) S(w,S(w)) - S(z,5(z))
N N N (4.48)
< Ls {I8(w) ~ 8(2) o0 + 1S (2,5(2)) saf-
In turn, the Lipschitz-continuity of S (cf. Lemma yields
2

ISw) = S@)lo0 < L s 2, {lg; (L+7) losplor} W = 2loan,  (4.49)

whereas the a priori estimates for S (cf. ([@.25)) and S (cf. (#.27)) imply

IS (2. 5(2)) o4

(4.50)

2
{loslogrsa + (14 7) 1630lar )}

J=1

< Cs {||up||1/2,p+ I,

where the fact that both |wl|o.4.0 and ||z]/o.4;0 are bounded by r has been utilized in (4.49)) and (4.50)),
respectively. Finally, replacing the latter estimates back into (4.48)), and performing simple algebraic
manipulations, we arrive at (4.47) and end the proof. o

The main result of this section, which refers to the solvability of (4.15) (equivalently, (3.24)), is
stated as follows.

Theorem 4.8 Given r € (0,ro], with ro as in (4.24), assume that, in addition to the hypothesis of
Lemma[d.3] (cf. (4.32)), the data satisfy

2
L {luolyar + 19uloan + 3 {lo

j=1

(1+7) !¢j,D!1/z,p}} < 1. (4.51)
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Then, there exists a unique u € W(r) (cf. (4.30)) fized point of T (cf. (4.15)). Equivalently, (3.24)
has a unique solution (o, ) := (o, (u,v)) € Hx Q and (¢;,9;) = ((¢;,t;),9;) e HxQ, j e {1,2},

with uw € W(r). Moreover, there exist positive constants C, C1, and C2, depending on &1, da, 3,

1Q1l0,00:0, Q2]0,00:02, 4], Ri, Ra, 7, [24], |8lo,, and aa, such that there hold the following a priori
bounds )
|(o,1)|rxq < C {||UD||1/2,1“ + [brfo.a:0 + Z {ng\ 04/3:0 + |¢j,D|1/2,F}} ; (4.52)
j=1
and for each j € {1,2}
16659ty < Ci {lgsloasma + Iésnlyar} - (4.53)

Proof. 1t is clear from Lemma and the assumption (4.51)) that T is a contraction that maps the ball
W (r) into itself, and hence a straightforward application of the classical Banach fixed—point theorem
implies the indicated solvabilities of (£.15) and (3.24). Furthermore, since u = T(u) = S(u,S(u)),

we deduce that ¢ = (¢1,¢p2) = §(u), whence (4.53)) follows from (4.28]) and (4.29)), whereas (4.52))
is consequence of (4.25)) and (4.53). We omit further details. o

5 The Galerkin scheme

The Galerkin scheme of the fully-mixed formulation is introduced and analyzed in this section.
In particular, regarding the solvability analyses of the discrete versions of the decoupled problems
studied in Section [4.3] we now apply [19, Theorem 3.5], 21, Theorem 2.22], and [2I} Proposition 2.42],
which correspond to the discrete analogues of [19, Theorem 3.4], [21, Theorem 2.6], and [21, Theorem
2.34], respectively.

5.1 Preliminaries

We begin by letting {E}h . be a regular family of triangulations of 2 made up of triangles K (when
>

n = 2) or tetrahedra K (when n = 3) of diameter hx, and set h := max{hK . Ke 771} Then,

we let ]ﬁlg, H}!, H, Hﬁ, H!, and Hg be arbitrary finite element subpaces of H(divy/s;(2), L4(Q),
L2 . (Q), L4(Q), L?(Q), and H(divy/3; ), respectively. Specific choices of them, satisfying suitable

h}Sfl;)e(v)vtheses to be introduced along the discussion, will be described later on in Section [6] Note that h

stands for both, the size of the triangulation 75 and the sub-index of each subspace. Then, defining
Hy, = 87 Ho(divys:Q), Qui=Hi xH), H, = H)xH;, Q,:=H}, (51

and setting the notations

n = (Wp,vp)s Vo = (Va,0n), Zn = (zn,Cp) € Qu,

and for j € {1,2}

bin = (Pintin)s Vin = Win,rin), &n = (&n Sin) € Hy,
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the Galerkin scheme associated with (3.24]) reads: Find (o, u)) € H,xQp, and (gz_b)jvh, V) € H), x Qh,
j € {1,2}, such that

a(op, ) + b(Th, Up) + b(up;up, 74) = G(7p) V1, € Hy,
b(UTVh)_,_ c(uh;ﬁh,\ﬁ:) ) . = ?qﬁhg‘_’)h) V\_ih € Qi“ 5.2
@i (D Yin) + Ci(an; iy Yin) + b(jn, On) = Fi(djn)  Vjn € Hy,
5(5j,h,77j,h) = éj(nj,h) Vnn € Q.

where ¢, := (¢1.4,P2s) € HY x HY.

5.2 Discrete fixed point strategy

In order to address the solvability of , we adopt the discrete analogue of the fixed point strategy
employed in Section Indeed, we start by introducing the operator S, : H} x (Hf X Hﬁ) — H}
defined by

Sh(wn, ) = un Y (wp, ) € H x (Hi X Hﬁ), (5.3)

where (op,dp) = (oh, (up,vy)) € Hy x Qy is the unique solution (to be confirmed below) of the
problem arising from the first two rows of (5.2)) when b(uy;-, ), c(up;-,-), and Fg, , are replaced by
b(wp;-, ), c(Wp;-, ), and Fep, , respectively, that is

G(Th) V‘Th € Hh,

b(oh, Vi) — c(wp; dp, Vi) = Fp, (Vi) V¥ € Qu,

a(op, Th) + b(Th, Up) + b(wp;up, 71) (5.4)

or, equivalently, as the discrete analogue of (4.9))
A, ((oh,0n), (Th, V1)) + b(wpiup, ) = G(Th) + Fo, (Vi) V(Th, Vi) € Hy x Qp,  (5.5)

where, given wj, € H}, Ay, : (Hh X Qh) X (Hh X Qh) — R is defined according to (4.8]).
On the other hand, for each j € {1, 2} we introduce the operator §j,h HY — Hﬁ defined by

~

Sjﬁ(Wh) = (bj,h VWh € I‘Iu7

where (5j,h, Vjp) = ((qu,h, tn), ﬁjyh) e Hy, x Qy, is the unique solution (to be confirmed below) of the
problem that arises from the third and fourth rows of (5.2)) when ¢;(uy;-,-) is replaced by ¢;(wp; -, -),
that is

2

) Vibjn € Hy,
j(”lj,h) Vnn € Qh-

(G Vi) + (Wi Bjnyjn) + b(WDjn,0jn) =
b(djn, ! =

Equivalently, defining @; w, : H), x H;, — R, for each wj, € Hy, as in (4.11)), we can restate (5.6) as

.

(5.6)

Qe

Tjown (Bjns Vi) + (i, Dj) = Fj(jn) Vb € Hy,

~ o ~ -~ (5.7)
b(jh>M5n) = Gjm;n) Vi € Q.
In this way, defining Sy : H} — (Hz X Hf) as
gh(wh) = (glﬁ(wh),gg?h(wh)) th € H;ll, (5.8)
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and letting T, : Hi — H}! be the operator given by
Th(wp) == Sp(wn,Sn(wy))  Ywy, € HY, (5.9)
we realize that solving (5.2) is equivalent to seeking a fixed-point of T}, that is u, € H}! such that

Th(up) = uy. (5.10)

5.3 Discrete solvability analysis

In this section we address the solvability of (5.2) via the corresponding analysis of the equivalent
fixed—point equation ([5.10)), which previously requires to prove that the operators Sy, (cf. (5.3))) and
Sp (cf. (5.8))), and hence T}, are well-defined. Equivalently, that the uncoupled problems (5.5)) (or

(6-4)) and (or (5.6)) are well-posed.

We begin with the analysis of , for which we aim to prove that the bilinear forms a, b, and
c(wy; -, ), for each wy, € H}!, when restricted to the corresponding finite element subspaces, satisfy
the assumptions of [19, Theorem 3.5]. In fact, being the hypothesis i) of [19, Theorem 3.5] basically
the same as the one of [19, Theorem 3.4], namely the symmetry and positive semi-definedness of a
and ¢(wy; -, -), which was already clarified in Section we only need to concentrate here on ii) and
iii) of [19, Theorem 3.5]. To this end, we first consider the following hypotheses on ]ﬁ[g and H}':

(H.1) Iﬁ[g contains the multiplies of the identity tensor I, and
(H.2) div(Hy) < H}.

It follows from (H.1) and the decomposition (3.6) that Hj (cf. (5.1)) can be redefined as

Hj, = {Ch - <nllﬂ\ Ltr(())ﬂ: Ch € ]ﬁIZ}

In turn, letting V}, be the kernel of bm, xq,, we readily deduce, thanks to the definition of b (cf.
(3.10)) and (H.2), that

V), = {Ch € Hy,: div(¢,) = 0 and Jgéh:ch =0 Vo, € HZ}

Consequently, while V7, is not necessarily contained in V (cf. (4.16])), the fact that the elements of
V), are still divergence—free, along with the inequality (4.17)), suffice to conclude the discrete analogue
of (4.18]), and with the same constant, namely

a(Cp,Ch) = aalCulln  YCh € Vi, (5.11)

2
with aq = % Similarly as for the continuous case, it is easily seen that (5.11]) yields the discrete
inf-sup condition for a required by the hypothesis ii) of [I19] Theorem 3.5].

Furthermore, in order to continue the analysis, we introduce the discrete inf-sup condition for b as
a third hypothesis, that is:

(H.3) there exists a positive constant B4, independent of h, such that

b(Th, Vp . .
sup 2T o g iGile VL € Qi
roel, |ThlH
7170
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Next, proceeding analogously to the continuous case, we consider the same radius ¢ employed in (4.19)),
and introduce now the discrete ball

Wi(6) = {wh e HY: |walosn < 5}, (5.12)

so that the boundedness for c(wy; -, )|qQ, xq, becomes exactly as in (4.20)), that is
le(wh; ¥n,Zn)| < QY2 (D + F6*7%) [Valq |Znlq ¥ ¥h.Zn € Qu.

Hence, having satisfied all the hypotheses of [19, Theorem 3.5], a straightforward application of this
result implies the existence of a positive constant aa 4, depending only on po, ||, D, F, 6, p, ag, and
B4, such that for each wj, € W (0) there holds the discrete analogue of (4.21)), that is

Awh ((Th7 ‘_;h)a (Ch’ Z’h))
sup

(CnsZn)eHr xQp H(Chazh)||H><Q
(Chvih)7é0

= OéA7d |(Tha\_"h>HH><Q V(Th,\_;h) € Hh X Qh . (513)

Thus, using (5.13) and the boundedness property of b(w; -, ) (cf. (4.3), similarly as for the derivation

of ([£:22), we deduce that for each wj, € W,(8) such that |wp o0 < “2522, there holds

Aw, ((Th, V1), (CpyZn)) + b(wp; v, € aA .
sup mad{Ths Fuke o Bh)) + B b 5 A4 Slneq
(ChsZn)eHR xQp H(Chvzh)HHxQ 2
(€nsZn)#0

for all (Th,vh) € Hh X Qh-
Therefore, the well-posedness of ([5.5) is established as follows.

Theorem 5.1 Given § > 0, let r € (0,794], with

Ho OCA 4 }

T0,q := min {(5, 5

(5.14)

Then, for each (wy, ) € H X (Hi X Hz) such that |wyloa.0 <7, (5.5) (equivalently, (5.4)) has a
unique solution (op,Uyp) = (ah, (uh,'yh)) € Hy, x Qp, and hence one can define Sp(Wp, @) = up.
Moreover, there exists a positive constant Cs q, depending only on |4, |8lo.o, and ca 4, such that

ISh(wh, p)loa0 = [unlose < [(on, Un)Exq

(5.15)

< Csaf{lupliyor + 16:los0 + lenlosol

Proof. Similarly as for the proof of Theorem|4.1] we observe now that the bilinear form Ay, +b(wp; -, -)
satisfies the hypotheses of [2I, Theorem 2.22], so that, noting in this case that G|y, € Hj} and
Fo, |q, € Q),, an application of that theorem proves the present result. D

On the other hand, in order to establish the well-posedness of ([5.7) (equivalently, (5.6))), in what
follows we show that the bilinear forms @; w, |ﬁh><ﬁh and b|ﬁh <G, satisfy the hypotheses of |21, Propo-

sition 2.42]. To this end, we proceed as in [I8] Section 5.5] (see also [5, Section 4.3, Lemma 4.2] and
[13, Section 4.2, Lemmas 4.1 and 4.5]), and introduce first the kernel of b|ﬁh><<5h’ that is

-

V), = {wh = (Yn,rp) € Hy o b(Wp,my) =0 Vo € Qh},
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and
Zop = {Tlh € Qn: b(Wnmy) =0 Vi, = (p,0) € Hh},

which become, respectively,

= {T/jh = (¢n,rn) € Hy : Lrh'thrL?ﬂhdiV(nh) =0 Vm, € H}?},

and
Zop i= {nh c HY JQ dndiv(ng,) = 0 Y € Hi}. (5.16)

Next, we consider the following assumptions on the subspaces H;’f, H}JL, and H};’l:
(H.4) div(H?) < HY,
(H.5) Zo, < HE, and

(H.6) there exists a positive constant 3 q, independent of h, such that

f dn div(my)

sup > B4 Vb, € Hﬁ
n,eHY thHQ
mﬁéo
As a consequence of (H.4) we easily deduce from ([5.16]) that
Zop = {nh e H? . div(n,) = 0 in Q} (5.17)

and thus, given n;, € Zg p,, and using (H.5), we bound the supremum by below with r;, := n;, € Hfl,

to deduce that
j Th - Tp
Q
0,92

with 24 = 1. Consequently, invoking [18, Lemma 5.1] with local notation there given by X = H
Y=Y = Hh, Yy = {O} V = Vh, Z = Hh7 and Zy = Zo, we conclude that (H.6) and ( - are
equivalent to the existence of positive constants Bd and Cj such that

sup
l‘hEH';L
rp #0

= |nplo = Baalnnleg Ynn € Zon, (5.18)

5 th = ~
sup M) 5, Imnllg  Yn € Qn, (5.19)
Gyeft,  [¥nla

P #0
and N
Yy = (Yn,rh) € Vi (5.20)

Note that (| - constltutes the discrete inf-sup condltlon for b required in |21, Proposition 2.42,

eq. (2.36)]. In turn, given %h = (Yjn,rjn) € V), we use and (2.4)), similarly to the first part
of the derivation of (4.26} - but then, differently from there, employ - ) to conclude that

Irpfo = 5’d

Ajowy, (Vjns¥jn) = @Gi(Yjn,Y5n) = L Qjlrjnl® =
2%{5‘3 ol 4 ; 2,}>~

24
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with &4 = % min {CN'E, 1}. Then, analogously to the continuous case, it is readily seen that (5.21))
yields the discrete inf-sup condition for @;w, required in [2I, Proposition 2.42, eq. (2.35)].

We are now in position to state the discrete analogue of Theorem

Theorem 5.2 For each wj, € H}}, and for each j € {1,2}, (5.7) (equivalently, .) has a unique
solution (gbjh, Vjpn) = ((%,h, t;n), 9, h) e H), x Qh, and hence one can define th(wh) = Qjh-
Moreover, there erists a positive constant Cy ,, depending only on &g, Bd, 1Qjl0,00:0, |lia], and Rj,
je {1,2}, such that ’

|Sh(w) = [ (S1a(wn). San(wh)) 0,40

2
< Cgo 2 {lgslloassa + (1
J=1

(5.22)

a2) @50 l12r |

Proof. According to the previous discussion on b and @ w, , for each w; € H}, and bearing in mind

that 6j’wh‘ﬁhXﬁh’ Z‘ﬁhxéh7 ﬁ}\ﬁh, and éj’éh are all bounded, the existence of a unique solution of
(5.7), for each j € {1, 2}, follows from a direct application of [21, Proposition 2.42]. In turn, employing
the discrete version of the first inequality in [21, Theorem 2.34, eq. (2.30)], we get the a priori estimate

for ng,h(wh) from which, summing up over j € {1,2}, we arrive at (5.22). a

At this point we remark that, similarly as for the continuous case, the component 19, j, of the solution
of (5.7) can be bounded employing the discrete version of the second inequality in [21, Theorem 2.34,
eq. (2.30)], which yields

195,

Q < J/\Z}’d (1

0) {ll9

where M; 4 is a positive constant depending on &;q, B4, |Q;

(1 + Iwaloaa) [650l1orf,  (5.23)

|24], and R;.

Having established, thanks to Theorems and that Sy, (cf. (5.3)), Sh, (cf. (5-8)), and hence
T}, (cf. ), are well-defined, we now aim to show that T}, has a unique fixed-point. More precisely,
analogously to the continuous case, in what follows we prove that T}, verifies the hypotheses of the
Banach theorem. For this purpose, given r € (0, rg 4], with ro 4 as in , we first follow and
define

Wy (r) = {wh e H} : < r}. (5.24)

Then, using now the a priori estimates (5.15)) and (5.22)), we easily deduce the existence of a positive

constant Cr 4, depending only on Cs 4 and Cy @ such that for each wy, € Wp,(r) there holds

1T (W)

2
< Oraflunhr +16dosn + 3 {lo

=1

(1+1) losolyar} .

which constitutes the discrete version of (4.31)). Hence, we are able to state next the discrete analogue
of Lemma

Lemma 5.3 Given r € (0,704, with roq as in (5.14), assume that the data satisfy

2
Cra{lusr +16doan + X {laloaso + (140 lowpliar}} < v (529

=1

Then, there holds Tj,(Wh(r)) = Wh(r).
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In turn, employing similar arguments to those yielding Lemmas and [4.7] we are able to
show their discrete counterparts, that is the continuity properties of Sy, Sy, and Tj. However, being
the respective proofs almost verbatim to the continuous ones, we omit the details and just state the
corresponding results as follows.

Lemma 5.4 Let r € (0,roq], with roq as in (5.14). Then, there exists a positive constant Lg g4,
depending only on ap 4, wo, Le (¢f. Lemma , and r, such that

(zn,&p)

< Lsa{len -

ISh(Wh, 1) — Sh(zn, &p)
for all (wp, ), (zn,&),) € Wh(r) x (Hi X Hﬁ)
Lemma 5.5 Let r € (0,rpq4], with roq as in (5.14). Then, there exists a positive constant Ly 4
depending only on CN']- (cf. (4.28)), Rj, and &jq, j € {1, 2}, such that

ISh(wr) — Sh(zn)

i {lg3llo,

( ) [95.0l1/2r} |

/

for all wp, zp € Wp(r).

Thanks to Lemmas and the Lipschitz continuity of T}, (cf. (5.9)) is stated as follows.

Lemma 5.6 Let r € (0,704], with 7oq as in (5.14). Then, there exists a positive constant L g,

depending only on Lg g4, L Csa, and Cy , such that

Sd’ S.,d’

ITh(wn) — Th(zn)

2

< Lra{luplyar + 1, {Iglosma + (14 7) [630lhar )

j=1
for all wp,, z, € Wp(r).
We end this section with the solvability result for (5.10) (and hence for (5.2)).

Theorem 5.7 Given r € (0,r04], with roq as in (5.14), assume that, in addition to the hypothesis of
Lemmal[p.3| (c¢f. (5.25)), the data satisfy

2

Lra {|uprm,r + .

{Hgg

Then, there exists a unique uy € Wy(r) (cf. -) fized point of Tp, (cf. -) Equivalently, (5.2))
has a unique solution (ap, p) := (oh, (up,vp)) € Hy x Qi and (60, 955) = ((djn tin), Djn) €
H;, x Qpn, j € {1,2}, with up, € Wy(r). Moreover, there exist positive constants Cq, C14, and Caq,

(1+7) oDl r}} <1. (5.26)
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liall, R, Ro, 7, (24l [glo., and aaq, such that

dependmg on al,d} a2,{:1; Bd) HQI”0,00;Qz HQ2
there hold the following a priori bounds

2
lion @)lq < Ca{lunlyar + Iodosa + 3 {losloasa + looliar} | (5.27)

j=1

and for each j € {1,2}

o+ 1650lr}- (5.28)

1G5 95y < Coa{ lgs

Proof. It proceeds analogously to the proof of Theorem Indeed, since T}, is a contraction that
maps the ball Wp,(r) into itself, which is consequence of Lemma and assumption , a direct
application of the Banach fixed-point theorem confirms the solvablhtles of (| and ( . In turn,
noting that u, = Th(uy) = Sh(uh,Sh(uh)) and ¢y, := (P14, P2n) = Sh(uh) the a priori estimates

and follow from , , and . o

5.4 A priori error analysis

In this section we consider arbitrary finite element subspaces satisfying the hypotheses (H.1) up to
(H.6) introduced in Section and derive the Céa estimate for the global error

2
H(U7ﬁ) (a-hvuh HHXQ Z ij, d)j hs jh)Hﬁxév

where ((o, ), (c])},ﬂj)) = ((o, (u,7)), ((¢;,t;),9;)) € (HxQ) x (HxQ), j € {1,2}, with ue W(r),
is the unique solution of , and ((O'h,ﬁh),((gxh,’ﬂj,h)) = ((ah,(uh,'yh)),((¢j7h,tj7h),ﬂj,h)) €
(Hh X Qh) X (ﬁh X Qh), j €{1,2}, with up, € Wy(r), is the unique solution of . To this end, in
what follows we apply known Strang-type estimates to the pairs of associated continuous and discrete
schemes arising from and , once they are split according to the two decoupled problems.

Hereafter, given a subspace X} of an arbitrary Banach space (X, | - ||x), we set
dist(z, Xp) := inf |z —xp|x.
J:hEXh

We begin the analysis with the first two equations of (3.24)) and (5.2)), which can be rewritten as
A((o, 1), (1,¥v)) = F((r,V)) V(r,v)eH x Q, and

A ((on,dr), (Th, Va)) Ful((Th,Vh)) YV (Th, Vi) € Hy x Qp,

e A((G#), (1) = Aul(&W), (7, 7)) + blusw, ),
((ChWn), (Th, V1)) = Aw,((Cny Wa), (Thy Vi) + b(up; Wi, T4),
F(r.9) = G(r) + Fo(¥), and
Fu(mh: V1)) = G(7n) + Fg, (V4),

for all (¢,w), (7,v) e H x Q, for all ({;,, Wy), (T, V1) € H, x Qp,. Then, applying the a priori error
bound provided by [15, Lemma 5.1], and then suitably bounding the resulting consistency estimate,
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which is given by H.A((O', d), (-, )) - 'Ah((a’ﬁ)’ (s )) H (Hthh

constant Csr, depending only on | A|, |Axl, and aa 4, and thus, easily shown to be independent of h,
such that

)/, we deduce the existence of a positive

|(e,d) — (o, Un)[ExqQ < Csr {dist (o,Hp) + dist (4, Qn) + [Fp — Fg,lq;

(5.29)
+ [b(wu, ) = b(wsiu, e, + e(w ;) — c(wni )y | -
Note, in particular, that |.A| depends proportionally on |al = %, o] =1, |b(u,-,-)| = ;710 [ulo,4:0,
and [c(u;-, )| = QY2 (D + FHqu;?Q), with |ulo,4,0 bounded by r. An analogue remark is valid for
|An|. Next, proceeding as for the derivation of (4.42), we readily obtain
|[Fe —Fo,lq, < Igloole—dnlosa- (5.30)

In turn, bearing in mind the definition of b (cf. (3.11))), we find that for each 7, € Hj, there holds
b(u;u, 7)) — b(up;u,7,) = b(u—up;u,74),

from which, employing the boundedness property of b (cf. first row of (4.3])), we conclude that

1
[blusu, ) =blup;u, ), < —= fulosofu—unlose- (5.31)

Similarly, using the continuity property of ¢ provided by (4.33)) (cf. Lemma , we get

Je(u; i) — e(wps iy, < Le{luloso + wnlosa} oo lu - wilo.so

(5.32)
-3
< Le (2r)"7 Jufogsa [u — upllose -

In this way, replacing the bounds given by ((5.30)), (5.31)), and (5.32), back into (5.29)), we arrive at

(o) — (on, W)l < Cor {dist (o, Hy) + dist (i, Q)

0,4;Q} )

where Csr is a positive constant depending only on Csr, |g/o.0, to, Le, 7, and p.

(5.33)

+ @ — dnlose + [ufos0 [u—up

On the other hand, proceeding analogously with the third and fourth equations of (3.24]) and
(5.2), but using now the particular Strang-type estimate provided by [18, Lemma 6.1] (see also [5
Lemma 5.1] for a slightly more general result), we deduce, for each j € {1,2}, the existence of

a positive constant Cjsr dependi~ng only on &g, Bd, la;| = [Qjlom:, [E(a;-, ) = Rjluloan,
[€j(up; -, )l = Rj|upfoa0, and |[b] = 2, and hence, easily shown to be independent of h, such that

1(65,95) = (G50 050) | g1y < Cisr {dist (¢, Hp) + dist (95, Qn)
) ) (5.34)
125 6. ) — 2w 5.y |
Now, bearing in mind the definition of ¢; (cf. (3.23))), we obtain for each @Z_J'jﬁ e Hy,

Ci(a; 05,05 n) — Cj(up; ¢, Y5 n) = Cj(u—up;dj,Yjn),
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from which, using the boundedness property of ¢; (cf. third row of (4.3))), we deduce that
16(w; &5, ) = & (ans &5 ) gy < Ry il [u —anfoan,
so that (5.34) becomes

1(65,9;) — (gj,h,ﬁj,h)uﬁxa < Cjsr {dist (6, Hy) + dist (95, Q) + 16 I — wy,

oaal, (5.35)

where @,ST is a positive constant depending only on Cjgsr and R;.

We now proceed to suitably combine (5.33) and (5.35) to derive the final Céa estimate. Indeed,
multiplying (5.33) by ﬁ, summing up in (5.35)) over j € {1,2}, adding the resulting inequalities,
bounding |[|tfo,4;0 and ||@;]lg by the right hand sides of (4.52) and (4.53)), respectively, and then
performing some algebraic manipulations, we find that

1 B . E- - 1
— (o, @) — (on, ) [rxq + ), 1(65:95) = (B3 050) i1y < 5 l& = dnlose
2CST j:1
1 2 - ~
+5 {dist (o, Hy,) + dist (i, Qh)} + Y Gt {dist (6, Hy) + dist (9, Qh)} (5.36)
j=1

|0,4;Q )

2
+¢{Juplyar + 10ulosa + 35 {1

oasa + 1050lar} | 1u = w
j=1

where C is a positive constant depending only on C (cf. {4.52)), C; (cf. (4.53)), and @7ST, je{1,2}.
Having established ([5.36)), the announced Céa estimate is stated as follows.
Theorem 5.8 Assume that the data satisfy

1
4Csy

2
&{luplar + 18dnao + Y, {Is (5.37)

0,4/3;0 1 |¢j,D|1/2,r}} <
j=1

Then, there exists a positive constant 5, depending only on 5ST and CAjST, J € {1,2}, and hence,
independent of h, such that

2
(o, @) = (on, W) [mxq + D) 1(65595) = (@100 050) 1y
j=1 ) (5.38)
< 5{dist (o, Hy,) + dist (4, Qn) + ) {dist (¢, Hy) + dist (9, Qh)}} .
J=1

Proof. 1t follows directly from (/5.36]) after realizing that the first term on its right hand side can
be subtracted from the second one on the left hand side, whereas, under (5.37)), a similar procedure
applies to the corresponding last and first terms. o

Furthermore, as suggested by (2.8]), , and (3.7), we can approximate the pressure p, the
velocity gradient Vu, and the shear stress tensor &, by the following postprocessing formulae:

1 1
pri= = —tr(on + (wy ®@uy)) + n\Q!L tr(u, ®up), (5.39)
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1 1
(Vu), = ;0’% + u (wp ®@up)d + v, and (5.40)

Fh im op — (n\lﬁl Ltr(uh@uh))]l + (). (5.41)

Thus, is is not difficult to show that there exists a positive constant ¢, independent of h, though
depending either on r or the data providing the a priori bounds for |ulp 4,0 and |u/o 4,0, such that

Ip = prllog + [Vu = (Vu),loq + [6 = &xloe
(5.42)
O,Q} )

< c{lo —auln + lu-wilose + Iy -l

which, certainly, is bounded by the right hand side of (5.38) as well.

6 Specific finite element subspaces

In this section we resort to [27], Section 4.4] and |26, Section 4.5] to specify two examples of finite
element subspaces ]ﬁl‘,{, H}, H), Hfz, H!, and HY satisfying the hypotheses (H.1) up to (H.6) stated
in Section and then establish the associated rates of convergence for the Galerkin scheme (5.2)).
Although it will become clear below, we remark in advance that the two aforementioned examples are
actually determined by two possible choices for the first three subspaces since the remaining three are
kept the same in both cases.

6.1 Preliminaries

Given an integer k = 0 and K € T, we let Px(K) be the space of polynomials of degree at most k
defined on K with vector and tensorial counterparts Py (K) := [Pr(K)]|™ and Pr(K) := [Pr(K)]"*",
respectively. In addition, we let RTy(K) := Py(K) 4+ Pi(K)x be the local Raviart-Thomas space of
order k defined on K, where x stands for a generic vector in R". Furthermore, denoting by by the
bubble function on K, which is given by the product of its n + 1 barycentric coordinates, we set the
local bubble space of order k as

Bi(K) := curl(bg Pp(K)) if n =2, and
(6.1)
Bk(K) = curl(bKPk(K)) if n= 3,

where curl(v) := (2%, -2%)if n = 2and v: K — R, and curl(v) = V x vif n = 3 and v : K — R5.

o0xo’ o1
Next, we introduce the global spaces

PL(Q) = {uh e L2(Q): wplx e Pu(K), VK e n},

T
=
=2

i

vi € 12Q): valk € Py(K), VK €T},
5n € L2(Q):  Oulx ePu(K), VK e Th},

€ H(div;Q): myli € RTW(K), VK € T,

=
=
=
=2
I

€ H(div;Q):  7hilx € RTy(K), Vie{l,...,n},VK € Th},

=
H
=
=
A A A A ——

=

=

=2
i

Th € H(diviQ) . Thulx € Bu(K), Vie{l,....n},VK e Th}
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where 7; denotes the ith-row of 7. It is clear that Py(Q2) and Pg(€Q) are also subspaces of
L4(Q) and L*(Q), respectively. In addition, being H(div; Q) and H(div; Q) contained in H(divy/s; Q)
and H(divy/s; ), respectively, we notice that the spaces RTx(€2) and B(£2) are both subspaces of
H(divy/s; Q) as well, whereas RT(£2) is contained in H(div,/s; ).

6.2 Two examples

To begin with, we proceed as in [25, Section 4.4] and [26, Section 4.5], and employ the stable triplets
for linear elasticity derived in [27, Section 4.4], to define two examples of finite element subspaces HY,
H}!, and HJ, satisfying (H.1) up to (H.3). In what follows, ¢ is a non-negative integer.

The first example for ]ﬁlg, H}', and ]HIZ, is PEERSy, the plane elasticity element with reduced
symmetry of order ¢ > 0, whose stability for the mixed finite element formulation of the linear
elasticity problem, within the classical Hilbertian framework, was originally established in [3] for £ = 0
and n = 2, and later on proved for £ > 0 and n € {2, 3} in [32]. The corresponding subspaces are
defined as follows:

HY := RT,(Q) @ By(Q), HY := Py(Q), and 62)
HY = [C(Q)]™" A L2 () N Perr(Q). '

skew

The second example for ]ﬁlg, H}', and HZ, is AFW,, the Arnold-Falk-Winther element of order
¢ = 0, whose corresponding aforementioned stability can be found in [4]. In this case, the subspaces
are given by:

]ﬁlg = Ppi1(Q) n H(div;Q), H}' = Py(Q), and H) := L3, (Q) n Py(Q). (6.3)

skew

Regarding the verification of the hypotheses by the subspaces specified in and (6.3)), we first
observe that (H.1) is clearly satisfied in both cases. The same holds with (H.2) since div(RT(Q2))
and div (IP@H(Q)) are contained in P,(£2), which coincides with H}! in the two examples, whereas,
according to , the tensors in B,(Q2) are divergence-free. In turn, we recall that the discrete inf-sup
condition for b required in the assumption (H.3), was proved in [27, Lemma 4.8] for PEERS, as well
as for AFW,. We omit further details and refer to the analysis developed in [27), Section 4.4.2].

On the other hand, specific finite element subspaces Hﬁ, H!, and H}?, are set as follows:
HY := Py(Q), Hf := Py(Q), and HY := RT,(Q). (6.4)

Similarly as a previous remark, the fact that div(RT(f)) is contained in Py(€2) = Hf, guarantees that
(H.4) is satisfied. In addition, knowing from that, besides being contained in H? = RT,(9),
the vector functions of Zg; are divergence-free, we deduce, from a particular argument provided in
the proof of [23, Theorem 3.3], that Zy, < Py(€2), which confirms (H.5). Finally, the discrete inf-sup
condition required by (H.6), which coincides with [18, eq. (5.64)], is basically proved in the last part
of [18] Section 5.5] by realizing that it reduces to the vector version of [I8, Lemma 5.5, eq. (5.45)].

6.3 The rates of convergence

In this section we first collect the approximation properties of the finite element spaces defined in
Section and then establish the associated rates of convergence of the Galerkin scheme ([5.2)).
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We begin with the approximation properties of PEERS, (cf. (6.2)) and AFW, (cf. (6.3)), which
basically follow from the analogue properties of the Raviart—Thomas and AFW interpolation operators,
and of the orthogonal projectors P%, : L'(Q) — Py(Q) and Py : L'(Q) — Py(Q) (cf. [21, Proposition
1.135]), along with the use of the commuting diagram properties and of the interpolation estimates of
Sobolev spaces. They read as follows (cf. [27, Section 4.4.3], [25, Section 4.4.4]):

(AP{) there exists a positive constant C, independent of h, such that for each s € (0,¢ + 1], and for
each T € H*(Q2) n Ho(divy/3; ), with div(T) € W*4/3(Q), there holds

dist (7, Hp) < CB* {|7ls0 + [div(T) | ys0}

(AP} there exists a positive constant C, independent of h, such that for each s € [0,¢ + 1], and for
each v.e W*4(Q), there holds

dist (v, Hy) < Ch*|v[sa0, and

(APZ) there exists a positive constant C', independent of h, such that for each s € [0,¢ + 1], and for
each § € H*(Q) n L2 (Q), there holds

skew

dist (6, H)) < Ch*|6]|s0-

Furthermore, regarding the approximation properties of the subspaces defined in (6.4)), they are
given as indicated next:

(AP%) there exists a positive constant C', independent of h, such that for each s € [0,¢ + 1], and for
each ¢ € W*4(Q), there holds
dist (¢, H})) < Ch* [i)]sa0,

(AP?) there exists a positive constant C, independent of h, such that for each s € [0,¢ + 1], and for
each r € H*(Q2), there holds
dist (r, H}) < Ch®|r|sq, and

(APg) there exists a positive constant C', independent of h, such that for each s € (0,4 + 1], and for
each n € H*(Q2) n H(divy3; ), with div(n) € Ws4/3(Q), there holds

dist (0, HY) < Ch* {0l + |divim)]so} -

In this way, as a consequence of Theorem , and the approximation properties (APY),
(AP}), (AP)), (AP%), (APY), and (AP?), we conclude the rates of convergence of the Galerkin
Scheme with the finite element subspaces defined in Section More precisely, we have the
following result.

Theorem 6.1 In addition to the hypotheses of Theorems[4.8| and[5.8] assume that there exists s €
(0, £+1] such that o € H*(2) nHo(divy/3; ), div(o) € W43(Q), ue W4(Q), v e H¥(Q)nL2 . (Q),
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¢; € WoH(Q), t; € HY(Q), 9, € H*(Q) n H(divy3;Q), and div(9;) € W43(Q), j € {1,2}. Then,
there exists a positive constant C, independent of h such that

2

[(o,8) = (on Tn)[xq + D 1(05,95) = (Din: 950) |y
j=1
+ |p = prlog + [Va— (Vu),foo + |6 —&rloa
) . (6.5)
< Cn* {Julssa + [olon + [div(o)aase + 1¥lso

s,0 + 95

2
3 (Ioslloan + It s+ 14V ()] am0) |
j=1

7 Numerical results

In this section we consider the two pairs of finite element subspaces detailed in Section [f] to present
three examples illustrating the performance of the mixed finite element method on a set of
quasi-uniform triangulations of the respective domains. In what follows, we refer to the corresponding
sets of finite element subspaces generated by ¢ = {0,1} as simply PEERS, — P, — P, — RT, and
AFW, — Py — Py — RT,. The numerical methods have been implemented using open source finite
element libraries: FEniCS [I] and FreeFem++ [29]. We have used FEniCS for Examples 1 and 2, and
FreeFem++ for the Example 3. A Newton—Raphson algorithm with a fixed tolerance tol = 1E — 06
is used for the resolution of the nonlinear problem . As usual, the iterative method is finished
when the relative error between two consecutive iterations of the complete coefficient vector, namely
coeff™ and coeff™ !, is sufficiently small, that is,

£ — coeff™ |por

Hcoefme HDDF

|coe

< tol,

where ||+ |por stands for the usual Euclidean norm in RP% with DOF denoting the total number of degrees
of freedom defining the finite element subspaces HY , H}!, H, Hf, H!, and Hg (cf. (6.2)—(6.4)).

We now introduce some additional notation. The individual errors are denoted by

040, e():=]v—7nloq,
0,0, eVu):=|Vu—(Vuhloq,

0,2 5 e(lﬂj) = H'ﬂ] - ﬁj’h

e(0) = o — oplaiv, 0. () = u—uy,
e(p) = [p—pn

0,40, e(ty):=[t; —t;5

e(¢)) = |65 — djonl

where pp, and (Vu)y, stand for the post-processed pressure and velocity gradient suggested by
and , respectively. We stress here that we are also able to recover the shear stress tensor
o by the post-processing formula . However, for the sake of simplicity, in the numerical es-
says below we will focus only on the pressure field and velocity gradient tensor. Moreover, for
each * € {O',u,’y,p, Vu, ¢j,tj,l9j} we let r(x) be the experimental rate of convergence given by

|diV4/3;Q ) j € {17 2} )

r(x) := log (e(*)/@(*))/log(h/ﬁ), where h and h denote two consecutive meshsizes with errors e and
e, respectively.

The examples to be considered in this section are described next. In all of them, we take o = 1,R1 =
1,Re =1, and ¢, = (0,0). In turn, in the first two examples the tensors Q; and Qg are taken as the
identity matrix I, which satisfy (2.4). In addition, the null mean value of tr(c,) over € is fixed via a
real Lagrange multiplier strategy.
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Example 1: Convergence against smooth exact solutions in a 2D domain

In this test we corroborate the rates of convergence in a two-dimensional domain. The domain is the
square 2 = (0,1)2. We consider the inertial power p = 3, the potential type gravitational acceleration
g = (0,—1)%, the effective viscosity u(x1,x2) = exp(—x122), and adjust the data f, g, and g5 in
such that the exact solution is given by

sin(7xy) cos(mxa)
— cos(mxy) sin(mxs)

u(z1, 22) = (

¢1(x1,m2) = 0.5+ 0.5cos(z1z2), and ¢ao(x1,z2) = 0.1+ 0.3exp(zi22).

> ,  p(x1,x2) = cos(mxy)sin(0.5 Tx2) ,

The model problem is then complemented with the appropriate Dirichlet boundary conditions. Tables
and show the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations when D = 1 and F = 10. As already announced, we stress that we
are able not only to approximate the original unknowns but also the pressure field and the velocity
gradient through the formulae f. The results confirm that the optimal rates of convergence
O(h**1) predicted by Theorem are attained for ¢ = {0,1} for both PEERS, and AFW, based
schemes. The Newton method exhibits a behavior independent of the meshsize, converging in five
iterations in almost all cases. In Figure [7.1] we display some solutions obtained with the mixed
PEERS; — Py — Py — RT; approximation with meshsize h = 0.013 and 24,200 triangle elements
(actually representing 1,260, 602 DOF).

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second example we consider the cube domain Q = (0, 1)3, the model parameter p = 3.5,D = 1,
F =10, u(x1,z2,x3) = exp(—x12923), and g = (0,0, —1). The manufactured solution is given by

sin(mwzy ) cos(mze) cos(mxs)
u(xy, e, x3) = [ —2cos(maxy) sin(mxy) cos(mxs) |, p(x1,x2,x3) = cos(mxy) exp(xs + 3),
cos(mxy) cos(mxy) sin(mxs)

o1(x1, 22, 23) = 0.5 + 0.5cos(z1x923), and ¢o(x1, w2, x3) = 0.1 + 0.3 exp(x12273) .

Similarly to the first example, the data f, g1, g2 and up, ¢1 p, 2, p are computed from (2.13)) using the
above solution. The convergence history for a set of quasi-uniform mesh refinements using ¢ = 0 is
shown in Table Again, the mixed finite element method converges optimally with order O(h), as
it was proved by Theorem In addition, some components of the numerical solution are displayed
in Figure which were built using the mixed PEERS) —Py—P¢—RT( approximation with meshsize
h = 0.087 and 48,000 tetrahedral elements (actually representing 1,479, 784 DOF).

Example 3: Flow through a 2D porous media with fracture network.

Inspired by [16, Example 4, Section 6], we finally focus on a flow through a porous medium with a frac-
ture network considering strong jump discontinuities of the parameters D and F across the two regions.
We consider the square domain = (—1,1)? with an internal fracture network denoted as Q) (see the
first plot in Figure , and boundary I', whose left, right, upper and lower parts are given by I'jesy =
{—1} x (=1,1), Tyighe = {1} x (—1,1), T'top = (—1,1) x {1}, and T'yottom = (—1,1) x {—1}, respectively.
Note that the boundary of the internal fracture network is defined as a union of segments. The
prescribed mesh file is available in https://github.com/scaucao/Fracture network-mesh CBF-DD.
We consider the coupling of the convective Brinkman—Forchheimer and double-diffusion equations
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(2.13) in the whole domain Q with inertial power p =4, =1, Q; = 0.1T and Q2 = 0.21, but with
different values of the parameters D and F for the interior and the exterior of the fracture, namely

10 in 1 in Q
F= - and D= - . (7.1)
1 in OQ\Q 1000 in Q\Qf

The parameter choice corresponds to increased inertial effect (F = 10) in the fracture and a high
permeability (D = 1), compared to reduced inertial effect (F = 1) in the porous medium and low
permeability (D = 1000). In addition, g = (0, —1), the source terms are g; = 0 and g2 = 0, and the
boundaries conditions are

{ (=100 (z2 — 1), 0)* on Tieg ,
ov =

ov=1(0,00" on Tyen ully ,
(0, —100 (33'1 — 1))t on Ft0p, ( ) ght ottom

(7.2)
$1 =03 on Ipottom, ¢1 =0 on Ftopa Y1-v=0 on Iy u I_‘right )

¢2=0.2 on I'yottom, ¢2=0 on Ftop , ¥2-v=0 on Dy I_‘right )

which drives the flow in a diagonal direction from the left-top corner to the right-bottom corner of the
square domain §2. We remark that the analysis developed in the previous sections can be extended,
with minor modifications, to the case of mixed boundary conditions considered in this example.

In Figure [7.3] we display the computed magnitude of the pseudostress tensor, velocity, velocity
gradient, and gradients of the temperature and concentration, and the temperature and concentration
fields, which were built using the fully-mixed AFWy—Pg—Pg—RT( scheme on a mesh with A = 0.029
and 31,932 triangle elements (actually representing 576,216 DOF). As we expected, the velocity in the
fractures is higher than the velocity in the porous medium, due to smaller fractures thickness and
the parameter setting . In addition, the velocity is higher in branches of the network where the
fluid enters from the left-top corner and decreases toward the right-bottom corner of the domain.
In turn, we observe a sharp velocity gradient across the interfaces between the fractures and the
porous medium. The pseudostress is consistent with the boundary conditions and it is more
diffused since it includes the pressure field. In turn, the temperature and concentration are zero
on the top of the domain and go increasing towards the bottom of it, which is consistent with the
behavior observed in the magnitude of the temperature and concentration gradients. This example
illustrates the ability of the method to provide accurate resolution and numerically stable results for
heterogeneous inclusions with high aspect ratio and complex geometry, as presented in the network of
thin fractures. We notice that the mesh used in this example was built by considering a quasi-uniform
refinement. Nevertheless, this refinement can be improved and automatized by employing a suitable
a posteriori error indicator, as in [I4] and [II], that captures the aforementioned discontinuity of
the parameters and localize the refinement where it is needed. The corresponding a posteriori error
analysis and numerical implementation will be addressed in a future work.
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PEERSy — Py — Py — RT approximation

DOF| h [ elo) [rlo) [ ew [rw) ]| e(v) [r(y) | e | rk) [ e(Vu) [r(Vu)

570 | 0.354 || 2.2E400 - 2.3E-01 - 1.6E-01 - 2.8E-01 - 8.6E-01 -
2194 | 0.177 || 1.1E+00 | 0.988 | 1.2E-01 | 1.003 | 5.1E-02 | 1.666 | 1.4E-01 | 0.948 | 4.5E-01 | 0.927
8610 | 0.088 || 5.5E-01 | 1.003 | 5.8E-02 | 1.063 | 2.1E-02 | 1.304 | 6.9E-02 | 1.039 | 2.3E-01 | 0.973
30002 | 0.047 2.9E-01 | 1.004 | 3.1E-02 | 1.057 | 9.2E-03 | 1.301 | 3.6E-02 | 1.037 | 1.2E-01 | 0.993
119402 | 0.024 || 1.5E-01 | 1.002 | 1.6E-02 | 1.111 | 3.4E-03 | 1.422 | 1.8E-02 | 1.015 | 6.2E-02 | 1.000
400402 | 0.013 || 8.0E-02 | 1.001 | 8.5E-03 | 1.059 | 1.4E-03 | 1.479 | 9.7E-03 | 1.005 | 3.4E-02 | 1.001

e(¢1) [r(¢1) | e(tr) [r(t) [ e@) [r(®) [ e(ga) [r(d2) | elta) [ r(ta) [ e(@2) [r(¥2) it
2.2E-02 8.4E-02 — 1.6E-01 - 4.2E-02 - 7.6E-02 — 1.5E-01 —

1.1E-02 | 0.979 | 5.0E-02 | 0.736 | 8.9E-02 | 0.883 | 2.1E-02 | 0.981 | 4.1E-02 | 0.904 | 7.8E-02 | 0.946
5.5E-03 | 0.997 | 2.7E-02 | 0.916 | 4.6E-02 | 0.961 | 1.1E-02 | 0.995 | 2.1E-02 | 0.962 | 3.9E-02 | 0.980
2.9E-03 | 1.000 | 1.4E-02 | 0.973 | 2.5E-02 | 0.988 | 5.7E-03 | 0.999 | 1.1E-02 | 0.987 | 2.1E-02 | 0.993
1.5E-03 | 1.000 | 7.3E-03 | 0.991 | 1.2E-02 | 0.996 | 2.8E-03 | 1.000 | 5.6E-03 | 0.996 | 1.1E-02 | 0.998
8.0E-04 | 1.000 | 4.0E-03 | 0.997 | 6.7E-03 | 0.999 | 1.6E-03 | 1.000 | 3.1E-03 | 0.999 | 5.8E-03 | 0.999

Tt Ot Ot Ot O O

AFWy — Py — Py — RT( approximation
DOF | h [ e(o) [r(o) | e [rw) [ e() [r(v) | e [ rlp) | e(Vu) [r(Vu
625 | 0.354 || 2.0E+00 2.3E-01 4.0E-01 1.5E-01 8.2E-01
2401 | 0.177 9.8E-01 | 1.027 | 1.2E-01 | 0.965 | 2.1E-01 | 0.944 | 6.7E-02 | 1.164 | 4.2E-01 | 0.943
9409 | 0.088 || 4.9E-01 | 1.010 | 5.8E-02 | 0.991 | 1.0E-01 | 0.986 | 3.2E-02 | 1.078 | 2.1E-01 | 0.987
32761 | 0.047 2.6E-01 | 1.003 | 3.1E-02 | 0.998 | 5.6E-02 | 0.996 | 1.7E-02 | 1.024 | 1.1E-01 | 0.997
130321 | 0.024 || 1.3E-01 | 1.001 | 1.6E-02 | 0.999 | 2.8E-02 | 0.999 | 8.2E-03 | 1.007 | 5.7E-02 | 0.999
436921 | 0.013 || 7.0E-02 | 1.000 | 8.5E-03 | 1.000 | 1.5E-02 | 1.000 | 4.5E-03 | 1.002 | 3.1E-02 | 1.000

e(¢1) [r(¢1) | e(tr) [r(t) [ e@) [r(@) [ e(da) [r(d2) | elta) [ r(ta) [ e(@2) [r(¥2) it
2.2E-02 — 8.3E-02 — 1.6E-01 — 4.2E-02 — 7.6E-02 — 1.5E-01 —

1.1E-02 | 0.978 | 5.0E-02 | 0.731 | 8.9E-02 | 0.883 | 2.1E-02 | 0.981 | 4.1E-02 | 0.905 | 7.8E-02 | 0.947
5.56E-03 | 0.997 | 2.7E-02 | 0.915 | 4.6E-02 | 0.960 | 1.1E-02 | 0.996 | 2.1E-02 | 0.963 | 3.9E-02 | 0.980
2.9E-03 | 1.000 | 1.4E-02 | 0.973 | 2.5E-02 | 0.987 | 5.7E-03 | 0.999 | 1.1E-02 | 0.987 | 2.1E-02 | 0.993
1.5E-03 | 1.000 | 7.3E-03 | 0.991 | 1.2E-02 | 0.996 | 2.8E-03 | 1.000 | 5.6E-03 | 0.996 | 1.1E-02 | 0.998
8.0E-04 | 1.000 | 4.0E-03 | 0.997 | 6.7E-03 | 0.999 | 1.6E-03 | 1.000 | 3.1E-03 | 0.999 | 5.8E-03 | 0.999

Ut Ot Ut Ot Ut Ot

Table 7.1: [Example 1, £ = 0] Number of degrees of freedom, meshsizes, errors, rates of convergence,
and Newton iteration count for the fully-mixed approximations with p =3, D=1, and F = 10.

[3] D.N. ArnoLD, F. BrEzzl AND J. DouGLAs, PEERS: A new mized finite element method for
plane elasticity. Jpn. J. Appl. Math. 1 (1984), 347-367.

[4] D.N. ArRNOLD, R.S. FALK AND R. WINTHER, Mized finite element methods for linear elasticity
with weakly imposed symmetry. Math. Comp. 76 (2007), no. 260, 1699-1723.

[5] G.A. BENAVIDES, S. Caucao, G.N. GATICA AND A.A. HOPPER, A new non-augmented and

momentum-conserving fully-mized finite element method for a coupled flow-transport problem.
Calcolo 59 (2022), no. 1, Paper No. 6, 44 pp.

[6) M.M. BHATTI, A. ZEESHAN, R. ELLAHI, AND G.C. SHIT, Mathematical modeling of heat and
mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy—Brinkman—
Forchheimer porous medium. Adv. Powder Techn. 29 (2018), no. 5, 1189-1197.

[7] F. BREZZI AND M. FORTIN, Mized and Hybrid Finite Element Methods. Springer Series in Com-
putational Mathematics, 15. Springer-Verlag, New York, 1991.
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PEERS; — P; — P; — RT; approximation

DOF [ h || el0) [rlo) | ew) [r(w) [ ey) [r(v) [ e [ r | e(Vu) [r(Vu)

1746 | 0.354 || 3.4E-01 - 4.1E-02 - 5.7E-02 - 3.4E-02 - 1.3E-01 —
6818 | 0.177 || 8.8E-02 | 1.959 | 1.1E-02 | 1.969 | 1.7E-02 | 1.733 | 9.4E-03 | 1.836 | 3.6E-02 | 1.867
26946 | 0.088 || 2.3E-02 | 1.964 | 2.6E-03 | 1.992 | 5.4E-03 | 1.674 | 2.6E-03 | 1.851 | 1.0E-02 | 1.861
94202 | 0.047 || 6.5E-03 | 1.979 | 7.5E-04 | 1.998 | 1.7E-03 | 1.817 | 7.9E-04 | 1.912 | 3.0E-03 | 1.905
375602 | 0.024 || 1.6E-03 | 1.991 | 1.9E-04 | 1.999 | 4.5E-04 | 1.926 | 2.0E-04 | 1.960 | 7.8E-04 | 1.954
1260602 | 0.013 || 4.9E-04 | 1.996 | 5.6E-05 | 2.000 | 1.4E-04 | 1.973 | 6.1E-05 | 1.983 | 2.3E-04 | 1.980

e(gr) [r(dy) | eltr) [r(t) | e(@) [r(@1) [ elga) [r(g2) [ elta) [r(te) | e(@2) [r(d) [ it
2.0E-03 — 1.3E-02 - 2.2E-02 - 3.4E-03 — 7.9E-03 — 1.7E-02 -

5.1E-04 | 2.006 | 3.7E-03 | 1.792 | 6.1E-03 | 1.878 | 8.9E-04 | 1.971 | 2.2E-03 | 1.827 | 4.5E-03 | 1.926
1.3E-04 | 2.002 | 9.8E-04 | 1.919 | 1.6E-03 | 1.950 | 2.2E-04 | 1.994 | 5.9E-04 | 1.929 | 1.2E-03 | 1.969
3.6E-05 | 2.001 | 2.9E-04 | 1.965 | 4.5E-04 | 1.978 | 6.1E-05 | 1.999 | 1.7E-04 | 1.967 | 3.3E-04 | 1.985
9.0E-06 | 2.000 | 7.2E-05 | 1.984 | 1.1E-04 | 1.990 | 1.5E-05 | 2.000 | 4.3E-05 | 1.984 | 8.3E-05 | 1.993
2.7E-06 | 2.000 | 2.2E-05 | 1.992 | 3.4E-05 | 1.995 | 4.5E-06 | 2.000 | 1.3E-05 | 1.992 | 2.5E-05 | 1.996

Ot Ot Ot Ot Oy O

AFW; — P; — P; — RT; approximation

DOF | h || elo) [ro) | ew) [rw) | e(y) [r(v) | el [ r) [ e(Vu) [r(Vu)

1745 | 0.354 || 3.1E-01 - 4.1E-02 - 6.4E-02 - 1.8E-02 - 1.3E-01 -
6817 | 0.177 || 7.6E-02 | 2.010 | 1.1E-02 | 1.959 | 1.7E-02 | 1.949 | 4.3E-03 | 2.042 | 3.3E-02 | 1.958
26945 | 0.088 || 1.9E-02 | 2.006 | 2.6E-03 | 1.989 | 4.2E-03 | 1.980 | 1.1E-03 | 1.963 | 8.4E-03 | 1.986
94201 | 0.047 || 5.3E-03 | 2.003 | 7.5E-04 | 1.997 | 1.2E-03 | 1.992 | 3.2E-04 | 1.972 | 2.4E-03 | 1.995
375601 | 0.024 || 1.3E-03 | 2.001 | 1.9E-04 | 1.999 | 3.0E-04 | 1.997 | 8.1E-05 | 1.984 | 6.0E-04 | 1.998
1260601 | 0.013 || 4.0E-04 | 2.001 | 5.6E-05 | 2.000 | 8.9E-03 | 1.998 | 2.4E-05 | 1.992 | 1.8E-04 | 1.999

e(gr) [r(d1) | etr) [r(t) | e(®) [r(®1) [ elga) [r(g2) [ elta) [rlte) | e(@2) [r(d) [ it
2.0E-03 — 1.3E-02 — 2.2E-02 — 3.4E-03 — 7.9E-03 — 1.7E-02 —
5.1E-04 | 2.006 | 3.7E-03 | 1.783 | 6.1E-03 | 1.877 | 8.6E-04 | 1.971 | 2.2E-03 | 1.820 | 4.5E-03 | 1.926
1.3E-04 | 2.002 | 9.8E-04 | 1.918 | 1.6E-03 | 1.950 | 2.2E-04 | 1.994 | 5.9E-04 | 1.928 | 1.2E-03 | 1.969
3.6E-05 | 2.001 | 2.9E-04 | 1.965 | 4.5E-04 | 1.978 | 6.1E-05 | 1.999 | 1.7E-04 | 1.968 | 3.3E-04 | 1.985
9.0E-06 | 2.000 | 7.2E-05 | 1.984 | 1.1E-04 | 1.990 | 1.5E-05 | 2.000 | 4.3E-05 | 1.984 | 8.3E-05 | 1.993
2.7E-06 | 2.000 | 2.2E-05 | 1.992 | 3.4E-05 | 1.995 | 4.5E-06 | 2.000 | 1.3E-05 | 1.992 | 2.5E-05 | 1.996

ot O Ot Ot Ut O

Table 7.2: [Example 1, £ = 1] Number of degrees of freedom, meshsizes, errors, rates of convergence,
and Newton iteration count for the fully-mixed approximations with p =3, D=1, and F = 10.

[8] J. CamaNo, C. Garcia, AND R. OYARzUA, Analysis of a momentum conservative mized-
FEM for the stationary Navier-Stokes problem. Numer. Methods Partial Differential Equations
37 (2021), no. 5, 2895-2923.

9] J. CamaNO, C. MuNOz, AND R. OYARZUA, Numerical analysis of a dual-mized problem in
non-standard Banach spaces. Electron. Trans. Numer. Anal. 48 (2018), 114-130.

[10] S. Caucao, E. COLMENARES, G.N. GATICA AND C. INZUNZA, A Banach spaces-based fully-

mixed finite element method for the stationary chemotaxis-Navier-Stokes problem. Comp. Math.
Appl. 145 (2023), 65-89.

[11] S. Caucao AND J. ESPARzA, An augmented mized FEM for the convective Brinkman-

Forchheimer problem: a priori and a posteriori error analysis. arXiv:2209.02894 [math.NA],
(2023).

[12] S. Caucao, G.N. Gatica, AND L.F. GaTicA, A Banach spaces-based mized finite element
method for the stationary convective Brinkman-Forchheimer problem. Preprint 2023-10, Centro
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PEERS) — Py — Py — RT approximation

boF [ h [ elo) [ (o) | efw) | rw [ en) [ () | o) | ) | (V) [ AW

1642 | 0.866 || 9.2E4-00 5.7E-01 1.2E+00 1.2E+00 2.4E4-00
12376 | 0.433 || 4.8E400 | 0.953 | 3.1E-01 | 0.898 | 4.3E-01 | 1.477 | 6.3E-01 | 0.881 | 1.4E+00 | 0.721
96268 | 0.217 || 2.4E4-00 | 1.002 | 1.6E-01 | 0.971 | 1.2E-01 | 1.793 | 3.1E-01 | 1.054 | 7.6E-01 | 0.910

509926 | 0.124 || 1.4E4-00 | 1.015 | 8.9E-02 | 0.994 | 5.0E-02 | 1.604 | 1.6E-01 | 1.104 | 4.4E-01 | 0.968
1479784 | 0.087 || 9.4E-01 | 1.012 | 6.3E-02 | 0.998 | 2.9E-02 | 1.577 | 1.1E-01 | 1.084 | 3.1E-01 | 0.987

e(gr) [r(dy) | etr) [r(t) | e(®) [r(@1) [ elga) [r(g2) [ elte) [r(te) | e(@2) [r(d) [ it

2.9E-02 1.0E-01 3.2E-01 - 6.0E-02 1.1E-01 - 2.3E-01 -

1.6E-02 | 0.868 | 8.2E-02 | 0.295 | 1.9E-01 | 0.760 | 3.1E-02 | 0.931 | 6.3E-02 | 0.849 | 1.3E-01 | 0.864
8.0E-03 | 0.971 | 4.8E-02 | 0.788 | 9.9E-02 | 0.926 | 1.6E-02 | 0.982 | 3.3E-02 | 0.918 | 6.6E-02 | 0.957
4.6E-03 | 0.994 | 2.8E-02 | 0.925 | 5.7E-02 | 0.975 | 9.1E-03 | 0.995 | 1.9E-02 | 0.966 | 3.8E-02 | 0.986
3.2E-03 | 0.998 | 2.0E-02 | 0.965 | 4.0E-02 | 0.989 | 6.4E-03 | 0.998 | 1.4E-02 | 0.983 | 2.7E-02 | 0.994

OO D

AFWy — Py — Py — RT( approximation

DOF| h || elo) [rio) | ew |rw) | eq) [ r [ e | ) | e(Vw) [r(Vu)

1993 | 0.866 || 8.7E4-00 - 5.6E-01 - 1.1E+00 - 1.0E+00 - 2.1E400 -
14881 | 0.433 || 4.3E400 | 1.032 | 3.0E-01 | 0.903 | 6.4E-01 | 0.727 | 4.9E-01 | 1.093 | 1.3E400 | 0.712
114817 | 0.217 || 2.1E4+00 | 1.045 | 1.6E-01 | 0.959 | 3.4E-01 | 0.928 | 2.2E-01 | 1.119 | 6.8E-01 | 0.922
605641 | 0.124 || 1.2E+00 | 1.019 | 8.9E-02 | 0.988 | 1.9E-01 | 0.980 | 1.3E-01 | 1.050 | 3.9E-01 | 0.978
1754401 | 0.087 || 8.1E-01 | 1.008 | 6.2E-02 | 0.995 | 1.4E-01 | 0.992 | 8.7E-02 | 1.021 | 2.7E-01 | 0.992

e(or) [r(on) [ e(ty) [rt) [ e@y) [r(W1) [ e(da) [r(da) [ e(te) [r(ta) | e(d2) |r(d) it
29E-02 [ - [ 9.9E-02 31E-01 [ - [6.0E-02] - [LIEOL| - [23E0L| -

1.6E-02 | 0.869 | 8.1E-02 | 0.275 | 1.9E-01 | 0.747 | 3.1E-02 | 0.934 | 6.3E-02 | 0.846 | 1.3E-02 | 0.863
8.0E-03 | 0.972 | 4.8E-02 | 0.775 | 9.8E-02 | 0.917 | 1.6E-02 | 0.984 | 3.3E-02 | 0.915 | 6.6E-02 | 0.954
4.6E-03 | 0.995 | 2.8E-02 | 0.922 | 5.7E-02 | 0.970 | 9.1E-03 | 0.996 | 1.9E-02 | 0.965 | 3.8E-02 | 0.983
3.2E-03 | 0.998 | 2.0E-02 | 0.964 | 4.0E-02 | 0.986 | 6.4E-03 | 0.998 | 1.4E-02 | 0.983 | 2.7E-02 | 0.992

Ut Ot Ot Ot Ot

Table 7.3: [Example 2] Number of degrees of freedom, meshsizes, errors, rates of convergence, and
Newton iteration count for the fully-mixed approximations with p = 3.5, D=1, and F = 10.
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Figure 7.1: [Example 1, ¢ = 1] Computed pseudostress tensor component, magnitude of the velocity,
vorticity component, and pressure field (top plots); temperature field, magnitude of the pseudoheat
vector, concentration field, and magnitude of the pseudodiffusion vector (bottom plots).
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Figure 7.2: [Example 2] Computed pseudostress tensor component, magnitude of the velocity, vorticity
component, and pressure field (top plots); temperature field, magnitude of the pseudoheat vector,
concentration field, and magnitude of the pseudodiffusion vector (bottom plots).
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Figure 7.3: [Example 3] Domain configuration, computed magnitude of the pseudostress tensor, ve-
locity, and velocity gradient tensor (top plots); concentration field, magnitude of the temperature
gradient, concentration field, and magnitude of the concentration gradient (bottom plots).
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