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Abstract

In this paper we introduce and analyze new Banach spaces-based mixed finite element methods for
the stationary nonlinear problem arising from the coupling of the convective Brinkman-Forchheimer
equations with a double diffusion phenomenon. Besides the velocity and pressure variables, the
symmetric stress and the skew-symmetric vorticity tensors are introduced as auxiliary unknowns of
the fluid. Thus, the incompressibility condition allows to eliminate the pressure, which, along with
the velocity gradient and the shear stress, can be computed afterwards via postprocessing formulae
depending on the velocity and the aforementioned new tensors. Regarding the diffusive part of
the coupled model, and additionally to the temperature and concentration of the solute, their
gradients and pseudoheat/pseudodiffusion vectors are incorporated as further unknowns as well.
The resulting mixed variational formulation, settled within a Banach spaces framework, consists
of a nonlinear perturbation of, in turn, a nonlinearly perturbed saddle-point scheme, coupled with
a usual saddle-point system. A fixed-point strategy, combined with classical and recent solvability
results for suitable linearizations of the decoupled problems, including in particular, the Banach-
Nečas-Babuška theorem and the Babuška-Brezzi theory, are employed to prove, jointly with the
Banach fixed-point theorem, the well-posedness of the continuous and discrete formulations. Both
PEERS and AFW elements of order ℓ ě 0 for the fluid variables, and piecewise polynomials of
degree ď ℓ together with Raviart-Thomas elements of order ℓ for the unknowns of the diffusion
equations, constitute feasible choices for the Galerkin scheme. In turn, optimal a priori error
estimates, including those for the postprocessed unknowns, are derived, and corresponding rates
of convergence are established. Finally, several numerical experiments confirming the latter and
illustrating the good performance of the proposed methods, are reported.
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1 Introduction

The multiphysics problem of double-diffusive convection in which two scalar fields, such as heat and
concentration of a solute, affect the density distribution in a fluid-saturated highly porous medium,
has been intensively studied in recent years (see, e.g., [30], [33], [34], [15], [13], and references therein).
Applications include predicting and controlling processes arising in geophysics, oceanography, chemical
engineering, and energy technology, to name a few. In particular, some of them includes groundwater
system in karst aquifers, fast flows in fractured or vuggy aquifers or reservoirs, chemical processing,
convective flow of carbon nanotubes, and propagation of biological fluids (see, for instance, [2], [6],
[22], and [36]). In this regard, we remark that much of the research in porous medium has been focused
on the use of Darcy’s law. However, this fundamental equation may be inaccurate for modeling fluid
flow through porous media with high Reynolds numbers or through media with high porosity. To
overcome this limitation, it is possible to consider the convective Brinkman–Forchheimer equations
(see, e.g., [17], [35], [31], [11], and [12]), where terms are added to Darcy’s equation in order to take into
account the above described physical aspects. Moreover, this fact has motivated the introduction of
the corresponding coupling with a system of advection-diffusion equations (also called double-diffusion
equations), through convective terms and the body force.

Concerning literature devoted to studying the coupling of the Brinkman–Forchheimer and double-
diffusion equations, we first highlight that, up to the authors’ knowledge, [30] constitutes one of the first
works in analyzing the well-posedness and regularity of solution for a velocity-pressure-temperature-
concentration variational formulation. Later on, a finite volume method to solve the coupling of the
time-dependent Brinkman–Forchheimer and double-diffusion equations was adopted in [34]. The focus
of this work was on the validity of the Brinkman–Forchheimer model when various combinations of the
thermal Rayleigh number, permeability ratio, inclination angle, thermal conductivity and buoyancy
ratio are considered. More recently, an augmented fully-mixed formulation based on the introduc-
tion of the fluid pseudostress tensor, and the pseudoheat and pseudodiffusive vectors (besides the
velocity, temperature and concentration fields) was analyzed in [15]. Meanwhile, a non-augmented
Banach spaces-based fully-mixed formulation was proposed and analyzed in [13]. In particular, this
latter scheme is written equivalently as a fixed-point equation, so that the well-known Banach theo-
rem, combined with classical results on nonlinear monotone operators and Babuška-Brezzi’s theory in
Banach spaces, are applied to prove the unique solvability of the continuous and discrete systems.

Regarding literature focused on the analysis of the convective Brinkman–Forchheimer (CBF) equa-
tions, we start referring to [17], where the authors analyze the continuous dependence of solutions
of the CBF equations written in velocity-pressure formulation on the Forchheimer coefficient in H1

norm. In turn, an approximation of solutions for the incompressible CBF equations via the artificial
compressibility method was proposed and developed in [35], where a family of perturbed compressible
CBF equations that approximate the incompressible CBF equations is introduced. Furthermore, the
well-posedness of the corresponding velocity-pressure variational formulation of the two-dimensional
stationary CBF equations was analyzed in [31]. In addition, error estimates for a mixed finite el-
ement approximation were obtained, and a one-step Newton iteration algorithm initialized using a
fixed-point iteration, was proposed. Recently, an augmented mixed pseudostress-velocity formula-
tion was analyzed in [11]. In there, the well-posedness of the problem is achieved by combining a
fixed-point strategy, the Lax–Milgram theorem, and the well-known Schauder and Banach fixed-point
theorems. We also mention [12], where a Banach spaces-based mixed formulation was proposed and
analyzed for the CBF problem, but differently from the techniques previously developed in [11], no
augmentation procedure was needed for the formulation nor for the solvability analysis. The resulting
non-augmented scheme is then written equivalently as a fixed-point equation, so that results recently
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established in [19] for perturbed saddle-point problems in Banach spaces, along with the well-known
Banach–Nečas–Babuška and Banach theorems, are applied to prove the well-posedness of the contin-
uous and discrete systems.

We point out that the motivation of employing an augmented approach, as in [15] and [11], is
originated by the wish of performing the respective solvability analysis of the equations within a
Hilbertian framework. However, it is well known that the introduction of additional terms into the
formulation, while having some advantages, also leads to much more expensive schemes in terms of
complexity and computational implementation. In order to overcome this, in recent years there has
arisen an increasing development on Banach spaces-based mixed finite element methods to solve a
wide family of single and coupled nonlinear problems in continuum mechanics. In particular, we
refer to [9], [8], [16], [18], [5], [25], and [10], for the analysis of mixed formulations within a Banach
framework of the Poisson, Navier–Stokes, Brinkman–Forchheimer, Boussinesq, coupled flow-transport,
Navier–Stokes–Brinkman, and chemotaxis-Navier–Stokes equations. This kind of procedures shows
two advantages at least: no augmentation is required, and the spaces to which the unknowns belong
are the natural ones arising from the application of the Cauchy–Schwarz and Hölder inequalities to
the terms resulting from the testing and integration by parts of the equations of the model. As a
consequence, simpler and closer to the original physical model formulations are obtained.

According to the previous discussion, and aiming to continue extending the applicability of the
aforementioned framework, the goal of the present paper is to develop and analyze a new Banach
spaces-based fully-mixed formulation, augmentation free, for the coupling of the convective Brinkman–
Forchheimer and double-difusion equations, and study its numerical approximation by the associated
mixed finite element method. To this end, and unlike [11] and [12], where only the pseudostress
is employed, here we introduce the symmetric stress and the skew-symmetric vorticity tensors as
auxiliary unknowns in the CBF equations, and subsequently eliminate the pressure unknown using
the incompressibility condition. In turn, we follow [13, 18] and adopt a dual-mixed formulation
for the double-difussion equations making use of the temperature/concentration gradients and the
pseudoheat/pseudodiffusion vectors as further unknowns. The resulting mixed formulation is written
as a nonlinear perturbation of, in turn, a nonlinearly perturbed saddle-point scheme, coupled with
a usual saddle-point system. Then, similarly to [13], [20], [25], and [10], we combine a fixed-point
argument, the abstract results provided in [19], the Banach–Nečas–Babuška theorem, Babuška-Brezzi’s
theory in Banach spaces, sufficiently small data assumptions, and the Banach theorem, to establish
existence and uniqueness of solution of both the continuous and discrete formulations. In this regard,
and since the formulation is similar to the ones considered in [13], [19], and [20], our present analysis
certainly makes use of the corresponding results available there. In addition, applying an ad-hoc
Strang-type lemma in Banach spaces established in [15], we are able to derive the corresponding a
priori error estimates for arbitrary discrete subspaces. Next, employing PEERS and AFW elements
of order ℓ ě 0 for approximating the fluid variables, and piecewise polynomials of degree ď ℓ together
with Raviart–Thomas elements of order ℓ for the unknowns of the double-diffusion equations, we prove
that the corresponding discrete methods are convergent with optimal rates.

The paper is organized as follows. The remainder of this section describes standard notation and
functional spaces to be employed throughout the paper. The model problem is introduced in Section
2, and all the auxiliary variables to be employed in the setting of the formulation are defined there.
Next, in Section 3 we derive the corresponding fully-mixed variational formulation in Banach spaces,
whereas, the well-posedness of this continuous scheme is established in Section 4. The corresponding
Galerkin system is introduced and analyzed in Section 5, where the discrete analogue of the theory
used in the continuous case is employed to prove existence and uniqueness of solution. A priori error
estimates for arbitrary finite element subspaces are also obtained there. In Section 6 we establish the
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corresponding rates of convergence for specific discrete subspaces. Finally, the performance of the
method is illustrated in Section 7 throughout several numerical examples in 2D and 3D, with and
without manufactured solutions, which confirm the accuracy and flexibility of our fully-mixed finite
element method.

Preliminary notations

Let Ω Ă Rn, n P t2, 3u, be a bounded domain with polyhedral boundary Γ, and let ν be the outward
unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces LppΩq and Sobolev
spaces Ws,ppΩq, with s P R and p ą 1, whose corresponding norms, either for the scalar, vectorial, or
tensorial case, are denoted by } ¨ }0,p;Ω and } ¨ }s,p;Ω, respectively. In particular, given a non-negative
integer m, Wm,2pΩq is also denoted by HmpΩq, and the notations of its norm and seminorm are
simplified to || ¨ ||m,Ω and | ¨ |m,Ω, respectively. In addition, H1{2pΓq is the space of traces of functions
of H1pΩq, and H´1{2pΓq denotes its dual. On the other hand, given any generic scalar functional space
S, we let S and S be the corresponding vectorial and tensorial counterparts, whereas } ¨ }, with no
subscripts, will be employed for the norm of any element or operator whenever there is no confusion
about the space to which they belong. Also, | ¨ | denotes the Euclidean norm in both Rn and Rnˆn,
and as usual, I stands for the identity tensor in Rnˆn. In turn, for any vector fields v “ pviqi“1,n and
w “ pwiqi“1,n, we set the gradient, divergence, and tensor product operators, as

∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,n

, divpvq :“
n
ÿ

j“1

Bvj
Bxj

, and v b w :“ pviwjqi,j“1,n ,

whereas for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the deviatoric tensor, and
the tensor inner product, respectively, as

τ t :“ pτjiqi,j“1,n, trpτ q :“
n
ÿ

i“1

τii, τ d :“ τ ´
1

n
trpτ q I, and τ : ζ :“

n
ÿ

i,j“1

τij ζij .

Furthermore, for each t P r1,`8q we introduce the Banach spaces

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, and

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

,

equipped with the natural norms

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , and

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq .

Additionally, we recall that, proceeding as in [23, eq. (1.43), Section 1.3.4] (see also [9, Section 4.1]

and [18, Section 3.1]), one can prove that for t P

#

p1,`8s in R2 ,

r65 ,`8s in R3 ,
there holds

⟨τ ¨ ν, v⟩ “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1pΩq , (1.1)

and

⟨τν,v⟩ “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1pΩq , (1.2)

where ⟨¨, ¨⟩ denotes in (1.1) (resp. (1.2)) the duality pairing between H1{2pΓq (resp. H1{2pΓq) and
H´1{2pΓq (resp. H1{2pΓq).
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2 The model problem

In what follows we consider the steady convective Brinkman–Forchheimer equations introduced in [31]
(see also [35, 11]) coupled with double-diffusion equations, similarly as done in [13]. More precisely,
we focus on finding a velocity field u, a pressure field p, a temperature field ϕ1, and a concentration
field ϕ2, the latter two defining a vector unknown ϕ :“ pϕ1, ϕ2q, such that

´div
`

µ epuq
˘

` p∇uqu ` Du ` F |u|ρ´2 u ` ∇p “ fpϕq in Ω ,

divpuq “ 0 in Ω ,

´divpQ1∇ϕ1q ` R1 u ¨ ∇ϕ1 “ g1 in Ω ,

´divpQ2∇ϕ2q ` R2 u ¨ ∇ϕ2 “ g2 in Ω ,

u “ uD , ϕ1 “ ϕ1,D , and ϕ2 “ ϕ2,D on Γ ,

(2.1)

where µ is the Brinkman coefficient (or effective viscosity), which is assumed to be eventually variable,
and bounded, that is there exist constants µ0, µ1 ą 0, such that

µ0 ď µpxq ď µ1 @x P Ω . (2.2)

In addition, epuq :“ 1
2

`

∇u`p∇uqt
˘

is the symmetric part of ∇u, also named strain rate tensor, D ą 0
is the Darcy coefficient, F ą 0 is the Forchheimer coefficient, ρ is a given number in r3, 4s, and fpϕq is
an external force defined by

fpϕq :“ ´ pϕ1 ´ ϕ1,rqg `
1

ϱ
pϕ2 ´ ϕ2,rqg, (2.3)

where g represents the potential type gravitational acceleration, ϕ1,r and ϕ2,r are the reference tem-
perature and concentration of a solute, respectively, and ϱ is a parameter experimentally valued that
can be assumed to be ě 1 (see [30, Section 2] for details). The spaces to which ϕ1,r and ϕ2,r belong
will be specified later on. In turn, Q1 and Q2 denote the thermal and concentration diffusion tensors,
respectively, which are assumed to belong to L8pΩq, whereas R1 is the thermal Rayleigh number and
R2 is the solute Rayleigh number. In addition, Q1 and Q2 are assumed to be uniformly positive definite
tensors, which means that there exist positive constants C1 and C2, such that

v ¨ Qjpxqv ě Cj |v|2 @v P Rn, @x P Ω, j P t1, 2u , (2.4)

and g1 and g2 are given source terms in suitable spaces to be specified later on. Finally, uD P H1{2pΓq

and ϕi,D P H1{2pΓq, i P
␣

1, 2
(

, are given Dirichlet data.

Owing to the incompressibility of the fluid and the Dirichlet boundary condition for u, the datum
uD must satisfy the compatibility condition

ż

Γ
uD ¨ ν “ 0 . (2.5)

In addition, due to the pressure gradient in (2.1), and in order to guarantee uniqueness of this unknown,
p will be sought in the space

L2
0pΩq :“

!

q P L2pΩq :

ż

Ω
q “ 0

)

.

Now, in order to derive a fully mixed formulation for (2.1), thus yielding the Dirichlet boundary
conditions to become natural, we proceed similarly to [25] (see also [8] for related approaches), and
introduce as a further unknown the symmetric tensor σ defined by

σ :“ µ epuq ´ pu b uq ´ p I . (2.6)
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In this way, the first equation of (2.1) can be rewritten as

Du ` F |u|ρ´2 u ´ divpσq “ fpϕq in Ω , (2.7)

whereas applying the trace operator to σ and utilizing the incompressibility condition divpuq “ 0 in
Ω, we obtain

p “ ´
1

n
tr
`

σ ` pu b uq
˘

. (2.8)

Moreover, applying the deviatoric operator to (2.6) and dividing by µ, we find that

1

µ
σd `

1

µ
pu b uqd “ epuq “ ∇u ´ γ , (2.9)

where the vorticity

γ :“
1

2

´

∇u ´
`

∇u
˘t
¯

(2.10)

is introduced as a further unknown.

Next, for the double-diffusion equations we consider for each j P
␣

1, 2
(

the temperature (or concen-
tration) gradient tj , and the corresponding pseudoheat (or pseudodiffusion) ϑj , as auxiliary unknowns,
which are defined, respectively, by

tj :“ ∇ϕj , ϑj :“ Qj tj ´
1

2
Rj ϕj u, @ j P t1, 2u, in Ω , (2.11)

whence the third and fourth equations of (2.1) can be rewritten as

1

2
Rj u ¨ tj ´ divpϑjq “ gj in Ω , j P

␣

1, 2
(

. (2.12)

Consequently, gathering (2.7), (2.9), (2.11), and (2.12), and incorporating the Dirichlet boundary
conditions, we find that (2.1) can be rewritten, equivalently, as follows: Find pσ,u,γq and pϕj , tj ,ϑjq,
j P t1, 2u, in suitable spaces to be indicated below, such that

1

µ
σd `

1

µ
pu b uqd ` γ “ ∇u in Ω ,

Du ` F |u|ρ´2u ´ divpσq “ fpϕq in Ω ,

tj “ ∇ϕj in Ω , j P
␣

1, 2
(

,

Qj tj ´
1

2
Rj ϕj u “ ϑj in Ω , j P

␣

1, 2
(

,

1

2
Rj u ¨ tj ´ divpϑjq “ gj in Ω , j P

␣

1, 2
(

,

u “ uD , ϕ1 “ ϕ1,D , and ϕ2 “ ϕ2,D on Γ ,
ż

Ω
tr
`

σ ` pu b uq
˘

“ 0 in Ω .

(2.13)

We stress here that, as suggested by (2.8), p is eliminated from the present formulation and computed
afterwards in terms of σ and u by using that identity. This fact justifies the last equation in (2.13),
which aims to ensure that the resulting p does belong to L2

0pΩq. Notice also that further variables of
interest, such as the velocity gradient ∇u, and the shear stress tensor rσ :“ µ epuq ´ p I, can be easily
computed, respectively, as follows

∇u “
1

µ
σd `

1

µ
pu b uqd ` γ and rσ “ σ ` pu b uq . (2.14)
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3 The variational formulation

In this section we follow [8] and [18] (see also [12], [13, 25, 26, 27]) to derive a mixed formulation for
(2.13) within a Banach spaces framework. We begin by testing the first equation of (2.13) against a
tensor τ associated with the unknown σ, so that, using the identity σd : τ “ σd : τ d, we formally get

ż

Ω

1

µ
σd : τ d `

ż

Ω

1

µ
pu b uqd : τ `

ż

Ω
γ : τ “

ż

Ω
∇u : τ . (3.1)

We observe that the first and third expressions on the left hand side of (3.1) make sense for σ, τ , γ P

L2pΩq. In turn, seeking originally u P H1pΩq, which is in line with the condition that uD P H1{2pΓq,
and assuming that τ is taken in Hpdivt; Ωq, with t fitting the ranges for the validity of (1.1) and (1.2),
we can apply the latter, and employ the Dirichlet boundary condition on u, to obtain

ż

Ω
∇u : τ “ ´

ż

Ω
u ¨ divpτ q ` xτ ν,uDyΓ . (3.2)

In this way, replacing (3.2) back into (3.1), we arrive at
ż

Ω

1

µ
σd : τ d `

ż

Ω
u ¨ divpτ q `

ż

Ω

1

µ
pu b uqd : τ `

ż

Ω
γ : τ “ xτ ν,uDyΓ (3.3)

for all τ P Hpdivt; Ωq. Now, knowing that divpτ q P LtpΩq, and using Hölder’s inequality, we con-
clude from the second term in (3.3) that it suffices to look for u in Lt

1

pΩq instead of H1pΩq, where
t, t1 P p1,`8q are conjugate to each other. In addition, employing the Cauchy–Schwarz and Hölder
inequalities, we readily deduce that the convective nonlinear term is well defined if u P L4pΩq, which
yields to choose t1 “ 4, and thus t “ 4{3, whence the test space for τ becomes Hpdiv4{3; Ωq.

On the other hand, linking the spaces to which the unknown σ and its test functions τ belong,
we impose to look for σ in Hpdiv4{3; Ωq as well. Hence, testing the second equation of (2.13) against
v P L4pΩq, formally yields

ż

Ω
v ¨ divpσq ´ D

ż

Ω
u ¨ v ´ F

ż

Ω
|u|ρ´2u ¨ v “ ´

ż

Ω
fpϕq ¨ v (3.4)

for all v P L4pΩq, from which the first term is bounded thanks to the fact that divpσq P L4{3pΩq. Next,
noting that for ρ P r3, 4s there holds 2pρ´2q ď 4, we consider the continuous injection i2pρ´2q : L

4pΩq Ñ

L2pρ´2qpΩq and observe that }i2pρ´2q} ď |Ω|p4´ρq{4pρ´2q. In this way, applying the Cauchy–Schwarz and
Hölder inequalities to the third term on the left-hand side of (3.4), we find that

ˇ

ˇ

ˇ

ˇ

ż

Ω
|w|ρ´2u ¨ v

ˇ

ˇ

ˇ

ˇ

ď }w}
ρ´2
0,2pρ´2q;Ω }u}0,4;Ω }v}0,4;Ω ď |Ω|p4´ρq{4 }w}

ρ´2
0,4;Ω }u}0,4;Ω }v}0,4;Ω ,

which proves that the aforementioned term is well-defined for u, w, v P L4pΩq. In turn, being L4pΩq

certainly contained in L2pΩq guarantees that the second term in (3.4) is bounded as well, whereas the
right hand side of (3.4) becomes well defined if fpϕq (cf. (2.3)) belongs to L4{3pΩq, which is assumed
from now on. We will refer again to this issue later on.

Finally, the symmetry of σ (cf. (2.6)) is imposed weakly as
ż

Ω
δ : σ “ 0 @ δ P L2

skewpΩq , (3.5)

where
L2
skewpΩq :“

!

δ P L2pΩq : δt “ ´δ
)

.
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According to the previous analysis, the weak formulation of the convective Brinkman–Forchheimer
problem (2.13) reduces at first instance to: Find pσ,γ,uq P Hpdiv4{3; ΩqˆL2

skewpΩqˆL4pΩq such that
(3.3), (3.4) and (3.5) hold for all pτ , δ,vq P Hpdiv4{3; Ωq ˆL2

skewpΩq ˆL4pΩq. However, similarly as in
[8] (see also [12], [18]), we consider the decomposition

Hpdiv4{3; Ωq “ H0pdiv4{3; Ωq ‘ R I , (3.6)

where

H0pdiv4{3; Ωq :“
!

τ P Hpdiv4{3; Ωq :

ż

Ω
trpτ q “ 0

)

,

which means that each τ P Hpdiv4{3; Ωq can be uniquely decomposed as

τ “ τ 0 ` d0 I with τ 0 P H0pdiv4{3; Ωq and d0 :“
1

n |Ω|

ż

Ω
trpτ q P R .

In particular, using the last equation of (2.13), we obtain

σ “ σ0 ` c0 I with σ0 P H0pdiv4{3; Ωq and c0 :“ ´
1

n |Ω|

ż

Ω
trpu b uq , (3.7)

which says that c0 is know explicitly in terms of u. Therefore, in order to fully determine σ, it only
remains to find its H0pdiv4{3; Ωq-component σ0, which is renamed from now on simply as σ.

Next, using the compatibility condition (2.5), we observe that both sides of (3.3) vanish when
τ “ I, and hence testing against τ P Hpdiv4{3; Ωq is equivalent to doing it against τ P H0pdiv4{3; Ωq.
Therefore, bearing in mind the foregoing discussion, denoting

H :“ H0pdiv4{3; Ωq , Q :“ L4pΩq ˆ L2
skewpΩq ,

and setting
u⃗ “ pu,γq , v⃗ “ pv, δq , z⃗ “ pz,χq P Q ,

we arrive at the following mixed formulation for the convective Brinkman–Forchheimer equations:
Find pσ, u⃗q P H ˆ Q such that

apσ, τ q ` bpτ , u⃗q ` bpu;u, τ q “ Gpτ q @ τ P H ,

bpσ, v⃗q ´ cpu; u⃗, v⃗q “ Fϕpv⃗q @ v⃗ P Q ,
(3.8)

where the bilinear forms a : H ˆ H Ñ R and b : H ˆ Q Ñ R are defined as

apζ, τ q :“

ż

Ω

1

µ
ζd : τ d @ pζ, τ q P H ˆ H , (3.9)

and

bpτ , v⃗q :“

ż

Ω
v ¨ divpτ q `

ż

Ω
δ : τ @ pτ , v⃗q P H ˆ Q , (3.10)

whereas, for each w P L4pΩq, the bilinear forms bpw; ¨, ¨q : L4pΩq ˆ H0pdiv4{3; Ωq Ñ R and
cpw; ¨, ¨q : Q ˆ Q Ñ R are given by

bpw;v, τ q :“

ż

Ω

1

µ
pw b vq : τ @ pv, τ q P L4pΩq ˆ H0pdiv4{3; Ωq , (3.11)

and

cpw; u⃗, v⃗q :“ D

ż

Ω
u ¨ v ` F

ż

Ω
|w|ρ´2 u ¨ v @ pu⃗, v⃗q P Q ˆ Q . (3.12)
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Finally, the linear and bounded functionals G : H Ñ R and Fϕ : Q Ñ R reduce to

Gpτ q :“ ⟨τ ν,uD⟩ @ τ P H and Fϕpv⃗q :“

ż

Ω
fpϕq ¨ v @ v⃗ P Q . (3.13)

On the other hand, for the double diffusion equations, which are described by the third up to the
fifth rows of (2.13), we proceed similarly as for the convective Brinkman-Forchheimer equations, and
look originally for ϕj P H1pΩq, which, besides yielding tj P L2pΩq, is in line as well with the fact
that the data ϕi,D P H1{2pΓq, i P

␣

1, 2
(

. Then, testing the aforementioned third equation against
ηj P Hpdivt; Ωq, with t as before, applying now (1.1), and using the Dirichlet boundary condition on
ϕj , we get

ż

Ω
tj ¨ ηj `

ż

Ω
ϕj divpηjq “

〈
ηj ¨ ν, ϕj,D

〉
j P t1, 2u . (3.14)

In this way, knowing that divpηjq P LtpΩq, we realize from the second term of (3.14) and Hölder’s

inequality that it suffices to look for ϕj in Lt
1

pΩq. Needless to say, it is clear that the first term makes
sense since both tj and ηj belong to L2pΩq. Next, letting L2pΩq be as well the space of test functions
associated with the unknown tj , the corresponding testing of the fourth row of (2.13) formally gives

ż

Ω
Qj tj ¨ rj ´

1

2
Rj

ż

Ω
ϕj u ¨ rj ´

ż

Ω
ϑj ¨ rj “ 0 (3.15)

for all rj P L2pΩq, so that the third term of (3.15) is well-defined if ϑj P L2pΩq. In turn, regarding
the second term, and bearing in mind that from the analysis of the Brinkman–Forchheimer equations
we know that u must be sought in L4pΩq, direct applications of the Cauchy–Schwarz and Hölder
inequalities imply

ˇ

ˇ

ˇ

ż

Ω
ϕj u ¨ rj

ˇ

ˇ

ˇ
ď }ϕj}0,4;Ω }u}0,4;Ω }rj}0,Ω , (3.16)

from which it is natural to fix the seeking space for ϕj as L
4pΩq, that is t1 “ 4, which yields t “ 4{3.

In this way, letting Hpdiv4{3; Ωq and L4pΩq be as well the spaces where ϑj is sought and where the
test functions associated with ϕj belong to, respectively, we can test the fifth row of (2.13) against
ψj P L4pΩq to obtain

1

2
Rj

ż

Ω
ψj pu ¨ tjq ´

ż

Ω
ψj divpϑjq “

ż

Ω
gj ψj . (3.17)

Note that the first and second terms of (3.17) are well-defined thanks to the analogue estimate (3.16)
and the fact that divpϑjq P L4{3pΩq, whereas the expression on the right-hand side makes sense if
gj P L4{3pΩq, which we assume from now on. Therefore, introducing the spaces

rH :“ L4pΩq ˆ L2pΩq and rQ :“ Hpdiv4{3; Ωq ,

setting the variables

ϕ⃗j “ pϕj , tjq , ψ⃗j “ pψj , rjq , ξ⃗j “ pξj , sjq P rH ,

and grouping conveniently (3.14), (3.15), and (3.17), we arrive at the weak formulation: Find pϕ⃗j ,ϑjq

P rH ˆ rQ, j P t1, 2u, such that

rajpϕ⃗j , ψ⃗jq ` rcjpu; ϕ⃗j , ψ⃗jq ` rbpψ⃗j ,ϑjq “ rFjpψ⃗jq @ ψ⃗j P rH ,

rbpϕ⃗j ,ηjq “ rGjpηjq @ηj P rQ ,
(3.18)
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where, for j P t1, 2u, the bilinear forms raj : rH ˆ rH Ñ R, rb : rH ˆ rQ Ñ R, and the linear and bounded

functionals rFj : rH Ñ R and rGj : rQ Ñ R are defined, respectively, as:

rajpξ⃗j , ψ⃗jq :“

ż

Ω
Qj sj ¨ rj @ pξ⃗j , ψ⃗jq P rH ˆ rH , (3.19)

rbpξ⃗j ,ηjq :“ ´

ż

Ω
sj ¨ ηj ´

ż

Ω
ξj divpηjq @ pξ⃗j ,ηjq P rH ˆ rQ , (3.20)

rFjpξ⃗jq :“

ż

Ω
gj ξj @ ξ⃗j P rH , and (3.21)

rGjpηjq :“ ´
〈
ηj ¨ ν, ϕj,D

〉
@ηj P rQ , (3.22)

whereas, given w P L4pΩq, the bilinear form rcjpw; ¨, ¨q : rH ˆ rH Ñ R is given by

rcjpw; ξ⃗j , ψ⃗jq :“
1

2
Rj

!

ż

Ω
ψj pw ¨ sjq ´

ż

Ω
ξj pw ¨ rjq

)

@ ξ⃗j , ψ⃗j P rH . (3.23)

Summarizing, the fully mixed formulation of the Brinkman–Forchheimer equations coupled with
double diffusion equations (cf. (2.13)) reads: Find pσ, u⃗q P H ˆ Q and pϕ⃗j ,ϑjq P rH ˆ rQ, j P t1, 2u,
such that

apσ, τ q ` bpτ , u⃗q ` bpu;u, τ q “ Gpτ q @ τ P H ,

bpσ, v⃗q ´ cpu; u⃗, v⃗q “ Fϕpv⃗q @ v⃗ P Q ,

rajpϕ⃗j , ψ⃗jq ` rcjpu; ϕ⃗j , ψ⃗jq ` rbpψ⃗j ,ϑjq “ rFjpψ⃗jq @ ψ⃗j P rH ,

rbpϕ⃗j ,ηjq “ rGjpηjq @ηj P rQ .

(3.24)

4 Analysis of the coupled problem

In this section we combine classical and new results on the solvability of variational formulations in
Banach spaces to establish the well-posedness of (3.24).

4.1 Preliminaries

The stability properties of the operators and functionals involved in (3.24) are provided first. In fact,
direct applications of the Cauchy-Schwarz and Hölder inequalities, along with the upper bounds of
µ (cf. (2.2)), the continuity of the normal trace operator in Hpdiv4{3; Ωq, and the continuity of the
injection i4 : H1pΩq Ñ L4pΩq and its vectorial version i4, yield the existence of positive constants,
denoted and given as:

}a} :“
1

µ0
, }b} :“ 1 , }raj} :“ }Qj}0,8;Ω , }rb} :“ 2 ,

}G} :“ }uD}1{2,Γ }i4} , }Fφ} :“ }g}0,Ω

!

}φ}0,4;Ω ` }ϕr}0,4;Ω

)

,

} rFj} :“ }gj}0,4{3;Ω , and } rGj} :“ }ϕj,D}1{2,Γ }i4} ,

(4.1)
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where j P t1, 2u and φ “ pφ1, φ2q P L4pΩq ˆ L4pΩq, such that there hold

|apζ, τ q| ď }a} }ζ}H }τ }H @ ζ , τ P H ,

|bpτ , v⃗q| ď }b} }τ }H }v⃗}Q @ pτ , v⃗q P H ˆ Q ,

|rajpϕ⃗j , ψ⃗jq| ď }raj} }ϕ⃗j}
rH

}ψ⃗j}
rH

@ ϕ⃗j , ψ⃗j P rH ,

|rbpψ⃗j ,ηjq| ď }rb} }ψ⃗j}
rH

}ηj} rQ
@ pψ⃗j ,ηjq P rH ˆ rQ ,

|Gpτ q| ď }G} }τ }H @ τ P H ,

|Fφpv⃗q| ď }Fφ} }v⃗}Q @ v⃗ P Q ,

| rFjpψ⃗jq| ď } rFj} }ψ⃗j}
rH

@ ψ⃗j P rH , and

| rGjpηjq| ď } rGj} }ηj} rQ
@ηj P rQ .

(4.2)

In turn, given w P L4pΩq, we apply the Cauchy-Schwarz and Hölder inequalities, similarly as we
did in (4.1) - (4.2), and previously in (3.16), to derive the following bounds for b (cf. (3.11)), c (cf.
(3.12)), and rcj (cf. (3.23))

|bpw;v, τ q| ď
1

µ0
}w}0,4;Ω }v}0,4;Ω }τ }div4{3;Ω @ pv, τ q P L4pΩq ˆ H0pdiv4{3; Ωq ,

|cpw; v⃗, z⃗q| ď |Ω|1{2
`

D ` F }w}
ρ´2
0,4;Ω

˘

}v⃗}Q }⃗z}Q @ v⃗ , z⃗ P Q , and

|rcjpw; ϕ⃗j , ψ⃗jq| ď Rj }w}0,4;Ω }ϕ⃗j}
rH

}ψ⃗j}
rH

@ ϕ⃗j , ψ⃗j P rH .

(4.3)

Moreover, noting from the definition of rcj (cf. (3.23)) that rcjp¨; ϕ⃗j , ψ⃗jq is linear, we readily deduce
from the third row of (4.3) that

|rcjpw; ϕ⃗j , ψ⃗jq ´ rcjpz; ϕ⃗j , ψ⃗jq| ď Rj }w ´ z}0,4;Ω }ϕ⃗j}
rH

}ψ⃗j}
rH

(4.4)

for all w , z P L4pΩq and for all ϕ⃗j , ψ⃗j P rH, and it is also clear from (3.23) that there holds

rcjpw; ψ⃗j , ψ⃗jq “ 0 (4.5)

for all w P L4pΩq and for all ψ⃗j P rH.

4.2 A fixed point strategy

In what follows, we proceed similarly to [13] (see also [12]) and adopt a fixed-point strategy to address
the well–posedness of (3.24). We begin by letting S : L4pΩq ˆ pL4pΩq ˆ L4pΩqq Ñ L4pΩq be the
operator defined as

Spw,φq :“ u @ pw,φq P L4pΩq ˆ pL4pΩq ˆ L4pΩqq , (4.6)

where pσ, u⃗q :“ pσ, pu,γqq P H ˆ Q is the unique solution (to be confirmed below) of the problem
arising from the first two rows of (3.24) after replacing bpu; ¨, ¨q, cpu; ¨, ¨q, and Fϕ by bpw; ¨, ¨q, cpw; ¨, ¨q,
and Fφ, respectively, that is

apσ, τ q ` bpτ , u⃗q ` bpw;u, τ q “ Gpτ q @ τ P H ,

bpσ, v⃗q ´ cpw; u⃗, v⃗q “ Fφpv⃗q @ v⃗ P Q .
(4.7)
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Equivalently, introducing the bilinear form Aw : pH ˆ Qq ˆ pH ˆ Qq Ñ R given by

Awppσ, u⃗q, pτ , v⃗qq :“ apσ, τ q ` bpτ , u⃗q ` bpσ, v⃗q ´ cpw; u⃗, v⃗q (4.8)

for all pσ, u⃗q, pτ , v⃗q P H ˆ Q, the uncoupled problem (4.7) can be rewritten as

Awppσ, u⃗q, pτ , v⃗qq ` bpw;u, τ q “ Gpτ q ` Fφpv⃗q @ pτ , v⃗q P H ˆ Q . (4.9)

In turn, for each j P
␣

1, 2
(

we define the operator rSj : L
4pΩq Ñ L4pΩq given by

rSjpwq :“ ϕj @w P L4pΩq ,

where pϕ⃗j ,ϑjq :“ ppϕj , tjq,ϑjq P rHˆ rQ is the unique solution (to be confirmed below) of the problem

arising from the third and fourth rows of (3.24) after replacing rcjpu; ϕ⃗j , ψ⃗jq by rcjpw; ϕ⃗j , ψ⃗jq, that is

rajpϕ⃗j , ψ⃗jq ` rcjpw; ϕ⃗j , ψ⃗jq ` rbpψ⃗j ,ϑjq “ rFjpψ⃗jq @ ψ⃗j P rH ,

rbpϕ⃗j ,ηjq “ rGjpηjq @ηj P rQ .
(4.10)

Similarly as for (4.9), for each j P t1, 2u we define the bilinear form raj,w : rH ˆ rH Ñ R as

raj,wpϕ⃗j , ψ⃗jq :“ rajpϕ⃗j , ψ⃗jq ` rcjpw; ϕ⃗j , ψ⃗jq @ ϕ⃗j , ψ⃗j P rH , (4.11)

which allows us to restate (4.10) as

raj,wpϕ⃗j , ψ⃗jq ` rbpψ⃗j ,ϑjq “ rFjpψ⃗jq @ ψ⃗j P rH ,

rbpϕ⃗j ,ηjq “ rGjpηjq @ηj P rQ ,
(4.12)

Hence, defining rS : L4pΩq Ñ pL4pΩq ˆ L4pΩqq as

rSpwq :“
`

rS1pwq, rS2pwq
˘

@w P L4pΩq , (4.13)

and letting T : L4pΩq Ñ L4pΩq be the operator defined by

Tpwq :“ S
`

w, rSpwq
˘

@w P L4pΩq , (4.14)

we see that solving (3.24) is equivalent to seeking a fixed-point of T, that is u P L4pΩq such that

Tpuq “ u . (4.15)

4.3 Well posedness of the uncoupled problems

In this section we utilize the Banach–Nečas–Babuška Theorem (cf. [21, Theorem 2.6]), along with
recent solvability results for perturbed saddle-point problems in Banach spaces (cf. [19], [20]), and the
Banach version of the Babuška-Brezzi theory (cf. [21, Theorem 2.34]), to show that the uncoupled
problems (4.7) (or (4.9)) and (4.12) are well–posed, which means, equivalently, that the operators S
(cf. (4.6)) and rS (cf. (4.13)) are well–defined. We begin by remarking that, being LppΩq reflexive for
each p P p1,`8q, all the spaces involved in the formulations (4.9) and (4.12), namely L2pΩq, L4pΩq,
L2
skewpΩq, Hpdiv4{3; Ωq, and H0pdiv4{3; Ωq, are easily shown to be reflexive as well.

In what follows we address the solvability of (4.7), for which we first show that the bilinear forms a
(cf. (3.9)), b (cf. (3.10)), and cpw; ¨, ¨q (cf. (3.12)), for each w P L4pΩq, which define the bilinear form
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Aw (cf. (4.8)), satisfy the hypotheses of [19, Theorem 3.4]. In fact, it is clear from their respective
definitions that a and cpw; ¨, ¨q are symmetric and positive semi-definite, which confirms the hypothesis
i) of [19, Theorem 3.4]. Now, letting V be the null space of the linear and bounded operator induced
by b, we readily see (cf. (3.10)) that

V “

!

ζ P H : ζ “ ζt and divpζq “ 0
)

. (4.16)

In addition, it is already well-known that a slight modification of [23, Lemma 2.3] (see also [7, Proposi-
tion IV.3.1], [24, Lemma 3.3], and [8, Lemma 3.1]) allows to prove the existence of a positive constant
c1, depending on Ω and the norm of the continuous injection i4 : H

1pΩq Ñ L4pΩq, such that

c1 }ζ}0,Ω ď }ζd}0,Ω ` }divpζq}0,4{3;Ω @ ζ P H0pdiv4{3; Ωq . (4.17)

Thus, thanks to the boundedness of µ (cf. (2.2)) and the inequality (4.17), we deduce that

apζ, ζq ě
1

µ1
}ζd}20,Ω ě α }ζ}2H @ ζ P V , (4.18)

with α :“
c21
µ1
, which easily implies the verification of the continuous inf-sup condition for a required

by the hypothesis ii) of [19, Theorem 3.4]. On the other hand, letting cP be the positive constant
yielding Poincaré’s inequality, that is such that }v}21,Ω ď cP |v|21,Ω @v P H1

0pΩq, and recalling that

i4 is the continuous injection of H1pΩq into L4pΩq, it can be proved (cf. [27, Lemma 3.5]) that there
exists a positive constant β, depending only on cP and }i4}, such that

sup
τPV
τ‰0

bpτ , v⃗q

}τ }H
ě β }v⃗}Q @ v⃗ P Q ,

which accomplishes the hypothesis iii) of [19, Theorem 3.4]. Furthermore, letting δ ą 0 be an arbitrary
radius, we introduce the ball

Wpδq :“
!

w P L4pΩq : }w}0,4;Ω ď δ
)

, (4.19)

so that for each w P Wpδq the boundedness estimate for cpw; ¨, ¨q becomes (cf. (4.3))

|cpw; v⃗, z⃗q| ď |Ω|1{2
`

D ` F δρ´2
˘

}v⃗}Q }⃗z}Q @ v⃗ , z⃗ P Q . (4.20)

Hence, bearing also in mind the expression for }a} (cf. (4.1)), a straightforward application of [19,
Theorem 3.4] ensures the existence of a positive constant αA, depending only on µ0, |Ω|, D, F, δ, ρ, α,
and β, such that for each w P Wpδq there holds

sup
pζ ,⃗zqPHˆQ

pζ ,⃗zq‰0

Awppτ , v⃗q, pζ, z⃗qq

}pζ, z⃗q}HˆQ
ě αA }pτ , v⃗q}HˆQ @ pτ , v⃗q P H ˆ Q . (4.21)

Then, combining (4.21) with the boundedness estimate for bpw; ¨, ¨q (cf. (4.3)), we arrive at

sup
pζ ,⃗zqPHˆQ

pζ ,⃗zq‰0

Awppτ , v⃗q, pζ, z⃗qq ` bpw;v, ζq

}pζ, z⃗q}HˆQ
ě

!

αA ´
1

µ0
}w}0,4;Ω

)

}pτ , v⃗q}HˆQ
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for all pτ , v⃗q P H ˆ Q, from which, under the additional assumption that }w}0,4;Ω ď
µ0 αA

2 , we
conclude that

sup
pζ ,⃗zqPHˆQ

pζ ,⃗zq‰0

Awppτ , v⃗q, pζ, z⃗qq ` bpw;v, ζq

}pζ, z⃗q}HˆQ
ě

αA

2
}pτ , v⃗q}HˆQ (4.22)

for all pτ , v⃗q P H ˆ Q. Similarly, noting that Aw is symmetric (since a and c are), using again the
boundedness estimate for bpw; ¨, ¨q (cf. (4.3)), and under the same assumption on w, we obtain

sup
pτ ,v⃗qPHˆQ

pτ ,v⃗q‰0

Awppτ , v⃗q, pζ, z⃗qq ` bpw;v, ζq

}pτ , v⃗q}HˆQ
ě

αA

2
}pζ, z⃗q}HˆQ (4.23)

for all pζ, z⃗q P H ˆ Q.

We are now in position of establishing next the well–posedness of (4.9), thanks to which the operator
S is well-defined.

Theorem 4.1 Given δ ą 0, let r P p0, r0s, with

r0 :“ min
!

δ,
µ0 αA

2

)

. (4.24)

Then, for each pw,φq P L4pΩqˆ
`

L4pΩqˆL4pΩq
˘

such that }w}0,4;Ω ď r, (4.9) (equivalently, (4.7)) has
a unique solution pσ, u⃗q :“

`

σ, pu,γq
˘

P H ˆ Q, and hence one can define Spw,φq :“ u. Moreover,
there exists a positive constant CS, depending only on }i4}, }g}0,Ω, and αA, such that

}Spw,φq}0,4;Ω “ }u}0,4;Ω ď }pσ, u⃗q}HˆQ ď CS

!

}uD}1{2,Γ ` }ϕr}0,4;Ω ` }φ}0,4;Ω

)

. (4.25)

Proof. It is clear from (4.22) and (4.23) that the bilinear form Aw `bpw; ¨, ¨q satisfies the assumptions
of the Banach–Nečas–Babuška Theorem (cf. [21, Theorem 2.6]), and hence, knowing from (4.1) and
(4.2) that G P H1 and Fφ P Q1, the proof reduces to a straightforward application of that theorem. In
particular, the a priori estimate (4.25) follows from [21, Theorem 2.6, eq. (2.5)] and the upper bounds
for }G}H1 and }Fφ}Q1 (cf. (4.1)). ˝

On the other hand, in order to derive the well–posedness of (4.12), equivalently (4.10), we aim to
prove that the bilinear forms raj,w (cf. (4.11)) and rb (cf. (3.20)) satisfy the hypotheses of [21, Theorem

2.34]. In this way, letting rV be the null space of the linear and bounded operator induced by the
bilinear form rb, we first observe that (cf. [13, eq. (3.35)])

rV “

!

ψ⃗ :“ pψ, rq P rH : ψ P H1
0pΩq and r “ ∇ψ

)

.

Next, according to the definition of raj,w (cf. (4.11)), with a given w P L4pΩq, and employing (4.5)

and (2.4), we obtain, similarly as in the proof of [13, Lemma 3.2], that for each ψ⃗j :“ pψj , rjq P rV
there holds

raj,wpψ⃗j , ψ⃗jq “ rajpψ⃗j , ψ⃗jq “

ż

Ω
Qj |rj |

2 ě rαj }ψ⃗j}
2
rH
, (4.26)

where rαj is a positive constant depending only on Cj (cf. (2.4)), }i4}, and cP . Then, it is easily seen
that (4.26) implies the hypotheses on raj,w required in [21, Theorem 2.34, eq. (2.28)]. Furthermore, we

recall from [18, Lemma 3.3] that rb satisfies the continuous inf-sup condition required in [21, Theorem
2.34, eq. (2.29)], that is, there exists a positive constant rβ, depending only on |Ω|, such that

sup
ψ⃗ P rH

ψ⃗‰0

rbpψ⃗,ηq

}ψ⃗}
rH

ě rβ }η}
rQ

@η P rQ .
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Consequently, the well-posedness of (4.12), and thus the well-definedness of the operator rS (cf.
(4.13)), is stated as follows.

Theorem 4.2 For each w P L4pΩq, and for each j P t1, 2u, there exists a unique pϕ⃗j ,ϑjq :“
`

pϕj , tjq,ϑj
˘

P rHˆ rQ solution to (4.12) (equivalently, (4.10)), and hence one can define rSjpwq :“ ϕj.

Moreover, there exists a positive constant C
rS
, depending only on rαj, rβ, }Qj}0,8;Ω, }i4}, and Rj,

j P
␣

1, 2
(

, such that

}rSpwq}0,4;Ω :“ }
`

rS1pwq, rS2pwq
˘

}0,4;Ω

ď C
rS

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

.
(4.27)

Proof. Bearing in mind the previous discussion on raj,w and rb, for each w P L4pΩq and for each

j P t1, 2u, and recalling from (4.1) and (4.2) that rFj P rH1 and rGj P rQ
1

, the proof follows from a direct
application of [21, Theorem 2.34]. In this way, the corresponding a priori estimate (cf. [21, Theorem
2.34, eq. (2.30)]) yields

}rSjpwq}0,4;Ω “ }ϕj}0,4;Ω ď }ϕ⃗j}
rH

ď
1

rαj
} rFj} `

1

rβ

ˆ

1 `
}raj,w}

rαj

˙

} rGj} ,

so that, noting from (4.1) and (4.3) that }raj,w} ď }Qj}0,8;Ω ` Rj }w}0,4;Ω, and employing the expres-

sions for } rFj} and } rGj} provided in (4.1), the foregoing estimate becomes

}rSjpwq}0,4;Ω ď }ϕ⃗j}
rH

ď rCj

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

, (4.28)

where rCj is a positive constant depending on rαj , rβ, }Qj}0,8;Ω, }i4}, and Rj . Finally, summing up in

(4.28) over j P
␣

1, 2
(

, we arrive at (4.27) with C
rS

“ rC1 ` rC2. ˝

For sake of completeness, we provide next the upper bound for the component ϑj of the solution of
(4.12). In fact, according now to the second inequality in [21, Theorem 2.34, eq. (2.30)], we find that

}ϑj}
rQ

ď
1

rβ

ˆ

1 `
}raj,w}

rαj

˙

} rFj} `
}raj,w}

rβ2

ˆ

1 `
}raj,w}

rαj

˙

} rGj} ,

which yields

}ϑj}
rQ

ď ĂMj

`

1 ` }w}0,4;Ω
˘

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

, (4.29)

with a positive constant ĂMj depending as well on rαj , rβ, }Qj}0,8;Ω, }i4}, and Rj .

4.4 Solvability analysis of the fixed–point equation

Having proved the well–posedness of the uncoupled problems (4.7) and (4.10), in particular the former
under the assumption on w specified in Theorem 4.1, thus ensuring that the operators S (cf. (4.6)),
rS (cf. (4.13)), and hence T (cf. (4.14)), are well–defined, our next goal is to establish the existence
of a unique fixed–point of T. For this purpose, in what follows we aim to verify the hypotheses of
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the Banach theorem, starting by providing a suitable condition guaranteeing that T maps a ball into
itself. Indeed, given r P p0, r0s, with r0 as in (4.24), we let, as in (4.19),

Wprq :“
!

w P L4pΩq : }w}0,4;Ω ď r
)

, (4.30)

and observe, thanks to the a priori estimates (4.25) and (4.27), that for each w P Wprq there holds

}Tpwq}0,4;Ω “ }S
`

w, rSpwq
˘

}0,4;Ω ď CS

!

}uD}1{2,Γ ` }ϕr}0,4;Ω ` }rSpwq}0,4;Ω

)

ď CT

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

,
(4.31)

where CT :“ CS max
␣

1, C
rS

(

. Then, we have the following result.

Lemma 4.3 Given r P p0, r0s, with r0 as in (4.24), assume that the data satisfy

CT

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

ď r . (4.32)

Then, there holds T
`

Wprq
˘

Ď Wprq.

Proof. It is a direct consequence of the estimate (4.31). ˝

Next, we aim to show that the operator T is Lipschitz continuous, for which, according to (4.14),
it suffices to prove suitable continuity properties for S and rS. In order to derive the corresponding
result for S, we need the technical estimate for c provided by the following lemma.

Lemma 4.4 For each ρ P r3, 4s there exists a positive constant Lc, depending only on F, |Ω|, and ρ,
such that

|cpw; u⃗, v⃗q ´ cpz; u⃗, v⃗q| ď Lc

!

}w}0,4;Ω ` }z}0,4;Ω

)ρ´3
}w ´ z}0,4;Ω }u}0,4;Ω }v}0,4;Ω (4.33)

for all w, z P L4pΩq, and for all u⃗, v⃗ P Q.

Proof. We begin by noticing from the definition of c (cf. (3.12)) that, given w, z P L4pΩq, and
u⃗ :“ pu,γq, v⃗ :“ pv, δq P Q, there holds

|cpw; u⃗, v⃗q ´ cpz; u⃗, v⃗q| ď F

ż

Ω

ˇ

ˇ|w|ρ´2 ´ |z|ρ´2
ˇ

ˇ |u ¨ v| . (4.34)

Next, defining rw :“
`

|w|,0
˘

, rz :“
`

|z|,0
˘

P Rn, with 0 P Rn´1, we observe that

ˇ

ˇ|w|ρ´2 ´ |z|ρ´2
ˇ

ˇ “
ˇ

ˇ|rw|ρ´3
rw ´ |rz|ρ´3

rz
ˇ

ˇ , (4.35)

and recall from [28, Lemma 5.3] that for each t ě 2 there exists a positive constant Ct such that

ˇ

ˇ|x|t´2 x ´ |y|t´2 y
ˇ

ˇ ď Ct
`

|x| ` |y|
˘t´2

|x ´ y| @x, y P Rn ,

so that applying the foregoing inequality with t “ ρ´ 1, and denoting Cpρq :“ Cρ´1, we deduce that

ˇ

ˇ|rw|ρ´3
rw ´ |rz|ρ´3

rz
ˇ

ˇ ď Cpρq
`

|rw| ` |rz|
˘ρ´3

|rw ´ rz| . (4.36)
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Thus, replacing (4.36) back into (4.35), and then the resulting estimate back into (4.34), returning to
the original variables, and using, in particular, that |rw ´ rz| “

ˇ

ˇ|w| ´ |z|
ˇ

ˇ ď |w ´ z|, we arrive at

|cpw; u⃗, v⃗q ´ cpz; u⃗, v⃗q| ď Cpρq F

ż

Ω

`

|w| ` |z|
˘ρ´3

|w ´ z| |u ¨ v| ,

from which, applying Cauchy-Schwarz’s inequality, we deduce that

|cpw; u⃗, v⃗q ´ cpz; u⃗, v⃗q| ď Cpρq F
›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω
}w ´ z}0,4;Ω }u}0,4;Ω }v}0,4;Ω . (4.37)

It remains to estimate the expression
›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω
. The case ρ “ 3 is straightforward since

›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω
becomes |Ω|1{4, which yields (4.33) with Lc :“ Cpρq F |Ω|1{4. In turn, when ρ “ 4,

we get by triangle inequality that
›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω
“ } |w| ` |z| }0,4;Ω ď }w}0,4;Ω ` }z}0,4;Ω,

which implies (4.33) with Lc :“ Cpρq F. Finally, if ρ P p3, 4q, we apply Hölder’s inequality with
r :“ 1

4´ρ P p1,`8q and its conjugate r1 :“ 1
ρ´3 , to obtain

›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω
ď |Ω|p4´ρq{4 } |w| ` |z| }

ρ´3
0,4;Ω ď |Ω|p4´ρq{4

´

}w}0,4;Ω ` }z}0,4;Ω

¯ρ´3
,

which, along with (4.37), gives (4.33) with Lc :“ Cpρq F |Ω|p4´ρq{4. Summarizing, (4.33) holds with
this latter value of Lc for all ρ P r3, 4s. ˝

The announced property for S is established next.

Lemma 4.5 Let r P p0, r0s, with r0 as in (4.24). Then, there exists a positive constant LS, depending
only on αA, }g}0,Ω, µ0, Lc, and r, such that

}Spw,φq ´ Spz, ξq}0,4;Ω ď LS

!

}φ ´ ξ}0,4;Ω ` }Spz, ξq}0,4;Ω }w ´ z}0,4;Ω

)

(4.38)

for all pw,φq, pz, ξq P Wprq ˆ
`

L4pΩq ˆ L4pΩq
˘

.

Proof. Let pw,φq, pz, ξq P Wprqˆ
`

L4pΩqˆL4pΩq
˘

such that Spw,φq “ u1 and Spz, ξq “ u2, where,
for each i P

␣

1, 2
(

, pσi, u⃗iq :“
`

σi, pui,γiq
˘

P H ˆ Q is the corresponding unique solution of (4.9)
(equivalently, (4.7)), that is

Aw

`

pσ1, u⃗1q, pτ , v⃗q
˘

` bpw;u1, τ q “ Fφpv⃗q ` Gpτ q @ pτ , v⃗q P H ˆ Q ,

Az

`

pσ2, u⃗2q, pτ , v⃗q
˘

` bpz;u2, τ q “ Fξpv⃗q ` Gpτ q @ pτ , v⃗q P H ˆ Q .
(4.39)

Then, applying (4.22) to pσ1, u⃗1q ´ pσ2, u⃗2q P H ˆ Q, we obtain

}Spw,φq ´ Spz, ξq}0,4;Ω “ }u1 ´ u2}0,4;Ω ď }pσ1, u⃗1q ´ pσ2, u⃗2q}HˆQ

ď
2

αA
sup

pτ ,v⃗qPHˆQ
pτ ,v⃗q‰0

Aw

`

pσ1, u⃗1q ´ pσ2, u⃗2q, pτ , v⃗q
˘

` bpw;u1 ´ u2, τ q

}pτ , v⃗q}HˆQ
.

(4.40)

Now, adding and subtracting Az

`

pσ2, u⃗2q, pτ , v⃗q
˘

, and using (4.39) and the fact that there holds
`

Az ´ Aw

˘`

pσ2, u⃗2q, pτ , v⃗q
˘

“ cpw; u⃗2, v⃗q ´ cpz; u⃗2, v⃗q, we get after some algebraic manipulations

Aw

`

pσ1, u⃗1q ´ pσ2, u⃗2q, pτ , v⃗q
˘

` bpw;u1 ´ u2, τ q

“
`

Fφ ´ Fξ

˘

pv⃗q ` bpz ´ w;u2, τ q ` cpw; u⃗2, v⃗q ´ cpz; u⃗2, v⃗q .
(4.41)
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Next, it readily follows from the definitions of the function f (cf. (2.3)) and the functional Fϕ (cf.
(3.13)) that

`

Fφ ´ Fξ

˘

pv⃗q ď }g}0,Ω }φ ´ ξ}0,4;Ω }v}0,4;Ω , (4.42)

whereas it is clear from the first row of (4.3) that

bpz ´ w;u2, τ q ď
1

µ0
}w ´ z}0,4;Ω }u2}0,4;Ω }τ }div4{3;Ω . (4.43)

In turn, applying Lemma 4.4, and using that both }w}0,4;Ω and }z}0,4;Ω are bounded by r, we find
that

cpw; u⃗2, v⃗q ´ cpz; u⃗2, v⃗q ď Lc

!

}w}0,4;Ω ` }z}0,4;Ω

)ρ´3
}w ´ z}0,4;Ω }u2}0,4;Ω }v}0,4;Ω

ď Lc p2rqρ´3 }w ´ z}0,4;Ω }u2}0,4;Ω }v}0,4;Ω .

(4.44)

Finally, replacing (4.41) back into (4.40), employing the upper bounds provided by (4.42), (4.43),
and (4.44), and recalling that u2 “ Spz, ξq, we arrive a the required inequality (4.38) with a positive
constant LS as indicated. ˝

The following lemma proves the Lipschitz continuity of the operator rS.

Lemma 4.6 Let r P p0, r0s, with r0 as in (4.24). Then, there exists a positive constant L
rS
, depending

only on rCj (cf. (4.28)), Rj, and rαj, j P
␣

1, 2
(

, such that

}rSpwq ´ rSpzq}0,4;Ω ď L
rS

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

}w ´ z}0,4;Ω (4.45)

for all w, z P Wprq.

Proof. We proceed similarly to the proof of [13, Lemma 3.11]. Indeed, given r P p0, r0s and w, z P

Wprq, we let rSpwq :“ pϕ1, ϕ2q P L4pΩq ˆ L4pΩq and rSpzq :“ pξ1, ξ2q P L4pΩq ˆ L4pΩq, where, for
each j P t1, 2u, pϕ⃗j ,ϑjq :“

`

pϕj , tjq,ϑj
˘

P rH ˆ rQ and pξ⃗j , ζjq :“
`

pξj , sjq, ζj
˘

P rH ˆ rQ are the
unique solutions of (4.10) (equivalently, (4.12)) with rcjpw; ¨, ¨q and rcjpz; ¨, ¨q (equivalently, with raj,w
and raj,z), respectively. It follows from the subtraction of the corresponding second equations of (4.10)

that ϕ⃗j ´ ξ⃗j P rV. In addition, testing the first equations of (4.10) against ψ⃗j “ ϕ⃗j ´ ξ⃗j , and then
subtracting them, we deduce that

rajpϕ⃗j ´ ξ⃗j , ϕ⃗j ´ ξ⃗jq “ rcjpz; ξ⃗j , ϕ⃗j ´ ξ⃗jq ´ rcjpw; ϕ⃗j , ϕ⃗j ´ ξ⃗jq ,

from which, subtracting and adding ϕ⃗j in the second component of the first term on the right hand-side,
and using the identity (4.5), we get

rajpϕ⃗j ´ ξ⃗j , ϕ⃗j ´ ξ⃗jq “ rcjpz; ϕ⃗j , ϕ⃗j ´ ξ⃗jq ´ rcjpw; ϕ⃗j , ϕ⃗j ´ ξ⃗jq .

In this way, employing now the ellipticity of raj (cf. (4.26)), the foregoing identity, and the continuity
property for rcj provided by (4.4), we find that

rαj }ϕ⃗j ´ ξ⃗j}
2
rH

ď rajpϕ⃗j ´ ξ⃗j , ϕ⃗j ´ ξ⃗jq “ rcjpz; ϕ⃗j , ϕ⃗j ´ ξ⃗jq ´ rcjpw; ϕ⃗j , ϕ⃗j ´ ξ⃗jq

ď Rj }w ´ z}0,4;Ω }ϕ⃗j}
rH

}ϕ⃗j ´ ξ⃗j}
rH
,
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which, along with the a priori estimate for }ϕ⃗j}
rH
given by (4.28), yields

}rSjpwq ´ rSjpzq}0,4;Ω “ }ϕj ´ ξj}0,4;Ω ď }ϕ⃗j ´ ξ⃗j}
rH

ď rα´1
j Rj }ϕ⃗j}

rH
}w ´ z}0,4;Ω

ď rα´1
j Rj rCj

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

}w ´ z}0,4;Ω .
(4.46)

Finally, summing up in (4.46) over j P
␣

1, 2
(

, we get (4.45) with L
rS
:“ max

jPt1,2u

␣

rα´1
j Rj rCj

(

. ˝

As a consequence of Lemmas 4.5 and 4.6, we are able now to prove the Lipschitz continuity of T.

Lemma 4.7 Let r P p0, r0s, with r0 as in (4.24). Then, there exists a positive constant LT, depending
only on LS, L

rS
, CS, and C

rS
, such that

}Tpwq ´ Tpzq}0,4;Ω

ď LT

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

}w ´ z}0,4;Ω

(4.47)

for all w, z P Wprq.

Proof. Given w, z P Wprq, we first deduce from the definition of T (cf. (4.14)) and the continuity
property of S (cf. Lemma 4.5) that

}Tpwq ´ Tpzq}0,4;Ω “ }S
`

w, rSpwq
˘

´ S
`

z, rSpzq
˘

}0,4;Ω

ď LS

!

}rSpwq ´ rSpzq}0,4;Ω ` }S
`

z, rSpzq
˘

}0,4;Ω }w ´ z}0,4;Ω

)

.
(4.48)

In turn, the Lipschitz-continuity of rS (cf. Lemma 4.6) yields

}rSpwq ´ rSpzq}0,4;Ω ď L
rS

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

}w ´ z}0,4;Ω , (4.49)

whereas the a priori estimates for S (cf. (4.25)) and rS (cf. (4.27)) imply

}S
`

z, rSpzq
˘

}0,4;Ω

ď CS

"

}uD}1{2,Γ ` }ϕr}0,4;Ω ` C
rS

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

,
(4.50)

where the fact that both }w}0,4;Ω and }z}0,4;Ω are bounded by r has been utilized in (4.49) and (4.50),
respectively. Finally, replacing the latter estimates back into (4.48), and performing simple algebraic
manipulations, we arrive at (4.47) and end the proof. ˝

The main result of this section, which refers to the solvability of (4.15) (equivalently, (3.24)), is
stated as follows.

Theorem 4.8 Given r P p0, r0s, with r0 as in (4.24), assume that, in addition to the hypothesis of
Lemma 4.3 (cf. (4.32)), the data satisfy

LT

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

ă 1 . (4.51)

19



Then, there exists a unique u P Wprq (cf. (4.30)) fixed point of T (cf. (4.15)). Equivalently, (3.24)
has a unique solution pσ, u⃗q :“

`

σ, pu,γq
˘

P HˆQ and pϕ⃗j ,ϑjq :“
`

pϕj , tjq,ϑj
˘

P rHˆ rQ, j P t1, 2u,

with u P Wprq. Moreover, there exist positive constants C, C1, and C2, depending on rα1, rα2, rβ,
}Q1}0,8;Ω, }Q2}0,8;Ω, }i4}, R1, R2, r, }i4}, }g}0,Ω, and αA, such that there hold the following a priori
bounds

}pσ, u⃗q}HˆQ ď C
"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

*

, (4.52)

and for each j P
␣

1, 2
(

}pϕ⃗j ,ϑjq}
rHˆ rQ

ď Cj
!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

. (4.53)

Proof. It is clear from Lemma 4.3 and the assumption (4.51) that T is a contraction that maps the ball
Wprq into itself, and hence a straightforward application of the classical Banach fixed–point theorem
implies the indicated solvabilities of (4.15) and (3.24). Furthermore, since u “ Tpuq “ S

`

u, rSpuq
˘

,

we deduce that ϕ :“ pϕ1, ϕ2q “ rSpuq, whence (4.53) follows from (4.28) and (4.29), whereas (4.52)
is consequence of (4.25) and (4.53). We omit further details. ˝

5 The Galerkin scheme

The Galerkin scheme of the fully–mixed formulation (3.24) is introduced and analyzed in this section.
In particular, regarding the solvability analyses of the discrete versions of the decoupled problems
studied in Section 4.3, we now apply [19, Theorem 3.5], [21, Theorem 2.22], and [21, Proposition 2.42],
which correspond to the discrete analogues of [19, Theorem 3.4], [21, Theorem 2.6], and [21, Theorem
2.34], respectively.

5.1 Preliminaries

We begin by letting
!

Th
)

hą0
be a regular family of triangulations of Ω̄ made up of triangles K (when

n “ 2) or tetrahedra K (when n “ 3) of diameter hK , and set h :“ max
!

hK : K P Th
)

. Then,

we let rHσ
h , H

u
h , H

γ
h , H

ϕ
h, H

t
h, and Hϑ

h be arbitrary finite element subpaces of Hpdiv4{3; Ωq, L4pΩq,
L2
skewpΩq, L4pΩq, L2pΩq, and Hpdiv4{3; Ωq, respectively. Specific choices of them, satisfying suitable

hypotheses to be introduced along the discussion, will be described later on in Section 6. Note that h
stands for both, the size of the triangulation Th and the sub-index of each subspace. Then, defining

Hh :“ rHσ
h X H0pdiv4{3; Ωq , Qh :“ Hu

h ˆ Hγ
h ,

rHh :“ Hϕh ˆ Ht
h ,

rQh :“ Hϑ
h , (5.1)

and setting the notations

u⃗h “ puh,γhq , v⃗h “ pvh, δhq , z⃗h “ pzh, ζhq P Qh ,

and for j P t1, 2u

ϕ⃗j,h “ pϕj,h, tj,hq , ψ⃗j,h “ pψj,h, rj,hq , ξ⃗j,h “ pξj,h, sj,hq P rHh ,

20



the Galerkin scheme associated with (3.24) reads: Find pσh, u⃗hq P HhˆQh and pϕ⃗j,h,ϑj,hq P rHhˆ rQh,
j P t1, 2u, such that

apσh, τ hq ` bpτ h, u⃗hq ` bpuh;uh, τ hq “ Gpτ hq @ τ h P Hh ,

bpσh, v⃗hq ´ cpuh; u⃗h, v⃗hq “ Fϕh
pv⃗hq @ v⃗h P Qh ,

rajpϕ⃗j,h, ψ⃗j,hq ` rcjpuh; ϕ⃗j,h, ψ⃗j,hq ` rbpψ⃗j,h,ϑj,hq “ rFjpψ⃗j,hq @ ψ⃗j,h P rHh ,

rbpϕ⃗j,h,ηj,hq “ rGjpηj,hq @ηj,h P rQh ,

(5.2)

where ϕh :“ pϕ1,h, ϕ2,hq P Hϕh ˆ Hϕh.

5.2 Discrete fixed point strategy

In order to address the solvability of (5.2), we adopt the discrete analogue of the fixed point strategy

employed in Section 4.2. Indeed, we start by introducing the operator Sh : Hu
h ˆ

`

Hϕh ˆ Hϕh
˘

Ñ Hu
h

defined by
Shpwh,φhq :“ uh @ pwh,φhq P Hu

h ˆ
`

Hϕh ˆ Hϕh
˘

, (5.3)

where pσh, u⃗hq :“
`

σh, puh,γhq
˘

P Hh ˆ Qh is the unique solution (to be confirmed below) of the
problem arising from the first two rows of (5.2) when bpuh; ¨, ¨q, cpuh; ¨, ¨q, and Fϕh

, are replaced by
bpwh; ¨, ¨q, cpwh; ¨, ¨q, and Fφh

, respectively, that is

apσh, τ hq ` bpτ h, u⃗hq ` bpwh;uh, τ hq “ Gpτ hq @ τ h P Hh ,

bpσh, v⃗hq ´ cpwh; u⃗h, v⃗hq “ Fφh
pv⃗hq @ v⃗h P Qh ,

(5.4)

or, equivalently, as the discrete analogue of (4.9)

Awh

`

pσh, u⃗hq, pτ h, v⃗hq
˘

` bpwh;uh, τ hq “ Gpτ hq ` Fφh
pv⃗hq @ pτ h, v⃗hq P Hh ˆ Qh , (5.5)

where, given wh P Hu
h, Awh

:
`

Hh ˆ Qh

˘

ˆ
`

Hh ˆ Qh

˘

Ñ R is defined according to (4.8).

On the other hand, for each j P
␣

1, 2
(

we introduce the operator rSj,h : Hu
h Ñ Hϕh defined by

rSj,hpwhq :“ ϕj,h @wh P Hu
h ,

where pϕ⃗j,h,ϑj,hq :“
`

pϕj,h, tj,hq,ϑj,h
˘

P rHhˆ rQh is the unique solution (to be confirmed below) of the
problem that arises from the third and fourth rows of (5.2) when rcjpuh; ¨, ¨q is replaced by rcjpwh; ¨, ¨q,
that is

rajpϕ⃗j,h, ψ⃗j,hq ` rcjpwh; ϕ⃗j,h, ψ⃗j,hq ` rbpψ⃗j,h,ϑj,hq “ rFjpψ⃗j,hq @ ψ⃗j,h P rHh ,

rbpϕ⃗j,h,ηj,hq “ rGjpηj,hq @ηj,h P rQh .
(5.6)

Equivalently, defining raj,wh
: rHh ˆ rHh Ñ R, for each wh P Hh, as in (4.11), we can restate (5.6) as

raj,wh
pϕ⃗j,h, ψ⃗j,hq ` rbpψ⃗j,h,ϑj.hq “ rFjpψ⃗j,hq @ ψ⃗j,h P rHh ,

rbpϕ⃗j,h,ηj,hq “ rGjpηj,hq @ηj,h P rQh .
(5.7)

In this way, defining rSh : Hu
h Ñ

`

Hϕh ˆ Hϕh
˘

as

rShpwhq :“
`

rS1,hpwhq, rS2,hpwhq
˘

@wh P Hu
h , (5.8)
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and letting Th : Hu
h Ñ Hu

h be the operator given by

Thpwhq :“ Sh
`

wh, rShpwhq
˘

@wh P Hu
h , (5.9)

we realize that solving (5.2) is equivalent to seeking a fixed-point of Th, that is uh P Hu
h such that

Thpuhq “ uh . (5.10)

5.3 Discrete solvability analysis

In this section we address the solvability of (5.2) via the corresponding analysis of the equivalent
fixed–point equation (5.10), which previously requires to prove that the operators Sh (cf. (5.3)) and
rSh (cf. (5.8)), and hence Th, are well-defined. Equivalently, that the uncoupled problems (5.5) (or
(5.4)) and (5.7) (or (5.6)) are well-posed.

We begin with the analysis of (5.5), for which we aim to prove that the bilinear forms a, b, and
cpwh; ¨, ¨q, for each wh P Hu

h , when restricted to the corresponding finite element subspaces, satisfy
the assumptions of [19, Theorem 3.5]. In fact, being the hypothesis i) of [19, Theorem 3.5] basically
the same as the one of [19, Theorem 3.4], namely the symmetry and positive semi-definedness of a
and cpwh; ¨, ¨q, which was already clarified in Section 4.3, we only need to concentrate here on ii) and
iii) of [19, Theorem 3.5]. To this end, we first consider the following hypotheses on rHσ

h and Hu
h :

(H.1) rHσ
h contains the multiplies of the identity tensor I, and

(H.2) div
`

rHσ
h

˘

Ď Hu
h .

It follows from (H.1) and the decomposition (3.6) that Hh (cf. (5.1)) can be redefined as

Hh :“

"

ζh ´

´ 1

n|Ω|

ż

Ω
trpζq

¯

I : ζh P rHσ
h

*

.

In turn, letting Vh be the kernel of b|HhˆQh
, we readily deduce, thanks to the definition of b (cf.

(3.10)) and (H.2), that

Vh :“
!

ζh P Hh : divpζhq “ 0 and

ż

Ω
δh : ζh “ 0 @ δh P Hγ

h

)

.

Consequently, while Vh is not necessarily contained in V (cf. (4.16)), the fact that the elements of
Vh are still divergence–free, along with the inequality (4.17), suffice to conclude the discrete analogue
of (4.18), and with the same constant, namely

apζh, ζhq ě αd }ζh}2H @ ζh P Vh , (5.11)

with αd :“
c21
µ1
. Similarly as for the continuous case, it is easily seen that (5.11) yields the discrete

inf-sup condition for a required by the hypothesis ii) of [19, Theorem 3.5].

Furthermore, in order to continue the analysis, we introduce the discrete inf-sup condition for b as
a third hypothesis, that is:

(H.3) there exists a positive constant βd, independent of h, such that

sup
τhPHh
τh‰0

bpτ h, v⃗hq

}τ h}H
ě βd }v⃗h}Q @ v⃗h P Qh .
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Next, proceeding analogously to the continuous case, we consider the same radius δ employed in (4.19),
and introduce now the discrete ball

Whpδq :“
!

wh P Hu
h : }wh}0,4;Ω ď δ

)

, (5.12)

so that the boundedness for cpwh; ¨, ¨q|QhˆQh
becomes exactly as in (4.20), that is

|cpwh; v⃗h, z⃗hq| ď |Ω|1{2
`

D ` F δρ´2
˘

}v⃗h}Q }⃗zh}Q @ v⃗h , z⃗h P Qh .

Hence, having satisfied all the hypotheses of [19, Theorem 3.5], a straightforward application of this
result implies the existence of a positive constant αA,d, depending only on µ0, |Ω|, D, F, δ, ρ, αd, and
βd, such that for each wh P Whpδq there holds the discrete analogue of (4.21), that is

sup
pζh ,⃗zhqPHhˆQh

pζh ,⃗zhq‰0

Awh

`

pτ h, v⃗hq, pζh, z⃗hq
˘

}pζh, z⃗hq}HˆQ
ě αA,d }pτ h, v⃗hq}HˆQ @ pτ h, v⃗hq P Hh ˆ Qh . (5.13)

Thus, using (5.13) and the boundedness property of bpw; ¨, ¨q (cf. (4.3)), similarly as for the derivation
of (4.22), we deduce that for each wh P Whpδq such that }wh}0,4;Ω ď

µ0 αA,d

2 , there holds

sup
pζh ,⃗zhqPHhˆQh

pζh ,⃗zhq‰0

Awh
ppτ h, v⃗hq, pζh, z⃗hqq ` bpwh;vh, ζhq

}pζh, z⃗hq}HˆQ
ě

αA,d

2
}pτ h, v⃗hq}HˆQ

for all pτ h, v⃗hq P Hh ˆ Qh.

Therefore, the well–posedness of (5.5) is established as follows.

Theorem 5.1 Given δ ą 0, let r P p0, r0,ds, with

r0,d :“ min
!

δ,
µ0 αA,d

2

)

. (5.14)

Then, for each pwh,φhq P Hu
h ˆ

`

Hϕh ˆ Hϕh
˘

such that }wh}0,4;Ω ď r, (5.5) (equivalently, (5.4)) has a
unique solution pσh, u⃗hq :“

`

σh, puh,γhq
˘

P Hh ˆ Qh, and hence one can define Shpwh,φhq :“ uh.
Moreover, there exists a positive constant CS,d, depending only on }i4}, }g}0,Ω, and αA,d, such that

}Shpwh,φhq}0,4;Ω “ }uh}0,4;Ω ď }pσh, u⃗hq}HˆQ

ď CS,d

!

}uD}1{2,Γ ` }ϕr}0,4;Ω ` }φh}0,4;Ω

)

.
(5.15)

Proof. Similarly as for the proof of Theorem 4.1, we observe now that the bilinear formAwh
`bpwh; ¨, ¨q

satisfies the hypotheses of [21, Theorem 2.22], so that, noting in this case that G|Hh
P H1

h and
Fφh

|Qh
P Q1

h, an application of that theorem proves the present result. ˝

On the other hand, in order to establish the well-posedness of (5.7) (equivalently, (5.6)), in what
follows we show that the bilinear forms raj,wh

|
rHhˆ rHh

and rb|
rHhˆ rQh

satisfy the hypotheses of [21, Propo-

sition 2.42]. To this end, we proceed as in [18, Section 5.5] (see also [5, Section 4.3, Lemma 4.2] and
[13, Section 4.2, Lemmas 4.1 and 4.5]), and introduce first the kernel of rb|

rHhˆ rQh
, that is

rVh :“
!

ψ⃗h “ pψh, rhq P rHh : rbpψ⃗h,ηhq “ 0 @ηh P rQh

)

,
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and
Z0,h :“

!

ηh P rQh : rb
`

ψ⃗h,ηh
˘

“ 0 @ ψ⃗h “ pψh, 0q P rHh

)

,

which become, respectively,

rVh :“
!

ψ⃗h “ pψh, rhq P rHh :

ż

Ω
rh ¨ ηh `

ż

Ω
ψh divpηhq “ 0 @ηh P Hϑ

h

)

,

and

Z0,h :“
!

ηh P Hϑ
h :

ż

Ω
ψh divpηhq “ 0 @ψh P Hϕh

)

. (5.16)

Next, we consider the following assumptions on the subspaces Hϕh, H
t
h, and Hϑ

h :

(H.4) divpHϑ
h q Ď Hϕh,

(H.5) Z0,h Ď Ht
h, and

(H.6) there exists a positive constant β1,d, independent of h, such that

sup
ηhPHϑ

h
ηh‰0

ż

Ω
ψh divpηhq

}ηh}
rQ

ě β1,d }ψh}0,4;Ω @ψh P Hϕh .

As a consequence of (H.4) we easily deduce from (5.16) that

Z0,h :“
!

ηh P Hϑ
h : divpηhq “ 0 in Ω

)

, (5.17)

and thus, given ηh P Z0,h, and using (H.5), we bound the supremum by below with rh :“ ηh P Ht
h,

to deduce that

sup
rhPHt

h
rh‰0

ż

Ω
rh ¨ ηh

}rh}0,Ω
ě }ηh}0,Ω “ β2,d }ηh}

rQ
@ηh P Z0,h , (5.18)

with β2,d “ 1. Consequently, invoking [18, Lemma 5.1] with local notation there given by X “ Hϕh,

Y “ Y1 “ Ht
h, Y2 “

␣

0
(

, V “ rVh, Z “ Hϑ
h , and Z0 “ Z0,h, we conclude that (H.6) and (5.18) are

equivalent to the existence of positive constants rβd and rCd such that

sup
ψ⃗hP rHh

ψ⃗h‰0

rbpψ⃗h,ηhq

}ψ⃗h}
rH

ě rβd }ηh}
rQ

@ηh P rQh , (5.19)

and
}rh}0,Ω ě rCd }ψh}0,4;Ω @ ψ⃗h “ pψh, rhq P rVh . (5.20)

Note that (5.19) constitutes the discrete inf-sup condition for rb required in [21, Proposition 2.42,
eq. (2.36)]. In turn, given ψ⃗j,h “ pψj,h, rj,hq P rVh, we use (4.5) and (2.4), similarly to the first part
of the derivation of (4.26), but then, differently from there, employ (5.20) to conclude that

raj,wh
pψ⃗j,h, ψ⃗j,hq “ rajpψ⃗j,h, ψ⃗j,hq “

ż

Ω
Qj |rj,h|2 ě Cj }rj,h}20,Ω ,

ě
Cj
2

!

rC2
d }ψj,h}20,4;Ω ` }rj,h}20,Ω

)

ě rαj,d }ψ⃗j,h}2
rH
,

(5.21)
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with rαj,d :“
Cj

2 min
␣

rC2
d , 1

(

. Then, analogously to the continuous case, it is readily seen that (5.21)
yields the discrete inf-sup condition for raj,wh

required in [21, Proposition 2.42, eq. (2.35)].

We are now in position to state the discrete analogue of Theorem 4.2.

Theorem 5.2 For each wh P Hu
h , and for each j P t1, 2u, (5.7) (equivalently, (5.6)) has a unique

solution pϕ⃗j,h,ϑj,hq :“
`

pϕj,h, tj,hq,ϑj,h
˘

P rHh ˆ rQh, and hence one can define rSj,hpwhq :“ ϕj,h.

Moreover, there exists a positive constant C
rS,d

, depending only on rαj,d, rβd, }Qj}0,8;Ω, }i4}, and Rj,

j P
␣

1, 2
(

, such that

}rShpwq}0,4;Ω :“ }
`

rS1,hpwhq, rS2,hpwhq
˘

}0,4;Ω

ď C
rS,d

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` }wh}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

.
(5.22)

Proof. According to the previous discussion on rb and raj,wh
, for each wh P Hu

h , and bearing in mind

that raj,wh
|
rHhˆ rHh

, rb|
rHhˆ rQh

, rFj |
rHh

, and rGj |
rQh

are all bounded, the existence of a unique solution of

(5.7), for each j P
␣

1, 2
(

, follows from a direct application of [21, Proposition 2.42]. In turn, employing
the discrete version of the first inequality in [21, Theorem 2.34, eq. (2.30)], we get the a priori estimate
for }rSj,hpwhq}0,4;Ω, from which, summing up over j P

␣

1, 2
(

, we arrive at (5.22). ˝

At this point we remark that, similarly as for the continuous case, the component ϑj,h of the solution
of (5.7) can be bounded employing the discrete version of the second inequality in [21, Theorem 2.34,
eq. (2.30)], which yields

}ϑj,h}
rQ

ď ĂMj,d

`

1 ` }wh}0,4;Ω
˘

!

}gj}0,4{3;Ω `
`

1 ` }wh}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

, (5.23)

where ĂMj,d is a positive constant depending on rαj,d, rβd, }Qj}0,8;Ω, }i4}, and Rj .

Having established, thanks to Theorems 5.1 and 5.2, that Sh (cf. (5.3)), rSh (cf. (5.8)), and hence
Th (cf. (5.9)), are well-defined, we now aim to show that Th has a unique fixed-point. More precisely,
analogously to the continuous case, in what follows we prove that Th verifies the hypotheses of the
Banach theorem. For this purpose, given r P p0, r0,ds, with r0,d as in (5.14), we first follow (5.12) and
define

Whprq :“
!

wh P Hu
h : }wh}0,4;Ω ď r

)

. (5.24)

Then, using now the a priori estimates (5.15) and (5.22), we easily deduce the existence of a positive
constant CT,d, depending only on CS,d and C

rS,d
, such that for each wh P Whprq there holds

}Thpwhq}0,4;Ω ď CT,d

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

,

which constitutes the discrete version of (4.31). Hence, we are able to state next the discrete analogue
of Lemma 4.3

Lemma 5.3 Given r P p0, r0,ds, with r0,d as in (5.14), assume that the data satisfy

CT,d

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

ď r . (5.25)

Then, there holds Th

`

Whprq
˘

Ď Whprq.
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In turn, employing similar arguments to those yielding Lemmas 4.5, 4.6, and 4.7, we are able to
show their discrete counterparts, that is the continuity properties of Sh, rSh, and Th. However, being
the respective proofs almost verbatim to the continuous ones, we omit the details and just state the
corresponding results as follows.

Lemma 5.4 Let r P p0, r0,ds, with r0,d as in (5.14). Then, there exists a positive constant LS,d,
depending only on αA,d, }g}0,Ω, µ0, Lc (cf. Lemma 4.4), and r, such that

}Shpwh,φhq ´ Shpzh, ξhq}0,4;Ω ď LS,d

!

}φh ´ ξh}0,4;Ω ` }Shpzh, ξhq}0,4;Ω }wh ´ zh}0,4;Ω

)

for all pwh,φhq, pzh, ξhq P Whprq ˆ
`

Hϕh ˆ Hϕh
˘

.

Lemma 5.5 Let r P p0, r0,ds, with r0,d as in (5.14). Then, there exists a positive constant L
rS,d

,

depending only on rCj (cf. (4.28)), Rj, and rαj,d, j P
␣

1, 2
(

, such that

}rShpwhq ´ rShpzhq}0,4;Ω

ď L
rS,d

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` }wh}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

}wh ´ zh}0,4;Ω

for all wh, zh P Whprq.

Thanks to Lemmas 5.4 and 5.5, the Lipschitz continuity of Th (cf. (5.9)) is stated as follows.

Lemma 5.6 Let r P p0, r0,ds, with r0,d as in (5.14). Then, there exists a positive constant LT,d,
depending only on LS,d, L

rS,d
, CS,d, and C

rS,d
, such that

}Thpwhq ´ Thpzhq}0,4;Ω

ď LT,d

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

}wh ´ zh}0,4;Ω

for all wh, zh P Whprq.

We end this section with the solvability result for (5.10) (and hence for (5.2)).

Theorem 5.7 Given r P p0, r0,ds, with r0,d as in (5.14), assume that, in addition to the hypothesis of
Lemma 5.3 (cf. (5.25)), the data satisfy

LT,d

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

ă 1 . (5.26)

Then, there exists a unique uh P Whprq (cf. (5.24)) fixed point of Th (cf. (5.10)). Equivalently, (5.2)
has a unique solution pσh, u⃗hq :“

`

σh, puh,γhq
˘

P Hh ˆ Qh and pϕ⃗j,h,ϑj,hq :“
`

pϕj,h, tj,hq,ϑj,h
˘

P

rHh ˆ rQh, j P t1, 2u, with uh P Whprq. Moreover, there exist positive constants Cd, C1,d, and C2,d,
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depending on rα1,d, rα2,d, rβd, }Q1}0,8;Ω, }Q2}0,8;Ω, }i4}, R1, R2, r, }i4}, }g}0,Ω, and αA,d, such that
there hold the following a priori bounds

}pσh, u⃗hq}HˆQ ď Cd
"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

*

, (5.27)

and for each j P
␣

1, 2
(

}pϕ⃗j,h,ϑj,hq}
rHˆ rQ

ď Cj,d
!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

. (5.28)

Proof. It proceeds analogously to the proof of Theorem 4.8. Indeed, since Th is a contraction that
maps the ball Whprq into itself, which is consequence of Lemma 5.3 and assumption (5.26), a direct
application of the Banach fixed-point theorem confirms the solvabilities of (5.10) and (5.2). In turn,
noting that uh “ Thpuhq “ Sh

`

uh, rShpuhq
˘

and ϕh :“ pϕ1,h, ϕ2,hq “ rShpuhq, the a priori estimates
(5.27) and (5.28) follow from (5.15), (5.22), and (5.23). ˝

5.4 A priori error analysis

In this section we consider arbitrary finite element subspaces satisfying the hypotheses (H.1) up to
(H.6) introduced in Section 5.3, and derive the Céa estimate for the global error

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ `

2
ÿ

j“1

}pϕ⃗j ,ϑjq ´ pϕ⃗j,h,ϑj,hq}
rHˆ rQ

,

where
`

pσ, u⃗q, pϕ⃗j ,ϑjq
˘

:“
`

pσ, pu,γqq, ppϕj , tjq,ϑjq
˘

P
`

HˆQ
˘

ˆ
`

rHˆ rQ
˘

, j P t1, 2u, with u P Wprq,

is the unique solution of (3.24), and
`

pσh, u⃗hq, pϕ⃗j,h,ϑj,hq
˘

:“
`

pσh, puh,γhqq, ppϕj,h, tj,hq,ϑj,hq
˘

P
`

Hh ˆ Qh

˘

ˆ
`

rHh ˆ rQh

˘

, j P t1, 2u, with uh P Whprq, is the unique solution of (5.2). To this end, in
what follows we apply known Strang-type estimates to the pairs of associated continuous and discrete
schemes arising from (3.24) and (5.2), once they are split according to the two decoupled problems.
Hereafter, given a subspace Xh of an arbitrary Banach space pX, } ¨ }Xq, we set

distpx,Xhq :“ inf
xhPXh

}x´ xh}X .

We begin the analysis with the first two equations of (3.24) and (5.2), which can be rewritten as

A
`

pσ, u⃗q, pτ , v⃗q
˘

“ F
`

pτ , v⃗q
˘

@ pτ , v⃗q P H ˆ Q , and

Ah

`

pσh, u⃗hq, pτ h, v⃗hq
˘

“ Fh
`

pτ h, v⃗hq
˘

@ pτ h, v⃗hq P Hh ˆ Qh ,

where
A
`

pζ, w⃗q, pτ , v⃗q
˘

:“ Auppζ, w⃗q, pτ , v⃗qq ` bpu;w, τ q ,

Ah

`

pζh, w⃗hq, pτ h, v⃗hq
˘

:“ Auh
ppζh, w⃗hq, pτ h, v⃗hqq ` bpuh;wh, τ hq ,

F
`

τ , v⃗q
˘

:“ Gpτ q ` Fϕpv⃗q , and

Fh
`

τ h, v⃗hq
˘

:“ Gpτ hq ` Fϕh
pv⃗hq ,

for all pζ, w⃗q, pτ , v⃗q P H ˆ Q, for all pζh, w⃗hq, pτ h, v⃗hq P Hh ˆ Qh. Then, applying the a priori error
bound provided by [15, Lemma 5.1], and then suitably bounding the resulting consistency estimate,
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which is given by }A
`

pσ, u⃗q, p¨, ¨q
˘

´ Ah

`

pσ, u⃗q, p¨, ¨q
˘

}`
HhˆQh

˘1 , we deduce the existence of a positive

constant CST, depending only on }A}, }Ah}, and αA,d, and thus, easily shown to be independent of h,
such that

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ ď CST
!

dist pσ,Hhq ` dist pu⃗,Qhq ` }Fϕ ´ Fϕh
}Q1

h

` }bpu;u, ¨q ´ bpuh;u, ¨q}H1
h

` }cpu; u⃗, ¨q ´ cpuh; u⃗, ¨q}Q1
h

)

.
(5.29)

Note, in particular, that }A} depends proportionally on }a} “ 1
µ0
, }b} “ 1, }bpu, ¨, ¨q} “ 1

µ0
}u}0,4;Ω,

and }cpu; ¨, ¨q} “ |Ω|1{2
`

D ` F}u}
ρ´2
0,4;Ω

˘

, with }u}0,4;Ω bounded by r. An analogue remark is valid for
}Ah}. Next, proceeding as for the derivation of (4.42), we readily obtain

}Fϕ ´ Fϕh
}Q1

h
ď }g}0,Ω }ϕ ´ ϕh}0,4;Ω . (5.30)

In turn, bearing in mind the definition of b (cf. (3.11)), we find that for each τ h P Hh there holds

bpu;u, τ hq ´ bpuh;u, τ hq “ bpu ´ uh;u, τ hq ,

from which, employing the boundedness property of b (cf. first row of (4.3)), we conclude that

}bpu;u, ¨q ´ bpuh;u, ¨q}H1
h

ď
1

µ0
}u}0,4;Ω }u ´ uh}0,4;Ω . (5.31)

Similarly, using the continuity property of c provided by (4.33) (cf. Lemma 4.4), we get

}cpu; u⃗, ¨q ´ cpuh; u⃗, ¨q}Q1
h

ď Lc

!

}u}0,4;Ω ` }uh}0,4;Ω

)ρ´3
}u}0,4;Ω }u ´ uh}0,4;Ω

ď Lc
`

2r
˘ρ´3

}u}0,4;Ω }u ´ uh}0,4;Ω .

(5.32)

In this way, replacing the bounds given by (5.30), (5.31), and (5.32), back into (5.29), we arrive at

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ ď pCST
!

dist pσ,Hhq ` dist pu⃗,Qhq

` }ϕ ´ ϕh}0,4;Ω ` }u}0,4;Ω }u ´ uh}0,4;Ω

)

,
(5.33)

where pCST is a positive constant depending only on CST, }g}0,Ω, µ0, Lc, r, and ρ.

On the other hand, proceeding analogously with the third and fourth equations of (3.24) and
(5.2), but using now the particular Strang-type estimate provided by [18, Lemma 6.1] (see also [5,
Lemma 5.1] for a slightly more general result), we deduce, for each j P

␣

1, 2
(

, the existence of

a positive constant Cj,ST depending only on rαj,d, rβd, }raj} “ }Qj}0,8;Ω, }rcjpu; ¨, ¨q} “ Rj }u}0,4;Ω,

}rcjpuh; ¨, ¨q} “ Rj }uh}0,4;Ω, and }rb} “ 2, and hence, easily shown to be independent of h, such that

}pϕ⃗j ,ϑjq ´ pϕ⃗j,h,ϑj,hq}
rHˆ rQ

ď Cj,ST
!

dist pϕ⃗j , rHhq ` dist pϑj , rQhq

` }rcjpu; ϕ⃗j , ¨q ´ rcjpuh; ϕ⃗j , ¨q}
rH1

h

)

.
(5.34)

Now, bearing in mind the definition of rcj (cf. (3.23)), we obtain for each ψ⃗j,h P rHh

rcjpu; ϕ⃗j , ψ⃗j,hq ´ rcjpuh; ϕ⃗j , ψ⃗j,hq “ rcjpu ´ uh; ϕ⃗j , ψ⃗j,hq ,
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from which, using the boundedness property of rcj (cf. third row of (4.3)), we deduce that

}rcjpu; ϕ⃗j , ¨q ´ rcjpuh; ϕ⃗j , ¨q}
rH1

h
ď Rj }ϕ⃗j}

rH
}u ´ uh}0,4;Ω ,

so that (5.34) becomes

}pϕ⃗j ,ϑjq ´ pϕ⃗j,h,ϑj,hq}
rHˆ rQ

ď pCj,ST
!

dist pϕ⃗j , rHhq ` dist pϑj , rQhq ` }ϕ⃗j}
rH

}u ´ uh}0,4;Ω

)

, (5.35)

where pCj,ST is a positive constant depending only on Cj,ST and Rj .

We now proceed to suitably combine (5.33) and (5.35) to derive the final Céa estimate. Indeed,
multiplying (5.33) by 1

2 pCST
, summing up in (5.35) over j P

␣

1, 2
(

, adding the resulting inequalities,

bounding }u⃗}0,4;Ω and }ϕ⃗j}
rH

by the right hand sides of (4.52) and (4.53), respectively, and then
performing some algebraic manipulations, we find that

1

2 pCST
}pσ, u⃗q ´ pσh, u⃗hq}HˆQ `

2
ÿ

j“1

}pϕ⃗j ,ϑjq ´ pϕ⃗j,h,ϑj,hq}
rHˆ rQ

ď
1

2
}ϕ ´ ϕh}0,4;Ω

`
1

2

!

dist pσ,Hhq ` dist pu⃗,Qhq

)

`

2
ÿ

j“1

pCj,ST
!

dist pϕ⃗j , rHhq ` dist pϑj , rQhq

)

` pC
"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

*

}u ´ uh}0,4;Ω ,

(5.36)

where pC is a positive constant depending only on C (cf. (4.52)), Cj (cf. (4.53)), and pCj,ST, j P
␣

1, 2
(

.

Having established (5.36), the announced Céa estimate is stated as follows.

Theorem 5.8 Assume that the data satisfy

pC
"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

*

ď
1

4 pCST
. (5.37)

Then, there exists a positive constant rC, depending only on pCST and pCj,ST, j P
␣

1, 2
(

, and hence,
independent of h, such that

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ `

2
ÿ

j“1

}pϕ⃗j ,ϑjq ´ pϕ⃗j,h,ϑj,hq}
rHˆ rQ

ď rC
"

dist pσ,Hhq ` dist pu⃗,Qhq `

2
ÿ

j“1

!

dist pϕ⃗j , rHhq ` dist pϑj , rQhq

)

*

.

(5.38)

Proof. It follows directly from (5.36) after realizing that the first term on its right hand side can
be subtracted from the second one on the left hand side, whereas, under (5.37), a similar procedure
applies to the corresponding last and first terms. ˝

Furthermore, as suggested by (2.8), (2.14), and (3.7), we can approximate the pressure p, the
velocity gradient ∇u, and the shear stress tensor rσ, by the following postprocessing formulae:

ph :“ ´
1

n
tr
`

σh ` puh b uhq
˘

`
1

n |Ω|

ż

Ω
trpuh b uhq , (5.39)
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`

∇u
˘

h
:“

1

µ
σd
h `

1

µ
puh b uhqd ` γh , and (5.40)

rσh :“ σh ´

ˆ

1

n |Ω|

ż

Ω
trpuh b uhq

˙

I ` puh b uhq . (5.41)

Thus, is is not difficult to show that there exists a positive constant c, independent of h, though
depending either on r or the data providing the a priori bounds for }u}0,4;Ω and }uh}0,4;Ω, such that

}p´ ph}0,Ω ` }∇u ´
`

∇u
˘

h
}0,Ω ` }rσ ´ rσh}0,Ω

ď c
!

}σ ´ σh}H ` }u ´ uh}0,4;Ω ` }γ ´ γh}0,Ω

)

,
(5.42)

which, certainly, is bounded by the right hand side of (5.38) as well.

6 Specific finite element subspaces

In this section we resort to [27, Section 4.4] and [26, Section 4.5] to specify two examples of finite

element subspaces rHσ
h , H

u
h , H

γ
h , H

ϕ
h, H

t
h, and Hϑ

h satisfying the hypotheses (H.1) up to (H.6) stated
in Section 5.3, and then establish the associated rates of convergence for the Galerkin scheme (5.2).
Although it will become clear below, we remark in advance that the two aforementioned examples are
actually determined by two possible choices for the first three subspaces since the remaining three are
kept the same in both cases.

6.1 Preliminaries

Given an integer k ě 0 and K P Th, we let PkpKq be the space of polynomials of degree at most k
defined on K with vector and tensorial counterparts PkpKq :“ rPkpKqsn and PkpKq :“ rPkpKqsnˆn,
respectively. In addition, we let RTkpKq :“ PkpKq ` PkpKqx be the local Raviart–Thomas space of
order k defined on K, where x stands for a generic vector in Rn. Furthermore, denoting by bK the
bubble function on K, which is given by the product of its n ` 1 barycentric coordinates, we set the
local bubble space of order k as

BkpKq :“ curlpbK PkpKqq if n “ 2 , and

BkpKq :“ curlpbK PkpKqq if n “ 3 ,
(6.1)

where curlpvq :“ p Bv
Bx2

,´ Bv
Bx1

q if n “ 2 and v : K Ñ R, and curlpvq “ ∇ ˆ v if n “ 3 and v : K Ñ R3.
Next, we introduce the global spaces

PkpΩq :“
!

vh P L2pΩq : vh|K P PkpKq , @K P Th
)

,

PkpΩq :“
!

vh P L2pΩq : vh|K P PkpKq , @K P Th
)

,

PkpΩq :“
!

δh P L2pΩq : δh|K P PkpKq , @K P Th
)

,

RTkpΩq :“
!

ηh P Hpdiv; Ωq : ηh|K P RTkpKq , @K P Th
)

,

RTkpΩq :“
!

τ h P Hpdiv; Ωq : τ h,i|K P RTkpKq , @ i P t1, . . . , nu , @K P Th
)

,

BkpΩq :“
!

τ h P Hpdiv; Ωq : τ h,i|K P BkpKq , @ i P t1, . . . , nu , @K P Th
)

,
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where τ h,i denotes the ith-row of τ h. It is clear that PkpΩq and PkpΩq are also subspaces of
L4pΩq and L4pΩq, respectively. In addition, being Hpdiv; Ωq and Hpdiv; Ωq contained in Hpdiv4{3; Ωq

and Hpdiv4{3; Ωq, respectively, we notice that the spaces RTkpΩq and BkpΩq are both subspaces of
Hpdiv4{3; Ωq as well, whereas RTkpΩq is contained in Hpdiv4{3; Ωq.

6.2 Two examples

To begin with, we proceed as in [25, Section 4.4] and [26, Section 4.5], and employ the stable triplets
for linear elasticity derived in [27, Section 4.4], to define two examples of finite element subspaces rHσ

h ,
Hu
h , and Hγ

h , satisfying (H.1) up to (H.3). In what follows, ℓ is a non-negative integer.

The first example for rHσ
h , Hu

h , and Hγ
h , is PEERSℓ, the plane elasticity element with reduced

symmetry of order ℓ ě 0, whose stability for the mixed finite element formulation of the linear
elasticity problem, within the classical Hilbertian framework, was originally established in [3] for ℓ “ 0
and n “ 2, and later on proved for ℓ ě 0 and n P

␣

2, 3
(

in [32]. The corresponding subspaces are
defined as follows:

rHσ
h :“ RTℓpΩq ‘ BℓpΩq , Hu

h :“ PℓpΩq , and

Hγ
h :“ rCpsΩqsnˆn X L2

skewpΩq X Pℓ`1pΩq .
(6.2)

The second example for rHσ
h , H

u
h , and Hγ

h , is AFWℓ, the Arnold-Falk-Winther element of order
ℓ ě 0, whose corresponding aforementioned stability can be found in [4]. In this case, the subspaces
are given by:

rHσ
h :“ Pℓ`1pΩq X Hpdiv; Ωq , Hu

h :“ PℓpΩq , and Hγ
h :“ L2

skewpΩq X PℓpΩq . (6.3)

Regarding the verification of the hypotheses by the subspaces specified in (6.2) and (6.3), we first
observe that (H.1) is clearly satisfied in both cases. The same holds with (H.2) since div

`

RTℓpΩq
˘

and div
`

Pℓ`1pΩq
˘

are contained in PℓpΩq, which coincides with Hu
h in the two examples, whereas,

according to (6.1), the tensors in BℓpΩq are divergence-free. In turn, we recall that the discrete inf-sup
condition for b required in the assumption (H.3), was proved in [27, Lemma 4.8] for PEERSℓ as well
as for AFWℓ. We omit further details and refer to the analysis developed in [27, Section 4.4.2].

On the other hand, specific finite element subspaces Hϕh, H
t
h, and Hϑ

h , are set as follows:

Hϕh :“ PℓpΩq , Ht
h :“ PℓpΩq , and Hϑ

h :“ RTℓpΩq . (6.4)

Similarly as a previous remark, the fact that div
`

RTℓpΩq
˘

is contained in PℓpΩq “ Hϕh, guarantees that
(H.4) is satisfied. In addition, knowing from (5.17) that, besides being contained in Hϑ

h “ RTℓpΩq,
the vector functions of Z0,h are divergence-free, we deduce, from a particular argument provided in
the proof of [23, Theorem 3.3], that Z0,h Ď PℓpΩq, which confirms (H.5). Finally, the discrete inf-sup
condition required by (H.6), which coincides with [18, eq. (5.64)], is basically proved in the last part
of [18, Section 5.5] by realizing that it reduces to the vector version of [18, Lemma 5.5, eq. (5.45)].

6.3 The rates of convergence

In this section we first collect the approximation properties of the finite element spaces defined in
Section 6.2, and then establish the associated rates of convergence of the Galerkin scheme (5.2).
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We begin with the approximation properties of PEERSℓ (cf. (6.2)) and AFWℓ (cf. (6.3)), which
basically follow from the analogue properties of the Raviart–Thomas and AFW interpolation operators,
and of the orthogonal projectors Pℓ

h : L1pΩq Ñ PℓpΩq and PPℓ
h : L1pΩq Ñ PℓpΩq (cf. [21, Proposition

1.135]), along with the use of the commuting diagram properties and of the interpolation estimates of
Sobolev spaces. They read as follows (cf. [27, Section 4.4.3], [25, Section 4.4.4]):

(APσ
h ) there exists a positive constant C, independent of h, such that for each s P p0, ℓ ` 1s, and for

each τ P HspΩq X H0pdiv4{3; Ωq, with divpτ q P Ws,4{3pΩq, there holds

dist pτ ,Hhq ď C hs
!

}τ }s,Ω ` }divpτ q}s,4{3;Ω

)

,

(APu
h) there exists a positive constant C, independent of h, such that for each s P r0, ℓ ` 1s, and for

each v P Ws,4pΩq, there holds

dist pv,Hu
hq ď C hs }v}s,4;Ω , and

(APγ
h) there exists a positive constant C, independent of h, such that for each s P r0, ℓ ` 1s, and for

each δ P HspΩq X L2
skewpΩq, there holds

dist pδ,Hγ
hq ď C hs }δ}s,Ω .

Furthermore, regarding the approximation properties of the subspaces defined in (6.4), they are
given as indicated next:

(APϕ
h) there exists a positive constant C, independent of h, such that for each s P r0, ℓ ` 1s, and for

each ψ P Ws,4pΩq, there holds

dist pψ,Hϕhq ď C hs }ψ}s,4;Ω ,

(APt
h) there exists a positive constant C, independent of h, such that for each s P r0, ℓ ` 1s, and for

each r P HspΩq, there holds
dist pr,Ht

hq ď C hs }r}s;Ω , and

(APϑ
h ) there exists a positive constant C, independent of h, such that for each s P p0, ℓ ` 1s, and for

each η P HspΩq X Hpdiv4{3; Ωq, with divpηq P Ws,4{3pΩq, there holds

dist pη,Hϑ
h q ď C hs

!

}η}s,Ω ` }divpηq}s,4{3;Ω

)

.

In this way, as a consequence of Theorem 5.8, (5.42), and the approximation properties (APσ
h ),

(APu
h), (APγ

h), (APϕ
h), (APt

h), and (APϑ
h ), we conclude the rates of convergence of the Galerkin

Scheme (5.2) with the finite element subspaces defined in Section 6.2. More precisely, we have the
following result.

Theorem 6.1 In addition to the hypotheses of Theorems 4.8, 5.7, and 5.8, assume that there exists s P

p0, ℓ`1s such that σ P HspΩqXH0pdiv4{3; Ωq, divpσq P Ws,4{3pΩq, u P Ws,4pΩq, γ P HspΩqXL2
skewpΩq,
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ϕj P Ws,4pΩq, tj P HspΩq, ϑj P HspΩq X Hpdiv4{3; Ωq, and divpϑjq P Ws,4{3pΩq, j P
␣

1, 2
(

. Then,
there exists a positive constant C, independent of h such that

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ `

2
ÿ

j“1

}pϕ⃗j ,ϑjq ´ pϕ⃗j,h,ϑj,hq}
rHˆ rQ

` }p´ ph}0,Ω ` }∇u ´
`

∇u
˘

h
}0,Ω ` }rσ ´ rσh}0,Ω

ď C hs
!

}u}s,4;Ω ` }σ}s,Ω ` }divpσq}s,4{3;Ω ` }γ}s,Ω

`

2
ÿ

j“1

´

}ϕj}s,4;Ω ` }tj}s,Ω ` }ϑj}s,Ω ` }divpϑjq}s,4{3;Ω

¯)

.

(6.5)

7 Numerical results

In this section we consider the two pairs of finite element subspaces detailed in Section 6 to present
three examples illustrating the performance of the mixed finite element method (5.2) on a set of
quasi-uniform triangulations of the respective domains. In what follows, we refer to the corresponding
sets of finite element subspaces generated by ℓ “ t0, 1u as simply PEERSℓ ´ Pℓ ´ Pℓ ´ RTℓ and
AFWℓ ´ Pℓ ´ Pℓ ´ RTℓ. The numerical methods have been implemented using open source finite
element libraries: FEniCS [1] and FreeFem++ [29]. We have used FEniCS for Examples 1 and 2, and
FreeFem++ for the Example 3. A Newton–Raphson algorithm with a fixed tolerance tol “ 1E ´ 06
is used for the resolution of the nonlinear problem (5.2). As usual, the iterative method is finished
when the relative error between two consecutive iterations of the complete coefficient vector, namely
coeffm and coeffm`1, is sufficiently small, that is,

}coeffm`1 ´ coeffm}DOF

}coeffm`1}DOF
ď tol ,

where }¨}DOF stands for the usual Euclidean norm in RDOF with DOF denoting the total number of degrees

of freedom defining the finite element subspaces rHσ
h ,H

u
h ,H

γ
h ,H

ϕ
h,H

t
h, and Hϑ

h (cf. (6.2)–(6.4)).

We now introduce some additional notation. The individual errors are denoted by

epσq :“ }σ ´ σh}div4{3;Ω , epuq :“ }u ´ uh}0,4;Ω , epγq :“ }γ ´ γh}0,Ω ,

eppq :“ }p´ ph}0,Ω , ep∇uq :“ }∇u ´ p∇uqh}0,Ω ,

epϕjq :“ }ϕj ´ ϕj,h}0,4;Ω , eptjq :“ }tj ´ tj,h}0,Ω , epϑjq :“ }ϑj ´ ϑj,h}div4{3;Ω , j P t1, 2u ,

where ph and p∇uqh stand for the post-processed pressure and velocity gradient suggested by (5.39)
and (5.40), respectively. We stress here that we are also able to recover the shear stress tensor
rσ by the post-processing formula (5.41). However, for the sake of simplicity, in the numerical es-
says below we will focus only on the pressure field and velocity gradient tensor. Moreover, for
each ‹ P

␣

σ,u,γ, p,∇u, ϕj , tj ,ϑj
(

we let rp‹q be the experimental rate of convergence given by

rp‹q :“ log
`

ep‹q{pep‹q
˘

{ logph{phq, where h and ph denote two consecutive meshsizes with errors e and
pe, respectively.

The examples to be considered in this section are described next. In all of them, we take ϱ “ 1, R1 “

1, R2 “ 1, and ϕr “ p0, 0q. In turn, in the first two examples the tensors Q1 and Q2 are taken as the
identity matrix I, which satisfy (2.4). In addition, the null mean value of trpσhq over Ω is fixed via a
real Lagrange multiplier strategy.
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Example 1: Convergence against smooth exact solutions in a 2D domain

In this test we corroborate the rates of convergence in a two-dimensional domain. The domain is the
square Ω “ p0, 1q2. We consider the inertial power ρ “ 3, the potential type gravitational acceleration
g “ p0,´1qt, the effective viscosity µpx1, x2q “ expp´x1x2q, and adjust the data f , g1, and g2 in (2.13)
such that the exact solution is given by

upx1, x2q “

ˆ

sinpπx1q cospπx2q

´ cospπx1q sinpπx2q

˙

, ppx1, x2q “ cospπx1q sinp0.5πx2q ,

ϕ1px1, x2q “ 0.5 ` 0.5 cospx1x2q , and ϕ2px1, x2q “ 0.1 ` 0.3 exppx1x2q .

The model problem is then complemented with the appropriate Dirichlet boundary conditions. Tables
7.1 and 7.2 show the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations when D “ 1 and F “ 10. As already announced, we stress that we
are able not only to approximate the original unknowns but also the pressure field and the velocity
gradient through the formulae (5.39)–(5.40). The results confirm that the optimal rates of convergence
Ophℓ`1q predicted by Theorem 6.1 are attained for ℓ “ t0, 1u for both PEERSℓ and AFWℓ based
schemes. The Newton method exhibits a behavior independent of the meshsize, converging in five
iterations in almost all cases. In Figure 7.1 we display some solutions obtained with the mixed
PEERS1 ´ P1 ´ P1 ´ RT1 approximation with meshsize h “ 0.013 and 24, 200 triangle elements
(actually representing 1, 260, 602 DOF).

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second example we consider the cube domain Ω “ p0, 1q3, the model parameter ρ “ 3.5, D “ 1,
F “ 10, µpx1, x2, x3q “ expp´x1x2x3q, and g “ p0, 0,´1q. The manufactured solution is given by

upx1, x2, x3q “

¨

˝

sinpπx1q cospπx2q cospπx3q

´2 cospπx1q sinpπx2q cospπx3q

cospπx1q cospπx2q sinpπx3q

˛

‚ , ppx1, x2, x3q “ cospπx1q exppx2 ` x3q ,

ϕ1px1, x2, x3q “ 0.5 ` 0.5 cospx1x2x3q , and ϕ2px1, x2, x3q “ 0.1 ` 0.3 exppx1x2x3q .

Similarly to the first example, the data f , g1, g2 and uD, ϕ1,D, ϕ2,D are computed from (2.13) using the
above solution. The convergence history for a set of quasi-uniform mesh refinements using ℓ “ 0 is
shown in Table 7.3. Again, the mixed finite element method converges optimally with order Ophq, as
it was proved by Theorem 6.1. In addition, some components of the numerical solution are displayed
in Figure 7.2, which were built using the mixed PEERS0´P0´P0´RT0 approximation with meshsize
h “ 0.087 and 48, 000 tetrahedral elements (actually representing 1, 479, 784 DOF).

Example 3: Flow through a 2D porous media with fracture network.

Inspired by [16, Example 4, Section 6], we finally focus on a flow through a porous medium with a frac-
ture network considering strong jump discontinuities of the parameters D and F across the two regions.
We consider the square domain Ω “ p´1, 1q2 with an internal fracture network denoted as Ωf (see the
first plot in Figure 7.3), and boundary Γ, whose left, right, upper and lower parts are given by Γleft “

t´1u ˆ p´1, 1q, Γright “ t1u ˆ p´1, 1q, Γtop “ p´1, 1q ˆ t1u, and Γbottom “ p´1, 1q ˆ t´1u, respectively.
Note that the boundary of the internal fracture network is defined as a union of segments. The
prescribed mesh file is available in https://github.com/scaucao/Fracture network-mesh CBF-DD.
We consider the coupling of the convective Brinkman–Forchheimer and double-diffusion equations
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(2.13) in the whole domain Ω with inertial power ρ “ 4, µ “ 1, Q1 “ 0.1 I and Q2 “ 0.2 I, but with
different values of the parameters D and F for the interior and the exterior of the fracture, namely

F “

#

10 in Ωf

1 in ΩzΩf
and D “

#

1 in Ωf

1000 in ΩzΩf
. (7.1)

The parameter choice corresponds to increased inertial effect (F “ 10) in the fracture and a high
permeability (D “ 1), compared to reduced inertial effect (F “ 1) in the porous medium and low
permeability (D “ 1000). In addition, g “ p0,´1q, the source terms are g1 “ 0 and g2 “ 0, and the
boundaries conditions are

σ ν “

#

p´100 px2 ´ 1q, 0qt on Γleft ,

p0, ´100 px1 ´ 1qqt on Γtop ,
σ ν “ p0, 0qt on Γright Y Γbottom ,

ϕ1 “ 0.3 on Γbottom , ϕ1 “ 0 on Γtop , ϑ1 ¨ ν “ 0 on Γleft Y Γright ,

ϕ2 “ 0.2 on Γbottom , ϕ2 “ 0 on Γtop , ϑ2 ¨ ν “ 0 on Γleft Y Γright ,

(7.2)

which drives the flow in a diagonal direction from the left-top corner to the right-bottom corner of the
square domain Ω. We remark that the analysis developed in the previous sections can be extended,
with minor modifications, to the case of mixed boundary conditions considered in this example.

In Figure 7.3, we display the computed magnitude of the pseudostress tensor, velocity, velocity
gradient, and gradients of the temperature and concentration, and the temperature and concentration
fields, which were built using the fully-mixed AFW0´P0´P0´RT0 scheme on a mesh with h “ 0.029
and 31, 932 triangle elements (actually representing 576, 216 DOF). As we expected, the velocity in the
fractures is higher than the velocity in the porous medium, due to smaller fractures thickness and
the parameter setting (7.1). In addition, the velocity is higher in branches of the network where the
fluid enters from the left-top corner and decreases toward the right-bottom corner of the domain.
In turn, we observe a sharp velocity gradient across the interfaces between the fractures and the
porous medium. The pseudostress is consistent with the boundary conditions (7.2) and it is more
diffused since it includes the pressure field. In turn, the temperature and concentration are zero
on the top of the domain and go increasing towards the bottom of it, which is consistent with the
behavior observed in the magnitude of the temperature and concentration gradients. This example
illustrates the ability of the method to provide accurate resolution and numerically stable results for
heterogeneous inclusions with high aspect ratio and complex geometry, as presented in the network of
thin fractures. We notice that the mesh used in this example was built by considering a quasi-uniform
refinement. Nevertheless, this refinement can be improved and automatized by employing a suitable
a posteriori error indicator, as in [14] and [11], that captures the aforementioned discontinuity of
the parameters and localize the refinement where it is needed. The corresponding a posteriori error
analysis and numerical implementation will be addressed in a future work.
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PEERS0 ´ P0 ´ P0 ´ RT0 approximation

DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

570 0.354 2.2E+00 – 2.3E-01 – 1.6E-01 – 2.8E-01 – 8.6E-01 –
2194 0.177 1.1E+00 0.988 1.2E-01 1.003 5.1E-02 1.666 1.4E-01 0.948 4.5E-01 0.927
8610 0.088 5.5E-01 1.003 5.8E-02 1.063 2.1E-02 1.304 6.9E-02 1.039 2.3E-01 0.973

30002 0.047 2.9E-01 1.004 3.1E-02 1.057 9.2E-03 1.301 3.6E-02 1.037 1.2E-01 0.993
119402 0.024 1.5E-01 1.002 1.6E-02 1.111 3.4E-03 1.422 1.8E-02 1.015 6.2E-02 1.000
400402 0.013 8.0E-02 1.001 8.5E-03 1.059 1.4E-03 1.479 9.7E-03 1.005 3.4E-02 1.001

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it

2.2E-02 – 8.4E-02 – 1.6E-01 – 4.2E-02 – 7.6E-02 – 1.5E-01 – 6
1.1E-02 0.979 5.0E-02 0.736 8.9E-02 0.883 2.1E-02 0.981 4.1E-02 0.904 7.8E-02 0.946 6
5.5E-03 0.997 2.7E-02 0.916 4.6E-02 0.961 1.1E-02 0.995 2.1E-02 0.962 3.9E-02 0.980 5
2.9E-03 1.000 1.4E-02 0.973 2.5E-02 0.988 5.7E-03 0.999 1.1E-02 0.987 2.1E-02 0.993 5
1.5E-03 1.000 7.3E-03 0.991 1.2E-02 0.996 2.8E-03 1.000 5.6E-03 0.996 1.1E-02 0.998 5
8.0E-04 1.000 4.0E-03 0.997 6.7E-03 0.999 1.6E-03 1.000 3.1E-03 0.999 5.8E-03 0.999 5

AFW0 ´ P0 ´ P0 ´ RT0 approximation

DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

625 0.354 2.0E+00 – 2.3E-01 – 4.0E-01 – 1.5E-01 – 8.2E-01 –
2401 0.177 9.8E-01 1.027 1.2E-01 0.965 2.1E-01 0.944 6.7E-02 1.164 4.2E-01 0.943
9409 0.088 4.9E-01 1.010 5.8E-02 0.991 1.0E-01 0.986 3.2E-02 1.078 2.1E-01 0.987

32761 0.047 2.6E-01 1.003 3.1E-02 0.998 5.6E-02 0.996 1.7E-02 1.024 1.1E-01 0.997
130321 0.024 1.3E-01 1.001 1.6E-02 0.999 2.8E-02 0.999 8.2E-03 1.007 5.7E-02 0.999
436921 0.013 7.0E-02 1.000 8.5E-03 1.000 1.5E-02 1.000 4.5E-03 1.002 3.1E-02 1.000

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it

2.2E-02 – 8.3E-02 – 1.6E-01 – 4.2E-02 – 7.6E-02 – 1.5E-01 – 5
1.1E-02 0.978 5.0E-02 0.731 8.9E-02 0.883 2.1E-02 0.981 4.1E-02 0.905 7.8E-02 0.947 5
5.5E-03 0.997 2.7E-02 0.915 4.6E-02 0.960 1.1E-02 0.996 2.1E-02 0.963 3.9E-02 0.980 5
2.9E-03 1.000 1.4E-02 0.973 2.5E-02 0.987 5.7E-03 0.999 1.1E-02 0.987 2.1E-02 0.993 5
1.5E-03 1.000 7.3E-03 0.991 1.2E-02 0.996 2.8E-03 1.000 5.6E-03 0.996 1.1E-02 0.998 5
8.0E-04 1.000 4.0E-03 0.997 6.7E-03 0.999 1.6E-03 1.000 3.1E-03 0.999 5.8E-03 0.999 5
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PEERS1 ´ P1 ´ P1 ´ RT1 approximation

DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

1746 0.354 3.4E-01 – 4.1E-02 – 5.7E-02 – 3.4E-02 – 1.3E-01 –
6818 0.177 8.8E-02 1.959 1.1E-02 1.969 1.7E-02 1.733 9.4E-03 1.836 3.6E-02 1.867

26946 0.088 2.3E-02 1.964 2.6E-03 1.992 5.4E-03 1.674 2.6E-03 1.851 1.0E-02 1.861
94202 0.047 6.5E-03 1.979 7.5E-04 1.998 1.7E-03 1.817 7.9E-04 1.912 3.0E-03 1.905

375602 0.024 1.6E-03 1.991 1.9E-04 1.999 4.5E-04 1.926 2.0E-04 1.960 7.8E-04 1.954
1260602 0.013 4.9E-04 1.996 5.6E-05 2.000 1.4E-04 1.973 6.1E-05 1.983 2.3E-04 1.980

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it

2.0E-03 – 1.3E-02 – 2.2E-02 – 3.4E-03 – 7.9E-03 – 1.7E-02 – 6
5.1E-04 2.006 3.7E-03 1.792 6.1E-03 1.878 8.9E-04 1.971 2.2E-03 1.827 4.5E-03 1.926 6
1.3E-04 2.002 9.8E-04 1.919 1.6E-03 1.950 2.2E-04 1.994 5.9E-04 1.929 1.2E-03 1.969 5
3.6E-05 2.001 2.9E-04 1.965 4.5E-04 1.978 6.1E-05 1.999 1.7E-04 1.967 3.3E-04 1.985 5
9.0E-06 2.000 7.2E-05 1.984 1.1E-04 1.990 1.5E-05 2.000 4.3E-05 1.984 8.3E-05 1.993 5
2.7E-06 2.000 2.2E-05 1.992 3.4E-05 1.995 4.5E-06 2.000 1.3E-05 1.992 2.5E-05 1.996 5

AFW1 ´ P1 ´ P1 ´ RT1 approximation

DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

1745 0.354 3.1E-01 – 4.1E-02 – 6.4E-02 – 1.8E-02 – 1.3E-01 –
6817 0.177 7.6E-02 2.010 1.1E-02 1.959 1.7E-02 1.949 4.3E-03 2.042 3.3E-02 1.958

26945 0.088 1.9E-02 2.006 2.6E-03 1.989 4.2E-03 1.980 1.1E-03 1.963 8.4E-03 1.986
94201 0.047 5.3E-03 2.003 7.5E-04 1.997 1.2E-03 1.992 3.2E-04 1.972 2.4E-03 1.995

375601 0.024 1.3E-03 2.001 1.9E-04 1.999 3.0E-04 1.997 8.1E-05 1.984 6.0E-04 1.998
1260601 0.013 4.0E-04 2.001 5.6E-05 2.000 8.9E-03 1.998 2.4E-05 1.992 1.8E-04 1.999

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it

2.0E-03 – 1.3E-02 – 2.2E-02 – 3.4E-03 – 7.9E-03 – 1.7E-02 – 6
5.1E-04 2.006 3.7E-03 1.783 6.1E-03 1.877 8.6E-04 1.971 2.2E-03 1.820 4.5E-03 1.926 5
1.3E-04 2.002 9.8E-04 1.918 1.6E-03 1.950 2.2E-04 1.994 5.9E-04 1.928 1.2E-03 1.969 5
3.6E-05 2.001 2.9E-04 1.965 4.5E-04 1.978 6.1E-05 1.999 1.7E-04 1.968 3.3E-04 1.985 5
9.0E-06 2.000 7.2E-05 1.984 1.1E-04 1.990 1.5E-05 2.000 4.3E-05 1.984 8.3E-05 1.993 5
2.7E-06 2.000 2.2E-05 1.992 3.4E-05 1.995 4.5E-06 2.000 1.3E-05 1.992 2.5E-05 1.996 5

Table 7.2: [Example 1, ℓ “ 1] Number of degrees of freedom, meshsizes, errors, rates of convergence,
and Newton iteration count for the fully-mixed approximations with ρ “ 3, D “ 1, and F “ 10 .
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PEERS0 ´ P0 ´ P0 ´ RT0 approximation

DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

1642 0.866 9.2E+00 – 5.7E-01 – 1.2E+00 – 1.2E+00 – 2.4E+00 –
12376 0.433 4.8E+00 0.953 3.1E-01 0.898 4.3E-01 1.477 6.3E-01 0.881 1.4E+00 0.721
96268 0.217 2.4E+00 1.002 1.6E-01 0.971 1.2E-01 1.793 3.1E-01 1.054 7.6E-01 0.910

509926 0.124 1.4E+00 1.015 8.9E-02 0.994 5.0E-02 1.604 1.6E-01 1.104 4.4E-01 0.968
1479784 0.087 9.4E-01 1.012 6.3E-02 0.998 2.9E-02 1.577 1.1E-01 1.084 3.1E-01 0.987

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it

2.9E-02 – 1.0E-01 – 3.2E-01 – 6.0E-02 – 1.1E-01 – 2.3E-01 – 6
1.6E-02 0.868 8.2E-02 0.295 1.9E-01 0.760 3.1E-02 0.931 6.3E-02 0.849 1.3E-01 0.864 6
8.0E-03 0.971 4.8E-02 0.788 9.9E-02 0.926 1.6E-02 0.982 3.3E-02 0.918 6.6E-02 0.957 6
4.6E-03 0.994 2.8E-02 0.925 5.7E-02 0.975 9.1E-03 0.995 1.9E-02 0.966 3.8E-02 0.986 6
3.2E-03 0.998 2.0E-02 0.965 4.0E-02 0.989 6.4E-03 0.998 1.4E-02 0.983 2.7E-02 0.994 6

AFW0 ´ P0 ´ P0 ´ RT0 approximation

DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

1993 0.866 8.7E+00 – 5.6E-01 – 1.1E+00 – 1.0E+00 – 2.1E+00 –
14881 0.433 4.3E+00 1.032 3.0E-01 0.903 6.4E-01 0.727 4.9E-01 1.093 1.3E+00 0.712

114817 0.217 2.1E+00 1.045 1.6E-01 0.959 3.4E-01 0.928 2.2E-01 1.119 6.8E-01 0.922
605641 0.124 1.2E+00 1.019 8.9E-02 0.988 1.9E-01 0.980 1.3E-01 1.050 3.9E-01 0.978
1754401 0.087 8.1E-01 1.008 6.2E-02 0.995 1.4E-01 0.992 8.7E-02 1.021 2.7E-01 0.992

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it

2.9E-02 – 9.9E-02 – 3.1E-01 – 6.0E-02 – 1.1E-01 – 2.3E-01 – 5
1.6E-02 0.869 8.1E-02 0.275 1.9E-01 0.747 3.1E-02 0.934 6.3E-02 0.846 1.3E-02 0.863 5
8.0E-03 0.972 4.8E-02 0.775 9.8E-02 0.917 1.6E-02 0.984 3.3E-02 0.915 6.6E-02 0.954 5
4.6E-03 0.995 2.8E-02 0.922 5.7E-02 0.970 9.1E-03 0.996 1.9E-02 0.965 3.8E-02 0.983 5
3.2E-03 0.998 2.0E-02 0.964 4.0E-02 0.986 6.4E-03 0.998 1.4E-02 0.983 2.7E-02 0.992 5

Table 7.3: [Example 2] Number of degrees of freedom, meshsizes, errors, rates of convergence, and
Newton iteration count for the fully-mixed approximations with ρ “ 3.5, D “ 1, and F “ 10 .
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Figure 7.1: [Example 1, ℓ “ 1] Computed pseudostress tensor component, magnitude of the velocity,
vorticity component, and pressure field (top plots); temperature field, magnitude of the pseudoheat
vector, concentration field, and magnitude of the pseudodiffusion vector (bottom plots).
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[27] G.N. Gatica, R. Oyarzúa, R. Ruiz-Baier, and Y. Sobral, Banach spaces-based analysis
of a fully-mixed finite element method for the steady-state model of fluidized beds. Comp. Math.
Appl. 84 (2021), 244–276

[28] R. Glowinski and A. Marrocco, Sur l’approximation, par éléments finis d’ordre un, et
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