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Centro de Investigación en
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Abstract

In this paper we extend recent results obtained for the Navier-Stokes equations to propose and
analyze a new fully mixed virtual element method (mixed-VEM) for the stationary two-dimensional
Boussinesq equations appearing in non-isothermal flow phenomena. The model consists of a Navier-
Stokes type system, modeling the velocity and the pressure of the fluid, coupled to an advection-
diffusion equation for the temperature. The variational formulation is based on the introduction of
the additional unknowns given by a modified pseudostress tensor, which depends on the pressure,
and the diffusive and convective terms of the fluid, and the pseudoheat vector, which involves
the temperature, its gradient, and the velocity. As a consequence of the former, the pressure
is eliminated from the system, but computed afterwards via a post-processing formula. In turn,
for the Galerkin approximation we follow the approach employed in a previous work introducing
for the first time an Lp spaces-based mixed-VEM for the Navier-Stokes equations, and couple it
with a similar mixed-VEM for the convection-diffusion equation modelling the temperature. The
solvability analysis of the resulting coupled discrete scheme is carried out by using appropriate fixed-
point arguments, along with the discrete versions of the Babuška-Brezzi theory and the Banach-
Nečas-Babuška theorem, both in subspaces of Banach spaces. The first Strang lemma is applied to
derive the a priori error estimates for the virtual element solution as well as for the fully computable
approximation of the pseudostress tensor, the pseudoheat vector, and the post-processed pressure.
Finally, several numerical results, illustrating the performance of the mixed-VEM scheme and
confirming the rates of convergence predicted by the theory, are reported.

Key words: Boussinesq problem, pseudostress-based formulation, Banach spaces, mixed virtual
element method.
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1 Introduction

The phenomenon of heat transport in a fluid is a significant area of application in modeling mantle
convection, stratified oceanic flows and the cooling of electronic devices, which involves three key
fields, namely flow velocity, pressure, and temperature. This phenomenon can be mathematically
described by a coupled system of Navier–Stokes and advection-diffusion-dominated transport equations
called the Boussinesq equation. As we well know, obtaining accurate solutions to coupled systems is
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never an easy task, and this is especially so for nonlinear systems. Hence, experts in computational
mathematics are challenged to design new efficient numerical methods which provide highly accurate
numerical solutions allowing for preserving the physical properties. Up to now, a variety of numerical
approximations has been introduced and investigated for the steady and evolutive Boussinesq equations
and its generalizations to the case of temperature-dependent parameters, including finite element
method (FEM) [10, 21, 25, 33], mixed and augmented-mixed FEM approaches [2, 1, 23, 24, 19], and
virtual element methods [31].

Up to the authors’ knowledge, Bernardi et al. [9] constitutes one of the first works in analyzing
FEMs for Boussinesq problem. In turn, [27] proposes a dual-mixed FEM for the respective two-
dimensional model, where gradients of velocity and temperature are also introduced as additional
unknowns. Lately, an augmented mixed-primal FEM, which defines a modified nonlinear pseudostress
tensor involving velocity gradient, convective term and the pressure, similarly as done in [18] for a dual-
mixed formulation of the Navier–Stokes equation, is presented in [23] for the stationary Boussinesq
model. In other words, the augmented scheme for the fluid flow is coupled with a primal scheme
for the convection-diffusion equation, thus yielding the aforementioned nonlinear pseudostress, the
velocity, the temperature, and the normal derivative of the latter on the boundary, as the main
unknowns. Regarding fully mixed approaches, augmented mixed formulations have been introduced
for the Boussinesq problem with temperature-dependent and constant viscosity in [1, 24]. In both
cases, the analysis is based on the introduction of a pseudostress tensor relating the diffusive and
convective terms with the pressure and optimal convergence is proven. However, this approach can
be computationally expensive and difficult to implement in practice. To overcome this issue, a new
Banach spaces-based mixed FEM for the Boussinesq problem is developed in [19], which allows, on
the one hand, to conserve momentum and thermal energy if the external forces belong to the velocity
and temperature discrete spaces, respectively, and on the other hand, to compute further variables
of interest, such as the fluid vorticity, the fluid velocity gradient, and the heat-flux, through a simple
postprocess of the finite element solutions. In this way, no numerical differentiation is applied, and
hence no further sources of error arise. A posteriori error analysis of the corresponding formulation is
also addressed in [20].

In recent years, a significant number of researchers has concentrated on the extension of polygonal-
based numerical methods, such as mimetic finite difference methods [13, 12] and virtual element meth-
ods (VEM) [5, 11, 14, 16, 29], for solving diverse models in continuum mechanics. Actually, since the
formulation of FEM requires explicit knowledge of the basis functions, these very powerful technique
might often be limited (at least in their classical setting) to meshes with simple-geometrical shaped
elements, e.g. triangles or quadrilaterals. This constraint is overcome by polytopal element methods
such as VEM, which are designed for providing arbitrary order of accuracy on polygonal/polytopal
elements, and for which the explicit knowledge of the basis functions is not required. Moreover, its
practical implementation relies on suitable projection operators that are computable by their degrees
of freedom. Furthermore, the advances in the theory and applications of VEM has also been aware of
the fact that additional physically relevant variables, such as stress, velocity gradient, vorticity, heat
flux, and others, reveal specific mechanisms of the phenomena, so that they become of primary inter-
est. Hence, the development of mixed VEMs for solving diverse linear and nonlinear problems in, for
instance, fluid mechanics, using velocity-pressure [3, 7, 8] and pseudostress-velocity-based formulations
[32, 31, 14, 16, 29], has become an interesting research field as well. In particular, a mixed-VEM based
on the pseudostress-velocity formulation for the Stokes equation was developed in [14] as a natural ex-
tension of previously proposed dual-mixed-FEMs for elliptic equations in divergence form (cf. []). The
discussion in [14] includes the virtual finite element subspaces to be employed, the associated inter-
polation operators, and the respective approximation properties. Moreover, the uniform boundedness
of the resulting family of projectors and its corresponding approximation properties are established
there. In this way, the classical Babuška–Brezzi theory is applied to prove the well-posedness of the
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discrete scheme and derive the associated a priori error estimates for the virtual solution as well as for
the fully computable projection of it. Later on, this approach was extended to other models in fluid
mechanics, such as quasi-Newtonian Stokes [16], linear and nonlinear Brinkman [15, 29], Navier–Stokes
[30, 32], and Boussinesq [31], where different formulations were considered. In particular, the Banach
spaces-based approach, usually utilized for solving diverse nonlinear problems in continuum mechan-
ics via primal and mixed finite element methods, is extended for the first time in [32] to the virtual
element method (VEM) framework and its respective applications. More precisely, an Lp spaces-based
mixed VEM for a pseudostress-velocity formulation of the two-dimensional Navier-Stokes equations
with Dirichlet boundary conditions, is proposed and analyzed there. The simplicity of the resulting
mixed-VEM scheme is reflected by the absence of augmented terms, on the contrary to previous work
on this model [30], and by the fact that only a virtual element space for the pseudostress tensor is re-
quired since the non-virtual but explicit subspace given by the piecewise polynomial vectors of degree
≤ k is employed to approximate the velocity.

According to the above discussion and in order to continue extending the applicability of mixed-
VEM to nonlinear models in fluids mechanics, we now generalize the approach from [32] to the case of
the Boussinesq problem. More precisely, we basically consider the equations and the resulting varia-
tional formulation of the non-augmented version from [24] (see also [19]), and then adapt the approach
from [32] to propose, up to our knowledge for the first time, an Lp spaces-based fully mixed-VEM for
Boussinesq. In this way, the pseudostress and the velocity of the fluid are approximated by virtual
element subspaces of H(div4/3) and L4, respectively, whereas virtual element subspaces of H(div4/3)
and L4 are employed to approximate the pseudoheat vector and the temperature, respectively. Thus,
similarly as in the aforementioned references, fixed-point strategies along with discrete versions of
the Babuška-Brezzi theory and the Banach-Nečas-Babuška theorem, and a Strang-type lemma, are
utilized to develop the solvability analysis and to derive the associated a priori error estimates for
the components of the virtual element solution and the postprocessed pressure. The rest of this work
is organized as follows. In Section 2 we introduce the model of interest, derive the corresponding
variational formulation, and recall its solvability analysis from [19]. In Section 3 we provide most
details of the virtual element discretization, including the mesh entities, the degrees of freedom, the
construction of the mixed virtual element subspaces, and the main properties of the discrete linear and
bilinear forms. Next, in Section 4 we establish the existence and uniqueness of solution of the discrete
problem under smallness assumptions on the data. In turn, a priori error estimates and associated
rates of convergence for the full solution of the virtual element scheme, as well as for the computable
postprocessed approximations of the pseudostress, pseudoheat, and pressure, are derived in Section
5. Finally, several numerical examples illustrating the performance of the mixed-VEM scheme and
confirming the rates of convergence predicted by the theory, are reported in Section 6.

1.1 Notations

For any vector fields v = (v1, v2)
t and w = (w1, w2)

t, we set the gradient, divergence, and tensor
product operators as

∇v := (∇v1,∇v2), div(v) := ∂xv1 + ∂yv2, and v ⊗w := (viwj)i,j=1,2 ,

respectively. In addition, denoting by I the identity matrix of R2, for any tensor fields τ = (τij), ζ =
(ζij) ∈ R2×2, we write as usual

τ t := (τji), tr(τ ) := τ11 + τ22, τ d := τ − 1

2
tr(τ )I , and τ : ζ :=

2∑
i,j=1

τijζij ,

which corresponds, respectively, to the transpose, the trace, and the deviator tensor of τ , and to the
tensorial product between τ and ζ. Next, given a bounded domain D ⊂ R2 with boundary ∂D, we
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let n be the outward unit normal vector on ∂D. Also, given r ≥ 0 and 1 < p ≤ ∞, we let Wr,p(D) be
the standard Sobolev space with norm ∥ · ∥r,p;D and seminorm | · |r,p;D. In particular, for r = 0 we let
Lp(D) := W0,p(D) be the usual Lebesgue space, and for p = 2 we let Hs(D) := Wr,2(D) be the classical
Hilbertian Sobolev space with norm ∥ · ∥s,D and seminorm | · |s,D. Furthermore, given a generic scalar
functional space M, we let M and M be its vector and tensorial counterparts, respectively, whose
norms and seminorms are denoted exactly as those of M. On the other hand, given t ∈ (1,+∞), and
letting div (resp. rot) be the usual divergence operator div (resp. rotational operator rot) acting
along the rows of a given tensor, we introduce the non-standard Banach spaces

H(divt; Ω) :=
{
v ∈ L2(Ω) : div(v) ∈ Lt(Ω)

}
,

and
H(divt; Ω) :=

{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
,

equipped with the usual norms

∥v∥divt;Ω := ∥v∥0,Ω + ∥ div(v)∥0,t;Ω, ∀ v ∈ H(divt; Ω),

and
∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω, ∀ τ ∈ H(divt; Ω),

respectively.

2 The model problem and its continuous formulation

Let Ω be a bounded polygonal domain in R2 with boundary Γ and outward unit normal vector n. We
consider the stationary Boussinesq problem, that is, given an external force per unit mass g ∈ L∞(Ω),
and the boundary data uD ∈ H1/2(Γ) and θD ∈ H1/2(Γ), we are interested in finding the velocity u,
the pressure p, and the temperature θ of a fluid occupying the region Ω, such that

−ν∆u+ (∇u)u+∇p− θg = 0 in Ω, (2.1a)

divu = 0 in Ω, (2.1b)

−κ∆θ + u · ∇θ = 0 in Ω , (2.1c)

where ν and κ denote the viscosity and thermal conductivity of the fluid, respectively. In addition,
the model is supplied with the boundary conditions

u = uD on Γ , θ = θD on Γ , (2.2)

and the uniqueness condition for the pressure∫
Ω
p = 0 . (2.3)

Note that, due to the incompressibility of the fluid (cf. (2.1b)), uD must satisfy∫
Γ
uD · n = 0 . (2.4)

Next, in order to derive our fully-mixed formulation, we need to rewrite equations (2.1a) and
(2.1c) as a first-order system. For this purpose, we begin by introducing the pseudostress tensor and
pseudoheat vector variables

σ := ν∇u− u⊗ u− (p+ cu)I and ρ := κ∇θ − θu in Ω , (2.5)
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where cu is defined by

cu := − 1

2|Ω|

∫
Ω
tr(u⊗ u) = − 1

2|Ω|
∥u∥20,Ω. (2.6)

By applying the trace operator to both sides of the first equation of (2.5), and utilizing again the
incompressibility condition divu = tr(∇u) = 0 (cf. (2.1b)), one arrives at

p = − 1

2

(
trσ + tr(u⊗ u)

)
− cu in Ω , (2.7)

which allows us to eliminate the pressure variable from the rest of the formulation. In turn, according
to (2.6) and (2.7), the assumption (2.3) becomes∫

Ω
tr(σ) = 0 . (2.8)

Hence, using the deviatoric operator and (2.1b), we can rewrite (2.1a) and (2.1c) together with the
associated boundary conditions (2.2), respectively, as

ν−1σd + ν−1(u⊗ u) = ∇u in Ω,

divσ + θg = 0 in Ω,

u|Γ = uD and

∫
Ω
tr(σ) = 0 ,

(2.9)

and
κ−1ρ+ κ−1θu = ∇θ in Ω,

divρ = 0 in Ω,

θ|Γ = θD .

(2.10)

Thus, in order to derive a velocity–pseudostress based-mixed formulation for (2.9), we let X and Y
be suitable test spaces to be defined below, and formally multiply its first and second equations by
τ ∈ X and v ∈ Y, respectively, so that, using that σd : τ = σd : τ d, we arrive at

ν−1

∫
Ω
σd : τ d + ν−1

∫
Ω
(u⊗ u)d : τ −

∫
Ω
∇u : τ = 0 ∀ τ ∈ X, (2.11)

and ∫
Ω
v · divσ +

∫
Ω
θg · v = 0 ∀ v ∈ Y, (2.12)

Similarly, letting now X and Y be corresponding test spaces, and multiplying the first and second
equations of (2.10) by η ∈ X and φ ∈ Y respectively, we obtain∫

Ω
κ−1ρ · η +

∫
Ω
κ−1θu · η −

∫
Ω
∇θ · η = 0 ∀ η ∈ X, (2.13)

and ∫
Ω
φdivρ = 0 ∀ φ ∈ Y . (2.14)

Next, regarding the specific choice of the aforementioned spaces, we begin by observing that the
first terms of (2.11) and (2.13) are well defined if σ, τ ∈ L2(Ω) and ρ, η ∈ L2(Ω), respectively. On
the other hand, assuming originally that u ∈ H1(Ω) and θ ∈ H1(Ω), and given t, t′ ∈ (1,∞), conjugate
to each other, we can integrate by parts the third terms in (2.11) and (2.13) with τ ∈ H(divt; Ω) and
η ∈ H(divt; Ω), respectively, so that using the Dirichlet boundary conditions provided in (2.2), we get∫

Ω
∇u : τ = −

∫
Ω
u · div τ + ⟨τ n,uD⟩ ∀ τ ∈ H(divt; Ω) , (2.15)
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and ∫
Ω
∇θ · η = −

∫
Ω
θ div η + ⟨η · n, θD⟩Γ ∀ η ∈ H(divt; Ω) , (2.16)

where ⟨·, ·⟩Γ stands for both the duality pairings (H−1/2(Γ),H1/2(Γ)
)
and (H−1/2(Γ),H1/2(Γ)

)
. Now,

from the first terms on the right hand side of the foregoing equations, along with the Sobolev embed-
dings H1(Ω) ⊂ Lt

′
(Ω) and H1(Ω) ⊂ Lt

′
(Ω), we realize that it actually suffices to look for u ∈ Lt

′
(Ω)

and θ ∈ Lt
′
(Ω). However, it is clear from (2.11) that its second term is well defined if u ∈ L4(Ω),

which yields t′ = 4 and thus t = 4/3. In this way, θ is also sought in L4(Ω), and hence the second
term of (2.13) makes sense as well.

According to the foregoing discussion, we now define the spaces

X := H(div4/3; Ω) , Y := L4(Ω) , X := H(div4/3; Ω) , and Y := L4(Ω) ,

which are endowed with the norms

∥ · ∥X := ∥ · ∥div4/3;Ω
, ∥ · ∥Y := ∥ · ∥0,4;Ω , ∥ · ∥X := ∥ · ∥div4/3;Ω , and ∥ · ∥Y := ∥ · ∥0,4;Ω.

In addition, in order to deal with the null mean value of tr(σ) (cf. third row of (2.9)), we introduce
the subspace of X given by

X0 = H0(div4/3; Ω) :=
{
τ ∈ X :

∫
Ω
tr(τ ) = 0

}
. (2.17)

Consequently, replacing (2.15) and (2.16) back into (2.11) and (2.13), respectively, gathering the
resulting equations with (2.12) and (2.14), and then realizing, thanks to (2.4), that testing the new
(2.11) against τ ∈ X is equivalent to doing it against τ ∈ X0, we deduce that the variational formulation
of (2.9) and (2.10) becomes: Find σ ∈ X0, u ∈ Y, ρ ∈ X, and θ ∈ Y, such that

a(σ, τ ) + c(u;u, τ ) + b(τ ,u) = f(τ ) ∀ τ ∈ X0 ,

b(σ,v) = −
∫
Ω
θ g · v ∀ v ∈ Y ,

ã(ρ,η) + c̃(u; θ,η) + b̃(η, θ) = f̃(η) ∀ η ∈ X ,

b̃(ρ, φ) = 0 ∀ φ ∈ Y ,

(2.18)

where the bilinear forms a : X × X → R, b : X × Y → R, ã : X × X → R, and b̃ : X × Y → R are
defined as

a(ζ, τ ) :=

∫
Ω
ν−1ζd : τ d ∀ ζ, τ ∈ X ,

b(τ ,v) :=

∫
Ω
v · div τ ∀ (τ ,v) ∈ X×Y ,

ã(ξ,η) :=

∫
Ω
κ−1ξ · η ∀ ξ, η ∈ X , and

b̃(η, ψ) :=

∫
Ω
ψ div η ∀ (η, ψ) ∈ X×Y ,

(2.19)

whereas the linear functionals f : X0 → R and f̃ : X → X are given by

f(τ ) := ⟨τ n,uD⟩Γ ∀ τ ∈ X0 , and

f̃(η) := ⟨η · n, θD⟩Γ ∀η ∈ X .
(2.20)

In turn, for each z ∈ Y we set the bilinear forms c(z; ·, ·) : Y × X → R and c̃(z; ·, ·) : Y ×X → R as
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c(z;v, τ ) :=

∫
Ω
ν−1(z⊗ v)d : τ ∀ (v, τ ) ∈ Y × X , and

c̃(z;ψ,η) :=

∫
Ω
κ−1ψz · η ∀ (ψ,η) ∈ Y ×X .

(2.21)

Next, we consider the product spaces V := X0 ×Y and W := X×Y equipped with the norms

∥(τ ,v)∥V := ∥τ∥X + ∥v∥Y and ∥(η, φ)∥W := ∥η∥X + ∥φ∥Y,

for any (τ ,v) ∈ V, (η, φ) ∈ W, and introduce the bilinear forms B : V×V → R and B̃ : W×W → R
arising from (2.18) after adding the terms involving a and b, and ã and b̃, respectively, that is

B ((ζ,w), (τ ,v)) := a(ζ, τ ) + b(τ ,w) + b(ζ,v) ∀ (ζ,w), (τ ,v) ∈ V , and

B̃ ((ξ, ψ), (η, φ)) := ã(ξ,η) + b̃(η, ψ) + b̃(ξ, φ) ∀ (ξ, ψ), (η, φ) ∈ W .
(2.22)

Then, adding separately the first two and the last two rows, respectively, of (2.18), we deduce that
our fully mixed variational formulation can be re-stated as: Find (σ,u) ∈ V and (ρ, θ) ∈ W such that

Au ((σ,u), (τ ,v)) = Fθ(τ ,v) ∀ (τ ,v) ∈ V ,

Ãu ((ρ, θ), (η, φ)) = F̃(η, φ) ∀ (η, φ) ∈ W ,
(2.23)

where, for each z ∈ Y, the bilinear forms Az : V × V → R and Ãz : W ×W → R are defined by

Az ((ζ,w), (τ ,v)) := B ((ζ,w), (τ ,v)) + c(z;w, τ ) ∀ (ζ, w), (τ ,v) ∈ V , and

Ãz ((ξ, ψ), (η, φ)) := B̃ ((ξ, ψ), (η, φ)) + c̃(z;ψ,η) ∀ (ξ, ψ), (η, φ) ∈ W ,
(2.24)

whereas, given ψ ∈ Y, the linear functionals Fψ ∈ V ′ and F̃ ∈ W ′ are given by

Fψ(τ ,v) := f(τ )−
∫
Ω
ψ g · v ∀ (τ ,v) ∈ V , and

F̃(η, φ) := f̃(η) ∀ (η, φ) ∈ W .

(2.25)

Here we notice from (2.19) and (2.21), thanks to the Cauchy-Schwarz and Hölder inequalities, that
there exist constants ∥a∥ = ν−1, ∥b∥ = 1, ∥ã∥ = κ−1, ∥b̃∥ = 1, ∥c∥ = ν−1, and ∥c̃∥ = κ−1, such that∣∣a(ζ, τ ∣∣ ≤ ∥a∥ ∥ζ∥X ∥τ∥X ∀ ζ, τ ∈ X ,∣∣b(τ ,v)∣∣ ≤ ∥b∥ ∥τ∥X ∥v∥Y ∀ (τ ,v) ∈ X×Y ,∣∣ã(ξ,η∣∣ ≤ ∥ã∥ ∥ξ∥X ∥η∥X ∀ ξ, η ∈ X ,∣∣̃b(η, ψ)∣∣ ≤ ∥b̃∥ ∥η∥X ∥ψ∥Y ∀ (η, ψ) ∈ X×Y ,∣∣c(z;w, τ )∣∣ ≤ ∥c∥ ∥z∥Y ∥w∥Y ∥τ ∥X ∀ z, w ∈ Y, ∀ τ ∈ X ,∣∣c̃(z;ψ,η)∣∣ ≤ ∥c̃∥ ∥z∥Y ∥ψ∥Y ∥η∥X ∀ (z, ψ,η) ∈ Y ×Y ×X .

(2.26)

In addition, letting i4 : H
1(Ω) → L4(Ω) and i4 : H

1(Ω) → L4(Ω) be the respective continuous injection,
there exist positive constants cf and c

f̃
, depending on ∥i4∥ and ∥i4∥, respectively, such that (cf. (2.20))

∥f∥ ≤ cf ∥uD∥1/2,Γ and ∥f̃∥ ≤ c
f̃
∥θD∥1/2,Γ . (2.27)

Now, regarding the well-posedness of (2.23) (equivalently, (2.18)), we remark that, up to minor
changes caused by the non-homogeneous Dirichlet boundary condition for the velocity, its unique
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solvability was basically derived in [19]. In particular, it was proved in [19, Section 3.1] that there
exist positive constants αB and α

B̃
, depending on ν, κ, and the constants for the continuous inf-sup

conditions of b and b̃, such that

sup
0 ̸=(τ ,v)∈V

B ((ζ,w), (τ ,v))

∥(τ ,v)∥V
≥ αB ∥(ζ,w)∥V ∀ (ζ,w) ∈ V,

sup
0 ̸=(η,φ)∈W

B̃ ((ξ, ψ), (η, φ))

∥(η, φ)∥W
≥ α

B̃
∥(ξ, ψ)∥W ∀ (η, φ) ∈ W ,

which, along with the boundedness properties of c and c̃ (cf. (2.26)), yield the inf-sup conditions for
the bilinear forms Az and Ãz for sufficiently small z. More precisely, for each z ∈ Y such that

∥z∥Y ≤ δ :=
1

2
min

{
ν αB, κ αB̃

}
, (2.28)

there holds (cf. [19, Lemmas 3.2 and 3.3])

sup
0 ̸=(τ ,v)∈V

Az ((ζ,w), (τ ,v))

∥(τ ,v)∥V
≥ αB

2
∥(ζ,w)∥V ∀ (ζ,w) ∈ V,

sup
0 ̸=(η,φ)∈W

Ãz ((ξ, ψ), (η, φ))

∥(η, φ)∥W
≥

α
B̃

2
∥(ξ, ψ)∥W ∀ (η, φ) ∈ W .

Moreover, it is easily seen from (2.22), (2.24), and (2.26), that for each z ∈ Y satisfying (2.28), the
bilinear forms Az and Ãz are bounded with corresponding constants ∥A∥ (depending only on ν−1 and
δ) and ∥Ã∥ (depending only on κ−1 and δ), respectively.

In this way, reformulating (2.23) as a fixed-point operator equation, and assuming that uD and
θD are sufficiently small, the well-posedness of (2.23) is obtained as a consequence of the generalized
Lax-Milgram lemma (also known as the Banach-Nečas-Babuška theorem) and the Banach fixed-point
theorem. More precisely, letting (cf. (2.28))

W :=
{
z ∈ Y : ∥z∥Y ≤ δ

}
, (2.29)

one deduces the existence of positive constants C0 (depending only on cf , cf̃ , αB, and α
B̃
) and L0

(depending only on cf , cf̃ , αB, αB̃
, ν, κ, and ∥g∥0,Ω), with which the following result is established.

Theorem 2.1. Assume that the data satisfy

C0

{
∥uD∥1/2,Γ + ∥g∥0,Ω ∥θD∥1/2,Γ

}
≤ δ , and

L0

{
∥uD∥1/2,Γ + ∥θD∥1/2,Γ

}
< 1 .

Then, the coupled problem (2.23) (equivalently, (2.18)) has a unique solution
(
(σ,u), (ρ, θ)

)
∈ V ×W,

with u ∈ W. Moreover, there exist positive constants C0 and C̃0, depending both only on cf , cf̃ , αB,
and α

B̃
, such that

∥(σ,u)∥V ≤ C0
{
∥uD∥1/2,Γ + ∥g∥0,Ω ∥θD∥1/2,Γ

}
, and

∥(ρ, θ)∥W ≤ C̃0 ∥θD∥1/2,Γ .
(2.30)

Proof. It reduces to a minor variation of the proof of [19, Theorem 3.2].
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3 Mixed virtual element approximation

In this section, we describe the virtual element discretization for the 2D version of (2.23) (equivalently,
(2.18)) on general polygonal meshes.

3.1 Preliminaries

The aim of this part is to present some preliminary concepts and results to be employed in what
follows. For more details, we refer to [11, 5, 14]. We begin by letting {Kh}h>0 be a sequence of
partitions of Ω into general polygons K with diameter and number of edges denoted by hK and dK ,
respectively, and set, as usual, h := max

{
hK : K ∈ Kh

}
. Then, we let Eh be the set of edges e of

{Kh}h>0, and let EIh = Eh\∂Ω (resp. EBh = Eh ∩ Γ) be the set of all interior (resp. boundary) edges.
Also, nKe stands for the unit outward normal on any edge e ∈ Eh such that e ⊂ ∂K. In addition,
following, for example [5], we assume that there exists a constant CK > 0, such that:

i) every K ∈ Kh is star-shaped with respect to a ball with radius ≥ CK hK , and

ii) for each K ∈ Kh, the distance between every two vertices of it is ≥ CK hK .

It is not difficult to see that the above hypotheses guarantee that each K ∈ Kh is simply connected,
and that there exists an integer NK (depending only on CK), such that dK ≤ NK for all K ∈ K.

Next, we refer to the L1-orthogonal projections and its approximation properties. To this end, for
any mesh object ∆ ∈ Kh ∪ Eh, and for any integer ℓ ≥ 0, we let Pℓ(∆) be the space of polynomials
defined on ∆ of degree ≤ ℓ, with the extended notation P−1(∆) = {0}. In addition, for each K ∈ Kh

we let PK
ℓ : L1(K) → Pℓ(K) be the L1-projection operator, which is characterized by the identity∫

K
PK
ℓ (v) q =

∫
K
v q ∀ v ∈ L1(K), ∀ q ∈ Pℓ(K). (3.1)

Similarly, we let PK
ℓ : L1(K) → Pℓ(K) and PPK

ℓ : L1(K) → Pℓ(K) be the vectorial and tensorial
versions of PK

ℓ , which are characterized analogously to (3.1).

The approximation properties of PK
ℓ , PK

ℓ , and PPK
ℓ are stated as follows (cf. [32, Lemma 3.1]).

Lemma 3.1. Let K ∈ Kh, p > 1, and ℓ, s, m be integers such that ℓ ≥ 0 and 0 ≤ m ≤ s ≤ ℓ + 1.
Then, there exists a constant Cℓ, depending only on ℓ and CK, and hence independent of K, such that

|v − PK
ℓ (v)|m,p;K ≤ Cℓ h

s−m
K |v|s,p;K ∀ v ∈ Ws,p(K) ,

|v −PK
ℓ (v)|m,p;K ≤ Cℓ h

s−m
K |v|s,p;K ∀v ∈ Ws,p(K) ,

|τ − PPK
ℓ (τ )|m,p;K ≤ Cℓ h

s−m
K |τ |s,p:K ∀ τ ∈ Ws,p(K) .

(3.2)

We remark now that Lemma 3.1 implies boundedness properties of the projectors PK
ℓ , PK

ℓ , and
PPK
ℓ . More precisely, taking in particular m = s in (3.2), we deduce the existence of constants Mℓ,

depending only on ℓ and CK as well, such that for each K ∈ Kh there holds

|PK
ℓ (v)|s,p;K ≤ Mℓ |v|s,p;K ∀ v ∈ Ws,p(K) ,

|PK
ℓ (v)|s,p;K ≤ Mℓ |v|s,p;K ∀v ∈ Ws,p(K) ,

|PPK
ℓ (τ )|s,p;K ≤ Mℓ |τ |s,p:K ∀ τ ∈ Ws,p(K) .

(3.3)
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Finally, introducing the piecewise polynomial space

Pℓ(Kh) :=
{
v ∈ L2(Ω) : v|K ∈ Pℓ(K), ∀ K ∈ Kh

}
, (3.4)

we realize that the properties of PK
ℓ , PK

ℓ , and PPK
ℓ given by Lemma 3.1 (with m = 0) and (3.3) (with

s = 0) easily extend to their global counterparts denoted

Ph
ℓ : L1(Ω) → Pℓ(Kh) , Ph

ℓ : L1(Ω) → Pℓ(Kh) , and PPh
ℓ : L1(Ω) → Pℓ(Kh) ,

where Pℓ(Kh) and Pℓ(Kh) are the vector and tensorial versions of (3.4), respectively. Indeed, it is
readily seen that for each K ∈ Kh there hold

Ph
ℓ (v)|K = PK

ℓ (v|K) ∀ v ∈ L1(Ω) , Ph
ℓ (v)|K = PK

ℓ (v|K) ∀v ∈ L1(Ω) ,

and PPh
ℓ (τ )|K = PPK

ℓ (τ |K) ∀ τ ∈ L1(Ω) .
(3.5)

3.2 Discrete spaces

In this section we describe appropriate choices for virtual (both, vector and tensor versions) and
non-virtual (both, scalar and vector versions) approximation spaces of the pairs

(
X,X

)
, and

(
Y,Y

)
,

respectively, for which we first let rot(η) := ∂xη2−∂yη1 and rot(τ ) := (∂xτ12−∂yτ11, ∂xτ22−∂yτ21)t
for all sufficiently smooth vector η and tensor τ . Then, given r ∈ N, we follow [14] and introduce for
each K ∈ Kh the local virtual spaces

Xr(K) :=
{
η ∈ H(div4/3;K) ∩H(rot;K) : (η · nKe )|e ∈ Pr(e), ∀ e ⊂ ∂K ,

div(η) ∈ Pr(K) , and rot(η) ∈ Pr−1(K)
}
,

(3.6)

and
Xr(K) :=

{
τ ∈ H(div4/3;K) ∩H(rot;K) : (τnKe )|e ∈ Pr(e), ∀ e ⊂ ∂K ,

div(τ ) ∈ Pr(K) , and rot(τ ) ∈ Pr−1(K)
}
.

(3.7)

It is well-known that the vectors η ∈ Xr(K) and tensors τ ∈ Xr(K) are uniquely determined by
the local degrees of freedom given by (cf. [14, 16, 32])

m̃ne(η) :=

∫
e
(η · nKe ) q ∀ q ∈ Pr(e), ∀ e ⊂ ∂K ,

m̃div(η) :=

∫
K
η · ∇q ∀ q ∈ Pr(K)\{1} ,

m̃rot(η) :=

∫
K
η · q ∀ q ∈ Pr,∇(K) ,

(3.8)

and

mne(τ ) :=

∫
e
τnKe · q ∀ q ∈ Pr(e), ∀ e ⊂ ∂K ,

mdiv(τ ) :=

∫
K
τ : ∇q ∀ q ∈ Pr(K)\{(1, 0)t, (0, 1)t} ,

mrot(τ ) :=

∫
K
τ : q ∀ q ∈ Pr,∇(K) ,

(3.9)

respectively, where Pr,∇(K) and Pr,∇(K) are subspaces of Pr(K) and Pr(K), respectively, such that
Pr(K) = ∇Pr+1(K)⊕Pr,∇(K) and Pr(K) = ∇Pr+1(K)⊕ Pr,∇(K).
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Next, we observe (cf. [11, 5, 14, 32]) that for each η ∈ Xr(K), and for each τ ∈ Xr(K), the
projections PK

r (η) and PPK
r (τ ), as well as div(η) and div(τ ), are computable using the degrees of

freedom defined by (3.8) and (3.9). Moreover, the latter are actually linear functionals that can be
evaluated at any η ∈ W1,1(K) and any τ ∈ W1,1(K), respectively. Then, denoting by ñKr and nKr
the number of degrees of freedom of (3.8) and (3.9), respectively, and gathering them in the sets{
m̃K
j

}ñK
r

j=1
and

{
mK
j

}nK
r

j=1
, we can introduce the interpolation operators ΠK

r : W1,1(K) → Xr(K) and

ΠΠK
r : W1,1(K) → Xr(K), which are defined for each η ∈ W1,1(K) and for each τ ∈ W1,1(K), as the

unique ΠK
r (η) ∈ Xr(K) and ΠΠK

r (τ ) ∈ Xr(K), such that

m̃K
j

(
ΠK
r (η)

)
= m̃K

j (η) ∀ j ∈
{
1, ..., ñKr

}
, and

mK
j

(
ΠΠK

r (τ )
)
= mK

j (τ ) ∀ j ∈
{
1, ..., nKr

}
,

(3.10)

respectively. Regarding the approximation properties of ΠK
r and ΠΠK

r , for each integer s ∈ [1, r + 1]
there exist positive constants C and C̃, independent of K ∈ Kh, such that (see, e.g., [32, eq. (3.12)])

∥η −ΠK
r (η)∥0,K ≤ C hsK |η|s,K ∀η ∈ Hs(K) , (3.11)

and
∥τ −ΠΠK

r (τ )∥0,K ≤ C̃ hsK |τ |s,K ∀ τ ∈ Hs(K) , (3.12)

whereas for each integer s ∈ [0, r + 1] there exist positive constants Cd and C̃d, independent of K,
such that (see, e.g., [32, eq. (3.14)])

∥div
(
η −ΠK

r (η)
)
∥0,4/3;K ≤ Cd h

s
K |div(η)|s,4/3;K ∀

(
η,div(η)

)
∈ W1,1(K)×Ws,4/3(K) , (3.13)

and

∥div
(
τ −ΠΠK

r (τ )
)
∥0,4/3;K ≤ C̃d h

s
K |div(τ )|s,4/3;K ∀

(
τ ,div(τ )

)
∈ W1,1(K)×Ws,4/3(K) . (3.14)

We now introduce the virtual element subspaces of X, X, and X0 with respect to Kh, namely

Xh :=
{
η ∈ X : η|K ∈ Xr(K) ∀K ∈ Kh

}
, (3.15)

Xh :=
{
τ ∈ X : τ |K ∈ Xr(K) ∀K ∈ Kh

}
, (3.16)

and

X0,h :=
{
τ ∈ Xh :

∫
Ω
tr(τ ) =

∫
Ω
τ : I = 0

}
. (3.17)

Then, letting Πh
r : W1,1(Ω) → Xh and ΠΠh

r : W1,1(Ω) → Xh be the associated global interpolation
operators, it is easily seen that for each K ∈ Kh there hold

Πh
r (η)|K = ΠK

r (η|K) ∀η ∈ W1,1(Ω) and ΠΠh
r (τ )|K = ΠΠK

r (τ |K) ∀ τ ∈ W1,1(Ω) . (3.18)

On the other hand, for approximating the temperature and velocity unknowns we simply consider
the piecewise polynomial spaces Pr(Kh) and Pr(Kh) (cf. (3.4)), that is

Yh = Pr(Kh) :=
{
φ ∈ Y : φ|K ∈ Pr(K) ∀ K ∈ Kh

}
, (3.19)

and
Yh = Pr(Kh) :=

{
v ∈ Y : v|K ∈ Pr(K) ∀ K ∈ Kh

}
, (3.20)
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respectively. We remark from the foregoing definitions that there hold (cf. [15])

div(Xh) ⊆ Yh and div(Xh) ⊆ Yh .

Furthermore, given a subspace Zh of an arbitrary Banach space
(
Z, ∥ · ∥Z

)
, we set from now on

dist(z, Zh) := inf
zh∈Zh

∥z − zh∥Z ∀ z ∈ Z .

Hence, according to the local approximation properties provided by the estimates (3.11) up to (3.14),
and Lemma 3.1, along with the identities (3.5) and (3.18), we easily derive the following global ones:

(APσ
h ) for each integer s ∈ [1, r + 1] there exists a positive constant C, independent of h, such that

dist(τ ,Xh) ≤ ∥τ −ΠΠh
r (τ )∥div4/3;Ω ≤ C hs

{
|τ |s,Ω + |div(τ )|s,4/3;Ω

}
,

for all τ ∈ X such that τ ∈ Hs(Ω) and div(τ ) ∈ Ws,4/3(Ω),

(APu
h) for each integer s ∈ [0, r + 1] there exists a positive constant C, independent of h, such that

dist(v,Yh) ≤ ∥v −Ph
r (v)∥0,4;Ω ≤ C hs |v|s,4;Ω ,

for all v ∈ Y such that v ∈ Ws,4(Ω),

(APρ
h) for each integer s ∈ [1, r + 1] there exists a positive constant C, independent of h, such that

dist(η,Xh) ≤ ∥η −Πh
r (η)∥div4/3;Ω ≤ C hs

{
|η|s,Ω + |div(η)|s,4/3;Ω

}
,

for all η ∈ X such that η ∈ Hs(Ω) and div(η) ∈ Ws,4/3(Ω), and

(APθ
h) for each integer s ∈ [0, r + 1] there exists a positive constant C, independent of h, such that

dist(φ,Yh) ≤ ∥φ− Ph
r (φ)∥0,4;Ω ≤ C hs |φ|s,4;Ω ,

for all φ ∈ Y such that φ ∈ Ws,4(Ω).

3.3 Virtual element scheme

In order to define our virtual element scheme for (2.23), we now introduce, when necessary, computable
discrete versions of the bilinear forms and functionals involving the virtual spaces. Following the usual
procedure in the virtual element setting, the construction of them is based on the explicit knowledge
of the degrees of freedom given by (3.8) and (3.9). In this regard, we first notice from the definitions
of the discrete spaces (cf. (3.15) - (3.17), (3.19) - (3.20)), that b|Xh×Yh

, b̃|Xh×Yh
, f |Xh

, and f̃ |Xh
are

fully computable as such, without further modifications. The same is valid for the Yh evaluation of
the ψ-dependent term in the definition of Fψ (cf. (2.25)) since, being Yh non-virtual, each v ∈ Yh

is explicitly known. On the contrary, a|Xh×Xh
and ã|Xh×Xh

, and for each z ∈ Yh, c(z; ·, ·)|Yh×Xh
and

c̃(z; ·, ·)|Yh×Xh
as well, are not computable since the corresponding virtual functions are not known

in closed form. In order to overcome this difficulty, and thinking first of a and ã, we now resort

to the set of degrees of freedom
{
mK
j

}nK
r

j=1
and

{
m̃K
j

}ñK
r

j=1
, and let sK : Xr(K) × Xr(K) → R and

s̃K : Xr(K)×Xr(K) → R be the bilinear forms defined by

sK (ζ, τ ) :=

nK
r∑

j=1

mK
j (ζ)mK

j (τ ) ∀ ζ, τ ∈ Xr(K) ,

s̃K (ξ,η) :=

ñK
r∑

j=1

m̃K
j (ξ) m̃K

j (η) ∀ ξ, η ∈ Xr(K) .
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Then, letting aK , ãK , cK , and c̃K , respectively, be the local versions of a, ã, c, and c̃ (cf. (2.19),
(2.21)) for each K ∈ Kh, we define their computable versions as

aKh (ζ, τ ) := aK
(
PPK
r (ζ),PPK

r (τ )
)
+ ν−1 sK

(
ζ − PPK

r (ζ), τ − PPK
r (τ )

)
∀ ζ, τ ∈ Xr(K) , (3.21)

ãKh (ξ,η) := ãK
(
PK
r (ξ),PK

r (η)
)
+ κ−1 s̃K

(
ξ −PK

r (ξ),η −PK
r (η)

)
∀ ξ, η ∈ Xr(K) , (3.22)

cKh (z;w, τ ) := cK
(
z;w,PPK

r (τ )
)

∀ (z,w, τ ) ∈ Pr(K)×Pr(K)× Xr(K) , (3.23)

and
c̃Kh (z;ψ,η) := c̃K

(
z;ψ,PK

r (η)
)

∀ (z, ψ,η) ∈ Pr(K)× Pr(K)×Xr(K) . (3.24)

In turn, the associated global forms ah : Xh × Xh → R, ãh : Xh ×Xh → R, ch : Yh ×Yh × Xh → R,
and c̃h : Yh ×Yh ×Xh → R, are defined in the usual way by summing over all K ∈ Kh, that is

ah(ζ, τ ) :=
∑
K∈Kh

aKh (ζ, τ ) ∀ ζ, τ ∈ Xh × Xh , (3.25)

ãh(ξ,η) :=
∑
K∈Kh

ãKh (ξ,η) ∀ ξ, η ∈ Xh ×Xh , (3.26)

ch(z;w, τ ) :=
∑
K∈Kh

cKh (z;w, τ ) ∀ (z,w, τ ) ∈ Yh ×Yh × Xh , (3.27)

and
c̃h(z;ψ,η) :=

∑
K∈Kh

c̃Kh (z;ψ,η) ∀ (z, ψ,η) ∈ Yh ×Yh ×Xh . (3.28)

According to the above definitions, our virtual element scheme for (2.18) (equivalently, (2.23)) reads
as follows: Find σh ∈ X0,h, uh ∈ Yh, ρh ∈ Xh, and θh ∈ Yh, such that

ah(σh, τh) + ch(uh;uh, τh) + b(τh,uh) = f(τh) ∀ τh ∈ X0,h ,

b(σh,vh) = −
∫
Ω
θh g · vh ∀ vh ∈ Yh ,

ãh(ρh,ηh) + c̃h(uh; θh,ηh) + b̃(ηh, θh) = f̃(ηh) ∀ ηh ∈ Xh ,

b̃(ρh, φh) = 0 ∀ φh ∈ Yh .

(3.29)

Next, we set Vh := X0,h ×Yh and Wh := Xh ×Yh, let Bh and B̃h be the discrete versions of B and

B̃ that arise from (2.22) after replacing a and ã by ah and ãh, respectively, and introduce for each
zh ∈ Yh the discrete forms

Ah,zh ((ζh,wh), (τh,vh)) := Bh ((ζh,wh), (τh,vh)) + ch(zh;wh, τh) (3.30)

for all (ζh,wh), (τh,vh) ∈ Vh, and

Ãh,zh ((ξh, ψh), (ηh, φh)) := B̃h ((ξh, ψh), (ηh, φh)) + c̃h(zh;ψh,ηh) (3.31)

for all (ξh, ψh), (ηh, φh) ∈ Wh. Then, we readily see that (3.29) can be rewritten, equivalently, as:
Find (σh,uh) ∈ Vh and (ρh, θh) ∈ Wh such that

Ah,uh
((σh,uh), (τh,vh)) = Fθh(τh,vh) ∀ (τh,vh) ∈ Vh ,

Ãh,uh
((ρh, θh), (ηh, φh)) = F̃(ηh, φh) ∀ (ηh, φh) ∈ Wh ,

(3.32)

where Fθh and F̃ are defined as in (2.25) with θh instead of ψ there.
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4 Solvability analysis

In this section we proceed similarly as in [32, Section 4] to address the well-posedness of (3.29)
(equivalently, (3.32)). We begin the analysis with the stability properties of the forms ah, ãh, b, b̃, ch,
and c̃h. Then, we introduce resolvent operators associated with each one of the decoupled problems
forming (3.29), and rewrite the latter as an equivalent fixed-point equation. Finally, we show that the
aforementioned operators are well-defined, and apply the classical Banach theorem to conclude the
solvability result for (3.29).

4.1 Stability properties

We first recall from [6, eqs. (3.36) and (6.2)] and [11, eq. (5.8)] (see also [14, Lemma 4.5] and [30,
Lemma 4.1]) that there exist positive constants c∗, c

∗, c̃∗, and c̃
∗, depending only on CK, such that

for each K ∈ Kh there hold

c∗ ∥τ∥20,K ≤ sK(τ , τ ) ≤ c∗ ∥τ∥20,K ∀ τ ∈ Xr(K) ,

c̃∗ ∥η∥20,K ≤ s̃K(η,η) ≤ c̃∗ ∥η∥20,K ∀η ∈ Xr(K) .
(4.1)

Then, the boundedness properties of ah (cf. (3.25)) and ãh (cf. (3.26)) are established as follows.

Lemma 4.1. There exist positive constants, denoted ∥|a∥| and ∥|ã∥|, independent of h, such that∣∣ah(ζ, τ )∣∣ ≤ ∥|a∥| ∥ζ∥0,Ω ∥τ∥0,Ω ∀ ζ, τ ∈ Xh, (4.2a)∣∣ãh(ξ,η)∣∣ ≤ ∥|ã∥| ∥ξ∥0,Ω ∥η∥0,Ω ∀ ξ, η ∈ Xh. (4.2b)

Proof. We employ the Cauchy-Schwarz inequality and the upper estimates from (4.1) to bound sK

and s̃K for each K ∈ Kh, which yields

sK(ζ, τ ) ≤
{
sK(ζ, ζ)

}1/2 {
sK(τ , τ )

}1/2
≤ c∗ ∥ζ∥0,K ∥τ∥0,K ∀ ζ, τ ∈ Xr(K) , (4.3)

and

s̃K(ξ,η) ≤
{
s̃K(ξ, ξ)

}1/2 {
s̃K(η,η)

}1/2
≤ c̃∗ ∥ξ∥0,K ∥η∥0,K ∀ ξ, η ∈ Xr(K) . (4.4)

Next, we observe that when m = s = 0 and p = 2, (3.2) and (3.3) hold with boundedness constants
Cℓ =Mℓ = 1, so that for each K ∈ Kh we obtain

∥τ − PPK
r (τ )∥0,K ≤ ∥τ∥0,K , and ∥PPK

r (τ )∥0,K ≤ ∥τ∥0,K ∀ τ ∈ L2(K) , (4.5)

∥η −PK
r (η)∥0,K ≤ ∥η∥0,K , and ∥PK

r (η)∥0,K ≤ ∥η∥0,K ∀η ∈ L2(K) . (4.6)

In this way, applying Cauchy-Schwarz’s inequality and (4.3), respectively, to the first and second
terms defining aKh (cf. (3.21)), along with the fact that ∥τ d∥0,K ≤ ∥τ∥0,K for all τ ∈ L2(K), and the
inequalities from (4.5), we readily find that

|aKh (ζ, τ )| ≤ ν−1 (1 + c∗) ∥ζ∥0,K ∥τ∥0,K ∀ ζ, τ ∈ Xr(K) . (4.7)

In turn, proceeding similarly for ãKh (cf. (3.22)), but now using (4.4) and (4.6), we deduce that

|ãKh (ξ,η)| ≤ κ−1 (1 + c̃∗) ∥ξ∥0,K ∥η∥0,K ∀ ξ, η ∈ Xr(K) . (4.8)

Finally, given ζ, τ ∈ Xh and ξ, η ∈ Xh, we apply (4.7) and (4.8) to their local restrictions, so that
summing over all K ∈ Kh, we arrive at (4.2a) and (4.2b) with the constants ∥|a∥| = ν−1 (1 + c∗) and
∥|ã∥| = κ−1 (1 + c̃∗), respectively.
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Note that (4.2a) and (4.2b), along with the fact that ∥ζ∥0,Ω ≤ ∥ζ∥X and ∥ξ∥0,Ω ≤ ∥ξ∥X for all
(ζ, ξ) ∈ Xh × Xh, guarantee the boundedness of ah|Xh×Xh

and ãh|Xh×Xh
with respect to ∥ · ∥X and

∥ · ∥X, respectively.

We now aim to present the coerciveness properties of ah and ãh, for which we first introduce the
kernels of b|X0,h×Yh

and b̃|Xh×Yh
, namely

Vh :=
{
τ ∈ X0,h : b(τ ,v) = 0 ∀v ∈ Yh

}
,

and
Vh :=

{
η ∈ Xh : b̃(η, φ) = 0 ∀φ ∈ Yh

}
.

Thus, using that div
(
X0,h

)
⊆ Yh (cf. (3.7), (3.16), (3.17), (3.20)) and div

(
Xh

)
⊆ Yh (cf. (3.6),

(3.15), (3.19)), it follows that

Vh :=
{
τ ∈ X0,h : div(τ ) = in Ω

}
, and

Vh :=
{
η ∈ Xh : div(η) = 0 in Ω

}
.

(4.9)

Hence, we are in position to state the following result.

Lemma 4.2. There exist positive constants α and α̃, independent of h, such that

ah(τ , τ ) ≥ α ∥τ∥2X ∀ τ ∈ Vh ,

ãh(η,η) ≥ α̃ ∥η∥2X ∀η ∈ Vh .
(4.10)

Proof. Given τ ∈ Vh and K ∈ Kh, we observe, thanks to the definitions of aKh (cf. (3.21)) and aK (cf.
(2.19)), along with the lower bound in the first row of (4.1), the fact that ∥τ∥0,Ω ≥ ∥τ d∥0,Ω, and the
inequality ∥b∥2 + ∥a− b∥2 ≥ 1

2 ∥a∥
2, that there holds

aKh (τ , τ ) ≥ ν−1
{
∥
(
PPK
r (τ )

)d∥20,K + c∗ ∥τ − PPK
r (τ )∥20,K

}
≥ ν−1

{
∥
(
PPK
r (τ )

)d∥20,K + c∗ ∥τ d −
(
PPK
r (τ )

)d∥20,K}
≥ 1

2ν
min

{
1, c∗

}
∥τ d∥20,K .

(4.11)

In turn, we recall from [17, Lemma 3.2] (see also [22, eq. (3.43)]) that there exists a positive constant
c1, depending only on Ω, such that (cf. (2.17))

∥τ d∥20,Ω + ∥div(τ )∥20,4/3;Ω ≥ c1 ∥τ∥20,Ω ∀ τ ∈ H0(div4/3; Ω) . (4.12)

In this way, bearing in mind the definition of ah (cf. (3.25)), summing over all K ∈ Kh in (4.11),
noting that the tensors of Vh are divergence free (cf. (4.9)), and then employing (4.12), we get the
first inequality in (4.10) with

α :=
c1
2ν

min
{
1, c∗

}
.

On the other hand, for the second one we proceed similarly by invoking now the definitions of ãKh (cf.
(3.22)), ãK (cf. (2.19)), and ãh (cf. (3.26)). Hence, given η ∈ Vh, we use in this case the lower bound
in the second row of (4.1), and easily deduce that for each K ∈ Kh there holds

ãKh (η,η) ≥ κ−1
{
∥PK

r (η)∥20,K + c̃∗ ∥η −PK
r (η)∥20,K

}
≥ 1

2κ
min

{
1, c̃∗

}
∥η∥20,K ,
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from which, summing over all K ∈ Kh, and recalling from (4.9) that the vector functions of Vh are
divergence free as well, we conclude the remaining inequality with

α̃ :=
1

2κ
min

{
1, c̃∗

}
.

Next, we provide the discrete inf-sup conditions for the bilinear forms b and b̃.

Lemma 4.3. There exist positive constants β and β̃, independent of h, such that

sup
0 ̸=τ∈Xh

b(τ ,v)

∥τ∥X
≥ β ∥v∥Y ∀v ∈ Yh , and sup

0 ̸=η∈Xh

b̃(η, φ)

∥η∥X
≥ β̃ ∥φ∥Y ∀φ ∈ Yh .

Proof. The proof of the first inequality can be found in [32, Section 4.2, Lemma 4.9], whereas the
second one, being actually a scalar version of the former, follows by similar arguments.

We end this section with the boundedness properties of ch and c̃h, which coincide with those of c
and c̃ (cf. (2.26)), as stated next. Indeed, we stress that, while ch and c̃h were originally defined in
the discrete spaces (cf. (3.27), (3.28)), they are actually well-defined in Y ×Y × X and Y × Y ×X,
respectively.

Lemma 4.4. Denoting ∥|c∥| = ν−1 and ∥|c̃∥| = κ−1, there hold∣∣ch(z;w, τ )∣∣ ≤ ∥|c∥| ∥z∥Y ∥w∥Y ∥τ∥X ∀ (z,w, τ ) ∈ Y ×Y × X , and (4.13a)∣∣c̃h(z;ψ,η)∣∣ ≤ ∥|c̃∥| ∥z∥Y ∥ψ∥Y ∥η∥X ∀ (z, ψ,η) ∈ Y ×Y ×X . (4.13b)

Proof. While the proof of (4.13a) was sketched in [32, Lemma 4.5], for sake of completeness we provide
the details here. Indeed, bearing in mind the definitions of ch (cf. (3.27)), cKh (cf. (3.23)), and cK (cf.
(2.21)), and employing Cauchy-Schwarz’s inequality and the second estimate in (4.5), we obtain for
each (z,w, τ ) ∈ Y ×Y × X∣∣ch(z;w, τ )∣∣ ≤ ∑

K∈Kh

∣∣cKh (z;w, τ )
∣∣ = ∑

K∈Kh

∣∣cK(z;w,PPK
r (τ )

∣∣
≤ ν−1

∑
K∈Kh

∥z∥0,4;K ∥w∥0,4;K ∥PPK
r (τ )∥0,K

≤ ν−1
∑
K∈Kh

∥z∥0,4;K ∥w∥0,4;K ∥τ∥0,K ,

from which, applying the discrete version of Cauchy-Schwarz’s inequality, we conclude (4.13a). The
proof of (4.13b) proceeds similarly by invoking now the definitions of c̃h (cf. (3.28)), c̃Kh (cf. (3.24)),
and c̃K (cf. (2.21)), and making use of the second estimate in (4.6). Further details are omitted.

4.2 The fixed-point strategy

In this section we study the existence and uniqueness of solution of (3.29) (equivalently, (3.32)) by
employing a fixed-point strategy. To this end, we first introduce suitable operators associated with
each one of the two problems forming the whole nonlinear coupled system. More precisely, we let
Sh : Yh ×Yh → Yh be the operator defined for each (zh, ψh) ∈ Yh ×Yh by

Sh(zh, ψh) := ûh ,
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where (σ̂h, ûh) ∈ Vh is the unique solution of the problem arising from the first equation of (3.32)
after replacing (uh, θh) by (zh, ψh), that is

Ah,zh
(
(σ̂h, ûh), (τh,vh)

)
= Fψh

(τh,vh) ∀ (τh,vh) ∈ Vh . (4.14)

In turn, we let S̃h : Yh → Yh be the operator defined for each zh ∈ Yh by

S̃h(zh) := θ̂h ,

where (ρ̂h, θ̂h) ∈ Wh is the unique solution of the problem arising from the second equation of (3.32)
after replacing uh by zh, that is

Ãh,zh
(
(ρ̂h, θ̂h), (ηh, φh)

)
= F̃(ηh, φh) ∀ (ηh, φh) ∈ Wh . (4.15)

Hence, defining the operator Th : Yh → Yh as

Th(zh) := Sh(zh, S̃h(zh)) ∀ zh ∈ Yh , (4.16)

we realize that solving the discrete scheme (3.29) (equivalently, (3.32)) is equivalent to seeking a fixed
point of Th, that is: Find uh ∈ Yh such that

Th(uh) = uh . (4.17)

In order to conclude that Th is in fact well-defined, in the next section we prove that the operators
Sh and S̃h are, which reduces to establishing the well-posedness of (4.14) and (4.15).

4.2.1 Well-definedness of the operators Sh and S̃h

We first recall from (2.22) and the description provided in the last paragraph of Section 3.3 that

Bh ((ζh,wh), (τh,vh)) := ah(ζh, τh) + b(τh,wh) + b(ζh,vh) (4.18)

for all (ζh,wh), (τh,vh) ∈ Vh, and

B̃h ((ξh, ψh), (ηh, φh)) := ãh(ξh,ηh) + b̃(ηh, ψh) + b̃(ξh, φh) (4.19)

for all (ξh, ψh), (ηh, φh) ∈ Wh. Then, knowing from Lemmas 4.1, 4.2, and 4.3, that the pairs of
bilinear forms (ah, b) and (ãh, b̃) satisfy the hypothesis of the discrete Babuška-Brezzi theory (see, e.g.
[26, Proposition 2.42]), straightforward applications of this result yield the discrete inf-sup conditions
for Bh and B̃h. This means that there exist positive constants αB,d (depending only on ∥|a∥|, ∥b∥ = 1,

α, and β) and α
B̃,d

(depending only on ∥|ã∥|, ∥b̃∥ = 1, α̃, and β̃), such that

sup
0 ̸=(τh,vh)∈Vh

Bh ((ζh,wh), (τh,vh))

∥(τh,vh)∥V
≥ αB,d ∥(ζh,wh)∥V ∀ (ζh,wh) ∈ Vh , (4.20)

and

sup
0 ̸=(ηh,φh)∈Wh

B̃h ((ξh, ψh), (ηh, φh))

∥(ηh, φh)∥W
≥ α

B̃,d
∥(ξh, ψh)∥W ∀ (ξh, ψh) ∈ Wh . (4.21)

Next, bearing in mind the definitions of Ah,zh (cf. (3.30)) and Ãh,zh (cf. (3.31)) for each zh ∈ Yh,
and combining (4.20) and (4.21) with the effect of the extra terms given by ch(zh; ·, ·) and c̃h(zh; ·, ·),
respectively, which means invoking the upper bounds provided by (4.13a) and (4.13b), we arrive at

sup
0 ̸=(τh,vh)∈Vh

Ah,zh ((ζh,wh), (τh,vh))

∥(τh,vh)∥V
≥
{
αB,d − ν−1 ∥zh∥Y

}
∥(ζh,wh)∥V ∀ (ζh,wh) ∈ Vh,
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and

sup
0 ̸=(ηh,φh)∈Wh

Ãh,zh ((ξh, ψh), (ηh, φh))

∥(ηh, φh)∥W
≥
{
α
B̃,d

− κ−1 ∥zh∥Y
}
∥(ξh, ψh)∥W ∀ (ξh, ψh) ∈ Wh,

from which, under the assumption

∥zh∥Y ≤ δd :=
1

2
min

{
ν αB,d, κ αB̃,d

}
, (4.22)

we conclude that

sup
0 ̸=(τh,vh)∈Vh

Ah,zh ((ζh,wh), (τh,vh))

∥(τh,vh)∥V
≥

αB,d

2
∥(ζh,wh)∥V ∀ (ζh,wh) ∈ Vh , (4.23)

and

sup
0̸=(ηh,φh)∈Wh

Ãh,zh ((ξh, ψh), (ηh, φh))

∥(ηh, φh)∥W
≥

α
B̃,d

2
∥(ξh, ψh)∥W ∀ (ξh, ψh) ∈ Wh . (4.24)

Moreover, according to the definitions of Ah,zh (cf. (3.30)) and Ãh,zh (cf. (3.31)) for each zh ∈ Yh,

which include those of Bh (cf. (4.18)) and B̃h (cf. (4.19)), and invoking the boundedness properties of
ah, ch, ãh, and c̃h (cf. Lemmas 4.1 and 4.4), we conclude that Ah,zh and Ãh,zh are bounded for each
zh ∈ Yh satisfying (4.22), with corresponding constants ∥|A∥| (depending only on ∥|a∥|, ν−1, and δd)
and ∥|Ã∥| (depending only on ∥|ã∥|, κ−1, and δd), respectively.

We are now in position to establish that Sh and S̃h are well-defined, equivalently that (4.14) and
(4.15) are well-posed.

Lemma 4.5. For each
(
zh, ψh

)
∈ Yh×Yh such that zh satisfies (4.22), there exist unique (σ̂h, ûh) ∈

Vh and (ρ̂h, θ̂h) ∈ Wh solutions to (4.14) and (4.15), respectively, so that one can define Sh
(
zh, ψh

)
:=

ûh ∈ Yh and S̃h(zh) := θ̂h ∈ Yh. In addition, there exist positive constants CS and C
S̃
, depending

only on αB,d and cf (cf. (2.27)), and on α
B̃,d

and c
f̃
(cf. (2.27)), respectively, and hence independent

of h, such that there hold the following a priori estimates

∥Sh(zh, ψh)∥Y = ∥ûh∥Y ≤ ∥(σ̂h, ûh)∥V ≤ CS

{
∥uD∥1/2,Γ + ∥g∥0,Ω ∥ψh∥Y

}
, (4.25a)

∥S̃h(zh)∥Y = ∥θ̂h∥Y ≤ ∥(ρ̂h, θ̂h)∥W ≤ C
S̃
∥θD∥1/2,Γ . (4.25b)

Proof. Given
(
zh, ψh

)
∈ Yh×Yh with zh satisfying (4.22), we begin by noticing from (2.25) and (2.27)

that Fψh
∈ V ′ and F̃ ∈ W ′, with

∥Fψh
∥V ′ ≤ cf ∥uD∥1/2,Γ + ∥g∥0,Ω ∥ψh∥Y , and ∥F̃∥W ′ ≤ c

f̃
∥θD∥1/2,Γ . (4.26)

Therefore, thanks to (4.23), (4.24), the boundedness of Ah,zh and Ãh,zh , and (4.26), straightforward
applications of the discrete version of the Banach-Nečas-Babuška theorem (cf. [26, Theorem 2.22])
imply the unique solvabilities of (4.14) and (4.15). In turn, the corresponding a priori estimates read

∥(σ̂h, ûh)∥V ≤ 2

αB,d
∥Fψh

∥V ′ and ∥(ρ̂h, θ̂h)∥W ≤ ∥F̃∥W ′ ,

which, along with (4.26), yield (4.25a) and (4.25b), thus completing the proof.
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It follows automatically from the above lemma that Th is well-defined, and thus, according to
(4.16) and the estimates (4.25a) and (4.25b), we readily obtain

∥Th(zh)∥Y = ∥Sh
(
zh, S̃h(zh)

)
∥Y ≤ CS

{
∥uD∥1/2,Γ + ∥g∥0,Ω ∥S̃h(zh)∥Y

}
≤ CT

{
∥uD∥1/2,Γ + ∥g∥0,Ω ∥θD∥1/2,Γ

}
,

(4.27)

for each zh ∈ Yh satisfying (4.22), where CT is a positive constant depending only on CS and C
S̃
.

4.3 Solvability analysis of the fixed-point scheme

Knowing that the operators S and S̃, and hence Th as well, are well defined, we now address the
solvability of the fixed-point equation (4.17). To this end, and in order to finally apply the Banach
theorem, we first establish sufficient conditions under which Th maps a closed ball of Yh into itself.
Indeed, setting (cf. (4.22))

Wh :=
{
zh ∈ Yh : ∥zh∥Y ≤ δd

}
, (4.28)

we have the following result.

Lemma 4.6. Assume that the data satisfy

CT

{
∥uD∥1/2,Γ + ∥g∥0,Ω ∥θD∥1/2,Γ

}
≤ δd . (4.29)

Then, there holds Th(Wh) ⊆ Wh.

Proof. It is a clear consequence of the definition ofWh (cf. (4.28)) and the a priori estimate (4.27).

We now address the continuity properties of Sh, S̃h, and hence of Th. We begin with that of Sh.

Lemma 4.7. There exists a positive constant LS, depending only on αB,d, ∥g∥0,Ω, ν, and CS, and
hence independent of h, such that

∥S(zh, ψh)− S(yh, ϕh)∥Y ≤ LS

{(
∥uD∥1/2,Γ + ∥ϕh∥Y

)
∥zh − yh∥Y + ∥ψh − ϕh∥Y

}
(4.30)

for all (zh, ψh), (yh, ϕh) ∈ Wh ×Yh.

Proof. Given (zh, ψh), (yh, ϕh) ∈ Wh × Yh, we let Sh(zh, ψh) := ûh and Sh(yh, ϕh) := ŵh, where
(σ̂h, ûh) ∈ Vh and (ζ̂h, ŵh) ∈ Vh are the corresponding unique solutions of (4.14), that is

Ah,zh
(
(σ̂h, ûh), (τh,vh)

)
= Fψh

(τh,vh) ∀ (τh,vh) ∈ Vh , (4.31)

Ah,yh

(
(ζ̂h, ŵh), (τh,vh)

)
= Fϕh(τh,vh) ∀ (τh,vh) ∈ Vh . (4.32)

Then, applying (4.23) to (σ̂h, ûh) − (ζ̂h, ŵh) ∈ Vh, and using (4.31), we obtain

∥S(zh, ψh)− S(yh, ϕh)∥Y = ∥ûh − ŵh∥Y ≤ ∥(σ̂h, ûh)− (ζ̂h, ŵh)∥V

≤ 2

αB,d
sup

0 ̸=(τh,vh)∈Vh

Fψh
(τh,vh)−Ah,zh

(
(ζ̂h, ŵh), (τh,vh)

)
∥(τh,vh)∥V

.
(4.33)
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In turn, adding and subtracting ch(yh; ŵh, τh), and then using (4.32) and the fact that ch(·; ŵh, τh)
is linear, we readily find that

Ah,zh
(
(ζ̂h, ŵh), (τh,vh)

)
= Ah,yh

(
(ζ̂h, ŵh), (τh,vh)

)
− ch(yh; ŵh, τh) + ch(zh; ŵh, τh)

= Fϕh(τh,vh) + ch(zh − yh; ŵh, τh) ,

whence

Fψh
(τh,vh)−Ah,zh

(
(ζ̂h, ŵh), (τh,vh)

)
=
(
Fψh

− Fϕh
)
(τh,vh)− ch(zh − yh; ŵh, τh) . (4.34)

Now, according to the definitions of Fψh
and Fϕh (cf. (2.25)), we easily deduce that∣∣(Fψh

− Fϕh
)
(τh,vh)

∣∣ ≤ ∥g∥0,Ω ∥ψh − ϕh∥Y ∥vh∥Y , (4.35)

whereas the boundedness property of ch (cf. (4.13a)) and the a priori estimate for ŵh = Sh(yh, ϕh)
(cf. (4.25a), Lemma 4.5) yield∣∣ch(zh − yh; ŵh, τh)

∣∣ ≤ ν−1CS

{
∥uD∥1/2,Γ + ∥g∥0,Ω ∥ϕh∥Y

}
∥zh − yh∥Y ∥τh∥X . (4.36)

Finally, employing (4.35) and (4.36) to bound (4.34), and then replacing the resulting estimate back
into (4.33), we arrive at (4.30) with LS as indicated.

The continuity property of S̃ is established next.

Lemma 4.8. There exists a positive constant L
S̃
, depending only on α

B̃,d
, κ, and C

S̃
, and hence

independent of h, such that

∥S̃h(zh)− S̃h(yh)∥Y ≤ L
S̃
∥θD∥1/2,Γ ∥zh − yh∥Y ∀ zh, yh ∈ Wh . (4.37)

Proof. Given zh, yh ∈ Wh, we let S̃h(zh) := θ̂h and S̃h(yh) := ψ̂h, where (ρ̂h, θ̂h) ∈ Wh and
(ξ̂h, ψ̂h) ∈ Wh are the corresponding unique solutions of (4.15), that is

Ãh,zh
(
(ρ̂h, θ̂h), (ηh, φh)

)
= F̃(ηh, φh) ∀ (ηh, φh) ∈ Wh , (4.38)

Ãh,yh

(
(ξ̂h, ψ̂h), (ηh, φh)

)
= F̃(ηh, φh) ∀ (ηh, φh) ∈ Wh . (4.39)

Then, proceeding analogously to the proof of Lemma 4.7, but now applying the global inf-sup condition
(4.24), adding and subtracting c̃h(yh; ψ̂h,ηh), and then employing (4.38), (4.39), and the linearity of
c̃h(·; ψ̂h,ηh), we arrive at

∥S̃h(zh)− S̃h(yh)∥Y = ∥θ̂h − ψ̂h∥Y ≤ ∥(ρ̂h, θ̂h)− (ξ̂h, ψ̂h)∥W

≤ 2

α
B̃,d

sup
0 ̸=(ηh,φh)∈Wh

c̃h(yh − zh; ψ̂h,ηh)

∥(ηh, φh)∥W
.

(4.40)

Next, thanks to the boundedness property of c̃h (cf. (4.13b)) and the a priori estimate for ψ̂h = S̃h(yh)
(cf. (4.25b), Lemma 4.5), we get∣∣c̃h(yh − zh; ψ̂h,ηh)

∣∣ ≤ κ−1C
S̃
∥θD∥1/2,Γ ∥zh − yh∥Y ∥ηh∥X ,

which, replaced back into (4.40), yields (4.37) with L
S̃
as announced.
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Having proved Lemmas 4.7 and 4.8, we now utilize them to derive the continuity property of Th.
Indeed, bearing in mind the definition of Th (cf. (4.16)), we observe, thanks to (4.30), (4.37), and the
a priori estimate (4.25b) (cf. Lemma 4.5), that for each zh, yh ∈ Wh there holds

∥Th(zh)−Th(yh)∥Y = ∥Sh
(
zh, S̃h(zh)

)
− Sh

(
yh, S̃h(yh)

)
∥Y

≤ LS

{(
∥uD∥1/2,Γ + ∥S̃h(yh)∥Y

)
∥zh − yh∥Y + ∥S̃h(zh)− S̃h(yh)∥Y

}
≤ LS

{
∥uD∥1/2,Γ +

(
C
S̃
+ L

S̃

)
∥θD∥1/2,Γ

}
∥zh − yh∥Y ,

from which it follows that

∥Th(zh)−Th(yh)∥Y ≤ LT

{
∥uD∥1/2,Γ + ∥θD∥1/2,Γ

}
∥zh − yh∥Y , (4.41)

with a positive constant LT depending only on LS, CS̃
, and L

S̃
, and hence independent of h.

We are now in position to establish the main result of this section.

Lemma 4.9. Given δd and Wh as in (4.22) and (4.28), respectively, assume that, in addition to the
hypothesis of Lemma 4.6 (cf. (4.29)), the data satisfy

LT

{
∥uD∥1/2,Γ + ∥θD∥1/2,Γ

}
< 1 . (4.42)

Then, there exists a unique uh ∈ Wh fixed point of Th (cf. (4.17)). Equivalently, (3.29) has a unique
solution

(
(σh,uh), (ρh, θh)

)
∈ Vh ×Wh with uh ∈ Wh. Moreover, there exist positive constants C and

C̃, depending only on CS and C
S̃
, such that there hold

∥(σh,uh)∥V ≤ C
{
∥uD∥1/2,Γ + ∥g∥0,Ω ∥θD∥1/2,Γ

}
, and

∥(ρh, θh)∥W ≤ C̃ ∥θD∥1/2,Γ .
(4.43)

Proof. It is clear from Lemma 4.6, (4.41), and hypothesis (4.42) that Th is a contraction that maps the
ball Wh into itself, and thus a direct application of the Banach fixed-point theorem yields the existence
of a unique fixed point uh ∈ Wh of Th, and hence, equivalently, the indicated unique solvability of
(3.29). In addition, since uh = Th(uh) = S

(
uh, S̃(uh)

)
, we readily see that uh = S

(
uh, θh

)
with

θh = S̃(uh), whence the a priori estimates in (4.43) follow from (4.25a) and (4.25b).

5 A priori error analysis

In this section we derive Céa-type estimates and establish the corresponding rates of convergence for
the global error ∥(σ,u)− (σh,uh)∥V + ∥(ρ, θ)− (ρh, θh)∥W , and for computable approximations of σ,
ρ, and the pressure p, where

(
(σ,u), (ρ, θ)

)
∈ V ×W, with u ∈ W (cf. (2.29)), is the unique solution

of (2.18) (equivalently, (2.23)), and
(
(σh,uh), (ρh, θh)

)
∈ Vh ×Wh, with uh ∈ Wh (cf. (4.28)), is the

unique solution of (3.29) (equivalently, (3.32)).

5.1 The main Céa estimate

We first set the pairs of continuous and discrete schemes arising from (2.23) and (3.32), namely

Au ((σ,u), (τ ,v)) = Fθ(τ ,v) ∀ (τ ,v) ∈ V ,
Ah,uh

((σh,uh), (τh,vh)) = Fθh(τh,vh) ∀ (τh,vh) ∈ Vh ,
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and
Ãu ((ρ, θ), (η, φ)) = F̃(η, φ) ∀ (η, φ) ∈ W ,

Ãh,uh
((ρh, θh), (ηh, φh)) = F̃(ηh, φh) ∀ (ηh, φh) ∈ Wh .

In this way, knowing that Au, Ah,uh
, Ãu, and Ãh,uh

are all bounded, and that Ah,uh
and Ãh,uh

satisfy the discrete global inf-sup conditions with constants
αB,d

2 and
α
B̃,d

2 , respectively, we can apply
the first Strang lemma (cf. [26, Lemma 2.27]) to conclude the existence of positive constants Cst

(depending only on αB,d and ∥A∥) and C̃st (depending only on α
B̃,d

and ∥Ã∥), such that

∥(σ,u)− (σh,uh)∥V ≤ Cst

{
∥Fθ − Fθh∥V ′

h
+ inf

(ζh,wh)∈Vh

{
∥(σ,u)− (ζh,wh)∥V

+ ∥
(
Au −Ah,uh

)(
(ζh,wh), ·

)
∥V ′

h

}}
,

(5.1)

and
∥(ρ, θ)− (ρh, θh)∥W ≤ C̃st inf

(ξh,ψh)∈Wh

{
∥(ρ, θ)− (ξh, ψh)∥W

+ ∥
(
Ãu − Ãh,uh

)(
(ξh, ψh), ·

)
∥W ′

h

}
,

(5.2)

where

∥Fθ − Fθh∥V ′
h
:= sup

0 ̸=(τh,vh)∈Vh

∣∣(Fθ − Fθh
)
(τh,vh)

∣∣
∥(τh,vh)∥V

, (5.3)

∥
(
Au −Ah,uh

)(
(ζh,wh), ·

)
∥V ′

h
:= sup

0 ̸=(τh,vh)∈Vh

∣∣(Au −Ah,uh

)(
(ζh,wh), (τh,vh)

)∣∣
∥(τh,vh)∥V

, (5.4)

and

∥
(
Ãu − Ãh,uh

)(
(ξh, ψh), ·

)
∥W ′

h
:= sup

0 ̸=(ηh,φh)∈Wh

∣∣(Ãu − Ãh,uh

)(
(ξh, ψh), (ηh, φh)

)∣∣
∥(ηh, φh)∥W

. (5.5)

We now aim to bound each one of the consistency terms given by (5.3), (5.4), and (5.5). First,
according to the definitions of Fθ and Fθh (cf. (2.25)), and similarly as for the derivation of (4.35),
we easily obtain

∥Fθ − Fθh∥V ′
h
≤ ∥g∥0,Ω ∥θ − θh∥Y . (5.6)

On the other hand, bearing in mind the definitions of Au (cf. (2.24)) Ah,uh
(cf. (3.30), (4.18)), Ãu

(cf. (2.24)) and Ãh,uh
(cf. (3.31), (4.19)), we deduce that for all (ζh,wh), (τh,vh) ∈ Vh, and for all

(ξh, ψh), (ηh, φh) ∈ Wh, there hold, respectively,(
Au −Ah,uh

)(
(ζh,wh), (τh,vh)

)
= (a− ah)(ζh, τh) + c(u;wh, τh)− ch(uh;wh, τh) , (5.7)

and (
Ãu − Ãh,uh

)(
(ξh, ψh), (ηh, φh)

)
= (ã− ãh)(ξh,ηh) + c̃(u;ψh,ηh)− c̃h(uh;ψh,ηh) . (5.8)

Next, adding and subtracting u in the second component of both c(u;wh, τh) and ch(uh;wh, τh), as
well as adding and subtracting ch(u;u, τh) to the resulting terms, and then using the boundedness of
c and ch with respective constants ∥c∥ = ∥|c∥| = ν−1, we get∣∣c(u;wh, τh)− ch(uh;wh, τh)

∣∣ ≤ ν−1(∥u∥Y + ∥uh∥Y) ∥u−wh∥Y ∥τh∥X

+ ν−1 ∥u∥Y ∥u− uh∥Y ∥τh∥X +
∣∣(c− ch)(u;u, τh)

∣∣ . (5.9)
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In turn, proceeding analogously with the terms involving c̃ and c̃h in (5.8), which means adding
and subtracting θ in the second component of them, adding and subtracting c̃h(u; θ,ηh), and then
employing the boundedness of c̃ and c̃h with respective constants ∥c̃∥ = ∥|c̃∥| = κ−1, we arrive at∣∣c̃(u;ψh,ηh)− c̃h(uh;ψh,ηh)

∣∣ ≤ κ−1(∥u∥Y + ∥uh∥Y) ∥θ − ψh∥Y ∥ηh∥X

+ κ−1 ∥θ∥Y ∥u− uh∥Y ∥ηh∥X +
∣∣(c̃− c̃h)(u; θ,ηh)

∣∣ . (5.10)

In order to estimate the terms involving (a − ah) and (ã − ãh) in (5.7) and (5.8), respectively, as
well as to complete the bounds in (5.9) and (5.10), we now state the following lemma, whose proof is
basically provided in [32, Section 4.1], as indicated below.

Lemma 5.1. There exist positive constants Ca and Cã, independent of h, such that∣∣(a− ah)(ζh, τh)
∣∣ ≤ Ca ∥ζh − PPh

r (ζh)∥0,Ω ∥τh∥0,Ω ∀ ζh, τh ∈ Xh ,∣∣(ã− ãh)(ξh,ηh)
∣∣ ≤ Cã ∥ξh −Ph

r (ξh)∥0,Ω ∥ηh∥0,Ω ∀ ξh, ηh ∈ Xh .
(5.11)

In addition, there hold∣∣(c− ch)(z;v, τ )
∣∣ ≤ ν−1 ∥(z⊗ v)− PPh

r (z⊗ v)∥0,Ω ∥τ∥0,Ω ∀ (z,v, τ ) ∈ Y ×Y × X,∣∣(c̃− c̃h)(z;ψ,η)
∣∣ ≤ κ−1 ∥(ψ z)−Ph

r (ψ z)∥0,Ω ∥η∥0,Ω ∀ (z, ψ,η) ∈ Y ×Y ×X.
(5.12)

Proof. The first inequalities in (5.11) and (5.12) are established in [32, Lemmas 4.4 and 4.6], whereas
the proofs of the second ones, being analogous, are omitted.

The inequalities given in (5.11) are more useful if their upper bounds are expressed in terms of σ
and ρ, respectively, which is done next. In fact, adding and subtracting σ and PPh

r (σ), and using from
the second identity in (4.5) that ∥PPh

r (τ )∥0,Ω ≤ ∥τ∥0,Ω for all τ ∈ L2(Ω), we easily find that

∥ζh − PPh
r (ζh)∥0,Ω ≤ ∥σ − PPh

r (σ)∥0,Ω + 2 ∥σ − ζh∥0,Ω ,

which yields ∣∣(a− ah)(ζh, τh)
∣∣ ≤ Ca

{
∥σ − PPh

r (σ)∥0,Ω + 2 ∥σ − ζh∥0,Ω
}
∥τh∥0,Ω . (5.13)

Analogously, adding and subtracting ρ and Ph
r (ρ), and using now the second identity in (4.6), we are

able to show that∣∣(ã− ãh)(ξh,ηh)
∣∣ ≤ Cã

{
∥ρ−Ph

r (ρ)∥0,Ω + 2 ∥ρ− ξh∥0,Ω
}
∥ηh∥0,Ω . (5.14)

Furthermore, applying (5.12) to the last terms in (5.9) and (5.10), we obtain∣∣(c− ch)(u;u, τh)
∣∣ ≤ ν−1 ∥(u⊗ u)− PPh

r (u⊗ u)∥0,Ω ∥τh∥0,Ω , and (5.15)∣∣(c̃− c̃h)(u; θ,ηh)
∣∣ ≤ κ−1 ∥(θ u)−Ph

r (θ u)∥0,Ω ∥ηh∥0,Ω . (5.16)

Consequently, using (5.15) to complete the upper bound in (5.9), bounding ∥u∥Y+∥uh∥Y by δ+δd,
and then employing the resulting estimate along with (5.13) to bound the right hand side of (5.7), we
deduce, according to (5.4), that there exists a positive constant CA, depending only on Ca, ν, δ, and
δd, such that

∥
(
Au −Ah,uh

)(
(ζh,wh), ·

)
∥V ′

h
≤ CA

{
∥(σ,u)− (ζh,wh)∥V + ∥σ − PPh

r (σ)∥0,Ω

+ ∥(u⊗ u)− PPh
r (u⊗ u)∥0,Ω + ∥u∥Y ∥u− uh∥Y

}
.

(5.17)
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Also, following the same logical sequence as for the derivation of (5.17), but now using (5.16) to
complete the upper bound in (5.10), bounding ∥u∥Y + ∥uh∥Y as before, and then using the resulting
estimate along with (5.14) to bound the right hand side of (5.8), we deduce, according to (5.5), that
there exists a positive constant C

Ã
, depending only on Cã, κ, δ, and δd, such that

∥
(
Ãu − Ãh,uh

)(
(ξh, ψh), ·

)
∥W ′

h
≤ C

Ã

{
∥(ρ, θ)− (ξh, ψh)∥W + ∥ρ−Ph

r (ρ)∥0,Ω

+ ∥(θ u)−Ph
r (θ u)∥0,Ω + ∥θ∥Y ∥u− uh∥Y

}
.

(5.18)

In this way, employing (5.6) and (5.17) back into (5.1), we deduce the existence of a positive
constant Cst,A, depending only on Cst, ∥g∥0,Ω, and CA, such that

∥(σ,u)− (σh,uh)∥V ≤ Cst,A

{
∥θ − θh∥Y + dist

(
(σ,u),Vh

)
+ ∥σ − PPh

r (σ)∥0,Ω

+ ∥(u⊗ u)− PPh
r (u⊗ u)∥0,Ω + ∥u∥Y ∥u− uh∥Y

}
.

(5.19)

Analogously, utilizing (5.18) back into (5.2), we deduce the existence of a positive constant C
st,Ã

,
depending only on Cst and C

Ã
, such that

∥(ρ, θ)− (ρh, θh)∥W ≤ C
st,Ã

{
dist

(
(ρ, θ),Wh

)
+ ∥ρ−Ph

r (ρ)∥0,Ω

+ ∥(θ u)−Ph
r (θ u)∥0,Ω + ∥θ∥Y ∥u− uh∥Y

}
.

(5.20)

In order to establish the final Céa estimate, we now simplify the underlying notations by setting

σ⃗ := (σ,u) , σ⃗h := (σh,uh) , ρ⃗ := (ρ, θ) , ρ⃗h := (ρh, θh) ,

and proceed next to suitably combine (5.19) with (5.20). In fact, multiplying (5.19) by 1
2Cst,A

, adding

the resulting inequality to (5.20), and bounding ∥u∥Y and ∥θ∥Y according to the a priori estimates
provided by (2.30), we deduce the existence of positive constants Cst and Dst, depending only on
Cst,A and C

st,Ã
the former, and additionally on C0 and C̃0 (cf. (2.30)) the later, such that

∥σ⃗ − σ⃗h∥V + ∥ρ⃗− ρ⃗h∥W ≤ Cst
{
dist

(
σ⃗,Vh

)
+ dist

(
ρ⃗,Wh

)
+ ∥σ − PPh

r (σ)∥0,Ω

+ ∥(u⊗ u)− PPh
r (u⊗ u)∥0,Ω + ∥ρ−Ph

r (ρ)∥0,Ω + ∥(θ u)−Ph
r (θ u)∥0,Ω

}
+ Dst

{
∥uD∥1/2,Γ + (1 + ∥g∥0,Ω) ∥θD∥1/2,Γ

}
∥u− uh∥Y .

(5.21)

Consequently, we are now in a position to state the Céa estimate.

Theorem 5.2. Assume that the data satisfy

Dst

{
∥uD∥1/2,Γ + (1 + ∥g∥0,Ω) ∥θD∥1/2,Γ

}
≤ 1

2
. (5.22)

Then, letting C := 2 Cst, there holds

∥σ⃗ − σ⃗h∥V + ∥ρ⃗− ρ⃗h∥W ≤ C
{
dist

(
σ⃗,Vh

)
+ dist

(
ρ⃗,Wh

)
+ ∥σ − PPh

r (σ)∥0,Ω

+ ∥(u⊗ u)− PPh
r (u⊗ u)∥0,Ω + ∥ρ−Ph

r (ρ)∥0,Ω + ∥(θ u)−Ph
r (θ u)∥0,Ω

}
.
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Proof. It suffices to employ (5.22) in (5.21), and then bound and simplify.

The associated rates of convergence are established next.

Theorem 5.3. Assume that for integers k ∈ [0, r + 1] and s ∈ [1, r + 1] there hold σ ∈ Hs(Ω),
div(σ) ∈ Ws,4/3(Ω), u ∈ Wk,4(Ω), ρ ∈ Hs(Ω), div(ρ) ∈ Ws,4/3(Ω), θ ∈ Wk,4(Ω), u ⊗ u ∈ Hk(Ω),
and θ u ∈ Hk(Ω). Then, there exists a positive constant C, independent of h, such that

∥σ⃗ − σ⃗h∥V + ∥ρ⃗− ρ⃗h∥W ≤ C hmin{k,s}
{
|σ|s,Ω + |div(σ)|s,4/3;Ω + |u|k,4;Ω

+ |ρ|s,Ω + |div(ρ)|s,4/3;Ω + |θ|s,4;Ω + |u⊗ u|k,Ω + |θ u|k,Ω
}
.

Proof. Since the local approximation properties provided by (3.2) (cf. Lemma 3.1) extend to their
global counterparts when m = 0, we deduce from them that

∥σ − PPh
r (σ)∥0,Ω ≤ Cr h

s |σ|s,Ω ,

∥(u⊗ u)− PPh
r (u⊗ u)∥0,Ω ≤ Cr h

k |u⊗ u|k,Ω ,

∥ρ−Ph
r (ρ)∥0,Ω ≤ Cr h

s |ρ|s,Ω , and

∥(θ u)−Ph
r (θ u)∥0,Ω ≤ Cr h

k |θ u|k,Ω .

(5.23)

In this way, the proof follows straightforwardly from Theorem 5.2 along with the approximation
properties (APσ

h ), (APu
h), (APρ

h), and (APθ
h) (cf. Section 3.2), and the estimates given by (5.23).

5.2 Computable approximations for σ, ρ and p

The computable approximations of σ and ρ are defined as usual by (see, e.g. [32, Section 5.2])

σ̂h := PPh
r (σh) and ρ̂h := Ph

r (ρh) .

In turn, as suggested by (2.6) and (2.7), the computable pressure is given by

p̂h := −1

2
(tr σ̂h + tr(uh ⊗ uh)) +

1

2 |Ω|
∥uh∥20,Ω .

Then, adding and subtracting PPh
r (σ) and Ph

r (ρ), and using the boundedness properties of PPh
r and

Ph
r with respect to the L2(Ω) and L2(Ω) norms, respectively, we readily find that

∥σ − σ̂h∥0,Ω ≤ ∥σ − PPh
r (σ)∥0,Ω + ∥σ − σh∥0,Ω , (5.24)

and
∥ρ− ρ̂h∥0,Ω ≤ ∥ρ−Ph

r (ρ)∥0,Ω + ∥ρ− ρh∥0,Ω . (5.25)

In turn, proceeding as in [30, Theorem 5.5, eqs. (5.38) and (5.39)] (see also [32, eq. 5.14]), we deduce
the existence of a positive constant C, independent of h, such that

∥p− p̂h∥0,Ω ≤ C
{
∥σ − σ̂h∥0,Ω + ∥u− uh∥0,4;Ω

}
. (5.26)

In this way, it follows from (5.24), (5.25), and (5.26) that there exists a positive constant Ĉ, such that

∥σ − σ̂h∥0,Ω + ∥ρ− ρ̂h∥0,Ω + ∥p− p̂h∥0,Ω ≤ Ĉ
{
∥σ − PPh

r (σ)∥0,Ω + ∥ρ−Ph
r (ρ)∥0,Ω

+ ∥σ − σh∥0,Ω + ∥ρ− ρh∥0,Ω + ∥u− uh∥0,4;Ω
}
.

(5.27)

We are able to establish now the rates of convergence of σ̂h, ρ̂h, and p̂h.
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Theorem 5.4. Under the same regularity assumptions of Theorem 5.3, there exists a positive constant
C, independent of h, such that

∥σ − σ̂h∥0,Ω + ∥ρ− ρ̂h∥0,Ω + ∥p− p̂h∥0,Ω ≤ C hmin{k,s}
{
|σ|s,Ω + |div(σ)|s,4/3;Ω

+ |u|k,4;Ω + |ρ|s,Ω + |div(ρ)|s,4/3;Ω + |θ|s,4;Ω + |u⊗ u|k,Ω + |θ u|k,Ω
}
.

Proof. It follows from (5.27), the estimates in the first and third rows of (5.23), and Theorem 5.3.

6 Numerical Results

In this section we present three numerical examples illustrating the performance of the fully mixed
virtual element method (3.29), which was introduced and analyzed in Sections 3, 4, and 5. In all
the computations we consider the pairs of subspaces (X0,h,Yh) and (Xh,Yh) described in Section
3.2 (cf. (3.15) - (3.17), (3.19), and (3.20)) with polynomial degrees r ∈

{
0, 1, 2

}
, and impose the

null mean value of the traces of the tensors in X0,h via a real Lagrange multiplier. Regarding the
results to be reported below, we stress that Example 1 is utilized to confirm the theoretical rates of
convergence provided by Theorems 5.3 and 5.4, and Examples 2 and 3 are employed to evaluate the
effectiveness of the method in the case of practical problems with no analytical solutions available. We
also remark that, in the first example, and because of the use of a manufactured solution, additional
known terms are added to the right-hand sides of the equations, whereas in the third one, mixed
boundary conditions are assumed for the temperature, so that it is worth mentioning that the analysis
of the present paper can be extended with minor modifications to this slightly different case.

We begin by introducing additional notations, Firstly, letting Ned
h and Nel

h be the number of edges
and elements, respectively, of Kh, we find that the total number of degrees of freedom (unknowns) of
(3.29), denoted by Nh, is given by

Nh := 3(r + 1)Ned
h +

3

2
(r + 2)(3r + 1)Nel

h + 1 .

In addition, the individual errors associated to the main unknowns and the postprocessed pressure
are denoted and defined, as usual, by

e(σ) := ∥σ − σ̂h∥div4/3;Ω , e(u) := ∥u− uh∥0,4;Ω , e(ρ) := ∥ρ− ρ̂h∥div4/3;Ω,

e(θ) := ∥θ − θh∥0,4;Ω , and e(p) := ∥p− p̂h∥0,Ω .

In turn, for all ⋆ ∈ {σ,u,ρ, θ}, we let r(⋆) :=
log(e(⋆)/e′(⋆))

log(h/h′)
be the experimental rates of conver-

gence, where h and h
′
denote two consecutive mesh sizes with errors e(⋆) and e

′
(⋆), respectively.

The nonlinear algebraic system arising from (3.29) is solved by the Newton method with a given
tolerance of 1e-6, which means that the respective iterations are stopped when the ℓ2-norm of the
global incremental discrete solutions drop below that value. In this regard, we notice in advance that
three iterations are needed for Examples 1 and 2, while at most seven are required for Example 3.

6.1 Example 1: accuracy assessment

Here we consider the parameters ν = 1, κ = 1, and g = (0, 1), and the domain Ω = (0, 1)2. In
addition, we choose the data so that the exact solution is given by

u(x) :=

(
x21 exp(−x1)(1 + x2) (2 sin(1 + x2) + (1 + x2) cos(1 + x2))

x1(x1 − 2) exp(−x1)(1 + x2)
2 sin(1 + x2)

)
,
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Figure 6.1: Example 1, samples of the kind of meshes employed.

p(x) := sin(2πx1) sin(2πx2) , and

θ(x) := sin(x1)− sin(x2) ,

for all x := (x1, x2)
t ∈ Ω. The computations are performed for each polynomial degree r ∈

{
0, 1, 2

}
,

by using sequences of successively refined meshes made of hexagons, nonconforming quadrilaterals, and
triangles (see Figure 6.1 for a sample of them). In Tables 6.1 up to 6.3 we summarize the convergence
history of the fully mixed virtual element method (3.29), from which we realize that, as predicted by
Theorems 5.3 and 5.4, the rate of convergence of order O(hr+1) is attained by all the unknowns, and
for each one of the decompositions of Ω utilized. Furthermore, in order to illustrate the accurateness of
the discrete scheme, in Figure 6.2 we display some components of the approximate solution obtained
with the polynomial degree r = 1 in a mesh made of hexagons.

6.2 Example 2: transient flow passing circular objects

We now use our Boussinesq model for the simulation of transient flow passing one or more circular
objects. We take the same parameters from Example 1, and consider the cases described in what
follows.

Case i): the domain is given by Ω := Ω1 \Ω2, where Ω1 := (0, 8)× (0, 4.5) and Ω2 is the circle with
center (2.25, 2.25) and radius 0.25 (see the left-hand picture in Figure 6.3). No-slip velocity condition
and temperature θD = 1 are enforced on the inner circle boundary Γ2 := ∂Ω2, whereas the outer
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Table 6.1: Example 1, history of convergence using hexagons.

r h e(σ) r(σ) e(u) r(u) e(p) r(p) e(ρ) r(ρ) e(θ) r(θ)

1.768e-01 2.620e-01 - 1.362e-01 - 7.335e-01 - 7.531e-02 - 1.795e-01 -

1.250e-01 1.758e-01 1.150 9.347e-02 1.085 4.538e-01 1.385 5.382e-02 0.969 1.279e-01 0.977

0 8.839e-02 1.224e-01 1.045 5.991e-02 1.283 3.479e-01 0.767 3.565e-02 1.188 8.852e-02 1.061

6.250e-02 8.021e-02 1.218 4.204e-02 1.022 2.101e-01 1.454 2.460e-02 1.070 6.180e-02 1.036

4.419e-02 5.382e-02 1.151 2.910e-02 1.061 1.360e-01 1.254 1.718e-02 1.036 4.372e-02 0.998

3.162e-02 3.666e-02 1.147 2.033e-02 1.072 9.098e-02 1.202 1.218e-02 1.027 3.117e-02 1.010

2.236e-02 2.539e-02 1.059 1.435e-02 1.004 6.111e-02 1.148 8.538e-03 1.025 2.189e-02 1.020

1.768e-01 3.005e-02 - 1.172e-02 - 1.125e-01 - 8.251e-03 - 2.975e-03 -

1.250e-01 1.486e-02 2.032 6.218e-03 1.829 5.460e-02 2.085 4.865e-03 1.524 1.551e-03 1.879

1 8.839e-02 7.258e-03 2.066 2.576e-03 2.542 2.729e-02 2.001 1.940e-03 2.651 7.225e-04 2.204

6.250e-02 3.605e-03 2.019 1.326e-03 1.916 1.354e-02 2.021 1.079e-03 1.692 3.572e-04 2.032

4.419e-02 1.779e-03 2.037 6.470e-04 2.070 6.682e-03 2.038 5.300e-04 2.052 1.813e-04 1.955

3.162e-02 8.768e-04 2.114 3.094e-04 2.203 3.324e-03 2.086 2.547e-04 2.189 9.314e-05 1.990

2.236e-02 4.361e-04 2.014 1.556e-04 1.982 1.651e-03 2.019 1.303e-04 1.933 4.724e-05 1.958

1.768e-01 4.864e-03 - 7.582e-04 - 1.938e-02 - 6.167e-04 - 8.048e-05 -

1.250e-01 1.782e-03 2.897 2.710e-04 2.968 6.928e-03 2.968 2.315e-04 2.826 2.657e-05 3.197

2 8.839e-02 5.921e-04 3.179 7.810e-05 3.589 2.323e-03 3.153 2.698e-05 3.100 8.140e-06 3.413

6.250e-02 2.110e-04 2.976 2.700e-05 3.064 8.181e-04 3.011 9.158e-06 3.117 2.634e-06 3.255

4.419e-02 7.338e-05 3.048 9.089e-06 3.141 2.844e-04 3.048 3.182e-06 3.049 9.071e-07 3.075

Table 6.2: Example 1, history of convergence using nonconforming quadrilaterals.

r h e(σ) r(σ) e(u) r(u) e(p) r(p) e(ρ) r(ρ) e(θ) r(θ)

1.581e-01 2.992e-01 - 1.457e-01 - 9.611e-01 - 7.586e-02 - 2.030e-01 -

7.906e-02 1.455e-01 1.039 6.582e-02 1.146 4.535e-01 1.083 3.671e-02 1.047 9.932e-02 1.031

0 3.953e-02 6.395e-02 1.186 3.066e-02 1.102 1.876e-01 1.273 1.768e-02 1.054 4.927e-02 1.011

1.976e-02 2.827e-02 1.177 1.484e-02 1.046 7.681e-02 1.288 8.662e-03 1.029 2.458e-02 1.003

1.581e-01 4.756e-02 - 1.508e-02 - 1.760e-01 - 8.852e-03 - 4.020e-03 -

7.906e-02 1.233e-02 1.947 3.600e-03 2.066 4.575e-02 1.944 2.218e-03 1.996 9.181e-04 2.130

1 3.953e-02 2.990e-03 2.043 8.339e-04 2.110 1.133e-02 2.013 5.390e-04 2.041 2.120e-04 2.114

1.976e-02 7.289e-04 2.036 2.004e-04 2.057 2.807e-03 2.013 1.319e-04 2.031 5.095e-05 2.056

1.581e-01 1.063e-02 - 1.418e-03 - 4.361e-02 - 8.250e-04 - 1.720e-04 -

2 7.906e-02 1.393e-03 2.931 1.675e-04 3.081 5.808e-03 2.908 1.005e-04 3.036 1.997e-05 3.106

3.953e-02 1.695e-04 3.038 1.912e-05 3.131 7.146e-04 3.022 1.168e-05 3.106 2.102e-06 3.247

boundary conditions are uD := (1, 0)t and θD = −1. Some components of the approximate solution,
computed with r = 0 in a mesh made of hexagons, are portrayed in Figure 6.4.

Case ii): this transient flow problem involves three circular objects in passing. The domain is
considered as in Case i), except that the inner domain Ω2 is composed by three circles, denoted Ω3,
Ω4, and Ω5, with centers (2.25, 2.25), (4, 1.25), and (4, 3.25), respectively, and the same radius 0.25 (see
the right-hand picture in Figure 6.3). The boundary conditions applied are as in the previous case.
Some components of the numerical solution, computed with r = 0 in a mesh made of hexagons, are
shown in Figure 6.5. The present simulation suggests that the more the cylinders the more turbulence
appears.
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Table 6.3: Example 1, history of convergence using triangles.

r h e(σ) r(σ) e(u) r(u) e(p) r(p) e(ρ) r(ρ) e(θ) r(θ)

1.768e-01 3.055e-01 - 1.607e-01 - 8.056e-01 - 1.065e-01 - 2.524e-01 -

8.839e-02 1.597e-01 0.935 6.940e-02 1.211 3.894e-01 1.048 5.421e-02 0.973 1.244e-01 1.021

0 4.419e-02 7.953e-02 1.006 3.283e-02 1.080 1.747e-01 1.156 2.729e-02 0.990 6.193e-02 1.005

2.210e-02 3.920e-02 1.020 1.615e-02 1.023 7.893e-02 1.146 1.368e-02 0.996 3.093e-02 1.001

1.768e-01 3.742e-02 - 1.687e-02 - 1.337e-01 - 1.228e-02 - 3.635e-03 -

8.839e-02 9.651e-03 1.954 3.214e-03 2.392 3.013e-02 2.149 3.388e-03 1.858 6.950e-04 2.386

1 4.419e-02 2.541e-03 1.925 7.169e-04 2.164 7.189e-03 2.067 9.016e-04 1.909 1.578e-04 2.138

2.210e-02 6.529e-04 1.960 1.731e-04 2.049 1.768e-03 2.023 2.334e-04 1.949 3.838e-05 2.039

1.768e-01 9.187e-03 - 2.475e-03 - 3.569e-02 - 1.868e-03 - 1.980e-04 -

2 8.839e-02 1.209e-03 2.925 2.038e-04 3.602 4.535e-03 2.976 2.364e-04 2.982 1.998e-05 3.309

4.419e-02 1.515e-04 2.995 1.972e-05 3.370 5.673e-04 2.998 2.958e-05 2.998 2.347e-06 3.089

6.3 Example 3: natural convection of nanofluid flow in non-convex domains

Here we study the behavior of hybrid nanofluid flow in a non-convex domain with heated walls. This
phenomenon has been widely studied with different types of boundary conditions (see, e.g. [4, 28, 34]).
In particular, here we are interested in the problem with dimensionless numbers: Find (u, p, θ) such
that

−Ra ∆u+ (∇u)u+∇p− Pr Ra θg = 0 in Ω,

divu = 0 in Ω,

−∆θ + u · ∇θ = 0 in Ω,

where Pr and Ra are the Prandtl and Rayleigh numbers and g = (0, 1)t. The numerical experiments
are performed with r = 0 for the H-shaped domain Ω displayed in Figure 6.6, considering the mixed
boundary conditions for the energy equation that are described next. The left and right vertical walls
are kept hot and cold, respectively, with θD = 1 and θD = 0. Rest of the walls of the domain are
adiabatic, which means that we impose there ρ · n = 0. For the flow equations, all boundaries are
equipped with no-slip velocity conditions. In addition, we fix the Prandtl number as Pr = 1, and
consider three choices, namely small, medium, and large, for the Rayleigh number, which are given
by Ra = 1, Ra = 1e4, and Ra = 1e5, respectively. In Figure 6.7 we display the approximated stress,
velocity, and heat-flux vector magnitudes, along with the approximated pressure and temperature
(from top to bottom, respectively), computed in a mesh made of hexagons with h = 1.58e-2, for the
aforementioned values of the Rayleigh number (first to third columns). As can be seen from Figure
6.7 (first column), the flow pattern for the small value of Ra shows a butterfly-like shape inside the
domain with a dumbbell-like shape situated in the center. In turn, when Ra increases from 1 to 1e4,
and then to 1e5, the flow begins to wander toward the direction of vertical walls spaced apart from
one another, and getting closer to the hot wall, as expected.
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[14] E. Cáceres and G.N. Gatica, A mixed virtual element method for the pseudostress-velocity
formulation of the Stokes problem. IMA J. Numer. Anal., 37 (2017), no. 1, 296–331.
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formulation for the stationary Boussinesq problem. Numer. Methods Partial Differential Equations
32 (2016), no. 2, 445–478.

[24] E. Colmenares, G.N. Gatica and R. Oyarzúa, An augmented fully-mixed finite element
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