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Introduction

The main objective of these lecture notes is to provide basic notions about the
finite element discretization of frictionless contact in elastodynamics, to point
out where the main problems may occur, and what are the possible remedies.
They suppose a basic knowledge of elastodynamics and of the finite element
method. It is also recommended to have some notions about unilateral contact
in elastostatics (the so-called Signorini problem). They cover only frictionless
contact, for the sake of simplicity.
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1 Elastic membrane with dynamic contact

Let us introduce a simple model of (frictionless) dynamic contact. For this
purpose we need first a domain Ω, that is an open subset of Rd, d ≥ 1 (in
practice, d = 1, 2 or 3). We suppose that Ω is non-empty and bounded. We
denote by Γ := ∂Ω the boundary of Ω. For d = 1 we take Ω as a finite
union of open intervals. For d = 2, 3, the boundary Γ is supposed polytopal.
The boundary is partitionned into three parts: ΓD (Dirichlet boundary), ΓN

(Neumann boundary) and ΓC (contact boundary).

1.1 Problem in strong form

We want to solve the following wave equation:

∂2u

∂t2
− c2 ∆u = f in R+

∗ × Ω, (1)

complemented with the following boundary conditions:

u = 0 on R+
∗ × ΓD,

∂u

∂n
= 0 on R+

∗ × ΓN , (2)

and

u ≤ 0,
∂u

∂n
≤ 0, u

∂u

∂n
= 0 on R+

∗ × ΓC , (3)

as well as initial conditions:

u(0) = u0,
∂u

∂t
(0) = v0 in Ω. (4)

Let us now spend some time to present the protagonists and explain the nota-
tions. First the solution is denoted by u and is a scalar field:

u : R+ × Ω → R.

We will denote by u(t, x) its (scalar) value at time t ≥ 0 and at point x ∈ Ω. The
Laplace operator is denoted by ∆. The notation ∂

∂t is for the partial derivative

in time and ∂2

∂t2 is for the second-order partial derivative in time. The normal

derivative is denoted by ∂
∂n and is defined as:

∂

∂n
:= n · ∇

where ∇ is the gradient operator. The source term in (1) is denoted f (f :
R+

∗ × Ω → R). The coefficient c > 0 in front of the Laplace operator in (1) is
the wave speed.

We need two initial conditions, and we suppose the displacement is known
at the initial time t = 0, and equal to u0, a given function. The same happens
for the velocity, prescribed using the function v0.
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Conditions (2) are standard (homogeneous) Dirichlet and Neumann bound-
ary conditions. Conditions (3) on the contact boundary ΓC are Signorini condi-
tions (see, e.g., [14, 16, 17, 25, 29]). In dimension d = 2, Problem (1)–(2)–(3)–(4)
can represent the motion in time of a thin elastic membrane, with contact that
can occur, or not, on ΓC (the membrane can not penetrate a prescribed obsta-
cle). In dimension d = 1, Problem (1)–(2)–(3)–(4) may represent an elastic bar,
that cannot penetrate the rigid ground. To represent more complex situations,
for instance three-dimensional elasticity, the Laplace operator needs to be re-
placed by, for instance, the small strain elasticity operator. We will see later
on that, despite the above setting is simplified, it has retained all the worse
numerical difficulties that occur in more complex or realistic situations.

This simplified model of contact in elastodynamics and needs to be differ-
entiated from rigid body contact dynamics, where collisions may occur between
rigid particles. In this latter situation, the model and the numerical issues are
not the same.

For the purpose, it will be convenient to adopt the following convention, that
will allow us to see the space-time field u as a function of time, only:

u : t 7→ u(t) ∈ Ω

so we can say that
u(t)(x) = (u(t))(x) = u(t, x).

1.2 Well-posedness and energy conservation

We recall that for the Signorini problem that represents frictionless static con-
tact, well-posedness is a standard result, coming from the Lions-Stampacchia
theory [33] that emerged in the 60s [7, 29]. For contact conditions in the dy-
namic setting, well-posedness is much more difficult to establish, and, in fact, is
still an open problem in a general setting.

However, in dimension one (d = 1) existence and uniqueness of the solution
to Problem (1)–(2)–(3)–(4) has been proven in details in [10] (see also [9, 15,
30, 32] for other results, in more general settings).

For our purpose, let us just establish, formally, a result of energy conservation
for Problem (1)–(2)–(3)–(4). We consider a fixed moment in time t > 0 and set
f = 0 to simplify. We start from equation (1) and multiply each side by ∂u

∂t :

∂2u

∂t2
∂u

∂t
− c2 (∆u)

∂u

∂t
= 0.

We use the identity

∂

∂t

(
∂u

∂t

)2

= 2
∂2u

∂t2
∂u

∂t

to get

1

2

∂

∂t

(
∂u

∂t

)2

− c2 (∆u)
∂u

∂t
= 0.
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We integrate over the whole domain Ω:

1

2

∫
Ω

∂

∂t

(
∂u

∂t

)2

− c2
∫
Ω

(∆u)
∂u

∂t
= 0.

We then apply the Green formula to the second term:

1

2

∫
Ω

∂

∂t

(
∂u

∂t

)2

+ c2
∫
Ω

∇u · ∇
(
∂u

∂t

)
− c2

∫
Γ

(n · ∇u)

(
∂u

∂t

)
= 0. (5)

The first term in (5) can be transformed as

1

2

∫
Ω

∂

∂t

(
∂u

∂t

)2

=
1

2

d

dt

∫
Ω

(
∂u

∂t

)2

.

For the second term in (5) let us rewrite it as follows:

c2
∫
Ω

∇u·∇
(
∂u

∂t

)
= c2

∫
Ω

∇u·
(
∂∇u

∂t

)
=

c2

2

∫
Ω

(
∂∥∇u∥2

∂t

)
=

c2

2

d

dt

∫
Ω

∥∇u∥2,

where ∥∇u∥ denotes the euclidean norm in Rd. The last term in (5), which is
the boundary term is split according to the partition into ΓD, ΓN and ΓC and
we apply conditions (2) to get:

−c2
∫
Γ

(n · ∇u)

(
∂u

∂t

)
= −c2

∫
ΓC

(n · ∇u)

(
∂u

∂t

)
.

Now it is time to introduce the energy associated to Problem (1)–(2)–(3)–(4)
as:

E(t) :=
1

2

∫
Ω

(
∂u

∂t
(t)

)2

+
c2

2

∫
Ω

∥∇u(t)∥2 (6)

for t ≥ 0. People from physics are used to say that this is the sum of a kinetic
energy and an elastic energy, but we will not enter into such subtelties here. We
will just observe that (5) can be rewritten as

d

dt
E(t)− c2

∫
ΓC

(n · ∇u)

(
∂u

∂t

)
= 0. (7)

We finally use the persistency condition

(n · ∇u)

(
∂u

∂t

)
= 0 (8)

to conclude from (7) that
d

dt
E(t) = 0.

And finally, by integration in time:

E(t) = E(0), (9)
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for t ≥ 0, with E(0) that can be expressed as a function of the initial conditions
(4).

If you have been attentive up to now, you have surely noticed that the
persistency condition (8) is something nontrivial, that does not derive straight-
forwardly from Signorini conditions (3). In fact, some extra effort needs to
be done to establish them rigorously, even in simple situations, like in one di-
mension, see [10]. For the moment, we can simply take it as an assumption.
Equation (9) traduces then that the contact forces do not produce work, or do
not dissipate energy, so that the energy of the elastic bar or elastic membrane is
exactly preserve. This is a remarkable property of this system, that we should
try to preserve while discretizing. Particularly, this will help in establishing
stable discretizations.

2 A few notions about finite elements

There are many ways to discretize Problem (1)–(2)–(3)–(4). Here we follow the
most usual one, sometimes called the method of lines. First we discretize the
spatial domain, here with finite elements, to obtain an evolution equation in
t, for each nonnegative real value of t, and where the approximated unknown
(here the displacement) lives in a vector space of finite dimension. This yields a
semi-discrete problem in space, for which we will apply later on a time-marching
scheme, in order to be able to find an approximate solution on a computer.

Various approximation techniques have been invented from the end of the
nineteen century, so as to calculate effective approximate solutions. Among
the most popular methods are the finite difference method, the finite element
method, the finite volume method and the spectral method (but they are many
many others in fact, and many more each passing decade). An introductive pre-
sentation to such methods is given for instance in the book of Martin Gander and
Felix Kwok [18]. For references related to contact and friction in elastodynamics
and variational, let us mention for instance [7, 19, 21, 22, 23, 29, 31, 36, 37].

The first step,is to decompose the domain Ω into small, simple cells. This
process, in the FEM terminology, is called, meshing. So we introduce a simplicial
mesh as a collection of simplices in Rd that partition the domain Ω. We denote
by K a given simplex in the mesh and denote by Kh the collection of all the
simplices in Ω (we will precise in a few minutes the meaning of the index h).
The mesh needs to satisfy two conditions:

1. It should cover exactly the domain Ω:

Ω :=
⋃

K∈Kh

K,

where the simplices K are supposed to be closed.

2. The intersection of two distinct simplices K and K ′ is either empty, or a
simplex of dimension lower than d, that is common to both K and K ′.
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For each simplex K in the mesh, hK denotes the maximal distance between two
points inside K (it is the ‘size’ of K), and

h := max
K∈Kh

hK

is the global size of the mesh.
Before going further, let us be more explicit about these notions for problems

in one or two dimensions. First in one dimension (d = 1) and for Ω that is an
open interval, the different simplices K1, . . . ,KN+1 are simply closed intervals,
that cover Ω, and intersect each other only at both ends. We denote

xi = Ki ∩Ki+1

the nodes of the mesh. Now, for problems in two dimensions, d = 2, simplices
K are triangles. The intersection between two triangles is either empty, or a
common vertex, or a common edge. The vertices of the triangles are also called
the nodes of the mesh.

Now, from the mesh Kh, we will build a finite dimensional space that we will
call Vh, as follows. We define, now for every value of the dimension d, the nodes
of the mesh as the vertices of the simplices. Let us denote them by x1, . . . , xN .
Let us define a family of basis functions

φ1, . . . , φN

such that

1. Each φi is globally continuous on Ω and its restriction to each simplex K
is a piecewise affine function (a polynomial function of degree at most 1):

φi|K ∈ P1(K),

where P1(K) is the space of (multivariate) polynomials of degree 1.

2. Each φi is equal to 1 at node xi, and equal to 0 for the other nodes:

φi(xj) = δij ,

where δij is the Kronecker symbol.

From the two above properties, one can check directly that each φi has a
compact support located on the patch ωi of simplices that share the same vertex
xi. So this function vanishes everywhere except in simplices that are in the
neighbourhood of the node xi.

One can also check that the functions (φi) are linearly independent. Then
we set

Vh := span(φ1, . . . , φN ).

In dimension 1, (φi) is the so-called family of hat functions, and in dimension
2, each φi is a pyramid of basis ωi and height 1. One can also check that Vh
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is the space of continuous functions that are affine on each simplex K. The
terminology ‘Lagrange’ finite elements comes from the fact that it relies on
piecewise polynomial Lagrange interpolation between the nodes of the mesh. In
the sequel, we denote by V D

h the subspace of Vh made of functions that vanish
on the Dirichlet boundary ΓD:

V D
h := {vh ∈ Vh | vh = 0 on ΓD}.

We will denote by ND(≤ N) the dimension of this subspace. Moreover, let
uh(t) ∈ V D

h be the approximated solution to the dynamic contact Problem (1)–
(2)–(3)–(4) at time t > 0. We will drop the notation (t) and note uh ∈ V D

h in
the following. We write

uh =

ND∑
j=1

Ujφj

and set U the column vector of size ND that contains all the scalar unknowns
(Uj). Remark, that, due to the definition of the basis (φi), we get the relation-
ship

Uj = uh(xj),

for any index j. We say that the unknowns are nodal unknowns, since they
simply represent the value of uh at interior nodes.

3 Mixed and modified mass methods

Mixed methods are common to discretize contact problems [7, 22, 36] and more
generally partial differential equations under constraints. For the Signorini prob-
lem (contact of an elastic body in the static case), they lead to stable and opti-
mally convergent discretizations provided a discrete infsup condition is satisfied.
So one can hope that such a behavior still holds in the dynamic case but it is
not the case. Indeed, when Problem (1)–(2)–(3)–(4) is discretized with a mixed
method, an ill-posed differential inclusion is obtained (see for instance [28]) with
possibly an infinite number of solutions after each impact. As a result, when a
time-marching scheme is applied, it tends to select with its own mood a solu-
tion among those possible, which leads ta an awkward numerical approximation.
Particularly spurious oscillations contaminate the solution, artificial energy can
be created, and what is worse, the numerical solution gets poorer if the time-step
is reduced [5, 6, 10, 11, 13, 28].

More precisely, we can follow [28] and [27, Chapter 7]. We take the simple
case where d = 1 and an elastic bar of length 1 is clamped on one extremity
and is subjected to contact (Signorini) conditions on the other. Suppose that
the corresponding elastic bar is discretized with only one element (h = 1 !). In
this case a simple mixed formulation yields:

mÜ + kU = Λ, Λ = [rU − Λ]+, ∀r > 0, (10)
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complemented with initial conditions, and where U (displacement) and Λ (con-
tact stress) are the scalar unknowns. The physical parameter m is the mass
associated to the node, and k is the rigidity of the bar element (that acts like a
spring in this case). The notation [·]+ stands for the positive part operator:

[x]+ = max(0, x),

for x ∈ R. Then in [27] follows an explicit calculation, from which is deduced
that the discrete problem (10) admits an infinity of solutions.

A first remedy may consists in getting inspired from rigid body dynamics
and introduce a restitution coefficient, as done in the Paoli-Schatzman scheme
for instance [34, 35]. The difficulty that persists here is to find an ideal value
of the restitution coefficient, that has no clear physical meaning here (it is not
necessary to get well-posedness of the elastodynamic problem).

The modified mass technique, originated in [28] consists in removing the
mass associated with the nodes on the contact boundary ΓC in the mass matrix
M. Indeed we observe in (10) that setting m = 0 allows to recover a well-posed
problem (static contact). The modified mass method leads to a well-posed
problem and allows to conserve a modified energy [28]. Moreover it improves
drastically the behavior of the computed solution in practice, even with con-
servative time-marching schemes, and allows numerical stability and reduced
spurious oscillations, that vanish when the discretization gets finer [6, 13]. A
theoretical convergence result and some numerical experiments can be found in
[10, 11], Many variants of this technique can be found now. Let us turn now to
the case of penalized contact.

4 Penalized contact

Basically, and in its simpler form, penalized contact consists in approximating
the Signorini conditions (3) by the following (nonlinear) equation:

∂u

∂n
= −1

ϵ
[u]+, (11)

where [·]+ is (still) the positive part and ϵ > 0 the penalty parameter [29].
Roughly speaking, it penalizes the penetration into the rigid support. It is
popular because simple and cheap. Moreover, it can be easily combined with
an explicit time-marching scheme.

4.1 Semi-discrete problem in time

The semi-discrete in space penalized formulation for the dynamic contact Prob-
lem (1)–(2)–(3)–(4) consists in finding a semi-discrete displacement field

uh : t 7→ uh(t) ∈ V D
h
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for any t > 0 that is solution to

d2

dt2

∫
Ω

uh(t)vh+c2
∫
Ω

∇uh(t)·∇vh+
1

ϵ

∫
ΓC

[uh(t)]+vh =

∫
Ω

f(t)vh, t > 0, (12)

for any vh ∈ V D
h . This needs to be complemented by initial conditions that

approximate (4) and can be written as

uh(0) = uh0,
duh

dt
(0) = vh0. (13)

The initial condition uh0 ∈ Vh, respectively vh0 ∈ Vh, is an approximation of
the exact initial displacement u0, respectively velocity v0, that can be obtained,
for instance, using Lagrange interpolation.

To build the formulation (12), we started from the heat equation (1) and
the Green formula. Then we took into account the boundary conditions (2) and
the penalized formulation (11) on the contact boundary. Finally, we made use
of the Lagrange finite element space Vh, defined in 2, and built from a mesh Kh

of the domain Ω. In practice, the parameter ϵ is defined as

ϵ = ϵ0h,

with ϵ0 user-defined, and set large enough to mimic the contact condition. The
scaling as O(h) is needed for the convergence of the method when h vanishes
[3, 29].

Using the Riesz representation theorem, the penalized formulation (12) can
be recasted as

M
d2

dt2
U(t) +BϵU(t) = F(t), (14)

where Bϵ is a nonlinear, Lipschitz operator (since the positive part operator
is Lipschitz). Thus, insteady of the ugly, ill-posed, differential inclusion that
popped out of the mixed formulation, we obtain here a friendly finite dimen-
sional Lipschitz system of ordinary differential equations, well-posed thanks to
the Cauchy-Lipschitz (Picard-Lindelof) theorem.

A second advantage is that a modified energy can be preserved. Indeed, let
us define

Eh(t) :=
1

2

∫
Ω

(
duh

dt
(t)

)2

+
c2

2

∫
Ω

∥∇uh(t)∥2

as a semi-discrete counterpart of E and

Eh,ϵ(t) := Eh(t) +
1

2ϵ

∫
ΓC

[uh(t)]
2
+

a modified energy that, roughly speaking, store the work associated to (arti-
ficial) penetration. We prove now the following result of (perturbed) energy
conservation.
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Proposition 1 Suppose that f is identically equal to zero, then the following
energy estimate holds, for all t ≥ 0:

Eh,ϵ(t) = Eh,ϵ(0) (15)

where the initial energy is given as a function of the initial displacement and
velocity by

Eh,ϵ(0) =
1

2

∫
Ω

(vh0)
2
+

c2

2

∫
Ω

∥∇uh0∥2 +
1

2ϵ

∫
ΓC

[uh0]
2
+.

Proof. Let uh be the solution to the penalized problem (12). For an arbitrary
t > 0, we proceed in the same fashion as in Section 1 and obtain:

d

dt
Eh(t) +

1

ϵ

∫
ΓC

[uh(t)]+
d

dt
uh(t) = 0.

Then we use the identity

[uh(t)]+
d

dt
uh(t) =

1

2

d

dt
[uh(t)]

2
+

and this ends the proof. □

Remark that in the above result, there is no strictly speaking a persistency
condition as in the continuous problem, which made the things a little bit more
difficult. Of course, the term that appears on the contact boundary mimics a
persistency condition when ϵ is small but is much easier to handle. We are now
ready to discretize in time the penalized formulation.

4.2 Midpoint for penalized contact

Let us have a look now at discretization in time with the midpoint scheme,
well-suited for elastodynamics: for standard boundary conditions, we know it
conserves the energy, is unconditionally stable and second-order accurate. We
take a time-step τ > 0, and introduce a sequence of (fully discrete) displacements
(un

h), such that, for each n :
un
h ≃ uh(tn),

where tn = nτ . We introduce identically the notation u̇n
h for the approximated

velocity and ün
h for the approximated acceleration. It will be convenient as well

to use the following notation:

u
n+ 1

2

h =
1

2
(un

h + un+1
h )

The midpoint scheme applied to the penalized formulation (12) reads, for n ≥ 0:∫
Ω

ü
n+ 1

2

h vh + c2
∫
Ω

∇u
n+ 1

2

h · ∇vh +
1

ϵ

∫
ΓC

[u
n+ 1

2

h ]+vh =

∫
Ω

f(tn+ 1
2
)vh (16)
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for vh ∈ Vh, and along with the updates

un+1
h = un

h + τ u̇
n+ 1

2

h (17)

u̇n+1
h = u̇n

h + τ ü
n+ 1

2

h (18)

and with initial conditions u0
h = uh0, u̇

0
h = vh0 and ü0

h = ah0 where ah0 is a
given acceleration.

An argument for hemicontinuous strongly monotone operator [1] allows to
ensure that the fully discrete problem (16) is well-posed whatever the values of
ϵ > 0 and τ > 0 are, see [4, 5]. It can be solved then, at each time-step, with,
for instance, a semi-smooth Newton method.

Let us now examine if energy preservation and numerical stability can be
achieved for such a problem. For this purpose, let us introduce energies associ-
ated to the fully discrete solution:

En
h :=

1

2

∫
Ω

(un
h)

2
+

c2

2

∫
Ω

∥∇un
h∥2

as a fully discrete counterpart of Eh and

En
h,ϵ := En

h +
1

2ϵ

∫
ΓC

[un
h]

2
+.

Let us now check if there can be energy preservation. We choose

vh = τ u̇
n+ 1

2

h ∈ Vh

in (16) to compute the difference En+1
h,ϵ − En

h,ϵ and get:

En+1
h,ϵ − En

h,ϵ

= −1

ϵ

∫
ΓC

[u
n+ 1

2

h ]+τ u̇
n+ 1

2

h +
1

2ϵ

∫
ΓC

[un+1
h ]2+ − 1

2ϵ

∫
ΓC

[un
h]

2
+.

Let us have a closer look at the first term. It can be rewritten using (17):

−1

ϵ

∫
ΓC

[u
n+ 1

2

h ]+τ u̇
n+ 1

2

h = −1

ϵ

∫
ΓC

[u
n+ 1

2

h ]+(u
n+1
h − un

h).

Now, if we discuss the two cases u
n+ 1

2

h > 0 and u
n+ 1

2

h ≤ 0, this allows to get

En+1
h,ϵ − En

h,ϵ

=
1

2ϵ

∫
ΓC

H(u
n+ 1

2

h )
(
[un+1

h ]2− − [un
h]

2
−
)

+
1

2ϵ

∫
ΓC

H(−u
n+ 1

2

h )
(
[un+1

h ]2+ − [un
h]

2
+

)
.

Above H(·) denotes the Heaviside function and [·]− the negative part (for x ∈ R,
H(x) = x/|x| and [x]− = [x]+ − x). From the above calculation, we observe
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that no energy preservation can be expected because of the contact term. And
indeed, in practice, it is observed that the midpoint scheme is not capable of
preserving the energy [6].

The morality is that, unfortunately, well-posedness and energy preservation
at the semi-discrete level are not enough to ensure stability after application
of a time-marching scheme. For penalty, this is not really surprizing, since it
regularizes the contact condition and one expects that, when ϵ vanishes the
behavior of an (ill-posed) differential inclusion is recovered [13].

A first remedy is to apply once again the modified mass method, and ev-
erything gets once again in order. Another possibility, inspired by [20, 24] is to
apply a Hybrid-Penalty scheme, where the contact term in (16) is replaced by

1

ϵ

∫
ΓC

(
H(un

h)[u
n+ 1

2

h ]+ +H(−un
h)[uh]

n+ 1
2

+

)
vh.

Roughly speaking, it activates either midpoint or Crank-Nicolson, depending
of the state of penetration at the previous time-step. It can be shown with
an argument very similar to the above one that this scheme is unconditionnaly
stable [6].

5 Nitsche and augmented Lagrangian

Nitsche method is a primal consistent method, that allows to take into account
contact condition without any regularization procedure and without any extra
unknown (see [7] and references therein for instance). For the semi-discretization
in space of Problem (1)–(2)–(3)–(4), we introduce the Nitsche parameter γ0 > 0
and write γN := γ0/h. We define a modified bilinear form

AN (u, v) := c2
∫
Ω

∇u · ∇v − c2
∫
ΓC

1

γN

∂u

∂n

∂v

∂n

and an operator

PN (v) := γNv − ∂v

∂n
.

The symmetric Nitsche formulation consists in finding a semi-discrete displace-
ment field

uh : t 7→ uh(t) ∈ V D
h

for any t > 0 that is solution to

d2

dt2

∫
Ω

uh(t)vh+AN (uh(t), vh)+

∫
ΓC

1

γN
[PN (uh(t))]+PN (vh) =

∫
Ω

f(t)vh, t > 0,

(19)
for any vh ∈ V D

h . This needs again to be complemented by initial conditions
that approximate (4) and can be written as

uh(0) = uh0,
duh

dt
(0) = vh0. (20)
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When applied to contact in elastodynamics, the Nitsche method provides, as
penalty, a well-posed semi-discrete problem is space and the symmetric variant
of Nitsche presented here allows the preservation of a modified energy. Con-
versely to penalty, these properties need a Nitsche parameter γ0 chosen large
enough. When a time-marching scheme is applied, the same difficulties as for
penalty appear and it needs to be combined with either a modified mass tech-
nique, or a Nitsche-Hybrid scheme. In comparison to penalty, it performs better
in the sense it enforces more accurately the contact condition and it is much
easier to fix the Nitsche parameter γ0 than the penalty parameter ϵ0 (because
Nitsche is consistent). See [5, 6, 8] for a detailed study of this method.

Also, more recently, augmented Lagrangian formulations have been deeply
revisited as a discretization technique for contact, see for instance [2]. A first
study of the augmented Lagrangian in the context of contact in elastodynamics
has been carried out in [26].

6 To conclude

We provided an insight into the numerical approximation of elastodynamic con-
tact problems and tried to underline some of the difficulties that one is faced
with for this problem. We also introduced some important concepts related to
well-posedness and energy preservation. Many details have been skipped and
in fact there are many other delicate issues, on both theoretical and applied
sides. Among the recent trends in this topic are for instance new time-stepping
techniques such as the Bathe scheme (TRBDF2) [26] or explicit schemes [8, 12].

⋆
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