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Abstract. A well-known experimental setup for the study of segregation by size
in a dry granular medium consists of two layers of spheres composed of large and
small rigid spheres. These layers are contained within an annular region of con-
centric cylinders covered above and below by plates. One of the cylinders is ro-
tated and thereby applies shear to the granular mixture. The spheres will then mix
and the large ones rise while the small ones settle in vertical direction. This phe-
nomenon can be modelled by a conservation law whose flux involves a piecewise
constant or smooth coefficient [L. May, M. Shearer, and K. Daniels, J. Nonlin. Sci.,
20 (2010), pp. 689–707] that describes dependence of the shear rate on depth. This
model is solved by the hyperfast front tracking method adapted to a conservation
law with discontinuous flux. In this way the coefficient can efficiently be identified
from experimental observations. Numerical examples are presented.

AMS subject classifications: 76T25, 35L65, 35F25
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1 Introduction

1.1 Scope

The well-known front tracking (FT) method was originally devised for the approxi-
mate solution of initial value problems of scalar conservation laws of the type

∂tu + ∂xg(u) = 0, x 2 R, t > 0; u(x, 0) = u0(x), x 2 R, (1.1)
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where u = u(x, t) is the sought unknown, t is time, x is the spatial coordinate, g =
g(u) is the given flux function that we may assume to be Lipschitz continuous, and
u0 2 (BV \ L1)(R) is an initial function. The method essentially goes back to the
polygonal construction by Dafermos [14], while Holden et al. [18] proved that the
method is well defined and suitable for the approximation of entropy solutions of (1.1)
with a general, usually nonlinear flux g. The basic idea of the FT method consists in
replacing the flux g by a piecewise linear, continuous (that is, polygonal) function gd,
where d > 0 is a parameter that controls the accuracy of polygonal approximation
(such that gd ! g as d ! 0 in an appropriate sense), and replacing the initial datum u0
by a piecewise constant function ud

0 that takes values in the breakpoints of gd only. The
resulting initial value problem

∂tud + ∂xgd(ud) = 0, x 2 R, t > 0; ud(x, 0) = ud
0(x), x 2 R (1.2)

is then solved exactly for fixed d > 0. The solution of (1.2) starts by solving the ini-
tial neighboring Riemann problems posed by the jumps of ud

0; here we recall that a
Riemann problem is an initial value problem (1.1) with the initial datum

u0(x) =

(
uL for x < 0,
uR for x > 0

with given constants uL and uR. One then alternates between tracking fronts, that
is traveling discontinuities (initially those arising from the solution of the initial Rie-
mann problems) and detecting their interactions, and solving the new Riemann prob-
lems defined by these interactions. By construction the solution ud = ud(x, t) is con-
stant between the traveling fronts and takes values within the breakpoints of gd only
at any time. The solution of the individual Riemann problems for (1.2) is based on
the construction of lower convex and upper concave envelopes of gd and avoids the
construction of rarefaction waves for a continuously varying function g (that would
require determining the inverse of the derivative g0).

All these properties of the FT method for (1.1), along with the convergence of ud

in L1 to the unique entropy solution of (1.1) as d ! 0, are well known and detailed
in the monograph by Holden and Risebro [20]. In particular, the method is known
to be hyperfast, which means that it delivers a solution of (1.2) up to infinite time
within finite computational time [20]. On the other hand, the method can be applied
to handle conservation laws with a flux that is discontinuous in spatial position

∂tu + ∂xg(x, u) = 0, (1.3)

where a typical situation is

g(x, u) = k(x) f (u), k(x) =

(
kL for x  0,
kR for x > 0.

(1.4)
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Figure 1: Initial configuration of particle layers in the experimental annular Couette cell.

A more general case would be

g(x, u) =

(
fL(u) for x  0,
fR(u) for x > 0.

(1.5)

Conservation laws with discontinuous flux have attracted considerable interest in
literature in recent decades, in part due to numerous practical application of models
posed by (1.3), (1.4) or (1.3), (1.5). These include two-phase flow in heterogeneous
porous media [21,28], a population balance model of ball wear in grinding mills [9], a
model of endo-vascular treatment of abdominal aortic aneurysm [11], models of con-
tinuous sedimentation [8, 15], and traffic flow on roads with abruptly changing road
surface conditions. In fact, to the authors’ knowledge the first proposition of (1.3),
(1.4) as an applicative model is due to Mochon [26] and describes vehicular traffic
on one-directional road, where u = u(x, t) 2 [0, 1] is the normalized density of cars,
f (u) = u(1� u) is the flux function arising from the Lighthill-Whitham-Richards kine-
matic traffic model, and k(x) > 0 is a piecewise constant function that describes the
spatial variation of the maximal velocity due to traffic signs, fog, slope or other effects.
Thus, the governing equation of this model can be written as

∂tu + ∂x
�
k(x)u(1 � u)

�
= 0. (1.6)

This model was chosen in [20] as an example for a complete analysis of the extension
of the FT method to conservation laws with discontinuous flux.

It is the purpose of this work to apply the FT method to a model that describes
the phenomenon of segregation of granular media proposed by May et al. [25]. The
underlying configuration consists of two layers of spheres, one large and one small,
within an annular region of concentric cylinders covered above and below by two
plates. As these plates rotate, the particles mix and then the larger spheres rise while
the smaller ones settle (see Figure 1). The governing model, to be introduced in the
next section, is equivalent to the traffic model of [26] but much lesser known. We
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therefore present an alternative application of this model equation, and utilize the FT
method to design an efficient method of parameter identification for a shear rate co-
efficient of the granular medium equation. (Roughly speaking, that coefficient plays
a role similar to that of k(x) in (1.6), but represents a material specific property and
needs to be determined experimentally.) Here efficiency is measured in comparison
to the performance of the Engquist-Osher [16] conservative finite difference scheme
modified to handle conservation laws with discontinuous flux. The parameter iden-
tification problem is solved by applying a Matlab routine to search the minimum of a
suitable optimization problem.

Before concluding the introduction we provide the necessary details of the model
problem.

1.2 Model problem

Considering the configuration of Figure 1 we assume that the concentration (volume
fraction) j of smaller particles depends on vertical position z and time t only, such that
j = j(z, t). Correspondingly, the volume fraction of the larger particles is 1 � j =
1 � j(z, t). The governing equation modeling the phenomenon of segregation is the
first-order conservation law

∂t j + ∂z
�
sa(z) f (j)

�
= 0, (z, t) 2 [0, 1]⇥ [0, T], (1.7)

where f (j) = j(j � 1) is the flux, a(z) is the shear rate, and s > 0 is the constant of
proportionality sets the time scale in the model and represents the rate at which mixing
and segregation occur. It is assumed that the height coordinate z is normalized such
that z 2 [0, 1]. Initially, a layer of thickness 1 � z0 of small particles is located above a
layer of thickness z0 of large ones, which corresponds to the initial condition

j(z, 0) = j0(z) =

(
0 for 0 < z < z0,
1 for z0 < z < 1,

(1.8)

wheee we limit the discussion to the case z0 = 0.5. Moreover, the boundary conditions

j(0, t) = 1 and j(1, t) = 0 (1.9)

are imposed. Since f (0) = f (1) = 0, these conditions ensure that there is no particle
flow across the upper and lower boundaries.

With respect to the shear rate a(z), in [25] solutions were obtained for two particu-
lar parametric forms that were suggested by experimental data and at the same time
allow for an explicit construction of an entropy solution, namely a piecewise constant
function with a jump located at zc 2 (0, 1),

a(z) =

(
k0 for 0 < z < zc,
k1 for zc < z < 1

with constants k0 > k1 > 0, (1.10)
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and a smooth function

a(z) = a0e�z/l, 0 < z < 1, with a0 > 0 and l > 0. (1.11)

However, while May et al. [25] carefully argue that the forms (1.10) (with its split into
two regimes at z = zc) and (1.11) are supported by agreement with data and other
studies of sheared ganular materials (e.g., [17]), there is no physical principle that
would compel either of these forms. We therefore view the shear coefficient a(z) as a
decreasing function of z that can also assume more general forms than (1.10) or (1.11).
For the numerical experiments we herein assume that a(z) is a decreasing, piecewise
constant function of the form

a(z) =

8
>>>><

>>>>:

k0 for 0 < z < z0,
k1 for z0 < z < z1,
...
km for zm�1 < z < 1,

0 < z0 < z1 < · · · < zm�1 < 1,
k0 > k1 > · · · > km > 0, (1.12)

where m 2 N and that handles both cases described in [25] if we consider (1.12)
as piecewise constant approximation of a continuously varying function. With the
model problem properly stated, we can precisely state that the goal of this work is to
consider the hyperfast FT method to solve (1.7)–(1.9) for a general decreasing function
a(z) given by (1.12) and propose an optimization procedure to identify the coefficients
k0, . . . , km based on solving an inverse problem from observed data.

1.3 Related work

To put the present study further into the proper context, we mention that granular ma-
terials can be segregate by size, shape, density, and other material properties. The case
for size segregation in shear flow is particularly important, as it arises in situations as
diverse as industrial flows, rock avalanches, and gyratory tippers. Under such shear,
large particles normally rise and small particles settle [23,25]. In the case of irregulary
shaped particles (not considered here) this phenomenon is similar to the well-known
”Brazil nut effect” [24]. A broad introduction to granular media is provided by An-
dreotti et al. [1].

Let us mention that the method of solving the parameter identification problem
through an optimization procedure that minimizes a suitable cost functional is akin
to methodologies that have been applied to solve the problem of identification of the
flux and possibly a degenerating diffusion coefficient in the context of a mathemati-
cally similar model of sedimentation [2, 3, 5, 13]. An alternative approach consists in
comparing observed trajectories of discontinuities with those produced by the exact
solution and identifying the flux by suitable least-squares methods, see [4, 6] (as well
as the references cited in [4]). With respect to that class of models, we mention that the
FT method has been applied to solve conservation laws for batch settling [10] as well
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as for continuous sedimentation [7], in the latter case involving a conservation laws
with a discontinuous coefficient.

On the other hand, without reference to a specific application, Holden et al. [19]
study in what sense one can determine the functions k(x) and f (u), where k is piece-
wise constant, in the scalar hyperbolic conservation law ∂tu + ∂x(k(x) f (u)) = 0 from
the solution of the initial value problem at a given time with suitable piecewise con-
stant initial data, and propose a reconstruction procedure based on exploit the com-
plete and detailed knowledge of the FT method to ”revert” the construction (in an
appropriate sense) and deduce properties of the flux functions k and f starting from
the observed solutions. This reconstruction is possible for two important classes of
problems; namely, when k is constant and f is sufficiently smooth, and when k is
piecewise constant and f is strictly concave. Finally, we mention that in the present
work we compare the results produced by the FT method with those produced by
the Engquist-Osher scheme, a monotone, conservative finite difference scheme. We
refer to [12] for a rigorous analysis of the numerical treatment of the flux identification
problem by monotone methods.

1.4 Outline of the paper

The remainder of this paper is organized as follows. In Section 2, we deal with the
well-posedness of problem (1.7)-(1.9) and show how to solve Riemann problems and
describes the Front Tracking method used to compute approximate solutions Section
3 describes the inverse problem. Section 4 details numerical results for the direct and
inverse problems, including a comparison of the result and performance of the Front
Tracking method and the Engquist-Osher scheme, as well as a comparison of various
matlab routines. The conclusions and future work are elaborated in Section 5.

2 Front Tracking

2.1 Preliminaries

To discuss the existence and uniqueness of solutions to (1.7)–(1.8) it is necessary to
introduce some concepts, wheere we set s = 1 in (1.7). Based on [22, 27] we have the
following definitions and results.

Definition 2.1. Let a = a(z) a function of bounded variation. We fix an arbitrary T > 0 and
set PT = R ⇥ [0, T). A function j 2 L1

loc(PT) \ C([0, T); L1
loc(R)) is said to be a weak

solution of (1.7) with the initial condition (1.8) if for all test functions y 2 C1
0(PT),

ZZ

R⇥R+

�
jyt + a(z) f (j)yz

�
dt dz +

Z

R
j0(z)y(z, 0)dz = 0.

To be able to properly embed the model problem into the theory of conservation
laws with discontinuous flux we state the following assumptions.
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H1) There is a j-interval [x, y] and a constant C such that

a(z) f (x) = a(z) f (y) = C for all a(z).

H2) There is a point j⇤ 2 (x, y) such that

a(z) f 0(j)

(
> 0 for x < j < j⇤,
< 0 for j⇤ < u < y.

H3) The map a(z) 7! a(z) f (j) is strictly monotone for all j 2 (x, y).

H4) The flux function satisfies a(z) f (j) 2 C2(R ⇥ [x, y]).

Theorem 2.1. Let f = f (j) be a function satisfying (H1)–(H4), and assume that j0 = j0(z)
is a function in L1

loc taking values in the interval [a, b], and that a = a(z) is a function in
BV(R) [ L1

loc(R). Then there exists a weak solution to the initial value problem

∂t jt + ∂z
�
a(z) f (j)

�
= 0, z 2 R, t > 0; j(z, 0) = j0(z), z 2 R.

Furthermore, this solution is the limit of a sequence of front tracking approximations.

We denote by a+i and a�i the one-sided limits of a(z) as z ! zi, z > zi and z ! zi,
z < zi, respectively, where i = 0, . . . , m � 1 (consistently with (1.12)), and

Da(z) :=
m�1[

i=0

�
{zi}⇥ [0, T]

�
.

Definition 2.2. Let a = a(z) a function of bounded variation. We fix an arbitrary T > 0
and set PT = R ⇥ [0, T). A function j 2 L1

loc(PT) \ C([0, T); L1
loc(R)) is said to be an

entropy solution of (1.7) with the initial condition (1.8) if for all nonnegative test functions
y 2 C1

0(PT) and all c 2 R,
ZZ

PT

⇣
|j � c|∂ty + sgn (j � c)

�
a(z) f (j)� a(z) f (c)

�
∂zy

⌘
dt dz

�
ZZ

PT\Da(z)

sgn(j � c)a0(z) f (c)y dt dz

+
Z T

0

✓m�1

Â
i=0

��a+i f (c)� a�i f (c)
��y(xi, t)

◆
dt +

Z

R

��j0(z)� c
��y(z, 0)dz � 0.

(2.1)

2.2 Solution of the Riemann problem

The solution of the problem (1.7)–(1.9) by the FT method is based on alternating be-
tween the solution of one or more Riemann problems and tracking the fronts gener-
ated by their solution. We therefore now consider the solution of individual Riemann
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problems of the following form, where aL > aR:

∂t j + ∂z
�
a(z) f (j)

�
= 0,

j(z, 0) = j0(z) =

(
jL for z < 0,
jR for z � 0,

, a(z) =

(
aL for z < 0,
aR for z � 0.

(2.2)

The solution of the Riemann problem is based on [27] (see also [20, Chapter 8]) and
consists in searching intermediate states ĵL and ĵR that connect with jL and jR, re-
spectively, through waves of negative or positive velocity, and the intermediate states
are connected by waves of zero speed. These intemediate states are the solution values
adjacent to the discontinuity of the flux centred at z = 0. Furthermore, the solution
will depend on the values aL, aR, jL, and jR since these values determine how we we
build decreasing and increasing envelopes of a(z) f (j), which are defined by

hL(j, jL) :=

(
inf{h(j) : h(j) � fL(j), h0(j)  0, h(jL) = fL(jL)} for j  jL,
sup{h(j) : h(j)  fL(j), h0(j)  0, h(jL) = fL(jL)} for j � jL,

hR(j, jR) :=

(
sup{h(j) : h(j)  fR(j), h0(j) � 0, h(jR) = fR(jR)} for j  jR,
inf{h(j) : h(j) � fR(j), h0(j) � 0, h(jR) = fR(jR)} for j � jR,

(2.3)

where fL(j) = aL f (j), fR(j) = aR f (j). Observe that the mapping j 7! hL(j, jL)
is nonincreasing and j 7! hR(j, jR) is nondecreasing, therefore if the graphs of hL
and hR intersect, the flux value at z = 0, and in this way the values ĵL and ĵR of the
solution are determined by the flux values at this intersection point. These values are
unique (in situations where at least one of hL and hR is constant at the intersection) if
they satisfy the so-called minimal jump entropy condition (cf. [20, Sect. 8]) that states
that ĵL is chosen to be the unique value such that |jL � ĵL| is minimized provided
that hL(ĵL; jL = fL(ĵL), ĵR is chosen to be the unique value such that |jR � ĵR| is
minimized provided that hR(ĵR; jR) = fR(ĵR), and hL(ĵL; jL) = hR(ĵR; jR).

Summarizing, we obtain that the solution of (2.2) consists of shocks or rarefaction
waves that connect the intermediate state jL with ĵL and ĵR with jR, respectively.
In order to determine a particular solution (which will be shown in the next section
where we implement the FT method), and referring to the left column in Figures 2
to 4, we follow the dotted path from jL to jR. If the path follows the graph of hL or hR,
then the wave is a rarefaction wave, and otherwise it is a shock wave. The horizontal
segments connecting hL and hR are zero waves.

2.3 Front Tracking method

It is well known [27] that there are cases in which an initial datum j0 2 BV (that
is, TV(j0) < •) produces solution with TV(jd(·, T)) = • for a finite time T > 0 as
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Figure 2: Solution of the Riemann problem for aL > aR, part 1

d ! 0. This is avoided by the singular mapping approach based on the transformation

g = g
�
a(z), j

�
= sgn

✓
1
2
� j

◆✓
a(z)(j)� a(z) f

✓
1
2

◆◆
, (2.4)

where we observe that j 7! g(a(z), j) is injective and strictly increasing. The inverse
of the mapping (2.4) is

g�1�a(z), g
�
= j =

1
2
+

sgn(g)
2

s
|g|

a(z)
2 [0, 1],

that will be used to generate a mesh in the g versus a plane on which the FT method
is applied.
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Figure 3: Solution of the Riemann problem for aL > aR, part 2

The construction of the grid and the solution of one Riemann problem can be de-
scribed as follows, where we start from a given fixed (small) number d > 0 and assume
that the Riemann problem (2.2) is to be solved.

1. Choose l, r 2 N such that |ld � aL| and |rd � aR| are minimal and define

al := ld ⇡ aL and ar := rd ⇡ aR.

2. For k = {l, r} and m 2 {�k,�k + 1, . . . , k � 1, k} we define

gk,m := md and jk,m := g�1(ak, gk,m) =
1
2
+

sgn(gk,m)
2

s
|gk,m|

ak
2 [0, 1].

Note that jk,�k = 0, jk,0 = 1/2, and jk,k = 1. The set of all points (gk,m, ak)
defines a grid in the (g, a) plane, and we define f d to be the piecewise linear
interpolation of f on this grid, i.e.,

f d(ak, j) = fk,m + (j � jk,m)
fk,m+1 � fk,m

jk,m+1 � jk,m
, for j 2 [jk,m, jk,m+1] .

3. Choose i 2 {�l, ..., l} and j 2 {�r, ..., r} such that |jl,i � jL| and |jr,j � jR| are
minimal, that is to say jl,i ⇡ jL and jr,j ⇡ jR.
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Figure 4: Solution of the Riemann problem for aL > aR , part 3

4. Based on (2.3) we define

hl,i(j, jl,i)

:=

(
inf{h(j) : h(j) � f d

l,i(j), h0(j)  0, h(jl,i) = f d
l,i(jl,i)} for j  jl,i,

sup{h(j) : h(j)  f d
l,i(j), h0(j)  0, h(jl,i) = f d

l,i(jl,i)} for j > jl,i,

hr,j(j, jr,j)

:=

(
sup{h(j) : h(j)  f d

r,j(j), h0(j) � 0, h(jr,j) = f d
r,j(jr,j)} for j  jr,j,

inf{h(j) : h(j) � f d
r,j(j), h0(j) � 0, h(jr,j) = f d

r,j(jr,j)} for j > jr,j.

This yields the admissible sets

Hl,i(jl,i) :=
�

j : hl,i (j, jl,i) = f d
l,i(j)

 
and

Hr,j(jr,j) :=
�

j : hr,j
�

j, jr,j
�
= f d

r,j(j)
 

.

It is clear that both envelopes, the non-increasing function hl,i and the non-
decreasing function hr,j, intersect at some point.

5. Find ĵl,i 2 Hl,i(jl,i) and ĵr,j 2 Hr,j(jr,j) that satisfy

hl,i(ĵl,i, jl,i) = hr,j(ĵr,j, jr,j).

6. The solution of the Riemann problem associated with the problem (2.2) consists
in solving the linearized problem with discontinuous coefficients, namely find a
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function jd = jd(z, t) such that

∂t jd + ∂z
�
ad(z) f d(jd)

�
= 0, z 2 R, t > 0,

jd(z, 0) =

(
jl,i for z < 0,
jr,j for z � 0,

, ad(z) =

(
al for z < 0,
ar for z � 0.

(2.5)

This problem can be transformed into two separate problems with continuous
coefficients, namely

∂t jd + ∂z
�
al f d(jd)

�
= 0, t > 0, z  0; jd(z, 0) =

(
jl,i for z < 0,
ĵl,i for z = 0,

(2.6)

∂t jd + ∂z
�
ar f d(jd)

�
= 0, t > 0, z � 0; jd(z, 0) =

(
ĵr,j for z = 0,
jr,j for z > 0,

(2.7)

whose respective solutions are given as follows. For z  0 we obtain the solution
jL(z, t) of (2.6) given by

jL(z, t) =

8
>>>><

>>>>:

jl,i for z < sl
i+1t,

jl,i+1 for sl
i+1t < z < sl

i+2t,
...
jl,i+p = ĵl,i for sl

i+p�1t < z < 0

if jl,i < ĵl,i and by

jL(z, t) =

(
jl,i for z < sl

i,i+1t,
jl,i+1 = ĵl,i for sl

i,i+1t < z < 0

if jl,i � ĵl,i. In both cases, we define

sl
m+1 :=

al f d(jl,m)� al f d(jl,m+1)
jl,m � jl,m+1

< 0 for m = i, . . . , i + p � 1.

Analogously, for z � 0 we obtain the solution jR(z, t) of (2.7) defined by

jR(z, t) =

(
jr,j�1 = ĵr,j for 0 < z < sr

j�1,jt,
jr,j for z > sr

j�1,jt

if jr,j > ĵr,j and by

jR(z, t) =

8
>>>>><

>>>>>:

jr,j�p = ĵr,j for 0 < z < sr
j�pt,

...
jr,j�1 for sr

j�1t < z < sr
j t,

jr,j for z > sr
j t
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if jr,j > ĵr,j, where

sr
m =

ar f d(jr,m�1)� ar f d(jr,m)
jr,m�1 � jr,m

> 0 for m = j � p, . . . , j.

Therefore, the solution of (2.5) is of the form

jd(z, t) =

(
jL(z, t) for z < 0,
jR(z, t) for z � 0.

It can happen that ĵl,i = jl,i or ĵr,j = jr,j, depending on the case. The various
cases are illustrated in the middle column of plots of Figures 2, 3 and 4.

In order to handle the boundary conditions (1.9) we need to extend a(z) to the
whole real line by

a(z) =

8
><

>:

a(0+) for z < 0,
a(z) for 0 < z < 1,
a(1�) for z � 1.

Now we consider the continuous problem at border z = 0 with the initial condition

j0(z) =

(
1 for z < 0,
jR 2 [0, 1) for z > 0,

whose solution is given by

j(z, t) =

(
1 for z < slt,
jR for z > slt,

where sl = a(0+)
f (1)� f (jR)

1 � jR
> 0.

In the same way at the border z = 1 we have an initial condition

j0(z) =

(
jL 2 (0, 1] for z < 1,
0 for z > 1

whose solution is given by

j(z, t) =

(
jL for z < srt + 1,
0 for z > srt + 1,

where sr = a(1�)
f (0)� f (jL)

0 � jL
< 0.

Therefore, it is ensured that the solution of the FT method satisfies the boundary con-
ditions.

The following theorem, demonstrated in [27], guarantees existence and unique-
ness of the solution provided by the FT method.

Theorem 2.2. Assume that the flux function satisfies (H1)-(H4), and let jd be a weak solution
of (1.7)-(1.8), constructed by front tracking, such that jd converges to j in L1(PT). Then the
entropy condition (2.1) holds for all constants c.
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3 Inverse problem: approaching the shear rate a(z)

According to May et al. [25], the shear rate a(z) is determined by experiment. The ex-
periment consists in an annular Couette cell bounded by concentric cylinders inside,
a rotating bottom plate, and an upper confinement plate. A motor drives the bottom
plate at a constant rotation rate. The cell is initially filled with a layer of small particles
on top of a layer of large particles. The apparatus has a window in the outer wall. This
allows the observer to track particle positions over time with a high speed (450 Hz)
digital camera. The camera collects digital images at discrete intervals throughout the
duration of the experiment. Particle velocities at different stages of the experiment can
therefore be compared. The measured velocity profile is based on processing particle
positions from approximately 7⇥ 105 images. With this information, May et al. gener-
ate the appropriate parameters for the shear rate a(z) for use in the model. We wish to
employ the FT method, described in the previous section, to solve an inverse problem
to approximate a(z).

In general, using experimental data we wish to approximate the shear rate of the
form (1.12). To this end, assume that j̃n

j are approximate values of j observed during
the experiment at points 0 < zj < 1 for j = 1, . . . , Mz and simulation times 0 < tn  T
for n = 1, . . . , NT, where the initial distribution j(z, 0) is given. We are interested in
determining values of the coefficients k0, k1, . . . , km according to the assumptions on
these coefficients stated in Section 1.2. To this end, we define for m 2 N the set

Km :=
�

k = (k1, k2, . . . , km) 2 Rm : 0 < kmin  km < · · · < k2 < k1  kmax
 

.

Let us now denote by j(·, ·; k̃) the entropy solution of (1.7)–(1.9) obtained by utilizing
a particular parameter vector k̃ 2 Km in the definition (1.12) of a(z). Consequently,
we may define the functional

J[j] :=
NT

Â
n=1

Mz

Â
j=1

��j(zj, tn)� j̃n
j
��2. (3.1)

The parameter identification problem can now be formulated as follows: we wish to
determine a parameter vector k̃ = k 2 Km that minimizes J[j(·, ·; k̃)], that is we expect
to solve the inverse problem

find k 2 Km such that for all k̃ 2 Km: J
⇥
j(·, ·; k)

⇤
 J

⇥
j(·, ·; k̃)

⇤
. (IP)

In general, the entropy solution j(·, ·; k̃) is not available in closed form, and needs to
be approximated. We therefore consider approximations jd

FT(·, ·; k̃), corresponding to
the FT approximation to j(·, ·; k̃) obtained with parameter d, and the approximation
obtained by the EO method with spatial discretization Dz denoted by jDz

EO(·, ·; k̃). This
leads us to define two approximate versions of the inverse problem (IP): one that is
based on utilizing an FT approximation, namely

find k 2 Km such that for all k̃ 2 Km: J
⇥
jd

FT(·, ·; k)
⇤
 J

⇥
jd

FT(·, ·; k̃)
⇤
, (IPd

FT)
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(a) (b)

Figure 5: Example 1: fronts generated by the FT method applied to problem (4.1) with (a) d = 0.01, (b)
d = 0.00005.

and an alternative one based on the EO numerical scheme:

find k 2 Km such that for all k̃ 2 Km: J
⇥
jDz

EO(·, ·; k)
⇤
 J

⇥
jDz

EO(·, ·; k̃)
⇤
. (IPDz

EO)

4 Numerical results

We compare the efficiency of the FT method with that of the EO method for both the
direct problem, that is, (1.7)–(1.9), as well as the inverse problem (IP). The EO scheme,
as conservative finite difference scheme, is given by the marching formula

jn+1
j = jn

j � l
�

Fn
j+1/2 � Fn

j�1/2
�
,

where for Dz = 1/M, M 2 N, zj = jDz, j = 0, . . . , M,

j0
j =

1
Dz

Z zj+1

zj

j(z, 0)dz,

l = Dt/Dz and zj+1/2 = (zj + zj+1)/2 the numerical flux of the EO scheme, adapted
to the equation at hand, is given by

Fn
j+1/2 = sa(zj+1/2)

✓
f
✓

max
⇢

jn
j ,

1
2

�◆
+ f

✓
min

⇢
jn

j+1,
1
2

�◆◆
.

4.1 Direct problem

Initially we work on the direct problem, which consists in solving (1.7)–(1.9) by the FT
method, comparing results with those obtained by the EO method (Examples 1 and 2).
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Table 1: Example 1. Values of tc, t0, t1, t̂c and t⇤ for Problem (4.1) with various values of d

d tc = 0.6774 t0 = 0.7983 t1 = 1.6129 t̂c = 5.0051 t⇤ = 6.4516

0.1 1.0502 1.1772 2.4998 3.9503 5.0000
0.01 0.6788 0.8000 1.6145 4.9378 6.2500
0.001 0.6842 0.8055 1.6286 5.0402 6.4935
0.0001 0.6778 0.7990 1.6133 5.0043 6.4516
0.00005 0.6777 0.7989 1.6130 5.0055 6.4516

(a) (b) (c)

Figure 6: Example 1: numerical solutions obtained by the FT and EO methods (a) with d = 0.005 and

Dz = 0.005, respectively, (b) with d = 0.0001 and Dz = 0.0001, respectively, (c) enlarged view of the

marked area of (b), at simulated time t = 0.6.

Example 1 (Piecewise constant shear rate). The motivation of this example is the first
case of May et al. [25], which is to solve the problem

∂t j + ∂z
�
a(z)j (j � 1)

�
= 0, 0 < z < 1, t > 0,

j(z, 0) =

(
0 for 0 < z < 0.5,
1 for 0.5 < z < 1,

a(z) =

(
2.4 for 0 < z < 0.29,
0.31 for 0.29 < z < 1

(4.1)

with boundary conditions (1.9). We display in Figure 5 the fronts generated by the
FT method for d = 0.01 and d = 0.00005, where we can observe the interaction of
the different fronts until a stationary state is obtained. The dynamics of these fronts is
similar to that of the iso-concentration lines for the exact solution plotted in [25, Fig. 2
(a)]. The main interest in that work is denoted on the time of ocurrence of the following
events: when the first shock or characteristic (in what follows, ”wave”) emanating
from the discontinuity initially placed at z0 reaches the line z = 0, this time is denoted
t = t0; when the first wave emanating from the same discontinuity reaches the line
z = 1, this time is denoted t = t1; when the first wave reaches z = zc (denoted t = tc);
when the last wave reaches z = zc (denoted t = t̂c); and when the last interaction at
all between waves takes place and the system assumes steady state (denoted t = t⇤).
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(a) (b)

Figure 7: Example 1: numerical solutions obtained by the FT and EO methods (a) with d = 0.005 and

Dz = 0.005, respectively, (b) with d = 0.0001 and Dz = 0.0001, respectively, at simulated time t = 6.

Table 2: Example 1: L1
errors and CPU times for simulated times t = 0.6 and t = 6 for the problem (4.1)

with various values of d and Dz.

Front Tracking method Engquist-Osher scheme

d
t = 0.5 t = 6 Dz t = 0.5 t = 6

error cpu [s] error cpu [s] error cpu [s] error cpu [s]

0.005 6.52e-3 0.7428 3.26e-2 0.7251 0.005 8.71e-3 0.2605 6.39e-2 1.2517
0.0025 2.80e-3 0.7903 2.54e-3 0.7587 0.0025 5.34e-3 0.9925 6.10e-2 4.3003
0.0005 6.87e-4 1.1649 2.54e-3 1.2494 0.0005 1.58e-3 18.6119 5.87e-2 98.2629
0.00025 3.69e-4 1.5263 1.48e-3 1.6092 0.00025 9.11e-4 69.8097 5.81e-2 389.3088

The exact values of these times are all known, and we measure the accuracy of the
solution generated by the FT method in terms of the approximations of these times
via the corresponding intersection by the fronts that constitute the FT solution for
various values of d, see Table 1. We observe that all these values are approximated
as d ! 0. Thanks to [25] we work with the exact solution and compare it with the
solution obtained by the FT method and the EO scheme. We display in Figures 6
and 7 the exact solution of problem (4.1) and the solution using the FT methods and for
t = 0.6 and for t = 6, respectively. The results indicate that when d ! 0 and Dz ! 0,
both methods approximate the exact (entropy) solution of the problem, in agreement
with the underlying theory. To measure the experimentally rate of convergence of
both methods, we calculate the L1 error (with respect to the exact solution) and the
CPU time for the FT and EO methods for various values of d and Dz. This information
is displayed in Table 2. We observe that as d and Dz tend to zero, FT approaches faster
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Table 3: Example 2: values of t⇤ for problem (4.2) with s = 13.60 corresponding to the FT method for

various values of d.

d 0.1 0.01 0.005 0.001 0.0005

t⇤ = 1 0.3676 1.3920 1.2571 1.1915 1.1877

Figure 8: Example 2: Fronts produced by the FT approximation of problem (4.2) obtained with d = 0.005
and s = 13.60.

and with better precision than EO. That said, it should be emphasized that the choice
of the same values of d and Dz in Table 2 is incidental; of course the role of d within
the FT method is different to that of Dz in the EO method.

Example 2 (Smooth shear rate). This example is motivated by the second case raised
in May et al. [25], which is to solve the problem

∂t j + ∂z
�
sa(z)j (j � 1)

�
= 0, 0 < z < 1, t > 0,

j(z, 0) =

(
0 for 0 < z < 0.5,
1 for 0.5 < z < 1,

a(z) =
✓

0.87
0.205

◆
exp

✓
�z

0.205

◆
for 0 < z < 1

(4.2)

equipped with boundary conditions (1.9). To normalize time we use s = 13.60 and
analogous to the previous example, we display in Figure 8 the fronts obtained bu
the FT method for d = 0.005, where we can observe the interactions of the fronts
until a stationary state is reached. The dynamics of these fronts is similar that of the
curves shown in [25, Figure 2 (b)] for the exact solution. We are interested in the time
t = t⇤ of occurrence of the last interaction of fronts after which the solution becomes
stationary. The approximate values of t⇤ corresponding to solutions obtained by the
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(a) (b)

Figure 9: Example 2: solutions obtained by the FT and EO methods at simulated time t = 0.9 and s = 13.60.

FT for various values of d and shown in Table 3, which reconfirms that the exact value
of t⇤ is approximated as d ! 0. We display in Figure 9 the solutions obtained at
various simulated times obtained by the FT and EO methods.

4.2 Inverse problem (parameter identification)

In what follows we The inverse problem in which we numerically identify various
shear rates a(z) that can be piecewise constant or smooth. We use matlab routine
patternsearch for each case proposed in order to reduce the functional J in (3.1)
within the approximate inverse problems (IPd

FT) or (IPDz
EO). The patternsearch rou-

tine finds a sequence of points, k1, k2, k3, . . . that approximates an optimal point from
a given initial value kinit. The stopping criterion is given by

|ki � ki+1|  Tolk (1 + |ki|) or
|J(ki)� J(ki+1)|  TolJ (1 + |J(ki)|)

where Tolk is the tolerance for k and TolJ is the tolerance for the function. In our case,
Tolk = 0.001 and TolJ = 0.001 and we use 2000 as a maximum number of iterations.

If knum is the vector that minimizes the problems (IPd
FT) or (IPDz

EO), we validate the
approximation by calculating the L1-distance between knum and the vector k used to
simulate the data of the problem, in this way

error =
m

Â
l=1

|kl � knum,l |,

where m is the number of parameters to identify.
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Table 4: Example 3. Errors and CPU times for the FT and EO methods based on various values of d and Dz,
combined with the patternsearch routine.

Front Tracking method Engquist-Osher scheme

d error cpu [s] k1 k2 Dz error cpu [s] k0 k1

0.01 3.63e-1 31.9 3.5000 0.5125 0.01 1.63e-1 44.8 3.0000 0.4871
0.005 9.38e-3 38.8 3.1563 0.4969 0.005 1.59e-1 277.3 3.0000 0.4910
0.0025 1.72e-2 5.91 3.1641 0.4969 0.0025 1.55e-1 867.0 3.0000 0.4949

As observed or experimental data, the values j̃n
j in (3.1) are obtained by evaluat-

ing the numerical solution of the EO scheme for the reference solution of the direct
problem. In Examples 3 and 4 we use Dz = 0.0001, t = 0.5n, with n = 1, . . . , 20, and
z = 0.01j, with j = 1, . . . , 99. In Examples 5 and 6 with Dz = 0.0001, t = n, with
n = 1, . . . , 10, and z = 0.05j, with j = 1, . . . , 19.

Example 3 (Piecewise constant shear rate, m = 2). This case is motivated by Exam-
ple 1. We are interesting in identify a function shear rate of this form

a(z) =

(
k1 for 0 < z < 0.29,
k2 for 0.29 < z < 1

(4.3)

with k1 � k2 > 0. We take for the reference solution k1 = 3.15 and k2 = 0.5 in (4.3).
We approximate the shear rate numerically with the patternsearch routine, we start
from k1,init = 2.5 and k2,init = 0.7, so that the routine starts looking for the values of
a(z). We display in Table 4 the error, CPU times and values of k1 and k2 obtained with
the routine, for three values of d and Dz. We observe that as both d and Dz tend to
zero, the error for FT is smaller than the error for EO and the CPU time increases, but
for FT CPU time increases only moderately as d is refined, in contrast to the behaviour
of the EO method as Dz ! 0.

Example 4 (Piecewise constant shear rate, m = 5). As an extension of the previous
example we are interesting in identify a function shear rate of this form

a(z) = ki for 0.2(i � 1) < z < 0.2i, i = 1, . . . , 5, (4.4)

with ki > kj if i < j. We take for the reference solution with k1 = 3.25, k2 = 2.32,
k3 = 1.63, k4 = 1.05 and k5 = 0.53 in (4.4). The routine starts from k1,init = 3.3,
k2,init = 2.5, k3,init = 1.7, k4,init = 1.1 and k5,init = 0.5. In this example we compare two
cases, the first is under the normal condition that ki > kj if i < j and the second is
added the convexity condition

k1 � k2 > k2 � k3 > k3 � k4 > k4 � k5, (4.5)

We display in Table 5 the error, CPU times and values of k1, k2, k3, k4 and k5 obtained
for each method for the first case and in Table 6 for the second case. From Tables 5
and 6 we observe that as d ! 0 and Dz ! 0 and when condition (4.5) is in effect, both
FT and EO approximate the values of a(z) better for the routine.
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Table 5: Example 4. Errors and CPU times for the FT and EO methods based on various values of d and Dz,
combined with the patternsearch routine.

Front Tracking method

d error cpu [s] k1 k2 k3 k4 k5

0.01 6.55e-1 60.1 3.0187 2.5000 1.7000 1.1000 0.4063
0.005 6.51e-1 75.7 3.0187 2.5000 1.7000 1.1000 0.4102
0.0025 6.65e-1 112.9 3.0031 2.5000 1.7000 1.1000 0.4121

Engquist-Osher ccheme

Dz error cpu [s] k1 k2 k3 k4 k5

0.01 6.56e-1 279.7 3.0031 2.0078 1.6297 0.9906 0.4932
0.005 5.11e-1 1116.6 3.0031 2.1367 1.6375 1.0043 0.5020
0.0025 2.04e-1 3650.1 3.1828 2.2109 1.6375 1.0453 0.5146

Table 6: Example 4 with a(z) satisfying the convexity condition (4.5). Errors and CPU times for the FT

and EO methods based on various values of d and Dz, combined with the patternsearch routine.

Front Tracking method

d error cpu [s] k1 k2 k3 k4 k5

0.01 4.21e-1 47.9 3.1125 2.3750 1.7000 1.1000 0.4219
0.005 4.87e-1 70.8 3.0578 2.3750 1.7000 1.1000 0.4102
0.0025 4.87e-1 109.9 3.0578 2.3750 1.7000 1.1000 0.4102

Engquist-Osher ccheme

Dz error cpu [s] k1 k2 k3 k4 k5

0.01 5.68e-1 98.2 3.0031 2.1250 1.5750 1.0258 0.4834
0.005 4.53e-1 482.2 3.0031 2.2188 1.6062 0.9945 0.5049
0.0025 2.39e-1 3148.5 3.1203 2.2344 1.6336 1.0453 0.5146

Example 5 (Smooth shear rate). This case is motivated by Example 2 of the direct
problem. We are interesting in identify a function shear rate of this form

a(z) =
k1

k2
exp

✓
�z
k2

◆
, 0 < z < 1.

with k1 � k2 > 0. We take for the reference solution with k1 = 0.87 and k2 = 0.205.
The numerical approximation of the shear rate starts from k1,init = 1.0 and k2,init = 0.2
for each procedure. Table 7 shows the errors, CPU times and values of k1 and k2
obtained for each method. We observe that as both d and Dz tend to zero, the error
decreases in all cases and the CPU time increases, but for FT the time does not increase
considerably as it happens with EO.
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Table 7: Example 5. Errors and CPU times for the FT and EO methods based on various values of d and Dz,
combined with the patternsearch routine.

Front Tracking method Engquist-Osher scheme

d error cpu [s] k1 k2 Dz error cpu [s] k1 k2

0.01 1.00e-2 12.3 0.8750 0.2000 0.01 2.34e-2 249.7 0.8516 0.2000
0.005 1.00e-2 18.3 0.8750 0.2000 0.005 2.34e-2 988.3 0.8516 0.2000
0.0025 7.81e-3 88.6 0.8672 0.2000 0.0025 2.34e-2 3658.0 0.8516 0.2000

Table 8: Example 6. Errors and CPU times for the FT and EO methods based on various values of d and Dz,
combined with the patternsearch routine.

Front Tracking method

d error cpu [s] k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

0.01 1.1872 396.9 3.0000 2.0000 1.0000 0.5125 0.2406 0.2031 0.1031 0.0344 0.0281 0.0141
0.005 1.2893 461.4 3.0000 2.0000 1.0000 0.7703 0.2172 0.2109 0.1012 0.0305 0.0203 0.0180
0.0025 1.3030 582.6 3.0000 2.0000 1.0000 0.7781 0.2250 0.2031 0.1012 0.0227 0.0203 0.0199

Engquist-Osher ccheme

Dz error cpu [s] k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

0.01 0.6249 2854.3 2.5000 1.6172 0.8008 0.6844 0.4789 0.2793 0.1656 0.1125 0.0652 0.0453
0.005 1.1151 681.8 2.5000 2.0000 0.8008 0.7742 0.4789 0.2754 0.1754 0.1125 0.0691 0.0531
0.0025 0.9046 27427.7 2.5000 2.0000 0.9980 0.7391 0.4301 0.2832 0.1813 0.1145 0.0730 0.0727

Example 6 (Piecewise constant shear rate, m = 10). This example is motivated by
Example 5 and is an extension of Example 1. We are interesting in identify a function
shear rate of this form

a(z) = ki for 0.1(i � 1) < z < 0.1i, i = 1, . . . , 10

We take as a reference solution with ki = k(zi), zi = 0.1i, i = 1, . . . , 10, for

k(z) :=
0.87

0.205
exp

✓
�z

0.205

◆
, 0 < z < 1. (4.6)

The numerical approximation of the shear rate starts from k1,init = 3, k2,init = 2, k3,init =
1, k4,init = 0.7, k5,init = 0.6, k6,init = 0.5, k7,init = 0.4, k8,init = 0.3, k9,init = 0.2 and
k10,init = 0.1. We display in Table 8 the error, CPU times and values of k1, k2, k3, k4, k5,
k6, k7, k8, k9 and k10 obtained for each method Figure 10 displays the various piecewise
constant functions a(z) obtained by each method and the different routines, using
different values of d and Dz. Results are compared with the function k(z) defined
in (4.6).
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Figure 10: Example 6. Results of parameter identification by the Front Tracking method and the Engquist-

Osher scheme with d = 0.01/Dz = 0.01, d = 0.005/Dz = 0.005, and d = 0.0025/Dz = 0.0025 by using the

patternsearch routine.

5 Conclusions

In this work, we have utilized the FT method associated with the solution of an initial
value problem for a conservation law with discontinuous flux to solve a model of seg-
regation in granular flow. This formulation allows one to solve the direct and inverse
problem for the model equation efficiently. In particular, for the problem at hand the
FT method is useful for the repeated solution of the same problem under variation of
parameters defining the flux function and to compute directions of descent to mini-
mize the cost function (in our case, J[j] defined by (3.1)). Future research should focus
on proposing an inverse problem associated with another phenomenon, such as ve-
hicle flow or pedestrian flow, among others, and solving it using the Front Tracking
method.
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