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Abstract This study investigates the computational efficacy of HHT-𝛼 and TR-BDF2
schemes in addressing dynamic frictionless unilateral contact challenges between an
elastic structure and a rigid obstacle. The application of combinations of Nitsche’s
method with these schemes is explored for managing unilateral contact conditions.
An examination of the convergence behavior involving the parameter 𝛼 in the HHT-
𝛼 method is conducted. Additionally, the mass redistribution method is tested and
compared against the standard mass matrix. The numerical outcomes, based on 1D
and 3D benchmarks, demonstrate the effectiveness of the employed combinations of
schemes and methods.

1 Introduction

The finite element method is crucial in computational solid mechanics, particularly
for contact problems in the industrial sector. These problems often face issues with
parasitic oscillations and energy conservation. Nonlinear boundary conditions in dis-
placement fields are a primary challenge, addressed through weak formulation using
variational inequalities, which form the foundational basis of most Finite Element
Methods (FEM). Current methods for discretizing contact conditions include penal-
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ization, mixed/mortar methods, Nitsche’s method, and the augmented Lagrangian
method. The field anticipates advancements in simulation accuracy and robustness.

Discretization choices involve selecting the finite element space, enforcing contact
conditions, and deciding on a time-stepping scheme. Nitsche’s method, initially for
Dirichlet boundary conditions [11], is now applied to contact problems, offering a
semi-discrete, energy-conserving approach in space-time dynamics [2, 3, 4, 6]. The
HHT-𝛼 [8] and TR-BDF2 schemes [1] are prominent for time integration in dynamic
problems, with the latter gaining interest for nonlinear cases.

This research explores the dynamics of frictionless impact between elastic bodies
and rigid obstacles, focusing on integrating time-marching schemes with Nitsche’s
method. It aims to assess the effects of numerical parameters, the emergence of
parasitic oscillations, and energy preservation in simulations, thereby enhancing
accuracy and stability in non-regular dynamic problems.

2 Dynamic contact problems via Nitsche’s method

We examine an elastic body denoted as Ω ⊂ R𝑑 , where 𝑑 ∈ 1, 2, 3. The boundary
𝜕Ω comprises Dirichlet, Neumann, and Signorini boundary conditions on disjoint
subsets Γ𝐷 , Γ𝑁 , and Γ𝐶 .

We seek the displacement field u : Ω × (0, 𝑇) → R𝑑 , for 𝑇 > 0, governed by
equations (1):

𝜌 ¥u − div(𝜎(u)) = f, in Ω × (0, 𝑇), (i)
𝜎(u) = 𝜆 tr(𝜖 (u))I + 2𝜇𝜖 (u), in Ω × (0, 𝑇), (ii)

u = 0, on Γ𝐷 × (0, 𝑇), (iii)
𝜎(u) · n = f𝑁 , on Γ𝑁 × (0, 𝑇), (iv)

𝑢𝑛 ≤ 0, 𝜎𝑛 (u) ≤ 0, 𝑢𝑛𝜎𝑛 (u) = 0, on Γ𝐶 × (0, 𝑇), (v)
𝜎(u) · n − 𝜎𝑛 (u) · n = 0, on Γ𝐶 × (0, 𝑇), (vi)

u(·, 0) = u0, ¤u(·, 0) = ¤u0, in Ω. (vii)

(1)

The following physical parameters and terms are involved in equations (i) - (iv):
mass density 𝜌, source terms f, f𝑁 , Lamé coefficients 𝜆, 𝜇, and deformation tensor
𝜖 (·). Equations (v) and (vi) define Signorini’s conditions in frictionless case, with
𝑢𝑛 = u · n and 𝜎𝑛 (u) = (𝜎(u) · n) · n. Equation (vii) sets initial conditions.

The displacement is discretized using the Lagrange finite element space Vℎ,
which is of degree one or two (𝑘 = 1 or 2), and is constructed based on a mesh T ℎ

of the domain Ω:

Vℎ :=
{
vℎ ∈

(
𝐶0 (Ω)

)𝑑
: vℎ|Γ𝐷 = 0; vℎ|𝑇 = P𝑘 (𝑇), ∀𝑇 ∈ T ℎ

}
. (2)
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We also define the bilinear and linear forms 𝑎(u, v) := (𝜎(u), 𝜖 (v))Ω and 𝑙 (v) :=
(f, v)Ω + (f𝑁 , v)Γ𝑁

using 𝐿2-products (u, v)Ω :=
∫
Ω

u · v dΩ and (u, v)Γ𝐹 :=
∫
Γ𝐹

u ·
v dΓ, defined on Ω and Γ𝐹 respectively, with Γ𝐹 ∈ {𝜕Ω, Γ𝐷 , Γ𝑁 , Γ𝐶 }. The norm
used in the following is denoted by | |·| |Ω := (·, ·)

1
2
Ω

and | |·| |Γ𝐹 := (·, ·)
1
2
Γ𝐹

.
The total mechanical energy associated with the solution u of the dynamic Sig-

norini problem is given by:

𝐸 (𝑡) = 1
2
(𝜌 ¤u, ¤u)Ω + 1

2
𝑎(u, u), ∀𝑡 ∈ [0, 𝑇] . (3)

Additionally, by the persistency condition [7], which states that (𝜎(u) · n) · ¤u = 0 on
Γ𝐶 , and when the linear form 𝑙 is null, the evolution of energy 𝑑

𝑑𝑡
𝐸 (𝑡) = 0 implies

that the total mechanical energy remains constant over time.
The semi-discrete reformulation of Nitsche’s method is as follows:

Seek uℎ : [0, 𝑇] → Vℎ, s.t.(
𝜌 ¥uℎ (𝑡), vℎ

)
Ω
+ 𝑎𝛾𝑁

(uℎ (𝑡), vℎ) +
(

1
𝛾𝑁

[
𝑃𝑁 (uℎ (𝑡))

]
R− , 𝑃𝑁 (vℎ)

)
Γ𝐶

= 𝑙 (v), ∀vℎ ∈ Vℎ,

(4)
with [·]R− := min(0, ·), 𝑎𝛾𝑁

(uℎ, vℎ) := 𝑎(uℎ, vℎ) −
(

1
𝛾𝑁

𝜎𝑛 (𝑢ℎ), 𝜎𝑛 (𝑣ℎ)
)
Γ𝐶

and the
linear discrete operator 𝑃𝑁 defined as:

𝑃𝑁 : Vℎ → 𝐿2 (Γ𝐶 )
vℎ ↦→ 𝜎𝑛 (vℎ) − 𝛾𝑁 𝑣

ℎ
𝑛

, (5)

with 𝛾𝑁 being a positive function 𝛾𝑁 |𝑇∩Γ𝐶 =
𝛾0
ℎ𝑇

.
The compact form of this Lipschitz system can be written as:

Seek uℎ : [0, 𝑇] → Vℎ, s.t.

M( ¥uℎ (𝑡)) + B𝑁 (uℎ (𝑡)) = L(𝑡),
uℎ (0) = uℎ

0 , ¤uℎ (0) = ¤uℎ
0 ,

(6)

where the operators M : Vℎ → Vℎ and B𝑁 : Vℎ → Vℎ are defined such that(
M(vℎ),wℎ

)
Ω
=

(
𝜌vℎ,wℎ

)
Ω
, ∀wℎ ∈ Vℎ,(

B𝑁 (vℎ),wℎ
)
= 𝑎𝛾𝑁

(vℎ,wℎ) +
(

1
𝛾𝑁

[
𝑃𝑁 (vℎ)

]
R− , 𝑃𝑁 (wℎ)

)
Γ𝐶

, ∀wℎ ∈ Vℎ,
(7)

and the vector L(𝑡) ∈ Vℎ is defined such that
(
L(𝑡),wℎ

)
Ω
= 𝑙 (wℎ), ∀wℎ ∈ Vℎ.

The discrete energy, denoted as 𝐸ℎ (𝑡), can be set in the following manner:
𝐸ℎ (𝑡) := 1

2
(
𝜌 ¤uℎ (𝑡), ¤uℎ (𝑡)

)
Ω
+ 1

2𝑎(u
ℎ (𝑡), uℎ (𝑡)),

It essentially mirrors the mechanical energy 𝐸 (𝑡) within a continuous framework.
Furthermore, we introduce a modified energy associated to the system:
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𝐸ℎ
𝑁 (𝑡) B 𝐸ℎ (𝑡) − 1

2





𝛾− 1
2

𝑁
𝜎𝑛 (uℎ (𝑡))





2

Γ𝐶

+ 1
2





𝛾− 1
2

𝑁

[
P𝑁 (uℎ (𝑡))

]
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2

Γ𝐶

B 𝐸ℎ (𝑡) − 𝑅ℎ
𝑁 (𝑡),

(8)

The term 𝑅ℎ
𝑁
(𝑡), in a broader sense, reflects the deviation from the contact condition

(1)(v) by uℎ (𝑡), as discussed in [3]. This revised energy expression, 𝐸ℎ
𝑁

, is preserved
under the assumption that (1) is conservative.

3 Time-marching schemes

The two time-marching schemes under consideration in this work are HHT-𝛼 [8]
and TR-BDF2 [1] schemes. Here we use a uniform discretization of the time interval
[0, 𝑇] with time-step Δ𝑡, and 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 = 0, · · · , 𝑁 . The schemes consist of
solving a nonlinear problem for each time instant 𝑡𝑛+1 using the displacement uℎ,𝑛,
velocity ¤uℎ,𝑛, and acceleration ¥uℎ,𝑛 of instant 𝑡𝑛 as known variables. For HHT-𝛼
and TR-BDF2 schemes, the nonlinear problems to be solved are respectively (9) and
(10).



Seek uℎ,𝑛+1, ¤uℎ,𝑛+1, ¥uℎ,𝑛+1 ∈ Vℎ s.t.

uℎ,𝑛+1 = uℎ,𝑛 + Δ𝑡 ¤uℎ,𝑛 + Δ𝑡2

2
((1 − 2𝛽) ¥uℎ,𝑛 + 2𝛽 ¥uℎ,𝑛+1), (i)

¤uℎ,𝑛+1 = ¤uℎ,𝑛 + Δ𝑡 ((1 − �̃�) ¥uℎ,𝑛 + �̃� ¥uℎ,𝑛+1), (ii)

M¥uℎ,𝑛+1 + (1 − �̃�)B(uℎ,𝑛+1) + �̃�B(uℎ,𝑛) = (1 − �̃�)L𝑛+1 + �̃�L𝑛, (iii)

(9)



Seek uℎ,𝑛+1, ¤uℎ,𝑛+1, ¥uℎ,𝑛+1 ∈ Vℎ s.t.

¤̃uℎ,𝑛+�̃� = ¤uℎ,𝑛 + �̃�Δ𝑡

2

(
¥uℎ,𝑛 + ¥̃uℎ,𝑛+�̃�

)
, (i)

ũℎ,𝑛+�̃� = uℎ,𝑛 + �̃�Δ𝑡 ¤uℎ,𝑛 + �̃�2Δ𝑡2

4

(
¥uℎ,𝑛 + ¥̃uℎ,𝑛+�̃�

)
, (ii)

M ¥̃uℎ,𝑛+�̃� + B(ũℎ,𝑛+�̃�) = L𝑛+�̃�, (iii)

¤uℎ,𝑛+1 =
1

�̃�(2 − �̃�)
¤̃uℎ,𝑛+�̃� − (1 − �̃�)2

�̃�(2 − �̃�)
¤uℎ,𝑛 + 1 − �̃�

2 − �̃�
Δ𝑡 ¥uℎ,𝑛+1, (iv)

uℎ,𝑛+1 =
1

�̃�(2 − �̃�) ũℎ,𝑛+�̃� − (1 − �̃�)2

�̃�(2 − �̃�) uℎ,𝑛 + 1 − �̃�

2 − �̃�
Δ𝑡 ¤uℎ,𝑛+1, (v)

M¥uℎ,𝑛+1 + B(uℎ,𝑛+1) = L𝑛+1. (vi)

(10)

The scheme parameters (�̃�, 𝛽, �̃�) for the HHT-𝛼 scheme are often interrelated.
Typically, �̃� ∈ [0, 1

3 ], 𝛽 = 1
4 (1 + �̃�)2, and �̃� = 1

2 + �̃�, ensuring unconditional sta-
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bility for linear elasticity in an implicit scheme. The Crank-Nicolson scheme, or
the Newmark family’s implicit trapezoidal method, arises when �̃� = 0, 𝛽 = 1

4 , and
�̃� = 1

2 , providing second-order accuracy and energy conservation in linear elasticity
without contact. However, contact can introduce oscillations and perturbation of
numerical energy, especially with the Crank-Nicolson scheme [10]. Higher �̃� val-
ues can reduce high-frequency oscillations but may also lead to significant energy
dissipation, challenging industrial reliability. A negative value for the parameter �̃�
(with 𝛽 = 1

4 (1 + |�̃� |)2 and �̃� = 1
2 + |�̃� | to keep the values of 𝛽 and �̃� remaining in

the unconditionally stable region) can also provide a convergence form and dissipate
high-frequency oscillations [9].

The TR-BDF2 scheme, recognized as an L-stable predictor-corrector approach,
employs the implicit trapezoidal rule (Crank-Nicolson) for the predictor with a step
size of �̃�Δ𝑡. The scheme then applies the second-order backward differentiation
formula for the corrector, leveraging data from 𝑡𝑛 and the outcomes of the predictor.
For linear elasticity, an interesting value for �̃� is 2 −

√
2, which makes the linear

systems at both sub-steps identical. In this work, we also use this value �̃� = 2 −
√

2
of the parameter even though, for the non-linear case, the two sub-steps are solved
by Newton iteration with different initial values.

4 Numerical results

In this work, we investigate the performance of the combination of Nitsche’s method
and two time-marching schemes by solving the movement of a 1D elastic bar of
length 1 with two Signorini boundary conditions (at 𝑥 = 0 and 𝑥 = 1.5), using 𝑃1
finite elements. GetFEM [12] via Python interface was used for the simulations in
this work. 

Seek 𝑢(𝑥, 𝑡) : [0, 1] × (0, 𝑇) → R, s.t.
𝜕2𝑢

𝜕𝑡2
− 𝜕2𝑢

𝜕𝑥2 = 0,

𝑢(0, 𝑡) ≥ 0,
𝜕𝑢

𝜕𝑥
(0, 𝑡) ≤ 0, 𝑢(0, 𝑡) 𝜕𝑢

𝜕𝑥
(0, 𝑡) = 0,

𝑢(1, 𝑡) ≤ 1
2
,
𝜕𝑢

𝜕𝑥
(1, 𝑡) ≤ 0,

(
𝑢(1, 𝑡) − 1

2

)
𝜕𝑢

𝜕𝑥
(1, 𝑡) = 0,

𝑢(𝑥, 0) = 1 − 𝑥

2
,
𝜕𝑢

𝜕𝑡
(𝑥, 0) = −1

2
.

(11)

The analytical solution exhibits piecewise regularity and periodicity. The 𝑥 − 𝑡

diagram in Figure 1 visualizes the analytical solution by demonstrating the time-
varying displacement. The bar’s interaction with each side manifests in three distinct
states: non-contact, contact with zero contact pressure, and contact with nonzero
contact pressure. The benchmark’s critical focus is the second state, where contact
occurs without pressure, especially notable at 𝑥 = 0 for 𝑡 ∈ [1, 2]. This scenario,
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Fig. 1: Elastic bar with two Signorini boundary conditions.
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Fig. 2: Comparison of the analytical and discrete solutions (Nitsche’s and penalty
methods) for the HHT-𝛼, �̃� ∈ {0.05,−0.02} (left) and TR-BDF2 (right) schemes.

termed ”grazing contact” – characterized by both zero normal displacement (𝑢𝑛 =

0) and zero gradient ( 𝜕𝑢
𝜕𝑥

= 0) on the contact boundary Γ𝐶 – represents a non-
differentiable case for the operators B𝑁 , as mentioned in [5].

For the simulation, both mesh size and time step are consistently set to ℎ = 0.05
and Δ𝑡 = 0.05, respectively. We compare the numerical results of Nitsche’s method
with those of the penalty method with the formulation presented in [9, Sec. 2.2].
The Nitsche parameter 𝛾0 and the penalty parameter 𝜖0 are chosen to be equal, with
𝛾0 = 1

𝜖0
= 5.
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Fig. 3: 𝐿2𝐻1-error vs ℎ with Δ𝑡
ℎ
= 1.

Table 1: numerical cost for different schemes

Crank-Nicolson HHT-𝛼 (�̃� = 0.05) TR-BDF2
0.9358 s 0.8907 s 1.4585 s

According to the numerical results presented in Fig. 2, our observations lead to
several noteworthy insights. By applying various mesh sizes and time steps with a
fixed ration Δ𝑡

ℎ
= 1, we show the errors on 𝐿2 (0, 𝑇 ; 𝐻1 (Ω))-norm in Fig. 3. The

orders of convergence are similar and close to 1
2 . Table 1 also displays the CPU

times consumed by Crank-Nicolson (HHT-𝛼 with �̃� = 0), HHT-𝛼 with �̃� = 0.05 and
TR-BDF2 schemes on a computer equipped with an Intel® Core™ i7-9850H CPU.

Nitsche’s method shows superior compliance with contact conditions, outper-
forming the penalty method due to its inherent consistency. For balancing energy
loss and spurious oscillations, the HHT-𝛼 method, particularly with a negative and
small absolute value of 𝛼, emerges as a viable option. On the other hand, the TR-
BDF2 scheme offers an attractive balance between energy conservation and oscilla-
tion reduction, albeit at a higher computational cost compared to HHT-𝛼 schemes.
Notably, in scenarios involving very fine time steps, the HHT-𝛼 method may prove
more advantageous due to its lower cost and reduced dissipation of high frequencies.
While not covered in this work, the mass redistribution method, when combined
with the TR-BDF2 scheme, could exhibit promising behavior, especially concerning
contact pressure. For further insights and detailed analyses, readers are encouraged
to consult [9].
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