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Chapter 1

Introduction

In the last years the derivation of suitable mathematical and numerical models for the fluid movement

which flows back and forth across a porous medium and a free fluid region has received a growing

interest. To several applications in engineering and biology, to name a few. For example in filter

design (cf. [17]) or in reservoir models (cf. [3]). Physically this is a coupled problem with two

physical systems interacting across some interfaces. The most common mathematical formulation for

this coupled problem is the Navier–Stokes–Darcy problem or simplifications of this, but the movement

of a fluid in a porous medium is a complex phenomenon, which even in the standard case Re ≈ 1, not

always the Darcy’s law applies. In other cases the Darcy’s law cannot be applied due to the non-Darcy

effects as inertial effects. Then, the development of more complex models is needed, for example the

Darcy-Forchheimer law which adds an additional term in the Darcy law in order to take into account

the non-linear behavior of the pressure gradient and the velocity. On the other hand, for the free fluid

region there are many models that approximate the fluid movement, one possibility is the Stokes model

(Stokes flow) either linear or not, which is valid when the Reynolds number is low. The nonlinear Stokes

model can be used in the modeling of the flow of quasi-Newtonian fluids. Finally, for the interface

conditions it is very common to consider the Beavers-Joseph condition (cf. [5]) or some simplification

of this, for example the Saffman or the Jones conditions (cf. [37] and [34]). Now, for the numerical

model of this coupled problem, a widely used numerical technique is the finite element method (FEM).

For example, the linear Stokes-Darcy problem with the Saffman condition on the interface and a fully-

mixed formulation can be found in [25], whereas a nonlinear version of the Stokes-Darcy model with

the Saffman condition and a primal-dual formulation is studied in [17]. The purpose of this thesis is to

give a simple extension of the analysis from [24] (see also [36]) to the case of a fully-mixed formulation

for the nonlinear model given by the Darcy - Forchheimer / Stokes coupled problem with the Saffman

condition at the interface. Differently from the usual tools available in the literature, which are valid

mainly for Hilbertian structures, our aproach is applicable to Banach spaces, which is precisely the
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case of the present nonlinear model. In addition, the appropriate choice of the discrete spaces allows,

for example, the use of lowest order Raviart-Thomas interpolator directly to the velocity, thus avoiding

the use of liftings to analyse the inf-sup conditions, and hence the hypothesis of quasiuniformity in

a neighborhood of the interface on the porous medium side is not needed anymore. The rest of this

work is organized as follows. In Chapter 2 we introduce the notation and the main aspects of the

continuous Darcy - Forchheimer / Stokes coupled problem, which includes the weak formulation and

the identification of the resulting system structure as a twofold saddle point problem. The analysis

of a modified abstract theory for this kind of nonlinear operator equations, including the continuous

and discrete setting, is analyzed in Chapter 3. The results of this chapter are then applied to our

model problem in Chapter 4, and specific finite element subspaces satisfying the required conditions

are defined. Next, in Chapter 5 we consider a more general problem which consists of a nonlinear

version of the Stokes model in the free fluid part, and finally, some auxiliary results are detailed in the

Appendices.
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Chapter 2

The continuous problem

2.1 Preliminary notations

We begin by giving some definitions that we use throughout this thesis. As usual, R2×2 is the space

of square matrices of order two with real entries ; I is the identity matrix of R2×2; and for any

τ = (τij) ,σ = (σij) ∈ R2×2, we write:

τ t := (τji) , tr τ = τ11 + τ22 and τ d := τ − 1

2
tr (τ )I,

which corresponds, respectively, to the transpose, the trace, and the deviator of the tensor τ . We also

define the inner tensor product (also called Frobenius inner product) between τ and σ given by:

(τ ,σ) 7→ τ : σ :=

2∑
i,j=1

τijσij = tr
(
τ tσ

)
.

Note that the Frobenius inner product between τ and σ coincides with the sum of the entries of the

Hadamard product (τ ◦ σ) between τ and σ, and it yields the R2×2 orthogonal decompositions into

the symmetric and the skew-symmetric tensors, or into the isotropic and non-isotropic tensors (see

Apendix .1).

In what follows we utilize a simplified terminology for Sobolev spaces. In particular, if Ω is an open

bounded polygon with Lipschitz continuous boundary Γ (cf. Def. 1.2.1.1 [30]), S is an open or closed

Lipschitz curve and X (Ω) (resp. X (S)) a Sobolev space on Ω (resp. S), we define

X (Ω) :=
[
X (Ω)

]2
, X (Ω) :=

[
X (Ω)

]2×2
and X (S) :=

[
X (S)

]2
.
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In turn, 1 ≤ p <∞, we define the Soboblev spaces (cf. [1] )

Lp(Ω) :=

{
q : q measurable ,

∫
Ω
|q(x)|pdx <∞

}
,

W 1,p (Ω) ≡
{
u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) for |α| ≤ 1

}
,

equipped with the norms

‖q‖0,p;Ω :=

(∫
Ω
|q(x)|pdx

) 1
p

and ‖u‖1,p;Ω :=
∑

0≤|α|≤1

‖∂αu‖0,p;Ω, respectively,

where ∂α is the distributional partial derivate (cf. [1, 1.57 ]). Also, we set

Lp0(Ω) :=

{
q ∈ Lp(Ω) :

∫
Ω
q = 0

}
and [Lp(Ω)]

′
' Lq(Ω) where

1

p
+

1

q
= 1.

In addition, given 2 ≤ r <∞, we define the Sobolev space

W0,r (div ; Ω) :=

{
v ∈ Lr(Ω) : div v ∈ Lr(Ω)

}
, (2.1)

equipped with the norm ‖v‖r,div ;Ω := ‖v‖0,r;Ω + ‖div v‖0,r;Ω, where the divergence operator div is

understood in the sense of distributions, that is〈
div v, ϕ

〉
D(Ω)′×D(Ω)

:= −
∫

Ω
v· ∇ϕ dx ∀ϕ ∈ D(Ω). (2.2)

In the particular case r = 2, we define H (div ; Ω) := W0,2 (div ; Ω) and ‖v‖div ;Ω := ‖v‖2,div ;Ω.

The space of matrix valued functions whose rows belong to H (div ; Ω) will be denoted H (div ; Ω),

where div stands for the action of div along each row of a tensor. The Sobolev norm of H (div ; Ω)

is denoted by ‖· ‖div ;Ω. Finally, we employ Θ or 0 to denote a generic null vector (including the null

functional and operator), and use C and c, with or without subscripts, bars, tildes or hats, to denote

generic constants independent of the discretization parameters, which may take diferent values at difer-

ent places.

2.2 The model problem

In what follows we will model the movement of the fluid flow both in a free flow region ΩS and a porous

medium ΩD. We assume that these regions have a common interface Σ. The models that we use in

both regions are simplifications of the model of Navier-Stokes. However note that the model that we

use in the porous medium has an experimental origin, as happens with Darcy’s law. Moreover, certain
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More precisely, we seek a numerical approximation

for the movement of an incompressible Newtonian

or quasi-Newtonian viscous fluid in the free flow

region, which flows towards and from the porous

medium across the common interface, where the

porous medium is saturated with the same fluid.

Now we give a more precisely description of the

flow domain. Let ΩD and ΩS strictly polygonal,

connected and disjoint subsets of R2, such that

Σ := int (∂ΩD ∩ ∂ΩS) has a Lebesgue measure

strictly positive; ΓS := ∂ΩS/Σ, and ΓD := ∂ΩD/Σ.

Also we denote n and t, the generic unit outward

normal vector and unit tangent vector, respectively,

on ΓS and ΓD. On Σ the vectors n and t are chosen

as the common ones of ΩS (positive orientation, see

Figure 2.1). Figure 2.1: Sketch Domain

restrictions of both theoretical and experimental origin are imposed at the interface, in particularly a

variation of the Breavers-Joseph condition (1967) (cf. [5]) done by Saffman (1971) (cf. [37]).

Here it is considered that the fluid is confined to Ω := ΩS∪ΩD∪Σ, and that homogeneous boundary

conditions are imposed on ΓS ∪ ΓD, but making suitable small modifications is possible to establish

more general boundary conditions (cf. [17] ).

As the fluid here considered is a Newtonian or a quasi-Newtonian fluid, we consider a simplified version

of Navier-Stokes model given by Stokes. Moreover in the porous medium we will use a generalization

of Darcy’s law called Darcy - Forchheimer Law.

On the other hand, for the condition at the interface we use the two well-accepted conditions given

by the continuity of the normal forces and the continuity of the normal velocities. We remark that the

experimental condition known as Beavers-Joseph-Saffman condition (cf. [37]), was validated by Jäger

et al. in [33].

9



Further Notations

We now introduce additional notations to be used later. Given ? ∈ {S,D} and 1 < p <∞, we define

(u, v)? :=

∫
Ω?

uv ∀u ∈ Lp (Ω?) ∀v ∈ Lq (Ω?) ,

(u, v)? :=

∫
Ω?

uv ∀u ∈ Lp (Ω?) ∀v ∈ Lq (Ω?) ,

[u, v]? :=

∫
Ω?

u : v ∀u ∈ Lp (Ω?) ∀v ∈ Lq (Ω?) .

On other hand, given Γ0 ⊆ Γ?, we define

W̃
1
q
,p

(Γ0) :=
{
u ∈W

1
q
,p

(Γ0) : ũ ∈W
1
q
,p

(Γ) , where ũ is the continuation by zero of u to Γ \ Γ0

}
.

Below we show a model for the fluid flow in the free fluid region ΩS . We consider the Stokes

model which is valid for creeping flows, and for which inertial effects can be neglected. For example,

high-viscosity fluids at low velocities. Equivalently, the Stokes model is valid when Re� 1 is satisfied.

Free fluid region ΩS

Assuming a Newtonian or quasi-Newtonian fluid in ΩS at low Reynolds numbers, with velocity uS ,

pressure pS , and stress tensor σS associated with the flow, there holds

e (uS) :=
1

2

(
∇uS + (∇uS)t

) (
deformation rate tensor

)
,

σS := −pSI + 2µ
(
‖e (uS)‖

)
e (uS)

(
constitutive equation

)
,

divσS + fS = 0
(
equilibrium state

)
,

div uS = 0
(
incompressible flow

)
,

uS = 0 on ΓS
(
no-slip condition on ΓS

)
,

where µ is the fluid viscosity and fS is a source term that represents body forces such as gravity or

electromagnetic forces. Noting that tr (∇uS) = tr (e (uS)) = div uS ≡ 0, the Stokes problem can be
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rewritten equivalently as:

1

2µ
(
‖e (uS)‖

)σS
d = e (uS) = ∇uS − γS , (2.3)

div σS + fS = 0, (2.4)

pS = −1

2
trσS , (2.5)

uS = 0 on ΓS , (2.6)

γS :=
1

2

(
∇uS − (∇uS)t

)
, (2.7)

where γS is called vorticity. In order to simplify our analysis, from now on we assume that the fluid is

Newtonian i.e., µ is a constant function. It will be shown below that there is a way to solve the case

of quasi-Newtonian fluids under the same hypothesis to be developed in what follows (see Section 5).

Now, in the porous medium we consider a nonlinear version of Darcy problem to approximate the

pressure and the flow velocity. These types of models are needed when the fluid velocity is high, more

precisely when the kinematic forces dominate over viscous forces, or equivalently when Re ≥ 1. The

specific model we consider in what follows is the one given by the Darcy - Forchheimer law.

The porous medium ΩD

When the kinematic effects are more important than viscous effects in the porous media ΩD, the

Darcy velocity uD and the pressure gradient ∇pD do not satisfy a linear relation. In this case, a

better approximation is given by the Darcy - Forchheimer law, which, assuming Neumann boundary

conditions, is stated as follows:

µ

ρ
K−1uD +

β

ρ
|uD|uD +∇pD = gD in ΩD,

div uD = fD in ΩD,

uD·n = 0 on ΓD,

(2.8)

where ρ, µ and β are the density, viscosity and dynamic viscosity of the fluid, respectively, and K ∈
L∞(ΩD) is a symmetric and uniformly elliptic tensor describing the permeability of the porous medium.

In turn, fD and gD are given, and according to the compressibility conditions, the boundary conditions

on uD and uS , and the principle of mass conservation (cf. (2.13) below), there must hold∫
ΩD

fD = 0.

Now, we define the nonlinear mapping

AD : L3(ΩD) 7→ L
3
2 (ΩD)

uD 7→ AD(uD) :=
µ

ρ
K−1uD +

β

ρ
|uD|uD (2.9)

11



and set λmin := min

{
λ : λ is a eigenvalue of K

}
. Thus, from the assumptions on K it follows that

there exists λ0 > 0 such that

λmin(x) ≥ λ0 > 0 ∀x ∈ ΩD. (2.10)

To conclude with the set of equations, at the interface Σ we introduce three transmission conditions:

the mass conservation (i.e., the fluid entering and exiting each region remains constant), balance of the

normal forces, and the Beavers-Joseph-Saffman condition.

The interface Σ

At the interface between the free and the porous media flow, the conservation of mass and balance

of normal forces are well-accepted conditions (cf. [25],[17] and [41]). On the other hand, there exists

experimental conditions that must be satisfied. An example of this kind of conditions are the B-J

conditions (cf. [5]), which relate the jump of the velocity field between the free fluid and the fluid in

the porous media with the traction (tangential component of the normal stress). On the other hand,

in some cases it is possible to simplify the B-J conditions (cf. [37] [34]). In what follows we will con-

sider the Beavers-Joseph-Saffman conditions (cf. [37]), which is obtained by neglecting the tangential

velocity in the porous-medium at the B-J condition.

Summarizing, the following three conditions are imposed at the interface Σ

• Conservation of mass, i.e., continuity of the normal velocity

uS ·n = uD·n.

• Balance of normal forces

(σSn)·n = −pD. (2.11)

• The Beavers-Joseph-Saffman condition which is another constraint on the traction σSn:

(σSn) · t = −µκ−1 (uS · t), (2.12)

where κ is the friction coefficient. Considering that (n, t) is a local orthonormal basis on Σ, we can

rewrite (2.11) and (2.12) as a single equation (cf. (2.14) bellow), so that our transmission conditions

become:

uS ·n = uD·n on Σ, (2.13)

σSn + µκ−1 (uS · t) t = −pDn on Σ. (2.14)
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Now, we proceed to establish a weak form for the three sets of equations: Stokes, Darcy - Forch-

heimer and the transmission conditions. In order to do it, we will apply a very similar analysis to the

one presented in [25], which introduces uS |Σ and pD|Σ as additional unknowns of physical interest.

2.3 Weak formulations

We begin by deriving a weak formulation for the Stokes problem, for which we use a similar formula-

tion to the one presented in [25]. We use the orthogonal decomposition of a tensor in its isotropic and

non-isotropic parts (cf. Table .1), and as usual, the hypothesis of zero mean for the pressure pS is also

considered.

2.3.1 Stokes problem

As it is common for the Stokes problem, for the uniqueness of solution we assume that pS ∈ L2
0(ΩS).

In addition, we can “drop” pS from the unknowns, and hence we simply seek σS in H0(div ; ΩS) and

uS ∈ L2(ΩS), where H0(div ; ΩS) is the space of matrix-valued functions σS in H(div ; ΩS) such that∫
ΩS

trσS = 0.

Note that the last restriction comes from the fact that σS ∈ H0(div ; ΩS)⇔ pS ∈ L2
0(ΩS), which follows

from the identity pS = −1
2trσS . Next, as in [25], we define the linear operator

AS : H0(div ; ΩS)→
[
H0(div ; ΩS)

]′
σS → AS(σS)[

AS(σS), τS

]
S

:=

[
1

2µ
σS

d, τS

]
S

∀τS ∈ H0(div ; ΩS). (2.15)

Now, testing the equations (2.3) and (2.4) with τS ∈ H0(div; ΩS) and vS ∈ L2(ΩS), respectively, and

imposing the symmetry of σS in a weak sense, we arrive to the following weak formulation for Stokes:

(PS)



find (σS ,uS ,γS ,ϕ) ∈ H0(div; ΩS)× L2(ΩS)× L2
skew(ΩS)× Ĥ

1
2
00(Σ) such that

[AS(σS), τS ] + (div τS ,uS)S + 〈τSn,ϕ〉Σ + (γS , τS)S = 0,

(divσS ,vS)S = (−fS ,vS)S ,

(σS ,ηS)S = 0,

∀(τS ,vS ,ηS) ∈ H0(div; ΩS)× L2(ΩS)× L2
skew(ΩS),
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where L2
skew(ΩS) is the space of skew-symmetric tensors set in L2 (ΩS), that is

L2
skew(ΩS) :=

{
% ∈ L2(ΩS) : %t = −%

}
, (2.16)

and ϕ := −uS |Σ. If we assume that uS ∈W1,2
ΓS

(ΩS) then the natural search space for ϕ is W̃
1
2
,2(Σ) =:

H
1
2
00(Σ), though more precisely

ϕ ∈ Ĥ
1
2
00(Σ) =

{
v ∈ H

1
2
00(Σ) : 〈v·n, 1〉Σ = 0

}
, (2.17)

which is a consequence of the no-slip condition (2.6) and the incompressibility constraint div uS = 0.

In the next section, we provide a weak formulation for the Darcy - Forchheimer law by proceeding

similarly as in [19] and [18].

2.3.2 Darcy - Forchheimer equations

The Darcy - Forchheimer problem with non-slip condition on ΓD is given by:

(
P̃DF

)


find (uD, pD) ∈ L3(ΩD)×W 1, 3
2 (ΩD)/R such that

AD(uD) +∇pD = gD in ΩD,

div uD = fD in ΩD,

uD·n = 0 on ΓD,

where gD ∈ L
3
2 (ΩD) and fD ∈ L3

0(ΩD) are given terms. Next we define the space:

W0,3
ΓD

(div ; ΩD) :=

{
v ∈W0,3 (div ; ΩD) : v·n = 0 on ΓD

}
,

which is equipped with the norm ‖ · ‖3,div;ΩD . The precise meaning of the statement v·n = 0 on ΓD is

specified below. Now, testing the first and the second equation of
(
P̃DF

)
with sD ∈ W0,3

ΓD
(div ; ΩD)

and q ∈ L
3
2 (ΩD) \ R respectively, the problem becomes

(PDF )



find (uD, pD, λ) ∈W0,3
ΓD

(div ; ΩD)× L
3
2 (ΩD) \ R×W

1
3
, 3
2 (Σ) such that

(AD(uD),vD)D − (div vD, pD)D − 〈vD·n, λ〉Σ = (gD,vD)D ,

− (div uD, qD)D = − (fD, qD)D ,

∀(vD, qD) ∈W0,3
ΓD

(div ; ΩD)× L
3
2 (ΩD) \ R,
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where λ is the trace of pD on Σ. In what follows we give a precise sense to the parity 〈vD·n, λ〉Σ.

We begin by remarking that the parity 〈v·n, ξ〉Σ is well defined ∀(v, ξ) ∈W0,q
ΓD

(div ; ΩD)×W
1
q
,p

(Σ),

when 1 < p < 2, and
1

q
+

1

p
= 1. In fact, we first note that v·n ∈W−

1
q
,q

(∂ΩD) ∀v ∈W0,q (div ; ΩD),

and that the condition v·n = 0 on ΓD, is understood in the sense〈
v·n, E0

Σ(ξ)
〉
∂ΩD

= 0 ∀ξ ∈ W̃
1
q
,p

(ΓD),

where 〈· , · 〉∂ΩD is the duality parity between W
− 1
q
,q

(∂ΩD) and W
1
q
,p

(∂ΩD), and E0
Σ is the extension by

zero on Σ. Note here, according to Theorem .3.2 given below in Chapter 6, that W̃
1
q
,p

(ΓD) is identified

with W
1
q
,p

(ΓD), and therefore the previous condition is equivalent to〈
v·n, E0

Σ(ξ)
〉
∂ΩD

= 0 ∀ξ ∈W
1
q
,p

(ΓD).

In this way, and thanks to Corollary .4.1, it suffices to consider

〈v·n, ξ〉Σ :=
〈
v·n, E0

ΓD
(ξ)
〉
∂ΩD

(v, ξ) ∈W0,q
ΓD

(div ; ΩD)×W
1
q
,p

(Σ).

2.3.3 Transmission conditions

The transmission conditions considered here are the same as in [17] and [25], but the correspond-

ing spaces are different. Therefore, it is necessary to clarify in what sense they will be imposed.

More precisely, we begin by testing the conservation mass condition (2.13) with an arbitrary function

ξ ∈W
1
3
, 3
2 (Σ), and testing the constraints on the traction (2.14) with an arbitrary function ψ ∈ Ĥ

1
2
00(Σ),

which yields:

find (ϕ,uD, λ,σS) ∈ Ĥ
1
2
00(Σ)×W0,3

ΓD
(div ; ΩD)×W

1
3
, 3
2 (Σ)×H0(div ; ΩS) such that:〈

ϕ·n, ξ
〉

Σ
+
〈
uD·n, ξ

〉
Σ

= 0 ∀ξ ∈W
1
3
, 3
2 (Σ),〈

σSn, ψ
〉

Σ
+
〈
ψ·n, λ

〉
Σ
−µk−1

f

〈
ψ· t, ϕ· t

〉
Σ

= 0 ∀ψ ∈ Ĥ
1
2
00(Σ).

We now observe that the duality pairing
〈
ψ·n, λ

〉
Σ

is well-defined ∀(ψ, λ) ∈ W̃
1
2
,2 (Σ) ×W

1
3
, 3
2 (Σ).

Indeed, according to the trace theorem there exists ψ̂ ∈W1,2
ΓS

(ΩS) and C > 0 such that

γ0

(
ψ̂
)

Σ
= ψ and

∥∥∥ψ̂∥∥∥
1,ΩS
≤ C ‖ψ‖ 1

2
,Σ .

On the other hand, according to the continuous injection i : W1,2 (ΩS) → Lp (ΩS) for p > 2 (cf. [1,

Theo. 5.4 (6)]), we have that ψ̂ ∈ Lp (ΩS), which together with the fact that div ψ̂ ∈ L2 (ΩS), yields
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similarly as in [32, Lemma 3.15.]〈
ψ·n, λ

〉
Σ

:=

∫
Σ
ψ̂·nλ ≤ C̃

(∥∥∥ψ̂∥∥∥
0,p;ΩS

+
∥∥∥div ψ̂

∥∥∥
0,2;ΩS

)
‖λ‖ 1

3
, 3
2
,Σ

≤ C̃
(
cp

∥∥∥ψ̂∥∥∥
1,ΩS

+
∥∥∥div ψ̂

∥∥∥
0,2;ΩS

)
‖λ‖ 1

3
, 3
2
,Σ

≤ Ĉp
∥∥∥ψ̂∥∥∥

1,ΩS
‖λ‖ 1

3
, 3
2
,Σ

≤ ĈpC ‖ψ‖ 1
2
,Σ ‖λ‖ 1

3
, 3
2
,Σ .

In order to apply a generalization of the Babuska-Brezzi theory to twofold saddle point problems,

in what follows we rewrite the terms conveniently, similarly as in [23] and [25], thus obtaining a system

with a penalty term.

2.4 Resulting system structure

Following [23] and [25], we order the equations from the weak forms of Stokes, Darcy - Forchheimer and

the transmission conditions, in a nonlinear system with a twofold saddle point structure. We introduce

the problem
(
Pα

)
: find (σ, u, η) ∈ X × Y × Z such that

[
A(σ), τ

]
+

[
B1(τ), u

]
+

[
B(τ), η

]
=

[
F, τ

]
∀τ ∈ X,[

B1(σ), v
]
−

[
C(u), v

]
=

[
G, v

]
∀v ∈ Y,[

B(σ), ϑ
]

=
[
E, ϑ

]
∀ϑ ∈ Z,

(2.18)

where the spaces are given by

X := H0(div ; ΩS)×W0,3
ΓD

(div ,ΩD),

Y := Ĥ
1
2
00(Σ)×W

1
3
, 3
2 (Σ),

Z := L2(ΩS)× L
3
2
0 (ΩD)× L2

skew(ΩS),

the nonlinear operator A : X → X ′ is defined as:[
A(σ), τ

]
:= [AS (σS) , τS ]S + [AD(uD),vD]D ∀σ := (σS ,uD), τ := (τS ,vD) ∈ X,

and the linear operators B : X → Z ′, B1 : X → Y ′ and C : Y → Y ′ are given as follows[
B(τ), η

]
:= (div τS ,uS)S + (τS ,γS)S − (div vD, pD)D ∀η := (uS , pD,γS) ∈ Z,[

B1(σ), v
]

:=
〈
σSn, ψ

〉
Σ
−
〈
uD·n, ξ

〉
Σ
∀v := (ψ, ξ) ∈ Y,

[
C(u), v

]
:= µk−1

f

〈
ψ· t, ϕ· t

〉
Σ
−
〈
ψ · n, λ

〉
Σ

+
〈
ϕ·n, ξ

〉
Σ
∀u := (ϕ, λ) ∈ Y.

16



Note that B and B1 show a diagonal structure, and that C is positive semi-definite. In the next

chapter we provide an abstract theory that allows us to analyse the solvability of (2.18).
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Chapter 3

A modified abstract theory for a

twofold saddle point problem

In this chapter we follow the approach from [22] and [23], and develop a new abstract theory for a

twofold saddle point problem having the structure of (Pα).

3.1 The continuous setting

Let X,Y and Z be separable and reflexive Banach spaces with duals X ′, Y ′, Z ′ also separable reflexive

Banach spaces. Additionally bounded linear operators B : X → Z ′, B1 : X → Y ′, C : Y → Y ′, and a

non-linear operator A : X → X ′ are defined and we also assume C is positive semi-definite. Therefore,

given (F,G1, G) ∈ X ′ × Y ′ × Z ′, we are interested in the following variational problem (P1): find

(t,σ,u) ∈ X × Y × Z such that:

[
A(t), s

]
+
[
B∗1(σ), s

]
+
[
B∗(u), s

]
=

[
F, s
]
,[

B1(t), τ
]
−
[
C(σ), τ

]
=

[
G1, τ

]
,[

B(t),v
]

=
[
G,v

]
,

∀(s, τ ,v) ∈ X × Y × Z.

(3.1)

In what follows we will to adopt the analysis developed in [22] and [23] to derive sufficient conditions

under which (P1) is well-posed. We begin by observing that in order to guarantee the existence of a

unique preimage tG ∈ X \ N (B) such that B(tG) = G, we require X to be uniformly convex (cf. [35,

remark A.1]). Therefore, henceforth we assume:

18



i) B is surjective, which means that there exists β > 0 such that

sup
t∈X;t 6=0

[
B(t),v

]
‖t‖X

≥ β‖v‖Z .

This condition is called inf-sup condition for B. Note that it gives the upper bound 1
β for the

norm of the pseudoinverse B̃−1 of B.

ii) X is uniformly convex.

As a consequence of these assumptions, we first observe that B has a continuous pseudoinverse B̃−1 (cf.

[39, Lemme 1.3 B.] and [35, Lemma A.1]). In addition, from the inf-sup condition for B we conclude

that B∗ is injective and hence bijective onto R(B∗) = ◦N (B). Note that N (B) is also uniformly convex.

Then, the third row of (P1) is always satisfied, so it is possible to omit this hereinafter, and finally it

is possible to reduce the first row of (P1), in the sense that it is equivalent to solve a problem with one

less variable, these results follow from the lemmas shown below.

Lemma 3.1.1 Under the previous assumptions, the following problems are equivalent

(P )


find (t,σ,u) ∈ X × Y × Z such that:[
A(t), s

]
+
[
B∗1(σ), s

]
+
[
B∗(u), s

]
=
[
F, s
]
,

∀s ∈ X,

(P̃ )


find (t,σ) ∈ X × Y such that[
A(t), s0

]
+
[
B∗1(σ), s0

]
=
[
F, s0

]
,

∀s0 ∈ N (B) = R(B∗)◦.

More precisely, if (t,σ) ∈ X × Y is a solution for (P̃ ), and we define u ∈ Z as the unique solution of

the following problem:

(P̂ )


find u ∈ Z such that:[
B∗(u), s

]
=
[
F −

(
A(t) + B∗1(σ)

)
, s
]
,

∀s ∈ X,

then (t,σ,u) is a solution of (P ). Conversely, if (t,σ,u) ∈ X×Y ×Z is a solution of (P ), then (t,σ)

is a solution of (P̃ ) and u is solution of (P̂ ).

Proof : Given (t,σ) ∈ X × Y a solution of (P̃ ), we first see that (P̂ ) has a unique solution. In

fact, if (t,σ) is a solution of (P̃ ), then F −
(
A(t) + B∗1(σ)

)
∈ ◦N (B) = R(B∗), and therefore
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there exists a unique u ∈ Z such that B∗(u) = F −
(
A(t) + B∗1(σ)

)
which is equivalent to stat-

ing A(t) + B∗1(σ) + B∗(u) = F , i.e., u is a solution of (P̂ ) and (t,σ,u) is solution of (P ). The

converse implication follows by taking as a particular case s ∈ N (B) = R(B∗)◦, and by using that

given (t,σ) ∈ X × Y there is a unique u ∈ Z solution to (P̂ ).

Lemma 3.1.2 Under the previous assumptions. The problem (P1) (cf. 3.1)

is equivalent to:

(P2)



Given tG ∈ X \ N (B)such that: B(tG) = G,

find (t0,σ) ∈ N (B)× Y such that:[
A(t0 + tG), s0

]
+
[
B∗1(σ), s0

]
=

[
F, s0

]
,[

B1(t0 + tG), τ
]
−
[
C(σ), τ

]
=

[
G1, τ

]
,

∀(s0, τ ) ∈ N (B)× Y.

More precisely, given tG ∈ X \ N (B) such that B(tG) = G (which exist by the surjectivity of B),

and given (t0,σ) a solution of (P2), we have that (t0 + tG,σ,u) is a solution of (P1), where, according

to Lemma 3.1.1, u is the unique element in Z such that[
B∗(u), s

]
=
[
F −

(
A(t) + B∗1(σ)

)
, s
]
∀s ∈ X.

Conversely, given (t,σ,u) a solution of (P1), we let t0 := t−tG, where is the unique vector in X\N (B)

such that B(tG) = G, and then observe that (t0,σ) is a solution of (P2).

Proof: It follows from the previous analysis.

Corollary 3.1.3 Under the previous assumptions, the problem (P1) has unique solution if and only if

the problem (P2) has a unique solution.

Proof: It follows from Lemma 3.1.2.

According to the above analysis, our next goal is to study the solvability of (P2), for which we

follow the approach from [23]. To this end, we first need to show the well-posedness of the problem

(Q)



Given tG ∈ X \ N (B) and σ ∈ Y,

find t0 ∈ N (B) such that:[
A(t0 + tG), s0

]
=

[
F − B∗1(σ), s0

]
,

∀s0 ∈ N (B).
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Indeed, hereafter we assume:

(A0) A : X 7→ X
′
is bounded for bounded subsets of X. More precisely, there exist constants γ1, γ2 > 0,

ς1, ς2 ≥ 0, r1, r2 ≥ 2, depending only on the domain (and possibly on physical parameters

involved), such that

∥∥∥A(s1, s2)− A(v1,v2)
∥∥∥
X′
≤

2∑
j=1

{
ςj ‖sj − vj‖Xj + γj ‖sj − vj‖Xj

(
‖sj‖Xj + ‖vj‖Xj

)rj−2
}

for all (s1, s2), (v1,v2) ∈ X := X1 ×X2.

(A1) A (·+tG) : N (B) 7→ N (B)
′

is a strictly monotone mapping. More precisely, there exists α > 0,

independent of tG, such that:[
A(s + tG)− A(v + tG), s− v

]
≥ α

(
‖s1 − v1‖r1X1

+ ‖s2 − v2‖r2X2

)
for all s = (s1, s2),v = (v1,v2) ∈ N (B) ⊆ X.

(A2) A(·+tG) is hemi-continuous, i.e., given t,v ∈ X \ N (B),

G : R 7→ R

x 7→ G(x) :=
〈
A(t + xv + tG),v

〉
is a continuous map.

(A3) X1 and X2 are uniformly convex and separable Banach spaces.

(A4) there exists β1 > 0 such that

sup
s0∈N (B);s0 6=0

[
B∗1(σ), s0

]
‖s0‖X

≥ β1‖σ‖Y ∀σ ∈ Y.

Corollary 3.1.4 Under the hypotheses (A0)− (A2) the problem (Q) has a unique solution, i.e.,

given tG ∈ X \ N (B) and σ ∈ Y , there exists a unique t0 ∈ N (B) such that:[
A(t0 + tG), s0

]
=
[
F − B∗1(σ), s0

]
∀s0 ∈ N (B).

Proof: According to [40], the hypotheses (A0)− (A2) implies the biyectivity of A(·+tG).
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In what follows, given τ ∈ Y , we define t0 (τ ) as the unique element in N (B) such that:[
A
(
t0 (τ ) + tG

)
, s0

]
=
[
F − B∗1(τ ), s0

]
∀s0 ∈ N (B). (3.2)

In light of the foregoing, problem (P2) is equivalent to

(P3)



Given tG ∈ X \ N (B) such that B(tG) = G,

find σ ∈ Y such that:[
T(σ), τ

]
:=
[
−B1(t0(σ)), τ

]
+
[
C(σ), τ

]
=
[
G̃1, τ

]
∀τ ∈ Y,

where
[
G̃1, τ

]
:=
[
B1(tG)−G1, τ

]
∀τ ∈ Y.

(3.3)

Therefore, we now focus on proving the injectivity and surjectivity of T. To simplify the analysis

note that we have the following identities[
A(t0(τ 1) + tG)− A(t0(τ 2) + tG), s0

]
=
[
B∗1(τ 2 − τ 1), s0

]
∀τ 1, τ 2 ∈ Y, ∀s0 ∈ N (B), (3.4)

particularly

[
A(t0(τ 1) + tG)− A(t0(τ 2) + tG), t0(τ 1)− t0(τ 2)

]
=
[
B∗1(τ 2 − τ 1), t0(τ 1)− t0(τ 2)

]
=
[
τ 2 − τ 1,B1

(
t0(τ 1)− t0(τ 2)

)]
(3.5)

The next identity gives a bound for ‖t0(τ 1)− t0(τ 2)‖X in terms of ‖B∗1(τ 1 − τ 2)‖.

We now recall that X := X1 ×X2 and descompose t0(τ 1) and t0(τ 2) as:

t0(τ 1) = s := (s1, s2), t0(τ 2) = v := (v1, v2) ∈ X1 ×X2,

whence (3.5) can be rewritten as

[
A(s + tG)− A(v + tG), s− v

]
=
[
B∗1(τ 2 − τ 1), s− v

]
≤ ‖B∗1(τ 2 − τ 1)‖ ‖s− v‖ .

Then, according to the monotonicity of A (cf. (A1)), we obtain

α
{
‖s1 − v1‖r1X1

+ ‖s2 − v2‖r2X2

}
≤
[
A(s + tG)− A(v + tG), s− v

]
=
[
B∗1(τ 2 − τ 1), s− v

]
≤ ‖B∗1(τ 2 − τ 1)‖ ‖s− v‖ ,

that is

α
{
‖s1 − v1‖r1X1

+ ‖s2 − v2‖r2X2

}
≤ ‖B∗1(τ 2 − τ 1)‖

(
‖s1 − v1‖X1 + ‖s2 − v2‖X2

)
,
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which yields

‖s− v‖X = ‖s1 − v1‖X1 + ‖s2 − v2‖X2 ≤ 2 max

{(
2

α
‖B∗1(τ 2 − τ 1)‖

) 1
r1−1

,

(
2

α
‖B∗1(τ 2 − τ 1)‖

) 1
r2−1

}
or equivalently

‖t0(τ 1)− t0(τ 2)‖X ≤ 2 max

{(
2

α
‖B∗1(τ 2 − τ 1)‖

) 1
r1−1

,

(
2

α
‖B∗1(τ 2 − τ 1)‖

) 1
r2−1

}
. (3.6)

Lemma 3.1.5 T is injective.

Proof: Let τ 1, τ 2 ∈ Y such that T(τ 1) = T(τ 2). It follows that
[
T(τ 1) − T(τ 2), τ

]
= 0 ∀τ ∈ Y ,

which, according to the definition of the operator T (cf. (3.3) ), and taking in particular τ = τ 2 − τ 1,

gives

[
B1(t0(τ 2)− t0(τ 1)), τ 2 − τ 1

]
+
[
C(τ 1 − τ 2), τ 2 − τ 1

]
= 0.

The foregoing equation and the fact that C is positive semi-definite allow to deduce that

0 ≤
[
B1(t0(σ2)− t0(σ1)),σ2 − σ1

]
,

which, thanks to the identity (3.5), yields[
A(t0(τ 1) + tG)− A(t0(τ 2) + tG), t0(τ 1)− t0(τ 2)

]
≤ 0. (3.7)

Then, applying the strict monotonicity of A (cf. (A1)), we deduce from (3.7) that t0(τ 1) = t0(τ 2),

and hence (3.2) implies
[
B∗1(τ 1− τ 2), s0

]
= 0 ∀s0 ∈ N (B). Finally, the inf-sup condition given in (A4)

confirms that τ 1 = τ 2, which completes the proof.

Next, we show the surjectivity of T by applying clasical results from nonlinear functional analysis.

More precisely, in what follows we show that under the hypotheses assumed for the solvability of (P2),

the operator T is continuous, monotone, bounded and coercive (the first two properties imply that T
is of type M), and hence, thanks to [40, Corollary 2.2], T is surjective.

Lemma 3.1.6 T is continuous.

Proof: Let {τn}n∈N ⊆ Y and τ ∈ Y such that ‖τn − τ‖Y
n−→ 0. Thus, from the definition of T, we

have ∥∥∥T(τn)− T(τ )
∥∥∥
Y ′

=

∥∥∥∥∥B1

(
t0(τ )− t0(τn)

)
+ C(τn − τ )

∥∥∥∥∥
Y ′

≤ ‖B1‖‖t0(τn)− t0(τ )‖X + ‖C‖‖τn − τ‖Y ,

The foregoing inequality and the identity (3.6) imply that ‖T(τn)− T(τ )‖Y ′
n−→ 0.
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Lemma 3.1.7 T is monotone.

Proof: Given τ 1, τ 2 ∈ Y , we have according to the definition of T,

〈
T(τ 1)− T(τ 2), τ 1 − τ 2

〉
‖τ 1 − τ 2‖

=

〈
B1

(
t0(τ 2)− t0(τ 1)

)
, τ 1 − τ 2

〉
‖τ 1 − τ 2‖

+

〈
C(τ 1 − τ 2), τ 1 − τ 2

〉
‖τ 1 − τ 2‖

.

Noting that C is positive semi-definite, we discard the last term in the above equation, getting〈
T(τ 1)− T(τ 2), τ 1 − τ 2

〉
‖τ 1 − τ 2‖

≥

〈
B1

(
t0(τ 2)− t0(τ 1)

)
, τ 1 − τ 2

〉
‖τ 1 − τ 2‖

,

which according to the identity (3.5) and the strict monotonicity of A, yields〈
T(τ 1)− T(τ 2), τ 1 − τ 2

〉
‖τ 1 − τ 2‖

≥

〈
A (t0(τ 2) + tG)− A (t0(τ 1) + tG) , t0(τ 2)− t0(τ 1)

〉
‖τ 1 − τ 2‖

≥0,

thus proving that T is monotone.

From the previous Lemmas, we have that T is of type M ( cf. [40, Lemma 2.1]), hence, in order to

conclude that T is bijective, it remains to show that T is bounded and coercive.

Lemma 3.1.8 T is bounded.

Proof: Let τ ∈ Y . According to the triangle inequality and the definition of T (cf. (3.3)), we obtain

‖T(τ )‖Y ′ ≤ ‖T(τ )− T (0)‖Y ′ + ‖T(0)‖Y ′ ≤ ‖B1‖‖t0(τ )− t0(0)‖X + ‖C‖‖τ‖Y + ‖B1(t0(0))‖.

In turn, thanks to the identity (3.6), we have

‖t0(τ )− t0(0)‖ ≤ 2 max

((
2

α
‖B∗1(τ )‖

) 1
r1−1

,

(
2

α
‖B∗1(τ )‖

) 1
r2−1

)
,

and from the foregoing inequalities we conclude that T is bounded.

Lemma 3.1.9 T is coercive.
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Proof: Let τ ∈ Y . Similarly as in Lemma 3.1.7, we have

〈
T(τ ), τ

〉
‖τ‖

≥

〈
−B1(τ ), τ

〉
‖τ‖

=

〈
A(t0(τ ) + tG)− F, t0(τ )

〉
‖τ‖

=

〈
A(t0(τ ) + tG)− A(t0(0) + tG), t0(τ )

〉
‖τ‖

=

〈
A(t0(τ ) + tG)− A(t0(0) + tG), t0(τ )− t0(0)

〉
‖τ‖

+

〈
A(t0(τ ) + tG)− A(t0(0) + tG), t0(0)

〉
‖τ‖

.

(3.8)

Next, we show that (3.8) diverges when ‖τ‖ → ∞. In fact, we prove that the left term on (3.8) diverges

and its right term is bounded, when ‖τ‖ → ∞. We begin by observing, thanks to the inf − sup condition

for B1 (cf. (A4)), and the identity (3.4), that

β1 ‖τ‖Y ≤
∥∥∥A(t0(τ ) + tG

)
− A

(
t0(0) + tG

)∥∥∥ ∀τ ∈ Y. (3.9)

Now, we set t0(τ )+tG =: (s1, s2) and (v1, v2) =: t0(0)+tG. Then, applying the boundedness property

of A (cf. (A0)), the triangle inequality, and the fact that

(a+ b)p ≤ 2p−1
(
ap + bp

)
∀a, b ≥ 0, p ≥ 1

(cf. [1, Lemma 2.24]), we get:

β1 ‖τ‖ ≤ ‖A(s1, s2)− A(v1, v2)‖X′ ≤
2∑
j=1

{
ςj ‖sj − vj‖Xj + γj ‖sj − vj‖Xj

(
‖sj‖Xj + ‖vj‖Xj

)rj−2
}

≤
2∑
j=1

{
ςj ‖sj − vj‖Xj + 2rj−3γj ‖sj − vj‖

rj−1
Xj

+ 2rj−2γj ‖sj − vj‖Xj ‖vj‖
rj−2
Xj

}
. (3.10)

Then, it follows that:

‖t0(τ ) + tG‖X = ‖s1‖X1
+ ‖s2‖X2

→∞, when ‖τ‖Y →∞.

Thus, rewriting the left term of (3.8) in terms of (s1, s2) and (v1, v2), and applying the strict mono-

tonicity property of A (cf. (A1)) and the inequality (3.10), we find that

〈
A(t0(τ ) + tG)− A(t0(0) + tG), t0(τ )− t0(0)

〉
‖τ‖

=

〈
A((s1, s2))− A((v1, v2)), (s1 − v1, s2 − v2)

〉
‖τ‖

≥
β1α

(
‖s1 − v1‖r1X1

+ ‖s2 − v2‖r2X2

)
2∑
j=1

{
ςj ‖sj − vj‖Xj + 2rj−3γj ‖sj − vj‖

rj−1
Xj

+ 2rj−2γj ‖sj − vj‖Xj ‖vj‖
rj−2
Xj

} ,
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which tends to infinity when ‖s1‖X1
+ ‖s2‖X2

→∞, since (v1, v2) is fixed (not dependent of τ ) and

r1, r2 ≥ 2. On the other hand, for the right term of (3.8) it suffices to observe〈
A(t0(τ ) + tG)− A(t0(0) + tG), t0(0)

〉
‖τ‖

≥ −β1 ‖t0(0)‖ ,

and the proof follows from (3.9). Thus, T is coercive.

According to the foregoing analysis, we conclude that T is injective and surjective, i.e., problem

(P3) has a unique solution τ . Thus, according to Corollary 3.1.4, (t0(τ ), τ ) is the unique solution of

(P2), and thanks to Lemma 3.1.1, there exists a unique u ∈ Z such that (t0(τ )+tG, τ ,u) is the unique

solution to Problem (P1).

Next, we show the a priori bound for the solution of (P1) by establishing this result first for (P2).

Recall that the latter consists of

(P2)



Given tG ∈ X \ N (B) such that B(tG) = G,

find (t0,σ) ∈ N (B)× Y such that:

[A(t0 + tG), s0] + [B∗1(σ), s0] = [F, s0] ,

[B1(t0 + tG), τ ] − [C(σ), τ ] = [G1, τ ] ,

∀(s0, τ ) ∈ N (B)× Y.

We begin by observing, thanks to (3.6), that it suffices to bound ‖σ‖Y . Proceeding similarly as in [23,

Lemma 2.1-(2.6)], using the positive semi-definite hypothesis over C, and according to the notation

introduced in (3.2) and (3.3), we have[
A
(
t0(σ) + tG

)
− A

(
t0(0) + tG

)
, t0(σ)− t0(0)

]
≤ [T(σ)− T(0),σ] = [G̃1 − T(0),σ].

Now, we set (s1, s2) =: t0 + tG and (v1,v2) =: t0(0) + tG. Then, according to the strict monotonicity

of A (cf. (A1)), we have

α
{
‖s1 − v1‖r1X1

+ ‖s2 − v2‖r2X2

}
≤
∥∥∥G̃1 − T(0)

∥∥∥ ‖σ‖Y ,
which implies that

‖s1 − v1‖X1
≤M1/r1 ‖σ‖1/r1Y and ‖s2 − v2‖X2

≤M1/r2 ‖σ‖1/r2Y , (3.11)
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where M := 1
α

∥∥∥G̃1 − T(0)
∥∥∥
Y ′
. On the other hand, using (3.9) and the boundedness of A (cf. (A0)),

we find that

β1 ‖σ‖Y ≤ ‖A(t0 + tG)− A(t0(0) + tG)‖ = ‖A(s1, s2)− A(v1,v2)‖

≤
2∑
j=1

{
ςj ‖sj − vj‖Xj + 2rj−3γj ‖sj − vj‖

rj−1
Xj

+ 2rj−2γj ‖sj − vj‖Xj ‖vj‖
rj−2
Xj

}
,

which, applying (3.11), gives

β1 ‖σ‖Y ≤
2∑
j=1

{(
ςjM

1
rj + γj2

rj−2 ‖vj‖
rj−2
Xj

)
‖σ‖

1
rj

Y +

(
γj2

rj−3M
rj−1

rj

)
‖σ‖

rj−1

rj

Y

}
,

and hence, by Young’s inequality (cf. [1]), we conclude

‖σ‖Y ≤
2∑
j=1

{
cj(rj , β1)

(
ςjM

1
rj + γj2

rj−2 ‖vj‖
rj−2
Xj

)r′j
+ γ̂j(rj , β1)Mrj−1

}
,

which constitutes the a priori bound for (P2).

Next, let (t,σ,u) be the solution of (P1). We known that t = t0 + tG, where (t0,σ) is the solution

of (P2). Then according to the inf-sup condition for B (cf. (i)), we have

‖tG‖X ≤
1

β
‖G‖ and ‖u‖Y ≤

1

β

∥∥∥F − A(t)− B∗1(σ)
∥∥∥
X′
,

and hence, the boundedness of the solution of (P1) follows from the boundedness of the solution of (P2).

We summarize the foregoing results in the following theorem.

Theorem 3.1.10 Let X1, X2, Y and Z be separable and reflexive Banach spaces and let X = X1×X2.

In addition, we consider bounded linear operators B : X → Z ′, B1 : X → Y ′ and C : Y → Y ′,

and a non-linear operator A : X → X ′. We assume that C is positive semi-definite. Then, given

(F,G1, G) ∈ (X ′, Y ′, Z ′), we define the variational problem (P1) as follows: find (t,σ,u) ∈ X × Y ×Z
such that:

[A(t), s] + [B∗1(σ), s] + [B∗(u), s] = [F, s] ∀s ∈ X,

[B1(t), τ ] − [C(σ), τ ] = [G1, τ ] ∀τ ∈ Y,

[B(t), q] = [G, q] ∀q ∈ Z.

(3.12)

Assume that
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i) there exists β > 0 such that

sup
t∈X;t 6=0

[
B∗(q), t

]
‖t‖X

≥ β‖q‖Z ∀q ∈ Z. (3.13)

ii) X1 and X2 are uniformly convex sets.

iii) there exists β1 > 0 such that:

sup
s0∈N (B);s0 6=0

[B∗1(σ), s0]

‖s0‖X
≥ β1‖σ‖Y ∀σ ∈ Y. (3.14)

iv) there exist constants γ1, γ2 > 0, ς1, ς2 ≥ 0 and r1, r2 ≥ 2, depending only on the domain, such

that

‖A(s1, s2)− A(v1,v2)‖X′ ≤
2∑
j=1

{
ςj ‖sj − vj‖Xj + γj ‖sj − vj‖Xj

(
‖sj‖Xj + ‖vj‖Xj

)rj−2
}
,

(3.15)

for all (s1, s2), (v1,v2) ∈ X := X1 ×X2.

v̈) A (·+tG) : N (B) 7→ N (B)
′

is a strictly monotone mapping. More precisely, there exists α > 0,

independent of tG, such that[
A(s + tG)− A(v + tG), s− v

]
≥ α

(
‖s1 − v1‖r1X1

+ ‖s2 − v2‖r2X2

)
, (3.16)

for all s = (s1, s2),v = (v1,v2) ∈ N (B) ⊆ X1 ×X2, for all tG ∈ X \ N (B).

vi) A(·+tG) is hemi-continuous, i.e., given t,v ∈ X \ N (B)

G : R 7→ R

x 7→ G(x) :=
〈
A(t + xv + tG),v

〉
(3.17)

is a continuous map, for all tG ∈ X \ N (B).

Then (P1) has a unique solution which is bounded in terms of the data.

The proof is immediate from the recently exposed results.
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3.2 The discrete setting

In what follows, we consider a conforming finite element method for (P1) (cf. Sect. 3.1). As it is usual,

we require certain restrictions on the finite dimensional spaces to be chosen.

Let X1, X2, Y and Z be separable and reflexive Banach spaces with duals X ′1, X
′
2, Y

′, Z ′, and let

X = X1 × X2. Additionally, we consider bounded linear operators B : X → Z ′, B1 : X → Y ′,

C : Y → Y ′, with C positive semi-definite and a non-linear operator A : X → X ′. Then, given

(F,G1, G) ∈ (X ′, Y ′, Z ′), and let Xh, Yh, and Zh finite-dimensional subspaces of X,Y and Z, respec-

tively, we now introduce the problem (P1h) as follows:

find (th,σh,uh) ∈ Xh × Yh × Zh such that:

[A(th), sh] + [B∗1(σh), sh] + [B∗(uh), sh] = [F, sh] ∀sh ∈ Xh,

[B1(th), τ h] − [C(σh), τ h] = [G1, τ h] ∀τ h ∈ Yh,

[B(th), qh] = [G, qh] ∀qh ∈ Zh.

(3.18)

Also, we define the discrete “kernel of B” as

Vh :=

{
th ∈ Xh :

[
B(th), qh

]
= 0 ∀qh ∈ Zh

}
, (3.19)

and the orthogonal complement of Vh

V⊥h :=

{
th ∈ Xh :

〈
th, wh

〉
Xh

= 0 ∀wh ∈ Vh

}
. (3.20)

Note that, Xh = X1h×X2h, where X1h, X2h are finite-dimensional subspaces of X1 and X2, respectively.

Theorem 3.2.1 Assume that

i) there exists βh > 0 such that

sup
th∈Xh;th 6=0

[
B∗(qh), th

]
‖th‖X

≥ βh‖qh‖Z ∀qh ∈ Zh. (3.21)

ii) there exists β1h > 0 such that

sup
t0,h∈Vh;t0,h 6=0

[
B∗1(τ h), t0,h

]
‖t0,h‖X

≥ β1h‖τ h‖Y ∀τ h ∈ Yh. (3.22)

29



iii) there are constants γ1, γ2 > 0, ς1, ς2 ≥ 0 and r1, r2 ≥ 2, depending only on the domain (and

possibly on physical parameters involved), such that

∥∥∥A(sh)− A(vh)
∥∥∥
X′
≤

2∑
j=1

{
ςj ‖sj,h − vj,h‖Xj + γj ‖sj,h − vj,h‖Xj

(
‖sj,h‖Xj + ‖vj,h‖Xj

)rj−2
}

for all sh := (s1,h, s2,h), vh := (v1,h,v2,h) ∈ Xh := X1h ×X2h.

iv) given thG ∈ V⊥h ,

iv−1) there exists αh > 0, independent of thG, such that:[
A(sh + thG)− A(vh + thG), sh − vh

]
≥ αh

{
‖s1,h − v1,h‖r1X1

+ ‖s2,h − v2,h‖r2X2

}
, (3.23)

for all sh = (s1,h, s2,h), vh = (v1,h,v2,h) ∈ Vh ⊆ X1h ×X2h.

iv−2) A(·+thG) is hemi-continuous on V⊥h , i.e., given th,vh ∈ V⊥h , the real function

G : R 7→ R

t 7→ G(t) :=
〈
A(th + thG + tvh),vh

〉
(3.24)

is continuous.

Then the problem (P1h) has a unique solution which is bounded in terms of the data.

Proof: It reduces to a simple application of Theorem 3.1.10 to the present discrete setting.

3.3 A priori error estimate

Let (th,σh,uh) and (t,σ,u) be the solutions of the discrete and continuous problems (3.12) and (3.18),

respectively. Then, at discrete level, we have:

A(th) + B∗1(σh) + B∗(uh) = A(t) + B∗1(σ) + B∗(u), (3.25)

B1(th)− C(σh) = B1(t)− C(σ), (3.26)

B(th) = B(t), (3.27)

which means that the foregoing equations hold for sh ∈ Xh, τ h ∈ Yh, and qh ∈ Zh, respectively. Now,

noting that th = tVh + tV
⊥

h , where tVh ∈ Vh and tV
⊥

h ∈ V⊥h (cf. (3.19) and (3.20)), we see that (3.27)

reduces to B
(
tV
⊥

h

)
= B(t).
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Lemma 3.3.1 For each rh ∈ Xh there holds∥∥∥t− (rVh + tV
⊥

h

)∥∥∥ ≤(1 +
‖B‖
βh

)
‖t− rh‖ , (3.28)

where rh = rVh + rV
⊥

h , with rVh ∈ Vh and rV
⊥

h ∈ V⊥h .

Proof: Let rh = rVh + rV
⊥

h ∈ Xh as indicated. Then, according to the triangle inequality, we have that∥∥∥t− (rVh + tV
⊥

h

)∥∥∥ ≤ ∥∥∥t− (rVh + rV
⊥

h

)∥∥∥+
∥∥∥tV ⊥h − rV

⊥
h

∥∥∥ = ‖t− rh‖+
∥∥∥tV ⊥h − rV

⊥
h

∥∥∥
On the other hand, noting from (3.27) that at the discrete level there holds

B (t− rh) = B (th − rh) = B
(
tV
⊥

h − rV
⊥

h

)
,

and then employing the discrete inf-sup condition (cf. (3.21)), we find that

βh

∥∥∥tV ⊥h − rV
⊥

h

∥∥∥ ≤ ‖B(t− rh)‖ ≤ ‖B‖ ‖t− rh‖ ,

which concludes the proof.

Now, given rh = rVh + rV
⊥

h ∈ Xh, we have from the triangle inequality

‖t− th‖X =
∥∥∥t− (tVh + tV

⊥
h

)∥∥∥
X
≤
∥∥∥t− (rVh + tV

⊥
h

)∥∥∥
X

+
∥∥∥tVh − rVh

∥∥∥
X
. (3.29)

Then, according to the estimate provided by Lemma 3.3.1, it would suffice to bound the expression∥∥∥tVh − rVh

∥∥∥
X

in terms of dist(t, Xh), dist(σ, Yh) and dist(u, Zh). To this end, we first observe from the

identity (3.25) that

A
(
tVh + tV

⊥
h

)
− A

(
rVh + tV

⊥
h

)
= A (th)− A

(
rVh + tV

⊥
h

)
= A(t)− A

(
rVh + tV

⊥
h

)
+ B∗1(σ − σh) + B∗(u− uh). (3.30)

Now using the monotonicity of A (cf. (3.23)) noting that tVh − rVh ∈ Vh ⊆ X1 × X2, and denoting

tVh := (t1, t2) and rVh := (r1, r2), we deduce, employing also (3.30), that for each τ h ∈ Yh there holds

αh
{
‖t1 − r1‖r1X1

+ ‖t2 − r2‖r2X2

}
≤
[
A
(
tVh + tV

⊥
h

)
− A

(
rVh + tV

⊥
h

)
, tVh − rVh

]
=

[
A(t)− A

(
rVh + tV

⊥
h

)
+ B∗1(σ − τ h) + B∗1(τ h − σh) + B∗(u− uh), tVh − rVh

]
. (3.31)

Next, we bound the first two terms on the right-hand side of (3.31). To this end, we first show the

following Lemma.
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Lemma 3.3.2 Given t, r ∈ X, there exists CA := CA
(
‖t‖, r1, r2

)
> 0 such that

‖A(t)− A (r))‖ ≤ CA

(
‖t− r‖+ ‖t− r‖r1−1 + ‖t− r‖r2−1

)
,

where r1, r2 ≥ 2 are specified in the assumption (A0).

Proof: It follows from the boundedness property of A (cf. (A0)) and the triangle inequality.

The foregoing estimate suggests to define the real function

FA : R+ 7→ R+

x 7→ FA(x) = CA

(
x+ xr1−1 + xr2−1

)
.

Note that FA is a strictly monotone mapping, and according to Lemma 3.3.2, there holds

‖A(t)− A (r))‖ ≤ FA
(
‖t− r‖

)
∀t, r ∈ X,

which, thanks to Lemma 3.3.1 and the monotonicity of FA, satisfies

FA
(∥∥∥t− (rVh + tV

⊥
h

)∥∥∥) ≤ FA((1 +
‖B‖
βh

)
‖t− rh‖

)
∀rh ∈ Xh.

Therefore, it is clear from the previous estimates that[
A(t)− A

(
rVh + tV

⊥
h

)
, tVh − rVh

]
≤ FA

((
1 +
‖B‖
βh

)
‖t− rh‖

)∥∥∥tVh − rVh

∥∥∥ ∀rh ∈ Xh. (3.32)

Next, we utilize (3.26) to bound the fourth term on the right-hand side of (3.31) as follows

[
B∗1(τ h − σh), tVh − rVh

]
=

[
B∗1(τ h − σh), th −

(
rVh + tV

⊥
h

)]

=

[
B1

(
th −

(
rVh + tV

⊥
h

))
, τ h − σh

]

=

[
B1

(
t−

(
rVh + tV

⊥
h

))
, τ h − σh

]
−
[
C(σ − σh), τ h − σh

]

=

[
B1

(
t−

(
rVh + tV

⊥
h

))
, τ h − σh

]
−
[
C(σ − τ h), τ h − σh

]
−
[
C(τ h − σh), τ h − σh

]
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Then, using the positive semi-definite property of C it follows that
[
C(τ h−σh), τ h−σh

]
≥ 0, and

hence

[
B∗1(σh − τ h), tVh − rVh

]
≤

[
B1

(
t−

(
rVh + tV

⊥
h

))
, τ h − σh

]
−
[
C(σ − τ h), τ h − σh

]

≤

(∥∥∥∥B1

(
t−

(
rVh + tV

⊥
h

))∥∥∥∥+
∥∥∥C(σ − τ h)

∥∥∥) ‖σh − τ h‖ . (3.33)

Now, we utilize the definition of the discrete kernel of B (cf. (3.19)) to show that the fifth term on

the right-hand side of (3.31) can be written and bounded as follows[
B∗(u− uh), tVh − rVh

]
=
[
B∗(u− zh), tVh − rVh

]
+
[
B∗(zh − uh), tVh − rVh

]
=
[
B∗(u− zh), tVh − rVh

]
≤ ‖B∗(u− zh)‖

∥∥tVh − rVh
∥∥ ∀zh ∈ Zh. (3.34)

Note here that in the particular case that Vh ⊆ N (B) , i.e. the discrete kernel of B is contained in

the continuous one, there holds [
B∗(u− uh), tVh − rVh

]
= 0. (3.35)

Therefore, according to (3.32), (3.33) and (3.34) it is possible to bound the right hand side of (3.31)

as follows [
A(t)− A

(
rVh + tV

⊥
h

)
+ B∗1(σ − τ h) + B∗1(σh − τ h) + B∗(u− uh), tVh − rVh

]
≤

(
FA
((

1 +
‖B‖
βh

)
‖t− rh‖

)
+ ‖B∗1(σ − τ h)‖+ ‖B∗(u− zh)‖

)∥∥∥tVh − rVh

∥∥∥
+

(∥∥∥∥B1

(
t−

(
rVh + tV

⊥
h

))∥∥∥∥+ ‖C(σ − τ h)‖

)
‖σh − τ h‖ ∀zh ∈ Zh,∀τ h ∈ Yh. (3.36)

Thus, defining:

M1 := FA
((

1 +
‖B‖
βh

)
‖t− rh‖

)
+ ‖B∗1‖ ‖σ − τ h‖+ ‖B∗‖ ‖u− zh‖ ,

M2 := ‖B1‖
(

1 +
‖B‖
βh

)
‖t− rh‖+ ‖C‖ ‖σ − τ h‖ ,

and utilizing (3.31) and (3.36), we find that

αh
{
‖t1 − r1‖r1X1

+ ‖t2 − r2‖r2X2

}
≤M1

{
‖t1 − r1‖X1

+ ‖t2 − r2‖X2

}
+M2 ‖σh − τ h‖ . (3.37)
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In turn, from (3.37) we have a bound for ‖t1 − r1‖X1
+ ‖t2 − r2‖X2

in terms of ‖σh − τ h‖. In fact,

applying Young’s inequality ab ≤ ap

p
+
bq

q
, where a, b ≥ 0 and 1/p + 1/q = 1 (cf. [1, Theo. 2.3 ]), we

find that

‖t1 − r1‖r1X1
+ ‖t2 − r2‖r2X2

≤

 1

r
′
1

(
2

αh

)r′1+1
Mr

′
1

1 +

 1

r
′
2

(
2

αh

)r′2+1
Mr

′
2

1 +

(
2

αh

)
M2 ‖σh − τ h‖

≤ C
(
αh, r1, r2

)(
Mr

′
1

1 +Mr
′
2

1 +M2 ‖σh − τ h‖

)
, (3.38)

from which it is easy to see that

‖t1 − r1‖X1
+ ‖t2 − r2‖X2

≤ C̃

(
M

r
′
1
r1
1 +M

r
′
1
r2
1 +M

r
′
2
r1
2 +M

r
′
2
r1
2 +M

1
r1
2 ‖σh − τ h‖

1
r1 +M

1
r2
2 ‖σh − τ h‖

1
r2

)
,

that is, recalling that tVh = (t1, t2) and rVh = (r1, r2) and denoting M̃ :=M
r
′
1
r1
1 +M

r
′
1
r2
1 +M

r
′
2
r1
2 +M

r
′
2
r1
2 ,

we can write ∥∥∥tVh − rVh

∥∥∥
X
≤ C̃

(
M̃+M

1
r1
2 ‖σh − τ h‖

1
r1 +M

1
r2
2 ‖σh − τ h‖

1
r2

)
. (3.39)

Now, we give a bound for ‖σh − τ h‖ in terms of
∥∥∥tVh −rVh

∥∥∥, ‖t− rh‖ and ‖σ − τ h‖X with (rh, τ h) ∈
Xh × Zh.

Lemma 3.3.3 There exists C = C(‖t‖X , ‖th‖X) > 0 such that

β1h‖σh − τ h‖Y ≤ C
∥∥∥tVh − rVh

∥∥∥
X

+ C

(
1 +
‖B‖
βh

)
‖t− rh‖+ ‖B∗1‖‖σ − τ h‖Y + ‖B∗‖‖u− zh‖Z

for all (rh, zh) ∈ Xh×Zh.

Proof: According to the identity (3.25) there holds

B∗1(σh − τ h) = A(t)− A(th) + B∗1(σ − τ h) + B∗(u− uh).

Then, using the discrete inf-sup condition for B1 (cf. (3.22)), and proceeding similarly to (3.34), we

obtain

β1h‖σh − τ h‖Y ≤
∥∥∥A(t)− A(th)

∥∥∥
X

+
∥∥∥B∗1 (σ − τ h)

∥∥∥
Y

+
∥∥∥B∗ (u− zh)

∥∥∥
Z

∀zh ∈ Zh,
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which, according to the boundedness properties of A,B and B1, yields

β1h‖σh − τ h‖Y ≤ CA‖t− th‖X + ‖B∗1‖‖σ − τ h‖Y + ‖B∗‖‖u− zh‖Z ∀zh ∈ Zh,

where CA = CA(‖t‖X , ‖th‖X) > 0. Then, adding and subtracting rVh +tVh within ‖t−th‖X , we deduce

that

β1h‖σh − τ h‖Y ≤ CA
∥∥∥tVh − rVh

∥∥∥
X

+CA

∥∥∥t− (rVh + tV
⊥

h

)∥∥∥
X

+‖B∗1‖‖σ − τ h‖Y +‖B∗‖‖u− zh‖Z ,

for all (rh, zh) ∈ Xh×Zh.
Thus, according to Lemma 3.3.1,

∥∥∥t− (rVh + tV
⊥

h

)∥∥∥
X

is bounded above by
(

1 + ‖B‖
βh

)
‖t− rh‖, and

hence

β1h‖σh − τ h‖Y ≤ CA
∥∥∥tVh − rVh

∥∥∥
X

+CA

(
1 +
‖B‖
βh

)
‖t− rh‖+‖B∗1‖‖σ − τ h‖Y +‖B∗‖‖u− zh‖Z ,

for all (rh, zh) ∈ Xh × Zh, which completes the proof.

Next, applying Lemma 3.3.3 and Young’s inequality to the right-hand side of (3.39), we obtain

‖σh − τ h‖Y ≤ Ĉ

(
M

r
′
1
r1
1 +M

r
′
1
r2
1 +M

r
′
2
r1
2 +M

r
′
2
r1
2 +M

r
′
1
r1
2 +M

r
′
2
r2
2

)

+ Ĉ

{(
1 +
‖B‖
βh

)
‖t− rh‖+ ‖B∗1‖‖σ − τ h‖Y + ‖B∗‖‖u− zh‖Z

}
∀(rh, zh) ∈ Xh × Zh. (3.40)

Finally, applying the triangle inequality and (3.40), we arrive at

‖σ−σh‖Y ≤ ‖σh−τ h‖Y +‖σ−τ h‖Y ≤ F
(
‖t− rh‖ , ‖σ−τ h‖Y , ‖u−zh‖Z

)
∀(rh, τ h, zh) ∈ Xh×Yh×Zh,

where F , a strictly monotone mapping in each one of its components, represents the right-hand side of

(3.40). In this way, we conclude that

‖σ − σh‖Y ≤ F
(

dist(t, Xh),dist(σ, Yh),dist(u, Zh)
)
. (3.41)

Now, we proceed to bound
∥∥∥tVh − rVh

∥∥∥ in terms of ‖t− rh‖ , dist(u, Zh) and ‖σ − σh‖, which, thanks

to (3.29) and Lemma 3.3.1, will complete the bound for ‖t− th‖. Indeed, given (rh, zh) ∈ Xh × Zh,

and proceeding similarly to (3.31) and (3.34), we obtain
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αh
{
‖t1 − r1‖r1X1

+ ‖t2 − r2‖r2X2

}
≤

[
A
(
tVh + tV

⊥
h

)
− A

(
rVh + tV

⊥
h

)
, tVh − rVh

]

=

[
A(t)− A

(
rVh + tV

⊥
h

)
+ B∗1(σ − σh) + B∗(u− zh), tVh − rVh

]

≤

(
FA
(∥∥∥t− (rVh + tV

⊥
h

)∥∥∥
X

)
+ ‖B∗1‖ ‖σ − σh‖+ ‖B∗‖ ‖u− zh‖

)∥∥∥tVh − rVh

∥∥∥
≤

(
FA
((

1 +
‖B‖
βh

)
‖t− rh‖

)
+ ‖B∗1‖ ‖σ − σh‖+ ‖B∗‖ ‖u− zh‖

)∥∥∥tVh − rVh

∥∥∥.
Moreover, defining F0 := ‖B∗1‖ ‖σ − σh‖+ ‖B∗‖ dist(u, Zh), the foregoing inequality becomes

αh
{
‖t1 − r1‖r1X1

+ ‖t2 − r2‖r2X2

}
≤

(
FA
((

1 +
‖B‖
βh

)
‖t− rh‖

)
+ F0

)∥∥∥tVh − rVh

∥∥∥,

which, using that
∥∥∥tVh − rVh

∥∥∥ = ‖t1 − r1‖X1
+ ‖t2 − r2‖X2

and employing Young’s inequality, reduces

to

∥∥∥tVh − rVh

∥∥∥ ≤ C(αh; r1, r2)
2∑
j=1

{
FA
((

1 +
‖B‖
βh

)
‖t− rh‖

)
+ F0

} 1
rj−1

. (3.42)

Now, according to Lemma 3.3.1, the bound (3.42) and the triangular inequality, we deduce that

‖t− th‖X ≤
∥∥∥t− (rVh + tV

⊥
h

)∥∥∥
X

+
∥∥∥tVh − rVh

∥∥∥
X

≤
(

1 +
‖B‖
βh

)
‖t− rh‖+ C(αh, r1, r2)

2∑
j=1

{
FA
((

1 +
‖B‖
βh

)
‖t− rh‖

)
+ F0

} 1
rj−1

∀rh ∈ Xh,

which, using that FA is strictly monotone, gives

‖t− th‖X ≤
(

1 +
‖B‖
βh

)
dist(t, Xh) + C(αh, r1, r2)

2∑
j=1

{
FA
((

1 +
‖B‖
βh

)
dist(t, Xh)

)
+ F0

} 1
rj−1

.

(3.43)

Finally, we bound ‖u − uh‖Z in terms of ‖t − th‖X , ‖σ − σh‖Y and dist(u, Zh). To this end, and

according to the identity (3.25), we first recall that

B∗ (uh − zh) = A(t)− A(th) + B∗1(σ − σh) + B∗(u− zh) ∀zh ∈ Zh,
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which, using the discrete inf-sup condition for B (cf. (3.21)), yields

βh‖uh − zh‖Z ≤‖A(t)− A(th)‖+ ‖B∗1(σ − σh)‖+ ‖B∗(u− zh)‖

≤CA ‖t− th‖+ ‖B∗1‖ ‖σ − σh‖+ ‖B‖ ‖u− zh‖ ∀zh ∈ Zh,

and therefore

‖u− uh‖Z ≤
C

βh
‖t− th‖+

‖B∗1‖
βh
‖σ − σh‖+

(
1 +
‖B‖
βh

)
dist(u, Zh). (3.44)

We summarize the foregoing analysis in the following theorem.

Theorem 3.3.4 There exist a strictly monotone mapping and continuous function G : R3 7→ R in each

one of its components, such that

‖σ − σh‖Y + ‖t− th‖X + ‖u− uh‖Z ≤ G
(

dist(t, Xh), dist(σ, Yh), dist(u, Zh)
)
.

Proof: It follows straightforwardly from (3.41), (3.43) and (3.44).

We end this chapter by remarking that for r1 = r2 = 2, the previous analysis leads to the estimate

‖t− th‖+ ‖u− uh‖+ ‖σ − σh‖Y ≤ C1 ‖t− rh‖+ C2‖σ − τ h‖Y + C3‖u− zh‖Z ∀(rh, τ h, zh) ∈ Xh × Yh × Zh,

where C1, C2, C3 > 0 are known explicitly.

37



Chapter 4

Analysis of the coupled problem

4.1 Analysis of the continuous problem (Pα)

In what follow we analyse the properties of the spaces and operators associated with the problem (Pα)

(cf.(2.18)). In order to apply Theorem 3.1.10, we begin by showing that the general hypothesis on the

spaces involved are satisfied. Recall from Section 2.4 that these spaces are given by

X1 := H0(div ; ΩS),

X2 := W0,3
ΓD

(div ,ΩD),

X := X1 ×X2,

Z := L2(ΩS)× L3/2
0 (ΩD)× L2

skew(ΩS),

Y := Ĥ
1
2
00(Σ)×W

1
3
, 3
2 (Σ).

We first observe that X is a uniformly convex space. This property follows from Hanner’s inequali-

ties, which imply that Lp(Ω) is uniformly convex when 1 < p <∞, the fact that every closed subspace

of a uniformly convex Banach space is uniformly convex, the continuity of the trace and normal trace

operators, and the orthogonal decomposition theorem. In turn, using similar arguments, all the other

spaces are uniformly convex and separable Banach spaces.

Next, in order to apply Theorem 3.1.10, we show that the assumptions (3.13)− (3.17) are satisfied.

More precisely, we take advantage of the diagonal structure shown by B and B1, and show that these

inf-sup conditions can be reduced, equivalently, to four simpler inf-sup conditions.

Lemma 4.1.1 B satisfies the inf-sup condition (3.13), that is, there exists β > 0 such that

sup
τ∈X;τ 6=0

[
B(τ), η

]
‖τ‖X

≥ β‖η‖Z ∀η ∈ Z. (4.1)
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Proof: Let us first recall that[
B(τ), η

]
= (div τS ,uS)S + (τS ,γS)S − (div vD, pD)D ∀τ = (τS ,vD) ∈ X, ∀η = (uS , pD,γS) ∈ Z.

Then, we observe, according to the diagonal structure shown by B, that (4.1) is equivalent to the

following inf-sup conditions

sup
τ S∈X1;τ S 6=0

(div τS ,uS)S + (τS ,γS)S
‖τS‖X1

≥ β‖(uS ,γS)‖ ∀(uS ,γS) ∈ L2(ΩS)× L2
skew(ΩS),

and

sup
vD∈X2;vD 6=0

(div vD, pD)D
‖vD‖X2

≥ β‖pD‖ ∀pD ∈ L
3
2
0 (ΩD).

Now, in order to prove the foregoing inf-sup conditions, we proceed as usual by introducing suitable

auxiliary problems:

• Given (uS ,γS) ∈ L2(ΩS)× L2
skew(ΩS), find z ∈ H1(ΩS) such that

div e(z) = −uS − γS in ΩS , (P1)

z = 0 on ∂ΩS ,

where e(z) =
1

2

(
∇z + (∇z)t

)
.

• Given pD ∈ L
3
2
0 (ΩD), find w ∈W1,3(ΩD) such that

div
(
∇w
)

= p̃D in ΩD,

γν(∇w) = 0 in ΓD, (P2)∫
ΩD

w = 0,

where p̃D := p̂D −
1

|ΩD|

∫
ΩD

p̂D, and p̂D(x) is given by

p̂D(x) :=


pD(x)

|pD(x)|
1
2

: pD(x) 6= 0,

θ : pD(x) = 0.

The variational problem of (P1) is given by (cf. [21, (2.54)]): find z ∈ H1
0(ΩS) such that∫

ΩS

e(z) : e(w) =

∫
ΩS

uS ·w −
∫

ΩS

γS : ∇w ∀w ∈ H1
0(ΩS).
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Thanks to Korn and Friedrich-Poincaré inequalities, the Lax-Milgram Lemma implies that the above

problem has a unique solution z ∈ H1
0(ΩS), which satisfies

|z|1,ΩS ≤ CS
{
‖uS‖0,ΩS + ‖γS‖0,ΩS

}
, (4.2)

where CS > 0 is a constant independent of the solution z. Then, defining σS := e(z) + γS , it is

straightforward to check that

σS ∈ L2(ΩS), divσS = −uS ,
σS − σSt

2
= γS and

∫
ΩS

trσS =

∫
ΩS

div z =

∫
∂ΩS

z·n = 0,

from which it follows that σS ∈ H0(div ; ΩS) and ‖σS‖20;ΩS
= ‖e(z)‖20;ΩS

+ ‖γS‖20;ΩS
. In addition, by

the continuous dependence property (4.2), we obtain

‖e(z)‖20;ΩS
≤ ‖∇z‖20;ΩS

≤ 2C2
S

{
‖uS‖20,ΩS + ‖γS‖20,ΩS

}
.

Finally, we have ‖divσS‖20;ΩS
= ‖uS‖20;ΩS

, and therefore

‖σS‖2div ;ΩS
≤ 2(C2

S + 1)
{
‖uS‖20,ΩS + ‖γS‖20,ΩS

}
.

On the other hand, according to [15], the auxiliary problem (P2) has a unique solution w ∈W1,3(ΩD).

Then, defining uD := ∇w, we can prove (cf. Lemma .4.4) that(
div uD, pD

)
D

=
(

div∇w, pD
)
D

=
(
p̃D, pD

)
D

=
(
p̂D, pD

)
D

=
∥∥∥pD∥∥∥ 3

2

0, 3
2

;ΩD
,

and thanks to the continuous dependence result for (P2) there exists CD > 0, independent of w, such

that ∥∥uD∥∥0,3;ΩD
=
∥∥∇w∥∥

0,3;ΩD
≤
∥∥w∥∥

1,3;ΩD
≤ CD

∥∥p̃D∥∥0,3;ΩD
≤ CD

∥∥p̂D∥∥0,3;ΩD
= CD

∥∥pD∥∥ 1
2

0, 3
2

;ΩD
,

where the last equality follows also from Lemma .4.4. In turn, according to the definition of uD, and

using again Lemma .4.4, we find that∥∥div uD
∥∥

0,3;ΩD
=
∥∥p̃D∥∥0,3;ΩD

≤
∥∥p̂D∥∥0,3;ΩD

=
∥∥pD∥∥ 1

2

0, 3
2

;ΩD
,

from where

∥∥uD∥∥3,div ;ΩD
≤ (CD + 1)

∥∥pD∥∥ 1
2

0, 3
2

;ΩD
.

Finally, thanks to both auxiliary problems we can conclude that there exists β = β (CS , CD) > 0

such that
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sup
(τS ,vD) ∈ X
(τS ,vD) 6= 0

[
B(τS ,vD), (uS , pD,γS)

]
‖(τS ,vD)‖X

≥

[
B(σS ,uD), (uS , pD,γS)

]
‖(σS ,uD)‖X

≥ β
∥∥∥(uS , pD,γS)

∥∥∥
Z
.

We now prove the continuous inf-sup condition for B1. Similarly to the previous Lemma we take

advantage of the diagonal structure of B1.

Lemma 4.1.2 B1 satisfies the inf-sup condition (3.14), that is, there exists β1 > 0 such that

sup
τ ∈ N (B)
τ 6= Θ

[
B1(τ), (ϕ, λ)

]
‖τ‖X

≥ β1‖(ϕ, λ)‖Y ∀(ϕ, λ) ∈ Y.

Proof: Let us first recall that

[B1(τ), (ϕ, λ)] = 〈τSn,ϕ〉Σ − 〈vD·n, λ〉Σ ∀τ = (τS ,vD) ∈ X, ∀(ϕ, λ) ∈ Y,

and that

N (B) =

{
(τ ,v) ∈ X1 ×X2 : τ = τ t, div τ = 0 and div v ∈ P0(ΩD)

}
. (4.3)

Then, according to the diagonal structure of B1, the required inf-sup condition is equivalent to the

following two independent inf-sup conditions

sup
τ S∈X̃1;τ S 6=0

〈τSn,ϕ〉Σ
‖τS‖X1

≥ β1‖ϕ‖ ∀ϕ ∈ Ĥ
1
2
00(Σ),

sup
vD∈X̃2;vD 6=0

〈vD·n, λ〉Σ
‖vD‖X2

≥ β1‖λ‖ ∀λ ∈W
1
3
, 3
2 (Σ),

where

X̃1 :=
{
τ ∈ X1 : τ = τ t and div τ = 0

}
and X̃2 :=

{
v ∈ X2 : div v ∈ P0(ΩD)

}
. (4.4)

Now, in a similar way to [21] and [17], we introduce the auxiliary problems:
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• Given ϕ ∈ Ĥ
1
2
00(Σ), find z ∈ H1(ΩS) such that

div e(z) = 0 in ΩD,

e(z)·n = R−1
00 (ϕ) on Σ, (P3)

z = 0 on ΓD,

where R00 :

[
Ĥ

1
2
00(Σ)

]′
→ Ĥ

1
2
00(Σ) is the Riesz application (cf. [21, Sect. 2.4.2]).

• Given λ ∈W
1
3
, 3
2 (Σ), find w ∈W1,3 (ΩD) such that

div
(
∇w
)

=
〈
λ̂, 1

〉
∂ΩD

,

∇w·n = λ̂, (P4)∫
ΩD

w = 0,

where λ̂ ∈W− 1
3
,3 (∂ΩD) is a functional depending on λ to be defined later on.

The variational formulation of (P3) (cf. [21, (2.64)]) is given by: find z ∈ H1
ΓD

(ΩS) such that∫
ΩS

e(z) : e(w) = 〈R−1
00 (ϕ), γ0(w)〉Σ ∀w ∈ H1

ΓD
(ΩS).

In this case, Korn inequality, trace theorem, and Lax-Milgram Lemma establish that the above problem

has a unique solution z ∈ H1
ΓD

(ΩS), and there exists CS > 0 such that

|z|1,ΩS ≤ CS‖ϕ‖ 1
2
,00,Σ. (4.5)

Then, defining σS := e(z)−
(

1

2|ΩS |

∫
Σ
z·n

)
I, and employing the Gauss theorem and (2.17), we readily

have ∫
ΩS

trσS = 0, divσS = 0, σS = σS
t and

〈
σS ·n,ϕ

〉
Σ

=
〈
e(z)·n,ϕ

〉
Σ
,

which implies that σS ∈ X̃1 (cf. (4.4)), and hence, thanks to (4.5), we obtain

‖σS‖div ;ΩS = ‖σS‖0;ΩS ≤ |z|1,ΩS ≤ CS‖ϕ‖ 1
2
,00,Σ.

In turn, for the analysis of the auxiliary problem (P4) we apply very similar techniques to the ones

presented in [17, Lemma 3.2.]. In particular, given λ ∈W
1
3
, 3
2 (Σ), and according to the norm definition,

there exists λ̃ ∈W−
1
3
,3(Σ) such that〈

λ̃, λ
〉

Σ
≥ 1

2

∥∥λ ∥∥ 1
3
, 3
2

;Σ

∥∥λ̃ ∥∥− 1
3
,3;Σ

. (4.6)
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Next, we introduce a continuous extension of λ̃ onto W−
1
3
,3(∂ΩD), denoted by λ̂, which is defined by〈

λ̂, η
〉
∂ΩD

:=
〈
λ̃, η|Σ

〉
Σ

∀η ∈W
1
3
, 3
2 (∂ΩD), (4.7)

and for which it follows that
∥∥λ̂∥∥− 1

3
,3;∂ΩD

≤
∥∥λ̃∥∥− 1

3
,3;Σ

. In this way, we now consider the auxiliary

problem: find w ∈W1,3 (ΩD) such that

div
(
∇w
)

=
1

|ΩD|

〈
λ̂, 1

〉
∂ΩD

,

∂w

∂ν
= λ̂,∫

ΩD

w = 0.

We know from [20] that this problem has a unique solution w ∈W1,3 (ΩD), which depends contin-

uously on the data. Then, defining uD := ∇w, and using this continuous dependence, we obtain

‖uD‖3,div ;ΩD ≤ ‖∇w‖0,3;ΩD ≤ CD
∥∥λ̂∥∥− 1

3
,3;∂ΩD

≤ CD
∥∥λ̃∥∥− 1

3
,3;Σ

. (4.8)

Moreover, according to Corollary .4.1, and using (4.6),(4.7) and (4.8), we obtain〈
uD·n, λ

〉
Σ

:=
〈
uD·n, E0

ΓD
(λ)
〉
∂ΩD

=
〈
λ̂, E0

ΓD
(λ)
〉
∂ΩD

=
〈
λ̃, λ

〉
Σ
≥ 1

2CD

∥∥λ ∥∥ 1
3
, 3
2

;Σ
‖uD‖3,div ;ΩD .

Then, thanks to the previous results it is straightforward to see that there exists β1 = β1(CS , CD) > 0

such that

sup
τ∈N (B);τ 6=0

[
B1(τ),

(
ϕ, λ

)]
‖τ‖X

≥

[
B1

(
σS ,uD

)
,
(
ϕ, λ

)]
‖(σS ,uD)‖X

≥ β1‖(ϕ, λ)‖Y .

In what follows we show that the operator A satisfies the hypothesis (3.15)-(3.17) of Theorem 3.1.10.

Lemma 4.1.3 There exist constants γ1, γ2 > 0, ς1, ς2 ≥ 0, and r1, r2 ≥ 2, depending only on the

domain such that

‖A(s)− A(v)‖X′1×X′2 ≤
2∑
j=1

{
ςj ‖sj − vj‖Xj + γj ‖sj − vj‖Xj

(
‖sj‖Xj + ‖vj‖Xj

)rj−2
}
,

for all s := (s1, s2), v := (v1,v2) ∈ X1 ×X2.

Proof: According to the definition of A (cf. section 2.4), there holds

‖A(s)− A(v)‖X′ =

∥∥∥∥AS(s1)−AS(v1)

∥∥∥∥
X
′
1

+

∥∥∥∥AD(s2)−AD(v2)

∥∥∥∥
X
′
2

, (4.9)
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where AS and AD are defined by (2.15) and (2.9), respectively. Next, in order to establish a bound for

the first term on the right-hand side of (4.9), we use the definition of AS to obtain

‖AS(s1)−AS(v1)‖X1
≤ 1

2µ
‖s1 − v1‖X1

.

Now, concerning the second term on the right-hand side of (4.9), it follows from to the definition of

AD, the general hypotheses on K, and the triangle inequality, that

‖AD(s2)−AD(v2)‖
X
′
2
≤ µ

ρ

∥∥K−1
∥∥
∞ ‖s2 − v2‖0, 3

2
;ΩD

+
β

ρ
‖s2 − v2‖0,3;ΩD

{
‖s2‖0,3;ΩD

+ ‖v2‖0,3;ΩD

}
.

Now, according to Jensen’s inequalities (or Holder inequality cf. [1]), we have

‖s2 − v2‖0, 3
2

;ΩD
≤ C̃ ‖s2 − v2‖0,3;ΩD

≤ C̃ ‖s2 − v2‖3,div ;ΩD
,

and hence (3.15) is satisfied setting r1 = 2, r2 = 3, ς1 = 0, ς2 = C̃
µ

ρ

∥∥K−1
∥∥
∞ , γ1 =

1

2µ
and γ2 =

µ

ρ
.

Next, we proceed to show the monotonicity of A, with r1 = 2 and r2 = 3.

Lemma 4.1.4 A satisfies the hypothesis (3.16), which means that, given t ∈ X \ N (B), the operator

A (·+t) : N (B) 7→ N (B)
′

is a strictly monotone mapping. More precisely, there exists α > 0, indepen-

dent of

t = (t1, t2) ∈ X1 ×X2, such that[
A
(
s + t

)
− A

(
v + t

)
, s− v

]
≥ α

{
‖s1 − v1‖2X1

+ ‖s2 − v2‖3X2

}
,

for all s := (s1, s2), v := (v1,v2) ∈ N (B) ⊆ X1 ×X2.

Proof: Similarly to Lemma 4.1.3, and according to the definition of A, we have[
A
(
s + t

)
− A

(
v + t

)
,s− v

]
=
[
AS (s1 + t1)−AS (v1 + t1) , s1 − v1

]
S

+
[
AD (s2 + t2)−AD (v2 + t2) , s2 − v2

]
D
. (4.10)

Now, we proceed to give a lower bound for the first term on the right-hand side of (4.10). In fact,

thanks to the definition of AS (cf. (2.15)), there holds[
AS (s1 + t1)−AS (v1 − t1) , s1 − v1

]
S

=
1

2µ

∥∥∥(s1 − v1)d
∥∥∥2

0;ΩS
,

and then, noticing that div (s1 − v1) = 0 and

∫
ΩS

tr (s1 − v1) = 0, and applying [9, proposition 3.1,

Ch. IV] we find that, there exists CS > 0 such that∥∥∥(s1 − v1)d
∥∥∥2

0;ΩS
≥ CS ‖s1 − v1‖20;ΩS

= CS ‖s1 − v1‖2div ;ΩS
,
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which yields [
AS (s1 + t1)−AS (v1 − t1) , s1 − v1

]
S
≥ CS

2µ
‖s1 − v1‖2div ;ΩS

.

In turn, in order to give a lower bound for the second term on the right-hand side of (4.10), we first

notice that[
AD (s2 + t2)−AD (v2 + t2) , s2 − v2

]
D

=
µ

ρ

[
K−1(s2 − v2), s2 − v2

]
D

+
β

ρ

[∣∣s2 + t2

∣∣(s2 + t2)−
∣∣v2 + t2

∣∣(v2 + t2), s2 − v2

]
D

. (4.11)

Now, according to (2.10), the first term on the right-hand side of (4.11) can be bounded as follows[
K−1(s2 − v2), s2 − v2

]
D
≥ λo‖s2 − v2‖2L2(ΩD).

In turn, due to [29, Lemme 5.1], for the second term on the right-hand side of (4.11) we have[∣∣s2 + t2

∣∣(s2 + t2)−
∣∣v2 + t2

∣∣(v2 + t2), s2 − v2

]
D

≥ c ‖s2 − v2‖3L3(ΩD) ,

where c is a positive constant independent of t. Finally, thanks to Lemma .4.5, there exists CD > 0

such that[∣∣s2 + t2

∣∣(s2 + t2)−
∣∣v2 + t2

∣∣(v2 + t2), s2 − v2

]
D

≥ c ‖s2 − v2‖3L3(ΩD) ≥ CD ‖s2 − v2‖33,div ;ΩD
.

Therefore, setting α = min
{
CS
2µ , CD

}
, the proof is completed.

Next, we prove the hemi-continuity property of A.

Lemma 4.1.5 A satisfies the hypothesis (3.17) i.e., given t := (t1, t2) ∈ X \ N (B) the map A (·+t) :

N (B) 7→ N (B)
′

is hemi-continuous.

Proof: Given s := (s1, s2), v := (v1,v2) ∈ N (B), we introduce the real function

G : R 7→R

t 7→ G(t) :=
〈
A (s + tv + t) ,v

〉
=
〈
AS(s1 + tv1 + t1),v1

〉
S

+
〈
AD(s2 + tv2 + t2),v2

〉
D
.

According to the definition AS , is clear that AS is a Lipschitz continuous operator. Now, in order to

show that the second term in right-hand side of the las equality is a continuous function, we refer to

[27, Proposition 3].
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4.2 The Galerkin scheme of (Pα)

In this section we introduce and analyse a Galerkin scheme for the problem (Pα) (cf. (2.18)).

4.2.1 Preliminaries

Here we define the discrete system and establish suitable assumptions on the finite element subspaces

ensuring later on that it becomes well posed. For this purpose, we first select two collections of discrete

spaces

Hh(ΩS) ⊆ H(div ; ΩS), Hh(ΩD) ⊆W0,3
ΓD

(div ; ΩD),

Lh(ΩS) ⊆ L2(ΩS), Lh(ΩD) ⊆ L
3
2
0 (ΩD), (4.12)

ΛSh(Σ) ⊆ Ĥ
1
2
00(Σ), ΛDh (Σ) ⊆W

1
3
, 3
2 (Σ),

L2
h(ΩS) ⊆ L2

skew(ΩS).

Note that the spaces for the Stokes domain will have to be doubled. In particular, for the unknown

σS we consider the space of matrix-valued functions whose rows belong to Hh(ΩS). According to this

we set

Lh(ΩS) := Lh(ΩS)× Lh(ΩS), ΛS
h(Σ) := ΛSh(Σ)× ΛSh(Σ),

Hh(ΩS) :=
{
τ : ΩS 7→ R2×2; ct· τ ∈ Hh(ΩS) ∀c ∈ R2

}
⊆ H(div ; ΩS),

Hh,0(ΩS) := Hh(ΩS) ∩H0(div ; ΩS),

XS,h := Hh,0(ΩS), XD,h := Hh(ΩD).

In this way, we define the global finite element subespaces as

Xh := XS,h ×XD,h,

Yh := ΛS
h(Σ)× ΛDh (Σ),

Zh := Lh(ΩS)× Lh(ΩD)× L2
h(ΩS),

and the Galerkin scheme associated with (Pα) is given by:
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Find (σh, uh, ηh) ∈ Xh × Yh × Zh such that:

[A(σh), τh] + [B1(τh), uh] +
[
B(τh), η

h

]
= [F, τh] ∀τh ∈ Xh,

[B1(σh), vh] − [C(uh), vh] = [G, vh] ∀vh ∈ Yh,

[B(σh), ϑh] = [E, ϑ] ∀ϑh ∈ Zh.

(4.13)

According to Theorem 3.2.1, we now aim to show the discrete inf-sup condition for B. More

precisely, due to the diagonal structure of B, it is suffices to show that there exists β̂ > 0, independent

of h, such that

sup
τ S,hHh,0(ΩS)\Θ

(div τS,h,uS,h)S +
(
τS,h,γS,h

)
S

‖τS,h‖div ;ΩS

≥β̂
∥∥(uS,h,γS,h)∥∥ ∀

(
uS,h,γS,h

)
∈ Lh(ΩS)× L2

h(ΩS),

and

sup
vD,h∈Hh(ΩD)\0

(div vD,h, pD,h)D
‖vD,h‖div;ΩD

≥β̂‖pD,h‖ ∀pD,h ∈ Lh(ΩD).

Now, in order to have a more explicit definition of the discrete kernel Vh of B, we introduce the following

assumptions:

div Hh(ΩS) ⊆ Lh(ΩS) and div Hh(ΩD) ⊆ Lh(ΩD).

Because of the diagonal form of B, Vh can be writen as Vh = X̃S,h × X̃D,h, where

X̃D,h :=

{
vD,h ∈ Hh(ΩD) : div vD,h ∈ P0(ΩD)

}
,

X̃S,h :=

{
τS,h ∈ Hh,0(ΩS) :

(
τS,h,ρS,h

)
S

= 0 ∀ρS,h ∈ L2
h(ΩS) and div τS,h = 0

}
.

Similarly, due to the diagonal structure of B1 as well, its discrete inf-sup condition as equivalent to

proving that there exists β̂1 > 0 such that

sup
τ S,h∈H̃h,0(ΩS)\Θ

〈
τS,hn,ϕ

〉
Σ

‖τS,h‖div;ΩS

≥β̂1‖ϕ‖ 1
2
,Σ ∀ϕ ∈ ΛS

h(Σ),

and

sup
vD,h∈H̃h(ΩD)\0

〈
vD,h·n, λ

〉
Σ

‖vD,h‖div;ΩS

≥β̂1‖λ‖ 1
2
, 3
2
,Σ ∀λ ∈ ΛDh (Σ).

Summarizing, we introduce the following assumptions
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(H.1) there exists β̂ > 0, independent of h, such that

sup
τ S,hHh,0(ΩS)\Θ

(div τS,h,uS,h)S +
(
τS,h,γS,h

)
S

‖τS,h‖div ;ΩS

≥β̂
∥∥(uS,h,γS,h)∥∥ ∀

(
uS,h,γS,h

)
∈ Lh(ΩS)× L2

h(ΩS),

and

sup
vD,h∈Hh(ΩD)\0

(div vD,h, pD,h)D
‖vD,h‖div;ΩD

≥β̂‖pD,h‖ ∀pD,h ∈ Lh(ΩD).

(H.2) div Hh(ΩS) ⊆ Lh(ΩS) and div Hh(ΩD) ⊆ Lh(ΩD).

(H.3) there exists β̂1 > 0, independent of h, such that

sup
τ S,h∈H̃h,0(ΩS)\Θ

〈
τS,hn,ϕ

〉
Σ

‖τS,h‖div;ΩS

≥β̂1‖ϕ‖ 1
2
,Σ ∀ϕ ∈ ΛS

h(Σ),

and

sup
vD,h∈H̃h(ΩD)\0

〈
vD,h·n, λ

〉
Σ

‖vD,h‖div;ΩS

≥β̂1‖λ‖ 1
3
, 3
2
,Σ ∀λ ∈ ΛDh (Σ).

From now on we assume that the arbitrary finite element subespaces introduced in (4.12) satisfy the

previous derived hypotheses (H.1), (H.2), (H.3). Hence, it remains to show that the assumptions

of Theorem 3.2.1 are satisfied. Since (4.13) is a conforming method, it is suffices to show that the

monotonicity (cf. (3.23)) and the hemicontinuity (cf. (3.24) ) assumptions are satisfied. Thus, we have

the following Lemmas

Lemma 4.2.1 Given th = (t1,h, t2,h) ∈ V⊥h ≡ Xh \ Vh =
(
Hh,0(ΩS) \ X̃S,h

)
×
(
Hh(ΩD) \ X̃D,h

)
, the

map A(·+th) : V⊥h 7→
(
V⊥h
)′

is a strictly monotone mapping. More precisely, there exists

α > 0, independent of th and h, such that[
A(sh + th)− A(vh + th), sh − vh

]
≥ α

{
‖s1,h − v1,h‖2div ;ΩS

+ ‖s2,h − v2,h‖33;div ;ΩD

}
,

for all sh := (s1,h, s2,h), vh = (v1,h,v2,h) ∈ Vh := X̃S,h × X̃D,h.

Proof: It follows from Lemma 4.1.4, by noting that div (sS,h − vS,h) = 0 and div (sD,h − vD,h) ∈
P0(ΩD).
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Lemma 4.2.2 The map A(·+th) : V⊥h 7→
(
V⊥h
)′

is hemi-continuous, i.e., given sh,vh ∈ V⊥h , the

function

Gh : R 7→ R

t 7→ Gh(t) :=
〈
A(sh + tvh + th),vh

〉
is continuous.

Proof: It follows as in the proof of Lemma 4.1.5. We omit further details.

4.2.2 Particular choice of finite element subspaces

Now we specify a possible choice of finite elements for this problem. In order to do it, some preliminary

definitions are necessary. Let T Sh and T Dh be triangulations for ΩS and ΩD, respectively, both shape-

regular in the sense of Ciarlet-Raviart (cf. [13, page 247]), and let us assume that they match on Σ,

that is T Sh ∪ T Dh is a triangulation of ΩS ∪Σ ∪ΩD. Furthermore, given an integrer k ≥ 0 and a subset

S ⊆ R2, we let Pk(S) be the space of the polynomials defined on S of total degree at most k, and denote

Pk(S) and Pk(S) as
[
Pk(S)

]2
and

[
Pk(S)

]2×2
, respectively. In addition, let bT be the element-bubble

function defined as the unique polynomial in P3(T ) that vanishies on ∂T with
∫
T bT = 1, and denote by

x := (x1, x2) a generic vector of R2. Then, we define for each T ∈ T Sh ∪ T Dh the local Raviart-Thomas

and bubble spaces of order 0, respectively, by

RT0(T) := P0(T)⊕ P0(T)x and B0(T) := P0(T)

(
∂bT
∂x2

,−∂bT
∂x1

)
.

PEERS for Stokes and Raviart-Thomas for Darcy - Forchheimer

Hh(ΩS) :=

{
u ∈ H(div ; ΩS) : u|T ∈ RT0(T)⊕B0(T) ∀T ∈ T S

h

}
,

Hh(ΩD) :=

{
u ∈W0,3

ΓD
(div ; ΩD) : u|T ∈ RT0(T) ∀T ∈ T D

h

}
,

Lh(ΩS) :=

{
v ∈ L2(ΩS) : v|T ∈ P0(T)2 ∀T ∈ T Sh

}
,

Lh(ΩD) :=

{
q ∈ L

3
2
0 (ΩD) : q|T ∈ P0(T) ∀T ∈ T Dh

}
,

L2
h (ΩS) :=

{
η

(
0 1

−1 0

)
: η ∈ C

(
ΩS

)
, η|T ∈ P1(T) ∀T ∈ T Sh

}
⊆ L2

skew(ΩS).
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Note that the foregoing definitions mean that we are considering PEERS elements (cf. [2]) for

Stokes, while for Darcy - Forchheimer the Raviart-Thomas elements (cf. [9, 3.12, Ch. III]) are em-

ployed.

Now for the interface Σ we assume, without loss of generality, that the number of edges on Σh is

even. Then, we let Σ2h be the partition of Σ arising by joining pairs of adjacent edges of Σh, and denote

the resulting edges still by e. Since Σh is inherited from the interior triangulations, it is automatically

of bounded variation (that is, the ratio of lengths of adjacent adges is bounded) and, therefore, so is

Σ2h. Hence, denoting by x0 and x1 the extreme points of Σ, we define

ΛSh(Σ) :=

{
ψ ∈ C(Σ) : ψ|e ∈ P1(e) ∀e ∈ Σ2h, ψ(x0) = ψ(x1) = 0

}
,

ΛS
h(Σ) :=

(
ΛSh(Σ)× ΛSh(Σ)

)
∩
{

v ∈ H
1
2
00(Σ) : 〈v·n, 1〉Σ = 0

}
,

ΛDh (Σ) :=

{
ψ : Σ 7→ R : ψ|e ∈ P0(e) ∀e ∈ Σh

}
, (4.14)

Φh(Σ) :=

{
ξh : Σ 7→ R : ξ|e ∈ P0(e) ∀e ∈ Σh

}
,

ΦS
h(Σ) = ΦD

h (Σ) := Φh(Σ).

We now turn to state the assumptions under which it is possible to ensure the validity of (H.1), (H.2)

and (H.3). Recall that they are given by:

(H.1) there exists β̂ > 0, independent of h, such that

sup
τ S,hHh,0(ΩS)\Θ

(div τS,h,uS,h)S +
(
τS,h,γS,h

)
S

‖τS,h‖div ;ΩS

≥β̂
∥∥(uS,h,γS,h)∥∥ ∀

(
uS,h,γS,h

)
∈ Lh(ΩS)× L2

h(ΩS),

and

sup
vD,h∈Hh(ΩD)\0

(div vD,h, pD,h)D
‖vD,h‖div;ΩD

≥β̂‖pD,h‖0, 3
2

∀pD,h ∈ Lh(ΩD).

(H.2) div Hh(ΩS) ⊆ Lh(ΩS) and div Hh(ΩD) ⊆ Lh(ΩD).

(H.3) there exists β̂1 > 0, independent of h, such that

sup
τ S,h∈H̃h,0(ΩS)\Θ

〈
τS,hn,ϕ

〉
Σ

‖τS,h‖div;ΩS

≥β̂1‖ϕ‖ 1
2
,Σ ∀ϕ ∈ ΛS

h(Σ),
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and

sup
vD,h∈H̃h(ΩD)\0

〈
vD,h·n, λ

〉
Σ

‖vD,h‖div;ΩS

≥β̂1‖λ‖ 1
3
, 3
2
,Σ ∀λ ∈ ΛDh (Σ).

Note that (H.2) holds trivially from the definitions given by (4.14). Next, for the Stokes terms

of (H.1) and (H.3), and following [25], we need to introduce the hypothesis of quasiuniformity in a

neighborhood of the interface Σ on the ΩS-side, namely ΩS
Σ. More precisely, we assume that ΩS

Σ has

Lipschitz continuous boundary and that there exists c > 0, independent of h, such that

max
T⊆ΩSΣ

hT ≤ c min
T⊆ΩSΣ

hT ∀h < h0.

Under these new assumptions, it enough to prove the Darcy - Forchheimer part of (H.1) and (H.3).

To this end, we need to introduce the Raviart-Thomas interpolation operator of lowest order in ΩD.

Indeed, given a sufficiently smooth vector field v : ΩD 7→ R2, we define ΠD
h (v) as the only element

of Hh(ΩD) such that ∫
e

ΠD
h (v)·n =

∫
e
v·n ∀e ∈ EDh , (4.15)

where EDh is the set of edges of the triangulation T Dh . The main properties of this operator are collected

in what follows.

(a) for each p ∈]2,+∞[ the interpolation operator ΠD
h is well defined in W 0,p(div ; ΩD) (cf. [9,

III.3.3]).

(b) for each p ∈]2,+∞[ there holds(
div ΠD

h (v), qh

)
D

= (div v, qh)D ∀qh ∈ Lh(ΩD), ∀v ∈W 0,p(div ; ΩD).

(c) if v·n ∈ Φh(Σ), then ΠD
h (v)·n = v·n.

(d) there exists CD > 0, independent of h, such that for each p ∈]2,+∞[ there holds∥∥ΠD
h (v)

∥∥
0,p,ΩD

≤ CD
{
‖v‖0,p,ΩD + ‖div v‖0,p,ΩD

}
∀v ∈W 0,p(div ; ΩD).

• We notice that the foregoing estimate follows from Lemma .4.2, and in this case the regularity

Hδ(ΩD) or W δ,p(ΩD) is not necessary.
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Now, we can prove (H.1) for the Darcy-Forchheimer part only.

Lemma 4.2.3 There exists β̂ > 0, independent of h, such that

sup
vD,h∈Hh(ΩD)\0

(div vD,h, pD,h)D
‖vD,h‖div;ΩD

≥β̂‖pD,h‖0, 3
2

∀pD,h ∈ Lh(ΩD) ⊆ L
3
2
0 (ΩD).

Proof: Similarly as [39, Exemple 3], we now proced locally on each triangle in T Dh . More precisely,

we consider pD,h ∈ Lh(ΩD) and define p̂h ∈ L3
(
T Dh
)

as

p̂h|T := p̂D,h|T ∀T ∈ T Dh ,

which agrees with the notations provided in Lemma .4.4. Then we set p̃h ∈ L3
0

(
T Dh
)

as

p̃h := p̂h −
1

ΩD

∫
ΩD

p̂h.

Similarly to the proof of the continuous inf-sup condition for B, Lemma 4.1.1, we now look for

uD,h ∈ Hh(ΩD) such that div uD,h = p̃h. To this end, we consider the problem

div (∇z) = p̃h in ΩD,

γν(∇z) = 0 on ∂ΩD, (4.16)∫
ΩD

z = 0.

Since p̃h ∈ L3
0(ΩD), we deduce from [15] that the foregoing problem has a unique solution z ∈

W 1+δ,3(ΩD) with δ ∈
(
0, 1

3

)
. Note that ∇z ∈ W0,3 (div ; ΩD). Then, defining uD,h = ΠD

h (∇z), we

find that the continuous dependence of (4.16) and the properties of the Raviart-Thomas interpolator

imply that

‖uD,h‖0,3;ΩD ≤ CD‖p̂h‖0,3;ΩD ≤ CD
{
‖pD,h‖0, 3

2
,ΩD

} 1
2
,

and

‖div uD,h‖0,3;ΩD =
∥∥∥div ΠD

h (∇z)
∥∥∥

0,3;ΩD
≤ ‖p̂h‖0,3;ΩD ≤

{
‖pD,h‖0, 3

2
,ΩD

} 1
2
.

Therefore, bounding lowerly with uD,h ∈ Hh(ΩD), we deduce that

sup
vD,h∈Hh(ΩD)\0

(div vD,h, pD,h)D
‖vD,h‖3,div;ΩD

≥ 1

CD + 1
‖pD,h‖0, 3

2
;ΩD

∀pD,h ∈ Lh(ΩD),

which finishes the proof.
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Lemma 4.2.4 there exists β̂1 > 0, independent of h, such that

sup
vh∈H̃h(ΩD)\0

〈vh·n, λh〉Σ
‖vh‖3,div;ΩD

≥β̂1‖λh‖ 1
3
, 3
2
,Σ ∀λh ∈ ΛDh (Σ)

Proof: Similarly to the proof of the continuous inf-sup condition for B1 (cf. Lemma 4.1.2), and given

λh ∈W
1
3
, 3
2 (Σ), we deduce that there exists λ̃h ∈W−

1
3
,3(Σ) such that〈

λ̃h, λh

〉
Σ
≥ 1

2

∥∥λh ∥∥ 1
3
, 3
2

;Σ

∥∥λ̃h ∥∥− 1
3
,3;Σ

.

Then, we define λ̂h ∈W−
1
3
,3(∂ΩD) by〈
λ̂h, η

〉
∂ΩD

:=
〈
λ̃h, η|Σ

〉
Σ

∀η ∈W
1
3
, 3
2 (∂ΩD),

and observe that
∥∥λ̂h∥∥− 1

3
,3;∂ΩD

≤
∥∥λ̃h∥∥− 1

3
,3;Σ

. Moreover, we consider the problem: find w ∈W1,3 (ΩD)

such that

div
(
∇w
)

=
1

|ΩD|
〈
λ̂h, 1

〉
∂ΩD

in ΩD,

∂w

∂ν
= λ̂h on ΓD,∫

ΩD

w = 0,

which, according to [20], has a unique solution w. Thus, we let uD := ∇w ∈ W0,3 (div ; ΩD), and

notice from the corresponding continuous dependence bound that

‖uD‖3,div ;ΩD ≤ C
∥∥λ̂h∥∥− 1

3
,3;∂ΩD

≤ C
∥∥λ̃h∥∥− 1

3
,3;Σ

.

Furthermore, thanks to Corollary .4.1, we have〈
uD·n, λh

〉
Σ

:=
〈
uD·n,E0

ΓD
(λh)

〉
∂ΩD

=
〈
λ̂h, E

0
ΓD

(λh)
〉
∂ΩD

=
〈
λ̃, λh

〉
Σ
≥ 1

2C

∥∥λh ∥∥ 1
3
, 3
2

;Σ
‖uD‖3,div ;ΩD .

Finally, according to the properties of ΠD
h , there holds〈

uD·n, λh
〉

Σ
=

∫
Σ

ΠD
h (uD)·n λh,

and ∥∥ΠD
h (uD)

∥∥
0,3,ΩD

≤ CD‖uD‖3,div ;Ω,

and therefore, bounding lowerly with ΠD
h (uD) ∈ H̃h(ΩD), we conclude that

sup
vh∈H̃h(ΩD)\0

〈vh·n, λh〉Σ
‖vh‖3,div;ΩD

≥
〈
ΠD
h (uD)·n, λh

〉
Σ

‖ΠD
h (uD)‖3,div;ΩD

≥ C̃D‖λh‖ 1
3
, 3
2
,Σ,

which ends the proof.
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4.3 Numerical Results

In this section we present two numerical examples illustrating the performance of the Galerkin scheme

(4.13), with the finite element subspaces introduced in Section 4.2.2. The first one is a 2D example for

which the corresponding discrete analysis is available in Section 4.2, whereas the second one deals with

a 3D model for which we claim that the aforementioned analysis can be extended with some minor

changes in the discusion on the interfaces conditions.

We now give additional notations. The individual errors are denoted by:

e(uD) := ‖uD − uD,h‖3,div ;ΩD , e(σS) := ‖σS − σS,h‖div ;ΩS ,

e(ϕ) := ‖ϕS −ϕS,h‖ 1
2
,Σ , e(λ) := ‖λ− λh‖ 1

3
, 3
2
,Σ , e(pD) := ‖pD − pD,h‖0, 3

2
,ΩD

,

e(uS) := ‖uS − uS,h‖0,ΩS and e(γS) := ‖γS − γS,h‖0,ΩS ,

where σ := (σS ,uD) ∈ X, u := (ϕS , λ) ∈ Y and η := (uS , pD,γS) ∈ Z constitute the unique solution of

(2.18), and σh := (σS,h,uD,h) ∈ Xh, u := (ϕS,h, λh) ∈ Yh and η := (uS,h, pD,h,γS) ∈ Zh is the solution

of (4.13). Here, N stands for the number of degrees of freedom defining Xh × Yh × Zh. Furthermore,

we let r(σS), r(uS), r(uD), r(pD), r(γS) and r(ϕS) be the experimental rates of convergence given

by

r(F) :=
log(e(F)/e′(F))

log(h/h′)
, for each F ∈ {σS ,uD,uS , pD,γS ,ϕS},

where h and h′ denote two consecutive meshsizes with errors e and e′, respectively.

For Example 1 we let ΩS :=] − 1, 1[ × ]0, 1[ and ΩD :=] − 1, 1[ × ] − 1, 0[. Then we choose the

data fS , gD and fD so that the exact solution is given by

uS(x1, x2) = curl
(
x2

2 sin(πx1)
)

∀(x1, x2) ∈ ΩS ,

pS(x1, x2) = x3
1 + x3

2 ∀(x1, x2) ∈ ΩS ,

pD(x1, x2) = (x1 − x2
1)(x2 − x2

2) ∀(x1, x2) ∈ ΩD,

with the parameters ρ = β = 1, and K = I.

In turn, Example 2 considers the cubes ΩS :=]0, 1[2 × ]1, 2[ and ΩD :=]0, 1[3, and choose the data
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so that the exact solution is given by

uS(x1, x2) = ∇×


x2

1(1− x1)2x2
2(1− x2)2(2− x3)2 sin(πx1)

x2
1(1− x1)2x2

2(1− x2)2(2− x3)2 sin(πx2)

x2
1(1− x1)2x2

2(1− x2)2(2− x3)2 sin(πx3)

 ∀(x1, x2, x3) ∈ ΩS ,

pS(x1, x2) = (x3
1 + x3

2)ex3 ∀(x1, x2, x3) ∈ ΩS ,

pD(x1, x2) = (x1 − x2
1)(x2 − x2

2)(x3 − x2
3) ∀(x1, x2, x3) ∈ ΩD.

Next, in the following tables we present the convergence history for both examples. We observe there,

according to the approximation properties of the finite element subspaces employed, that the numerical

results suggest a linear behavior of the function G in Theorem 3.3.4.
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h N e(uD) r(uD) e(σS) r(σS) e(ϕ) r(ϕ) e(λ) r(λ)

1/8 897 4.955E−01 − 1.186E−00 − 5.155E−01 − 5.483E−02 −
1/10 1380 3.976E−01 0.985 9.424E−01 1.029 3.498E−01 1.739 3.199E−02 2.414

1/12 1967 3.321E−01 0.989 7.842E−01 1.008 2.561E−01 1.711 2.111E−02 2.282

1/14 2658 2.850E−01 0.992 6.729E−01 0.993 1.973E−01 1.690 1.521E−02 2.125

1/16 3453 2.496E−01 0.994 5.891E−01 0.996 1.580E−01 1.662 1.174E−02 1.937

1/18 4352 2.220E−01 0.995 5.236E−01 1.000 1.303E−01 1.638 9.268E−03 2.010

1/20 5355 1.999E−01 0.996 4.713E−01 0.999 1.099E−01 1.615 7.539E−03 1.961

1/22 6462 1.818E−01 0.997 4.285E−01 0.998 9.441E−02 1.598 6.281E−03 1.915

1/24 7673 1.668E−01 0.997 3.929E−01 0.999 8.225E−02 1.584 5.330E−03 1.886

1/26 8988 1.539E−01 0.998 3.627E−01 0.999 7.252E−02 1.573 4.594E−03 1.858

1/28 10407 1.429E−01 0.998 3.368E−01 0.999 6.458E−02 1.565 4.014E−03 1.820

1/30 11930 1.334E−01 0.998 3.144E−01 0.999 5.800E−02 1.557 3.548E−03 1.791

1/32 13557 1.251E−01 0.998 2.947E−01 0.999 5.247E−02 1.551 3.165E−03 1.770

1/34 15288 1.177E−01 0.999 2.774E−01 0.999 4.780E−02 1.538 2.848E−03 1.742

1/36 17123 1.112E−01 0.999 2.620E−01 0.999 4.377E−02 1.541 2.580E−03 1.725

1/40 21105 1.001E−01 0.999 2.358E−01 0.999 3.723E−02 1.536 2.157E−03 1.702

1/48 30317 8.342E−01 0.999 1.965E−01 1.000 2.818E−02 1.528 1.593E−03 1.661

1/56 41193 7.151E−02 0.999 1.685E−01 1.000 2.229E−02 1.521 1.241E−03 1.622

1/64 53733 6.257E−02 1.000 1.474E−01 1.000 1.820E−02 1.516 1.003E−03 1.594

1/80 83805 5.006E−02 1.000 1.179E−01 1.000 1.292E−02 1.536 7.041E−04 1.584

1/96 120533 4.172E−02 1.000 9.828E−02 1.000 9.797E−03 1.518 5.305E−04 1.553

1/112 163917 3.576E−02 1.000 8.424E−02 1.000 7.752E−03 1.519 4.183E−04 1.541

1/128 213957 3.129E−02 1.000 7.371E−02 1.000 6.327E−03 1.521 3.409E−04 1.534

1/144 270653 2.782E−02 1.000 6.552E−02 1.000 5.494E−03 1.199 2.928E−04 1.290

1/160 334005 2.503E−02 1.000 5.897E−02 1.000 4.724E−03 1.434 2.512E−04 1.453

Table 4.1: Example 1, Convergence history with PEERS
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N e(pD) r(pD) e(uS) r(uS) e(γS) r(γS) e(t,ϕ, p) r(t,ϕ, p)

897 3.725E−03 − 3.683E−02 − 3.082E−01 − 1.474E−00 −
1380 2.805E−03 1.271 2.746E−02 1.316 2.217E−01 1.476 1.145E−00 1.134

1967 2.247E−03 1.218 2.235E−02 1.128 1.730E−01 1.361 9.394E−01 1.087

2658 1.889E−03 1.124 1.899E−02 1.059 1.413E−01 1.315 7.980E−01 1.058

3453 1.631E−03 1.103 1.654E−02 1.032 1.194E−01 1.258 6.939E−01 1.047

4352 1.435E−03 1.082 1.467E−02 1.019 1.034E−01 1.221 6.138E−01 1.041

5355 1.283E−03 1.066 1.319E−02 1.013 9.125E−02 1.188 5.505E−01 1.033

6462 1.160E−03 1.056 1.198E−02 1.009 8.165E−02 1.166 4.992E−01 1.028

7673 1.059E−03 1.047 1.097E−02 1.006 7.388E−02 1.149 4.566E−01 1.024

8988 9.745E−04 1.040 1.012E−02 1.005 6.745E−02 1.137 4.207E−01 1.022

10407 9.026E−04 1.034 9.399E−03 1.004 6.205E−02 1.126 3.901E−01 1.020

11930 8.407E−04 1.030 8.771E−03 1.003 5.745E−02 1.117 3.637E−01 1.018

13557 7.868E−04 1.027 8.221E−03 1.003 5.348E−02 1.109 3.406E−01 1.016

15288 7.395E−04 1.023 7.736E−03 1.002 5.002E−02 1.103 3.202E−01 1.015

17123 6.975E−04 1.021 7.306E−03 1.002 4.698E−02 1.097 3.022E−01 1.014

21105 6.266E−04 1.018 6.574E−03 1.002 4.189E−02 1.089 2.716E−01 1.013

30317 5.208E−04 1.014 5.477E−03 1.001 3.442E−02 1.077 2.259E−01 1.011

41193 4.457E−04 1.010 4.694E−03 1.001 2.921E−02 1.065 1.934E−01 1.009

53733 3.896E−04 1.008 4.107E−03 1.001 2.536E−02 1.057 1.690E−01 1.008

83805 3.113E−04 1.006 3.285E−03 1.000 2.008E−02 1.047 1.350E−01 1.007

120533 2.592E−04 1.004 2.738E−03 1.000 1.662E−02 1.039 1.124E−01 1.005

163917 2.221E−04 1.003 2.347E−03 1.000 1.417E−02 1.033 9.628E−02 1.004

213957 1.943E−04 1.002 2.053E−03 1.000 1.235E−02 1.028 8.420E−02 1.004

270653 1.727E−04 0.999 1.825E−03 1.000 1.094E−02 1.031 7.483E−02 1.002

334005 1.554E−04 1.001 1.643E−03 1.000 9.822E−03 1.023 6.733E−02 1.003

Table 4.2: Example 1, Convergence history with PEERS
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h N e(uD) r(uD) e(σS) r(σS) e(ϕ) r(ϕ) e(λ) r(λ)

1/4 6086 2.239E−01 − 5.212E−01 − 1.970E−02 − 7.066E−03 −
1/8 46884 1.163E−01 0.945 2.617E−01 0.994 1.043E−02 0.917 3.471E−03 1.026

1/12 156386 7.848E−02 0.970 1.738E−01 1.009 5.616E−03 1.528 1.968E−03 1.400

1/16 368576 5.912E−02 0.985 1.299E−01 1.012 3.584E−03 1.562 1.269E−03 1.524

1/20 717438 4.740E−02 0.991 1.037E−01 1.011 2.527E−03 1.566 9.071E−04 1.505

1/24 1236956 3.954E−02 0.994 8.622E−02 1.010 1.898E−03 1.568 6.915E−04 1.489

Table 4.3: Example 2, Convergence history with PEERS

N e(pD) r(pD) e(uS) r(uS) e(γS) r(γS) e(t,ϕ, p) r(t,ϕ, p)

6086 1.268E−03 − 8.682E−03 − 5.638E−02 − 5.866E−01 −
46884 6.133E−04 1.048 2.849E−03 1.608 2.101E−02 1.424 2.976E−01 0.979

156386 4.059E−04 1.018 1.403E−03 1.747 1.155E−02 1.476 1.985E−01 0.999

368576 3.033E−04 1.012 8.348E−04 1.804 7.472E−03 1.514 1.486E−01 1.005

717438 2.421E−04 1.010 5.536E−04 1.841 5.304E−03 1.535 1.187E−01 1.006

1236956 2.014E−04 1.009 3.943E−04 1.862 4.000E−03 1.548 9.885E−02 1.006

Table 4.4: Example 2, Convergence history with PEERS
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Chapter 5

The case of a nonlinear Stokes problem

Most fluids are non-Newtonian. Examples of this include high polymers, blood and yogurt. In this

case, the relation between extra stress tensor σE and e(u) is non-linear. In particular, in what follows

we will consider quasi-Newtonian fluids, which satisfy the generic condition:

σE = 2µs (|e(u)|) e(u),

where µs is the fluid viscosity. As usual the stress tensor can be written as σ := σE−pI, and according

to the incompressibility condition div u = 0, we obtain that the stress deviatoric tensor is given by

σd = 2µs (|e(u)|) e(u). (5.1)

Now, in order to derive a weak form of (5.1), we need to apply a suitable Green identity, which requires

to isolate e(u) in terms of σd. To this end, we first show that the relation (5.1) can be inverted, that

is one can find a matrix function Φ such that

e(u) = Φ
(
σd
)
. (5.2)

One way of proving the existence of Φ is by the implicit function theorem. In this regard, we first show

some viscosity function µS for which the relation between σd and e(u) can be inverted in the sense of

(5.2) (cf. [35], [26] and [36]) There are as follows:

• the power-law or Ostwald de Waele model

µS

(
|e(u)|

)
= µ0 |e(u)|β−2 , µ0 > 0, β > 1,

• the Carreau viscosity equation

µS

(
|e(u)|

)
= µ0 + µ1

(
1 + |e(u)|2

)β−2
2
, µ0 > 0, β ≥ 1.
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Other models (including these) can be found in [6] and [12], for example: the Cross viscosity equation

and the Ellis fluid model.

In this work, we only consider the Carreau viscosity equation which is studied in the next section.

In the case of the power-law model, others spaces are required for the Stokes part.

5.1 Coupled Problem considering the Carreau viscosity equation

We consider a fluid with viscosity in ΩS given by the Carreau viscosity equation. Now, in order to

apply directly the theory developped in Chapter 3, it is necessary to assume some restrictions on the

parameters associated with this law. To this end, we introduce the following notation: Let µS a fluid

viscosity law defined for z ≥ 0 and r > 1 by

µS(z ; r) := µ0 + ψ
(
δ̂ + φ|z|2

) r−2
2
, (5.3)

where µ0, δ̂ ≥ 0 and ψ, φ > 0. Note here that the Carreau viscosity equation is a particular case of

(5.3). Now, following the analysis given in [38], we assume that 1 < r ≤ 2 and µ0 > 0. Then, according

to [38, Lemme 3.1], we have the following result

Lemma 5.1.1 Given 1 < r ≤ 2, we define the nonlinear mapping

Fr : R2×2 7→ R2×2

τ 7→ Fr(τ ) := ψ
(
δ̂ + φ|τ |2

) r−2
2
τ ∀τ ∈ R2×2. (5.4)

Then there hold:

1. there exists c1 = c1(r, δ, ψ, φ) > 0 such that

c1
|τ |2(

δ̂ + |σ|2−r + |σ + τ |2−r
) ≤ (Fr(σ + τ )− Fr(σ) : τ

)
∀τ ,σ ∈ R2×2.

2. there exists c2 = c2(r, δ, ψ, φ) > 0 such that∣∣∣Fr(σ + τ )− Fr(σ)
∣∣∣ ≤ c2

|τ |(
δ̂ + |σ|2−r + |σ + τ |2−r

) ∀τ ,σ ∈ R2×2.

Proof: See [38, Lemme 3.1].
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In what follows we model the movement of a fluid with a viscosity law as in (5.3) in the free fluid

region ΩS . To this end, in a similar manner as the Newtonian case (cf. (2.15)), we redefine the operator

AS as the non-linear mapping, given by

AS : H0(div ; ΩS)→ H0(div ; ΩS)
′
, where[

AS(σS), τS

]
S
≡
(

Φ
(
σdS

)
: τS

)
S

=

(
1

2µ
(∣∣Φ (σdS)∣∣)σS

d : τ dS

)
S

. (5.5)

Note that this is well defined thanks to the particular choice of parameters (i.e., µS satisfies the hy-

potheses of the implicit function theorem) and to the fact that
∣∣Φ (σdS)∣∣ = |e(uS)| (cf. (5.2)). Note

here that the choice of the space H0(div ; ΩS) is according to [38, pag. 134] and the incompressibility

equation div uS = 0.

Then in order to verify that problem (Pα) (cf. (2.18)) is also well-posed, with AS defined as in

(5.5) instead of (2.15), and according to Theorem 3.1.10, we only need to show that Lemmas 4.1.3 and

4.1.4 are satisfied. In fact, we have the followings results.

Lemma 5.1.2 There exists C = C(r, δ, ψ, φ,ΩS) > 0, such that[
AS(σS)−AS(τS),σS − τS

]
≥ C

∥∥∥σSd − τ dS∥∥∥2

0,ΩS
∀σS , τS ∈ H0(div ; ΩS).

Proof: Let σS , τS ∈ H0(div ; ΩS). Then, due to (5.5), (5.1) and (5.2), we have

[
AS(σS)−AS(τS),σS − τS

]
S

= 2
[
Φ
(
σdS

)
− Φ(τ dS), µS

(∣∣∣Φ(σdS)∣∣∣)Φ
(
σdS

)
− µS

(∣∣∣Φ(τ dS)
∣∣∣)Φ(τ dS)

]
S
,

which, using the notation given in (5.4), yields[
AS(σS)−AS(τS),σS − τS

]
= 2µ0

∥∥∥Φ
(
σdS

)
− Φ

(
τ dS

)∥∥∥2

0,2;ΩS
+
((

Φ
(
σdS

)
− Φ

(
τ dS

))
: Fr(Φ

(
σdS

)
)− Fr(Φ(τ dS))

)
S
.

Then, according to Lemma 5.1.1, we have[
AS(σS)−AS(τS),σS − τS

]
= 2µ0

∥∥∥Φ
(
σdS

)
− Φ

(
τ dS

)∥∥∥2

0,2;ΩS
+
((

Φ
(
σdS

)
− Φ

(
τ dS

))
: Fr(Φ

(
σdS

)
)− Fr(Φ(τ dS))

)
S

≥ 2µ0

∥∥∥Φ
(
σdS

)
− Φ

(
τ dS

)∥∥∥2

0,2;ΩS
+

(
c1c

2
1

δ̂

)∥∥∥Fr(Φ(σdS))− Fr(Φ(τ dS))
∥∥∥2

0,2;ΩS
. (5.6)

On the other hand, thanks to (5.1) and (5.2), we have

Φ
(
σdS

)
=

1

2µS
(∣∣Φ (σdS)∣∣)σSd and Φ

(
τ dS

)
=

1

2µS
(∣∣Φ(τ dS)

∣∣)τSd,
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from where

2µS

(∣∣∣Φ(σdS)∣∣∣)Φ
(
σdS

)
= σS

d and 2µS

(∣∣∣Φ(τ dS)
∣∣∣)Φ

(
τ dS

)
= τS

d.

Thus, subtracting both identities, we obtain∣∣∣σSd − τ dS∣∣∣ = 2
∣∣∣µ0

(
Φ
(
σdS

)
− Φ

(
τ dS

))
+
(
Fr(Φ

(
σdS

)
)− Fr(Φ(τ dS))

)∣∣∣
≤ 2µ0

∣∣∣Φ(σdS)− Φ
(
τ dS

)∣∣∣+ 2
∣∣∣Fr(Φ(σdS))− Fr(Φ(τ dS))

∣∣∣. (5.7)

Finally, the proof follows straightforwardly from (5.6) and (5.7).

Corollary 5.1.3 AS is strongly monotone in N (B) (cf. (4.3)).

Proof: Let σS , τS ∈ N (B). Then div (σS − τS) = 0, and according to [25, Lemma 3.3], there exists

C̃ > 0 such that ∥∥∥σSd − τ dS∥∥∥
0,ΩS
≥ C̃ ‖σS − τS‖0,ΩS = C̃ ‖σS − τS‖div ,ΩS .

Thus, according to Lemma 5.1.2, we have[
AS(σS)−AS(τS),σS − τS

]
≥ CC̃2 ‖σS − τS‖2div ,ΩS ∀σS , τS ∈ N (B) .

which ends the proof.

Lemma 5.1.4 AS is a Lipschitz continuous mapping.

Proof: Let σ, τ ∈ H0(div ; ΩS). Then according to (5.1), (5.2), (5.3) and Lemma 5.1.1, we have2µ0 +
c1

δ̂ +
∣∣∣Φ (σ)

∣∣∣2−r +
∣∣∣Φ (τ )

∣∣∣2−r
∣∣∣Φ (σ)− Φ (τ )

∣∣∣2 ≤ (σ − τ : Φ (σ)− Φ (τ )
)
,

and applying the Cauchy–Schwarz inequality we get,∥∥∥Φ (σ)− Φ (τ )
∥∥∥

0,2;ΩS
≤ 1

2µ0

∥∥∥σ − τ∥∥∥
0,2;ΩS

∀σ, τ ∈ H0(div ; ΩS),

whence∥∥∥AS (σ)−AS (τ )
∥∥∥
X
′
1

≤
∥∥∥Φ (σ)− Φ (τ )

∥∥∥
0,2;ΩS

≤ 1

2µ0

∥∥∥σ − τ∥∥∥
div ;ΩS

∀σ, τ ∈ H0(div ; ΩS),

which ends the proof.
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Theorem 5.1.5 The following problem has a unique solution:

find (σ, u, η) ∈ X × Y × Z such that

[
A(σ), τ

]
+

[
B1(τ), u

]
+

[
B(τ), η

]
=

[
F, τ

]
∀τ ∈ X,[

B1(σ), v
]
−

[
C(u), v

]
=

[
G, v

]
∀v ∈ Y,[

B(σ), ϑ
]

=
[
E, ϑ

]
∀ϑ ∈ Z,

where the spaces are given by

X := H0(div ; ΩS)×W0,3
ΓD

(div ,ΩD),

Y := Ĥ
1
2
00(Σ)×W

1
3
, 3
2 (Σ),

Z := L2(ΩS)× L
3
2
0 (ΩD)× L2

skew(ΩS),

the nonlinear operator A : X → X ′ is defined as:[
A(σ), τ

]
:=
[
Φ
(
σS

d
)
, τS

]
S

+ [AD(uD),vD]D ∀σ := (σS ,uD), τ := (τS ,vD) ∈ X,

and the linear operators B : X → Z ′, B1 : X → Y ′ and C : Y → Y ′ are given as follows[
B(τ), η

]
:= (div τS ,uS)S + (τS ,γS)S − (div vD, pD)D ∀η := (uS , pD,γS) ∈ Z,[

B1(σ), v
]

:=
〈
σSn, ψ

〉
Σ
−
〈
uD·n, ξ

〉
Σ
∀v := (ψ, ξ) ∈ Y,

[
C(u), v

]
:= µk−1

f

〈
ψ· t, ϕ· t

〉
Σ
−
〈
ψ · n, λ

〉
Σ

+
〈
ϕ·n, ξ

〉
Σ
∀u := (ϕ, λ) ∈ Y.

Proof: It suffices to see, thanks to Lemmas 5.1.4 and 5.1.2, that this problem satisfies the hypotheses

of Theorem 3.1.10.

Similarly, we can show that the discrete problem asociated with the one considered in Theorem 5.1.5

and the discrete spaces considered in Section 4.2.2 provide a stable Galeking scheme, which, however,

is not necessarily computable. When the function Φ is unknown we propose a simple strategy to

implement a numerical method, which replaces the term Φ(σnS,h) by 1

µS

(
|Φ(σn−1

S,h )|
)σnS,h in the iterative

scheme considered to solve the discrete problem.
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Appendices
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.1 Orthogonal decompositions of Rn×n

.

σ 7→


1
2

(
σ + σt

)
,

1
2

(
σ − σt

)
.

This is the decomposition of σ ∈ Rn×n in its symmetric and skew-

symmetric parts, for example in Continuum Mechanics the infinitesimal

rotation tensor is a skew-symmetric tensor, and the infinitesimal strain

tensor is symetric.

σ 7→


σd := σ −

(
trσ
n

)
I,

(
trσ
n

)
I.

This is the decomposition of σ in its isotropic and no isotropic part, For

example “In isotropic materials the deviatoric component of the stress

tensor does not cause volume changes” [14].

Table: .1 Orthogonal decompositions Rn×n.

.2 Sobolev spaces in polygonal domains

Definition .2.1 (cf. [30, Definition 1.3.2.1]) We denote by W s
p (Ω) the space of all distributions u

defined in Ω, such that

a) Dαu ∈ Lp(Ω), for |α| ≤ m, when s = m is a nonnegative integer,

b) u ∈Wm
p (Ω) and ∫∫

Ω×Ω

|Dαu(x)−Dαu(y)|p

|x− y|n+σp
<∞, (8)

for |α| = m, when s = m+ σ is nonnegative and is not an integer.

We define the Banach norm on W s
p (Ω) by

‖u‖m,p,Ω :=

 ∑
|α|≤m

∫
Ω
|Dαu|p dx


1
p

, (9)

in case (a), and by

‖u‖s,p,Ω :=

‖u‖pm,p,Ω +
∑
|α|=m

∫∫
Ω×Ω

|Dαu(x)−Dαu(y)|p

|x− y|n+σp


1
p

, (10)
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in case (b).

Definition .2.2 (cf. [30, Definition 1.3.2.2]) For s > 0, we denote by W̊ s
p (Ω) the closure of D(Ω) in

W s
p (Ω).

Equivalently, it is the clousure in W s
p (Ω) of all distributions with compact support in Ω which belong

to W s
p (Ω).

Definition .2.3 (cf. [30, Definition 1.3.2.3]) For s < 0, we denote by W s
p (Ω) the dual space of

W̊−sq (Ω), where
1

p
+

1

q
= 1.

Definition .2.4 (cf. [30, Definition 1.3.2.5]) For every positive s, we denote by W̃ s
p (Ω), the space of

all u ∈W s
p (Ω) such that ũ, the continuation of u by zero outside Ω, belongs to W̃ s

p (Rn).

Lemma .2.5 (cf. [30, Lemma 1,3,2,12 ]) Let Ω be bounded with Lipschitz boundary Γ. Then, there

exist two constants C1, C2 with 0 < C1 ≤ C2 such that

C1d(x,Γ)−σp ≤ ρσ,p(x) ≤ C2d(x,Γ)−σp, 0 < σ < 1, p ≥ 1,

ρσ,p(x) := 2

∫
CΩ

dy

|x− y|n+σp
,

where

d(x,Γ) denotes the distance from x to Γ.

The same inequalities hold when Ω is a uniform Lipschitz epigraph.

Definition .2.6 (cf. [30, Definition 1.3.3.2.]) Let Ω be a bounded open subset of Rn with a boundary

Γ of class Ck,1, where k is a nonnegative integer. Let Γ0 be an open subset of Γ. A distribution u on

Γ0 belongs to W s
p (Γ0) with |s| ≤ k + 1 if u ◦ φ ∈W s

p (V ′ ∩ φ−1(Γ0 ∩ V )) for all V and φ fulfilling some

assumptions (cf. [30, Definition 1.2.1.1]). In the particular case s ∈ (0, 1), one can define the norm

u 7→
{∫

Γ0

|u|pdσ +

∫∫
Γ0×Γ0

|u(x)− u(y)|p

|x− y|n−1+sp
dσ(x)dσ(y)

} 1
p

.

Theorem .2.7 (cf. [30, Theo. 1.4.5.2]) Let Ω be a open and bounded subset of R2 whose boundary Γ

is a curvilinear polygon. Then we have the following inclusions and identities:
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(a) W̃ s
p (Ω) ⊆ W̊ s

p (Ω) ⊆W s
p (Ω) = W s

p (Ω) for s > 0.

(b) W̃ s
p (Ω) = W̊ s

p (Ω) for s− 1/p non-integer,

(c) W̊ s
p (Ω) = W s

p (Ω) for s < 1/p,

(d) W̃ s
p (Ω) =

{
u ∈ W̊ s

p (Ω) : D
αu
ρσ ∈ L

p(Ω), |α| = m
}
,

for s = m+ σ, m a nonnegative integer.

.3 Traces theorems in polygonal domains

Theorem .3.1 Traces theorem. (cf. [30, Theo. 1.5.1.3.] )

Let Ω be a bounded open subset of Rn with a Lipschitz boundary Γ. Then the mapping u 7→ γu

which is defined for u ∈ C0,1(Ω), has a unique continuous extension as an operator from W 1,p(Ω) onto

W
1− 1

p
,p

(Γ). This operator has a continuous inverse independent of p.

Theorem .3.2 Traces of W 1
p (Ω) (cf. [30, Theo. 1.5.2.3])

Let Ω be a bounded open subset of R2 whose boundary Γ is a curvilinear polygon of class C1. Then the

mapping from W 1
p (Ω) u 7→ {fj}Nj=1, where fj = γju, is a linear continuous mapping onto the subspace

of

N∏
j=1

W
1− 1

p
p (Γj) defined by:

(a) no extra condition when 1 < p < 2,

(b) fj(Sj) = fj+1(Sj+1), 1 ≤ j ≤ N When 2 < p <∞ (Sj−1, Sj are the endpoints of Γj),

(c)

∫ δj

0

|fj+1(xj(σ))− fj(xj(−σ))|2

σ
dσ <∞, 1 ≤ j ≤ N , when p = 2.

.4 Additional results in polygonal domains

Corollary .4.1 Let Ω be a bounded open subset of R2, whose boundary Γ is a curvilinear polygon of

class C1, Γ0 be an open subset of Γ and p ∈ (1, 2). Then there exists C > 0 such that

‖EΓ0(ξ)‖Γ ≤ C‖ξ‖Γ0 ∀ξ ∈W
1
p′ ,p(Γ0),

where EΓ0(ξ) is the continuation by zero of ξ on Γ \ Γ0, and

‖u‖S =

{∫
S
|u|pdσ +

∫∫
S×S

|u(x)− u(y)|p

|x− y|n−1+sp
dσ(x)dσ(y)

} 1
p

∀u ∈W
1
q
,p

(S), S ∈ {Γ,Γ0}.

for
1

q
= 1− 1

p
.
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Proof: According to Theorem .3.2, we have EΓ0(ξ) ∈ W
1
q
,p

(Γ), ∀ξ ∈ W
1
q
,p

(Γ0) i.e., W̃
1
q
,p

(Γ0) =

W
1
q
,p

(Γ0) =: X. On the other hand, since

‖ξ‖Γ0 ≤ ‖EΓ0(ξ)‖Γ ∀ξ ∈ X,

the operator

i : (X, ‖· ‖Γ) 7→ (X, ‖· ‖Γ0)

x 7→ i(x) = x

is a linear, bounded and injective operator, and therefore from the bounded inverse theorem, there

exists C > 0 such that

‖EΓ0(ξ)‖Γ ≤ C‖ξ‖Γ0 ∀ξ ∈W
1
q
,p

(Γ0).

Lemma .4.2 (Continuity of edge moments) (cf. [32, Lemma 3.15 ] and [32, Lemma 3.13 ] ) For

a face F̂ of the reference element T̂ and ϕ ∈W
1− 1

q
q (F̂ ) with 1 < q < 2, we have∣∣∣∣∫

F̂
ϕu·ndS

∣∣∣∣ ≤ C (‖u‖0,p;T̂ + ‖div u‖
0,p;T̂

)
‖ϕ‖

W
1/p
q (F̂ )

.

Theorem .4.3 ( Green formula) (cf. [30, Theo. 1.5.2.1])

Let Ω be a bounded open subset of Rn with a Lipschitz boundary Γ. Then for every u ∈ W 1
p (Ω) and

v ∈W 1
q (Ω), with

1

p
+

1

q
= 1, we have∫

Ω
Diuvdx+

∫
Ω

uDivdx =

∫
Γ
γuγvνidσ.

Lemma .4.4 Given 1 < p <∞, and f ∈ Lp(Ω), we define the sets

Ω0 :=
{
x ∈ Ω : f(x) = 0

}
and Ω1 := Ω \ Ω0, and the function f̂ given by:

f̂ :=

|f |
p−2 f : x ∈ Ω1,

0 : x ∈ Ω0.

Then

f̂ ∈ Lp′(Ω), when 1/p+ 1/q = 1,

f =
∣∣∣f̂ ∣∣∣p′−2

f̂ , in Ω1 a.e.,∫
Ω
ff̂ =

∫
Ω1

ff̂ =
∥∥∥f∥∥∥p

0,p;Ω
=
∥∥∥f̂ ∥∥∥q

0,q;Ω
=
∥∥∥f∥∥∥

0,p;Ω

∥∥∥f̂ ∥∥∥
0,q;Ω

.
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Proof: It is direct from the definition of f̂ .

Lemma .4.5 For each 1 < p <∞ there exists Ĉ = Ĉ(ΩD, p) > 0 such that

‖v‖p,div;ΩD = ‖v‖0,p;ΩD + ‖div v‖0,p;ΩD ≤ Ĉ‖v‖0,p;ΩD ∀v ∈
{

W0,p (div ; ΩD) : div (v) ∈ P0(ΩD)
}
.

More precisely, there exists C = C(ΩD, p) > 0 such that

‖div v‖0,p;ΩD ≤ C‖v‖0,p;ΩD ∀v ∈
{

W0,p (div ; ΩD) : div (v) ∈ P0(ΩD)
}
.

Proof: According to the Green’s formula, we have〈
γn(v), γ0(w)

〉
W
− 1
p

p (∂ΩD),W
1
p
q (∂ΩD)

=
(
v,∇w

)
D

+
(

div v, w
)
D

=
(
v,∇w

)
D

+ div v
(

1, w
)
D

∀v ∈
{

W0,p (div ; ΩD) : div (v) ∈ P0(ΩD)
}
, ∀w ∈W1

q(ΩD).

In particular, taking w ∈ C∞0 (ΩD), we obtain

|div v|
∣∣∣(1, w

)
D

∣∣∣ =
∣∣∣(v,∇w

)
D

∣∣∣ ≤ ∥∥∥∇w∥∥∥
0,q
‖v‖0,p ∀v ∈

{
W0,p (div ; ΩD) : div (v) ∈ P0(ΩD)

}
.

Thus, taking w̃ ∈ C∞0 (ΩD) such that
∫

ΩD
w̃ = 1 (for example a cut-off function), we obtain

‖div v‖0,p;ΩD = |div v||ΩD|
1
p ≤

(
|ΩD|

1
p ‖∇w̃‖0,q

)
‖v‖0,p;ΩD ∀v ∈

{
W0,p (div ; ΩD) : div (v) ∈ P0(ΩD)

}
,

and therefore, setting C = |ΩD|
1
p ‖∇w̃‖0,q the proof is concluded.
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