
DISCONTINUOUS TRACE APPROXIMATION IN THE

PRACTICAL DPG METHOD
∗

NORBERT HEUER1, MICHAEL KARKULIK2,

AND FRANCISCO-JAVIER SAYAS3

Abstract. Most variants of the DPG method with optimal test func-
tions are based upon an ultra-weak formulation of the problem under
consideration. This means that principal unknown functions (like dis-
placements and stresses) are approximated in weaker norms than usual
so that discontinuous basis functions are conforming, cf., e.g., [1, 2, 3].
The use of discontinuous approximations has obvious advantages when
considering non-uniform meshes and local mesh refinements. Standard
DPG theory for boundary value problems of second order requires, how-
ever, that approximations of traces of primal unknowns be continuous.
This is due to the fact that, although primal unknowns are measured
in L

2-spaces, their traces are analyzed in trace spaces of H1-functions,
cf. [1]. The numerical results presented by Demkowicz and Gopalakr-
ishnan in [1] use conforming approximations, thus need continuous basis
functions to approximate the trace û of the principal unknown u. How-
ever, in the preprint version of [1], the authors report on experiments
where this trace unknown is approximated by discontinuous basis func-
tions, and no negative effects were observed.

In this talk we explain why this variational crime has no effect on
the approximation of u as long as the polynomial degrees stay bounded.
For more details we refer to [4].
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