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Chapter 1

Introduction

Numerical simulation plays an important role in electrical engineering to optimize
the design and operation conditions of electromagnetic devices such us electrical
machines, induction heating systems, transformers, etc. The behavior of these de-
vices is governed by Maxwell equations in low-frequency regime. In such a case,
the electric displacement in Maxwell-Ampère’s Law can be neglected leading to the
so called eddy current model. Sometimes, the geometry of the device and the pres-
ence of symmetric operational conditions, allow solving a two-dimensional problem
(plane or axisymmetric), which leads to important savings in computational ef-
fort. However, a full three-dimensional analysis is needed in many real engineering
problems.

Among the numerical methods found in the literature to approximate the eddy
current problem, the finite element method is the most extended. Its main ad-
vantages are its geometric flexibility and the richness in theoretical mathematical
tools useful to analyze the approximation of the problem. We notice, however, that
Maxwell equations concern the whole space; so it is necessary to define suitable
boundary conditions in order to use the finite element method. Because of this,
we can also find an important number of papers in the literature which couple the
finite element method with the boundary element method (BEM-FEM methods)
combining the advantages and disadvantages of each of them.

The finite element method was introduced in electrical engineering calculations
in the seventies and, since then, it has been applied to the simulation of a great
variety of electromagnetic problems in static and transient state in two and three
dimensions. Development and analysis of finite element methods for the eddy cur-
rent problem began later and this is a subject which was deeply studied during the
last decade. The recent book by Alonso and Valli [5] is an excellent reference on
this subject, which includes an extensive and updated list of references.

The aim of these notes is to discuss different formulations of the eddy current
problem and their finite element approximation, as well as its application to par-
ticular electrical engineering problems. The outline is as follows. In Section 2 we
recall the time-domain and the time-harmonic Maxwell equations. Then, we derive
and discuss very briefly the eddy current model.

In Section 3, we analyze an eddy current problem that arises from the modeling
of a metallurgical arc-furnace. The final aim of this section is to propose and analyze
a finite element method to solve the low-frequency harmonic Maxwell equations in
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2 Chapter 1. Introduction

a bounded domain containing conductors and dielectrics when a source current pass
through the conductors, using realistic boundary conditions (the term realistic is
used in the sense that they can be actually measured in practice). The resulting
eddy current problem is formulated in terms of the magnetic field. This formulation
is discretized by using Nédélec edge finite elements on a tetrahedral mesh. Error
estimates are easily obtained when the curl-free condition is imposed explicitly on
the elements in the dielectric domain.

Then, a magnetic scalar potential is introduced to impose this curl-free con-
dition. This amounts to the so called magnetic field/magnetic potential hybrid
formulation introduced by Bossavit and Vérité in [15]. The discrete counterpart of
this formulation leads to an important saving in computational effort. Problems
related with the topology are also considered; more precisely, the possibility of hav-
ing a non simply connected dielectric domain is taken into account. Most of the
material of this section has been taken from References [8, 9].

Although the approach described in Section 3 is one of the least expensive, it
needs of cut surfaces and meshes respecting these cuts, which in certain practical
situations can be very hard to build. One alternative approach to avoid such cuts
has been proposed by Alonso et al. in [3]. It is based on imposing the curl free
constraint for the magnetic field in the dielectric domain by means of an appropriate
Lagrange multiplier (instead of introducing a magnetic potential), which leads to a
mixed formulation of the problem. After discretization, the direct implementation
of this approach leads to a linear system with a singular matrix. However the
problem turns out to be equivalent to a third formulation involving an additional
Lagrange multiplier, which leads to a well-posed (although larger) system of linear
equations.

We show in Section 4 how this approach can be used to solve the same kind
of problems analyzed in Section 3. We prove that, in such a case, both resulting
discrete mixed formulations are exactly equivalent to those of Section 3. Then, we
show how the same methodology can be used to solve an eddy current problem in
which the current source is imposed in the interior of the computational domain by
means of a generalized Ohm’s law. Let us remark that this is the original setting
for which this approach was introduced and analyzed in [3]. Such a source current
can be easily handled with this mixed formulation without the need of solving an
additional magnetostatic problem or of introducing appropriate vector potentials
as in other approaches. Most of the material of this section has been taken from
References [3, 7].

Finally, in Section 5, we introduce and analyze a potential formulation of the
eddy current problem. This kind of formulations, based on writing the physical
vector fields in terms of scalar and vector potentials, have been the first ones that
have been solved by means of finite elements methods (see, for instance, [10, 26, 29]).
However, the corresponding mathematical analysis is much more scarce.

Different potentials have been used for the eddy current problem: a vector
potential A for the magnetic induction field, a scalar potential V for the electric
field in the conducting domain, a scalar potential ψ for the magnetic field in the
dielectric domain, a vector potential T for the current density, etc. A hierarchy
of formulations involving some of these potentials have been discussed by B́ıró and
Preis [11]. In particular, they conclude that the so-called A, V −A−ψ formulation
is the most convenient in terms of computer cost.

We analyze this formulation in Section 5 and prove that it leads to an elliptic
problem, which can be discretized by standard (piecewise polynomial and continu-
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ous) finite elements. However, we also show that the method converges to the correct
solution, only if the connected components of the domain for the vector potential A
are convex polyhedra. This domain can be chosen freely as far as it contains all the
conductors and the current source support. For the sake of computer cost, it is typ-
ically chosen as the union of as small as possible disjoint polyhedra containing each
of the connected components of these domains. According to this analysis, these
polyhedra has to be chosen necessarily convex for the method to work properly.
Most of the material of this section has been taken from References [1, 11].
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Chapter 2

Eddy currents and eddy

current model

In this section, we will describe briefly the eddy currents and introduce the eddy
current model. With this aim, first we recall the full Maxwell equations system in
harmonic regime.

2.1 Maxwell system in harmonic regime

The complete Maxwell system of electromagnetism equations reads as follows:

∂D

∂t
− curlH = −J (Maxwell-Ampère’s law),

∂B

∂t
+ curlE = 0 (Faraday’s law),

divB = 0 (Gauss’ magnetic law),

divD = ρ (Gauss’ electric law),

where we have used the standard notation:

• D is the electric displacement,

• E is the electric field,

• B is the magnetic induction,

• H is the magnetic field,

• J is the current density,

• ρ is the electric charge density (which vanishes in any dielectric domain).

We use boldface letters to denote vector fields and variables, as well as vector-valued
operators, throughout the paper.

Moreover, we also have to impose constitutive laws for B in terms of H and for
D in terms of E , that we will assume linear:

B = µH,

D = ǫE ,

5



6 Chapter 2. Eddy currents and eddy current model

as well as Ohm’s law:

J = σE.

The coefficients of these equations are:

• µ the magnetic permeability,

• ǫ the electric permittivity,

• σ the electric conductivity.

In all that follows we will assume these coefficients to be scalars (which correspond
to isotropic media), although not necessarily constant. The magnetic permeability
µ and the electric permittivity ǫ are always strictly positive, whereas the electric
conductivity σ is strictly positive in conductors, but vanishes in dielectrics.

We will restrict the present analysis to bounded domains, so that the equations
above must be completed with appropriate boundary conditions that we will discuss
below. Furthermore, to close the system, some source term has to be imposed, too.
This can be done in different ways: either by means of boundary conditions, which
in turn involves either prescribed input currents or voltage drops (cf. Section 3), or
by fixing an applied current density on some subdomain (cf. Section 5).

In the last case, Ohm’s law has to be substituted by the so-called generalized
Ohm’s law :

J = σE +J
S
,

where J
S
is the imposed source current density. Note that as a consequence of

Maxwell-Ampére’s and Gauss’ laws and the fact that the charge density and the
electric conductivity both vanish on dielectric domains, the imposed source current
has to be divergence-free in these domains:

divJ
S
= 0 in dielectrics.

In what follows, we will focus on problems where the physical quantities vary
periodically with time. This typically happens when alternating source currents are
considered. For instance, if an applied source current is alternating, then it can be
written as

J
S
(x, t) = J∗(x) cos(ωt+ φ).

where J∗(x) is the amplitude, ω > 0 the angular frequency and φ the phase angle.
This can be equivalently written in the following more convenient form:

J
S
(x, t) = Re

[
J∗(x) e

i(ωt+φ)
]
= Re

[
J

S
(x) eiωt

]
,

where J
S
:= J∗(x) e

iφ is the complex-valued amplitude, which takes into account
both, the real amplitude and the phase angle.

In such a case, all the other electromagnetic fields have a similar steady-state
form:

F(x, t) = Re
[
F (x) eiωt

]
,

with F being the complex-valued amplitudes (which are called the phasors) of the
respective quantities.
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Substituting these expressions in the Maxwell system and using the constitutive
laws to eliminate D and B, we arrive at the time-harmonic Maxwell equations with
an applied current source:

curlH − iωǫE = J ,

iωµH + curlE = 0,

div µH = 0,

div ǫE = ρ,

J = σE + J
S
.

Note that the third equation is not independent but follows from the second one.
In turn, the fourth equation is not independent in the dielectric domain, where it
follows from the first one and the facts that, in dielectrics, the conductivity vanishes
and the imposed source current has to be divergence-free.

2.2 Eddy current model

As stated by the Faraday’s law, a time-variation of the magnetic field generates an
electric field. Therefore, a current density J = σE is induced in each conductor.
This is the so-called eddy current. This phenomenon and the related heating of
the conductor, was observed by the French physicist L. Foucault in the mid of
the nineteenth century. Because of this, eddy currents are also known as Foucault
currents.

These currents are relevant in applications. On one side, they generate heat
in conductors according to the Joule’s law : Q = E · J . This heat can have a
productive use in some applications (like in induction furnaces), while in others
should be avoided (like to avoid overheating of electrical devices).

Moreover, eddy currents also generate the so-called Lorentz forces, which act on
conducting media: f = J × B. This forces can be used to drive metal conforming
processes (electromagnetic forming). They also drive the motion of melted fluids in
magnetohydrodynamics processes.

Another typical application of eddy currents is in non-destructive testing of
materials. We do not extend in this respects and refer to [5, Section 9] for a detailed
description of all these topics.

In all these applications, it can be checked that the time derivative of the dis-
placement field is negligible with respect to the other terms of the Maxwell-Ampére’s
law in the conductive domain. To quantify this, we refer again to [5, Section 1.2],
where a much more complete discussion on this issue can be found.

The system of equations obtained by disregarding the displacement current term
∂D
∂t (or, equivalently, iωǫE in the harmonic regime) is called the eddy current model
(or the magnetoquasistatic model) of the Maxwell equations.

In the time-harmonic case, the resulting set of equations is therefore

curlH = J ,

iωµH + curlE = 0,

div(µH) = 0,

div(ǫE) = ρ,

J = σE.



8 Chapter 2. Eddy currents and eddy current model

Once more, the third equation can be dropped out, since it is a consequence of
the second one. Instead, the fourth equation in the dielectric domain (actually
div(ǫE) = 0, because ρ vanishes in dielectrics) is no longer a consequence of the
first one. In fact, the term iωǫE (from which div(ǫE) = 0 follows in the harmonic
full Maxwell system) has been deleted in the first equation. In its turn, in the
conductors domain, the fourth equation is not needed to have a well posed problem.
Thus, it can be decoupled and eventually used to compute ρ, once E is obtained
from the other equations.

Furthermore, when an applied source current J
S
is imposed, the last equation

must be substituted as for the full Maxwell system by the generalized Ohm’s law:

J = σE + J
S
.

In such a case, once more, the condition divJ
S
= 0 has to be assumed in the

dielectric domain.
As we will see in the following sections, the above system has to be completed

with appropriate boundary conditions and with some topological constraints (except
in case of topologically trivial domains) to lead to a well-posed problem (see [5]).
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Eddy current problem

with input current

intensities as boundary

data

3.1 Model problem

Let us consider again the low-frequency harmonic Maxwell equations:

curlH = J , (Ampère’s law),(3.1)

iωµH + curlE = 0, (Faraday’s law),(3.2)

div(µH) = 0,(3.3)

div(ǫE) = 0 (in dielectrics),(3.4)

J = σE, (Ohm’s law),(3.5)

where E is the electric field, H the magnetic field, J the current density, ω the
angular frequency, µ the magnetic permeability, ǫ the electric permittivity and σ
the electric conductivity, which vanishes in dielectrics. Notice that the constraint
(3.3) is not an independent equation but a consequence of (3.2).

We are interested in solving these equations in a simply connected bounded
three-dimensional domain Ω, which consists of two parts, Ω

C
and Ω

D
, occupied by

conductors and dielectrics, respectively. For the sake of clarity we refer to the con-
figuration shown in Figure 3.1, which is a sketch of a metallurgical electric furnace.
We denote Ω1

C
, . . . ,ΩN

C
the connected components of Ω

C
, which correspond to the

different electrodes of the furnace in Figure 3.1. We also assume that Ω̄1
C
, . . . , Ω̄N

C

are mutually disjoint and that Ω
D
and ∂Ω

D
are connected.

The domain Ω is assumed to have a Lipschitz-continuous connected boundary
∂Ω, which splits into two parts: ∂Ω = Γ

C
∪ Γ

D
, with Γ

C
:= ∂Ω

C
∩ ∂Ω and Γ

D
:=

∂Ω
D
∩ ∂Ω being the outer boundaries of the conducting and dielectric domains,

respectively. We denote Γ
I
:= ∂Ω

C
∩ ∂Ω

D
, the interface between dielectrics and

conductors. We also denote by n, n
C
and n

D
the outer unit normal vectors to ∂Ω,

∂Ω
C
and ∂Ω

D
, respectively.

We assume that the outer boundary of each electrode, ∂Ωn
C
∩∂Ω (n = 1, . . . , N),

has two connected components, both with non-zero measure: the current entrance,
Γn
J
, where the electrode is connected to a bar supplying alternating electric current,

and the electrode tip, Γn
E
, where an electric arc arises. Finally, we denote Γ

J
:=

Γ1
J
∪ · · · ∪ ΓN

J
and Γ

E
:= Γ1

E
∪ · · · ∪ ΓN

E
. We also assume that Γ

J
∩ Γ

E
= ∅.

Maxwell equations (3.1)–(3.5) concern the whole space but we are only interested
in a bounded domain, so it is necessary to define suitable boundary conditions. In

9



10 Chapter 3. Eddy current problem with input current intensities as boundary data

Figure 3.1. Sketch of the domain.

fact, this need represents the main difficulty to solve the problem in a bounded
domain. From a mathematical point of view, a natural set of boundary conditions
for the weak formulation written in terms of the magnetic field consist of giving
H × n on Γ

D
and E × n on Γ

C
(see [8]). While these boundary conditions are easy

to handle from mathematical and computational points of view, it is not so easy to
obtain the former from the physical data, which usually reduces either to the input
current intensities or to the voltage drops on each electrode.

In principle, we focus on input current intensities and, following Bossavit [14],
we consider the following boundary conditions:

E × n = 0 on Γ
E
,(3.6) ∫

Γn
J

J · n = In on Γn
J
, n = 1, . . . , N,(3.7)

E × n = 0 on Γ
J
,(3.8)

µH · n = 0 on ∂Ω,(3.9)

where the only data are the current intensities In on each current entrance.
The boundary condition (3.6) is the natural one to model the current free exit on

the electrode tips, whereas (3.7) accounts for the input intensities through each bar.
Conditions (3.8) and (3.9) have been proposed by Bossavit in [14] in a more general
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setting. They will appear as natural boundary conditions of our weak formulation of
the problem. The former implies the assumption that the electric current is normal
to the surface on the current entrance, whereas the latter means that the magnetic
field is tangential to the boundary. Of course, condition (3.9) is not always fulfilled,
but it is a good approximation in the case motivating this study.

The case that the boundary data are the voltage drops on each electrode is not
too different and will be discussed in what follows by means of several remarks.

3.2 A magnetic field formulation

We introduce a weak formulation in terms of the magnetic field to solve the eddy
current model with the boundary conditions (3.6)–(3.9). First, note that by virtue
of (3.1), the boundary condition (3.7) can be equivalently written

∫

Γn
J

curlH · n = In on Γn
J
, n = 1, . . . , N.

This will become an essential boundary condition of the formulation. Then, let us
consider a smooth test function G such that

(3.10) curlG = 0 in Ω
D

and

∫

Γn
J

curlG · n = 0, n = 1, . . . , N.

From (3.2) we have

(3.11) iω

∫

Ω

µH · Ḡ+

∫

Ω

curlE · Ḡ = 0.

Moreover, from (3.2) and (3.9), we have that curlE ·n = iωµH ·n = 0 on ∂Ω.
Hence, since curlΓ E := curlE · n is the tangential (scalar) curl operator on the
simply-connected surface ∂Ω, we can assert that there exists a sufficiently smooth
function V defined in Ω up to a constant, such that V |∂Ω is a surface potential of
the tangential component of E; namely,

E × n = −gradV × n on ∂Ω.

On the other hand, (3.6) and (3.8) imply that V must be constant on each connected
component of Γ

J
and Γ

E
. Furthermore, in our model case, because of the geometry

of the furnace, we may assume that the potential is the same on the whole Γ
E
(see

Remark 3.2.1 below for a more general case). Hence, V can be chosen to be null on
Γ
E
. Then, we can transform the second term of (3.11) by using Green’s formulas as

follows:

(3.12)

∫

Ω

curlE · Ḡ =

∫

Ω

E · curl Ḡ−
∫

∂Ω

E × n · Ḡ =

∫

Ω

E · curl Ḡ,

because
∫

∂Ω

E×n ·Ḡ = −
∫

∂Ω

gradV ×n ·Ḡ =

∫

Ω

gradV ·curl Ḡ =

∫

∂Ω

V curl Ḡ ·n = 0,

where, in the last equality, we have used that V = 0 on Γ
E
, that V is constant on

each Γn
J

and (3.10).
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Now, by substituting (3.12) in (3.11), we obtain

iω

∫

Ω

µH · Ḡ+

∫

Ω

E · curl Ḡ = 0.

Moreover, because of the first equation in (3.10), the second integral above reduces
to the conducting domain Ω

C
, where (3.1) and (3.5) lead to E = 1

σ curlH. Thus,
we finally obtain

(3.13) iω

∫

Ω

µH · Ḡ+

∫

Ω
C

1

σ
curlH · curl Ḡ = 0

for all G sufficiently smooth that satisfy (3.10).

Remark 3.2.1. In general, the (constant) electric potentials on each connected
component of Γ

E
cannot be assumed to be equal. In such a case they have to be pre-

scribed as additional boundary conditions on each of these connected components,
Γ1
E
, . . . ,ΓN

E
, except on one of them where the potential is taken to be zero. This

leads to a new term on the right-hand side of the weak formulation (3.13), namely,

iω

∫

Ω

µH · Ḡ+

∫

Ω
C

1

σ
curlH · curl Ḡ =

N−1∑

n=1

V n
E

∫

Γn
E

curl Ḡ · n,

where V n
E

are the corresponding prescribed constant potentials (V N
E

= 0).

For any surface Γ without boundary, we denote by H−1/2(Γ) the dual space of
H1/2(Γ) and by 〈·, ·〉Γ the corresponding duality pairing. For any open surface S ⊂ Γ

we denote by H
1/2
00 (S) :=

{
ξ ∈ L2(S) : ξ̂ ∈ H1/2(Γ)

}
, where ξ̂ is the extension by

zero of ξ to Γ, and by H
−1/2
00 (S) its dual space. Clearly, H−1/2(Γ) →֒ H

−1/2
00 (S).

Let

X := {G ∈ H(curl,Ω) : curlG = 0 in Ω
D
} .

For allG ∈ X , we have that curlG·n ∈ H−1/2(∂Ω) and curlG·n = 0 in H
−1/2
00 (Γ

D
).

In fact, let ϕ ∈ H
1/2
00 (Γ

D
), ϕ̂ its extension by zero to ∂Ω and ϕ̃ ∈ H1(Ω) such that

ϕ̃|Γ = ϕ̂ and ϕ̃ = 0 in Ω
C
. Then,

〈curlG · n, ϕ̃〉∂Ω =

∫

Ω

curlG · grad ϕ̃ = 0,

because curlG vanishes in Ω
D
and ϕ̃ in Ω

C
.

Therefore, for all G ∈ X , 〈curlG · n, 1〉Γn
J

is well defined. Indeed, let ζn be

any smooth function defined on ∂Ω such that ζn|Γm
J

= δmn and ζn = 0 on Γ
E

(such a function exists because Γ1
J
, . . . ,ΓN

J
,Γ

E
are all mutually disjoint). Then,

〈curlG · n, 1〉Γn
J

:= 〈curlG · n, ζn〉∂Ω is well defined and its value does not depend

on ζn|Γ
D
.

Given a vector I := (I1, . . . , IN ) ∈ C
N of (complex) input intensities through

each bar, let

V(I) :=
{
G ∈ X : 〈curlG · n, 1〉Γn

J

= In, n = 1, . . . , N
}
.
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This is a closed linear manifold of X with associated subspace

V(0) =
{
G ∈ X : 〈curlG · n, 1〉Γn

J

= 0, n = 1, . . . , N
}
.

Lemma 3.1. For all I ∈ C
n, V(I) is non empty.

Proof. For n = 1, . . . , N , let un ∈ H1(Ωn
C
) be the unique solution of

−∆un = 0 in Ωn
C
,

∂un
∂n

C

=





In
meas(Γn

J
)

on Γn
J
,

0 on Γ
I
∩ ∂Ωn

C
,

un = 0 on Γn
E
.

Namely,

un ∈ H1
Γn
E

(Ωn
C
) :

∫

Ωn
C

gradun · grad v =

∫

Γn
J

In
meas(Γn

J
)
v ∀v ∈ H1

Γn
E

(Ωn
C
).

Let F ∈ L2(Ω)3 be defined by F |Ωn
C

:= gradun, n = 1, . . . , N , and F |Ω
D

:= 0.

Since div(gradun) = 0 in Ωn
C
and gradun ·nC

= 0 on Γ
I
∩ ∂Ωn

C
, F ∈ H(div,Ω) and

divF = 0 in Ω. Then, since ∂Ω is connected, we know from Theorem I.3.4 of [22]
that there exists a vector potential G ∈ H1(Ω)3 satisfying curlG = F in Ω.

Therefore, G ∈ X because F = 0 in Ω
D
. Moreover, by using ζn as defined above

and ζ̃n ∈ H1
Γ
E

(Ω) an extension of ζn vanishing in Ωm
C
, m 6= n, we have

〈curlG · n, 1〉Γn
J

= 〈F · n, ζn〉∂Ω =

∫

Ω

F · grad ζ̃n =

∫

Ωn
C

F · grad ζ̃n

=

∫

Ωn
C

gradun · grad ζ̃n =

∫

Γn
J

In
meas(Γn

J
)
= In.

Thus G ∈ V(I) and we conclude the proof.

Now, we are in a position to write properly the weak formulation (3.13) of our
problem and to prove that it is well posed:

Problem 3.2.1. Given I ∈ C
N , find H ∈ V(I) such that

iω

∫

Ω

µH · Ḡ+

∫

Ω
C

1

σ
curlH · curl Ḡ = 0 ∀G ∈ V(0).

Let a : X ×X −→ C be the sesquilinear continuous form of this problem:

a(H ,G) := iω

∫

Ω

µH · Ḡ+

∫

Ω
C

1

σ
curlH · curl Ḡ.

It clearly satisfies the following X -ellipticity property:

(3.14) |a (G,G)| ≥ α‖G‖2H(curl,Ω) ∀G ∈ X .
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As a consequence we have the following result.

Theorem 3.2. For each I ∈ C
N Problem 3.2.1 has a unique solution H.

Proof. Since V(I) is not empty, let HI ∈ V(I) and consider the translation

Ĥ = H −HI . Then problem 3.2.1 is equivalent to finding Ĥ ∈ V(0) such that

a(Ĥ,G) = −a(HI ,G) ∀G ∈ V(0),

and this problem has a unique solution because of the ellipticity inequality (3.14)
and the Lax-Milgram Lemma.

Once the magnetic field H is known, the current density J and the electric
field E can be readily computed in the conductors by means of (3.1) and (3.5),
respectively. These are the magnitudes actually needed in most applications.

Our next goal is to show that the solution of Problem 3.2.1 satisfies somehow
equations (3.1)–(3.9). To this aim, we introduce an equivalent mixed formulation
of Problem 3.2.1. Let b : X × C

N −→ C be the sesquilinear form defined by

b(G,W ) :=
N∑

n=1

W̄n〈curlG · n, 1〉Γn
J

,

where W = (W1, . . . ,WN ) ∈ C
N . In the following mixed formulation of Prob-

lem 3.2.1, the constraints 〈curlH · n, 1〉Γn
J

= In are imposed by means of a La-

grange multiplier.

Problem 3.2.2. Given I ∈ C
N , find H ∈ X and V ∈ C

N such that

a(H,G) + b(Ḡ, V̄ ) = 0 ∀G ∈ X ,(3.15)

b(H,W ) = I · W̄ ∀W ∈ C
N .(3.16)

Theorem 3.3. Given I ∈ C
N , let H ∈ X be the solution of Problem 3.2.1. Then

there exists a unique V ∈ C
N such that (H,V ) is the only solution of Problem 3.2.2.

Proof. Since a is X -elliptic, to conclude the well posedness of Problem 3.2.2, we
only need to prove the corresponding inf-sup condition for b (see, for instance, [22]).
With this end, let {e1, . . . , eN} be the canonical basis of CN . Because of Lemma 3.1,

∃Gn ∈ V(en), n = 1, . . . , N . Then, given W ∈ C
N , let GW :=

∑N
n=1WnGn.

Hence, ‖GW ‖
X

≤ |W |
(∑N

n=1 ‖Gn‖2X
)1/2

and b(GW ,W ) = |W |2. Consequently,

sup
G∈X

b(G,W )

‖G‖
X

≥ b(GW ,W )

‖GW ‖
X

≥ β|W |, with β :=

(
N∑

n=1

‖Gn‖2X

)−1/2

.

Therefore, Problem 3.2.2 has a unique solution. Thus we conclude the proof from
the fact that clearly any solution of this problem also solves Problem 3.2.1.

In the following theorem we show that the solution of Problem 3.2.2 satisfies
the Maxwell equations (3.1)–(3.5) (with the exception of those involving E in Ω

D
,

which is not an unknown of the problem) and the boundary conditions (3.6)–(3.9).
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Theorem 3.4. Let (H,V ) ∈ X × C
N be the solution of Problem 3.2.2. Let

J := curlH and E := ( 1σJ)|Ω
C

. Then the following properties hold true:

div(µH) = 0 in Ω,(3.17)

iωµH + curlE = 0 in Ω
C
,(3.18)

J = 0 in Ω
D
,(3.19)

〈J · n, 1〉Γn
J

= In on Γn
J
, n = 1, . . . , N,(3.20)

µH · n = 0 on ∂Ω.(3.21)

Moreover, ∃V∗ ∈ H1(Ω) such that V∗|Γn
J

= Vn, n = 1, . . . , N , V∗|Γ
E
= 0 and

(3.22) E × n = −gradV∗ × n in H
−1/2
00 (Γ

C
)3,

Hence, in particular,

E × n = 0 on Γ
E

and E × n = 0 on Γ
J
.

Proof. Given v ∈ D(Ω) := {v ∈ C∞(Ω) : supp v ⊂ Ω}, grad v ∈ V(0). Then,
(3.15) yields ∫

Ω

µH · grad v̄ = 0.

Consequently, (3.17) holds true.
Now, let G ∈ D(Ω)3 be such that suppG ⊂ Ω

C
. Then, G ∈ V(0) too and (3.15)

yields

iω

∫

Ω
C

µH · Ḡ+

∫

Ω
C

1

σ
curlH · curl Ḡ = 0.

Hence, E := ( 1σ curlH)|Ω
C
satisfies (3.18).

Equation (3.19) follows from the definition of J and the fact that H ∈ X ,
whereas equation (3.20) follows from (3.16).

To prove (3.21), notice that µH ∈ H(div,Ω) because of (3.17). Then µH · n ∈
H−1/2(∂Ω) and, given v ∈ C∞(Ω̄), we have

〈µH · n, v〉∂Ω =

∫

Ω

div(µH)v̄ +

∫

Ω

µH · grad v̄ = 0,

because of (3.17), (3.15) and the fact that grad v ∈ V(0). Then, (3.21) holds true.

Finally, let V∗ :=
∑N
n=1 Vnζ̃n with ζ̃n ∈ H1

Γ
E

(Ω) as defined in the proof of

Lemma 3.1 (i.e., ζ̃n|Γn
J

= 1, ζ̃n|Γn
E

= 0 and ζ̃n|Ωm
C

= 0 for all m 6= n). Then, V∗ ∈
H1(Ω), V∗|Γn

J

= Vn, n = 1, . . . , N , and V∗|Γ
E

= 0. On the other hand, notice that

E ∈ H(curl,Ω
C
) because of (3.18) and consequently E×n

C
∈ H−1/2(∂Ω

C
)3. Hence,

to prove (3.22), it is enough to show that 〈E × n
C
,v〉∂Ω

C

= −〈gradV∗ × n
C
,v〉∂Ω

C

∀v ∈ H
1/2
00 (Γ

C
)3 (namely, ∀v ∈ H1/2(∂Ω

C
)3 that vanishes on Γ

I
).

Given one such v, notice that there exists G ∈ H1(Ω)3 vanishing in Ω
D
and such

that G|∂Ω
C

= v. Then G ∈ X and, from (3.15), (3.18), Green’s formula and the
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fact that E = 1
σ curlH in Ω

C
, we obtain

0 = iω

∫

Ω

µH · Ḡ+

∫

Ω
C

E · curl Ḡ+ b(Ḡ, V̄ )

= iω

∫

Ω
C

µH · Ḡ+

∫

Ω
C

curlE · Ḡ+
〈
E × n

C
,G|∂Ω

C

〉
∂Ω

C

+ b(Ḡ, V̄ )

= 〈E × n
C
,v〉∂Ω

C

+ 〈gradV∗ × n
C
,v〉∂Ω

C

,

the last equality because

b(Ḡ, V̄ ) =
〈
curl Ḡ · n, V̄∗

〉
∂Ω

=

∫

Ω
C

curl Ḡ · gradV∗ = 〈gradV∗ × n
C
,v〉∂Ω

C

,

which in its turn follows from the definitions of b and V∗, the fact that G vanishes
in Ω

D
and Green’s formulas. Therefore, we conclude the proof.

Remark 3.2.2. Equation (3.22) shows that the physical meaning of Vn is the
electric potential on Γn

J
, assuming this potential vanishes on Γ

E
(namely, Vn is the

voltage drop on the electrode Ωn
C
). If the available data are these voltage drops

Vn instead of the corresponding input currents In, then the problem to be solved
reduces to equation (3.15): Given V ∈ C

N , find H ∈ X such that
(3.23)

iω

∫

Ω

µH · Ḡ+

∫

Ω
C

1

σ
curlH · curl Ḡ = −

N∑

n=1

Vn
〈
curl Ḡ · n, 1

〉
Γn
J

∀G ∈ X .

This is clearly a well posed problem because of the ellipticity of a on the whole X
(cf. (3.14)) and the Lax-Milgram Lemma.

Remark 3.2.3. The theorems above show that Problem 3.2.1 allows us to de-
termine uniquely the electric field E in the conductors. Instead, this field is not
determined in the dielectrics. Indeed, from the eddy current equations (3.1)–(3.5)
and the boundary conditions (3.6)–(3.9), we obtain the following equations forE|Ω

D

:

curlE = −iωµH in Ω
D
,(3.24)

div(ǫE) = 0 in Ω
D
,(3.25)

E × n = E|Ω
C

× n on Γ
I
,(3.26)

curlE · n = 0 on Γ
D
,(3.27)

The latter arises from (3.24) and (3.21), whereas the previous to the latter follows
from the facts that E|Ω

C

is already known and E is globally in H(curl,Ω).

Additional boundary conditions on Γ
D
seem to be needed to determine a unique

solution, even in the simplest case of a topologically trivial Ω
D
(i.e., when Ω

D
is

simply connected with a connected boundary, which does not correspond to our
problem). A natural condition would be to impose

(3.28) E × n = 0 on Γ
D
,

from which (3.27) follows by means of the Stokes Theorem. Existence of solution
to (3.24)–(3.28) has been studied in [5, Section 3.5] in a general topological setting,
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in which case a number of additional constraints related with the topology of Ω
D

must be also added.
However, the fact that E|Ω

D

is not determined by the present eddy current

model is not a drawback in most applications, where the typical goal is to model
the behavior of conductors.

3.3 Introducing a magnetic potential

In this section we show how Problem 3.2.1 can be transformed by introducing a
(scalar) magnetic potential, which will allow us to replace the magnetic field in the
dielectric domain Ω

D
.

We assume that for each connected component of the conducting domain, Ωn
C
,

there exists a connected “cut” surface Σn ⊂ Ω
D
, which is a manifold with boundary

such that ∂Σn ⊂ ∂Ω
D
and Ω̃

D
:= Ω

D
\ ⋃n=Nn=1 Σn is simply connected (see, for

instance, [6]). We also assume that Σ̄n ∩ Σ̄m = ∅ for n 6= m (see Figure 3.1) and
that the boundary of each current entrance surface, Γn

J
, is a simple closed curve,

that we denote by γn.
We denote the two faces of each Σn by Σ−

n and Σ+
n , and fix a unit normal nn on

Σn as the “outer” normal to Ω
D
\ Σn along Σ+

n . We choose an orientation for each
γn by taking its initial and end points on Σ−

n and Σ+
n , respectively. We denote by

tn the corresponding unit vector tangent to γn.
For any function Ψ̃ ∈ H1(Ω̃

D
), we denote by

[[Ψ̃]]Σn := Ψ̃|Σ−

n
− Ψ̃|Σ+

n

the jump of Ψ̃ through Σn along nn. The gradient of Ψ̃ in D′(Ω̃
D
) can be extended

to L2(Ω
D
)3 and will be denoted by gr̃ad Ψ̃.

Let Θ be the linear subspace of H1(Ω̃
D
) defined by

Θ =
{
Ψ̃ ∈ H1(Ω̃

D
) : [[Ψ̃]]Σn = constant, n = 1, . . . N

}
.

Then, for Ψ̃ ∈ H1(Ω̃
D
), we have that gr̃ad Ψ̃ ∈ H(curl,Ω

D
) if and only if Ψ̃ ∈ Θ, in

which case curl(gr̃ad Ψ̃) = 0 (see Lemma 3.11 in [6]). Actually, the kernel of the
operator curl : H(curl,Ω

D
) −→ L2(Ω

D
)3 is given by

(3.29) Ker (curl) = gr̃adΘ = gradH1(Ω
D
)⊕KT,

where KT is the space of the so-called Neumann harmonic fields in Ω
D
defined by

KT :=
{
G ∈ L2(Ω

D
)3 : curlG = 0, div(µG) = 0 in Ω

D
, and G · n = 0 on ∂Ω

D

}
.

A basis of this space is given by the set of functions {gr̃ad Φ̃n, n = 1, . . . , N},
where, for each n, Φ̃n ∈ H1(Ω

D
\Σn) is a solution of

∫

Ω̃n
D

µgr̃ad Φ̃n · grad Ψ̄ = 0 ∀Ψ ∈ H1(Ω
D
),(3.30)

[[Φ̃n]]Σn = 1.(3.31)

By using the Lax-Milgram Lemma, it is straightforward to see that Φ̃n is uniquely
defined in H1(Ω

D
\Σn)/C. (See, for instance, again [6].)
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Therefore, according to (3.29), for all G ∈ X , there exist unique constants cn,

n = 1, . . . , N , and a unique scalar field Ψ ∈ H1(Ω
D
)/C, such that G|Ω

D

= gr̃ad Ψ̃,

with Ψ̃ ∈ Θ given by Ψ̃ = Ψ +
∑N
n=1 cnΦ̃n. In such a case, we say that Ψ̃ a

multivalued potential of G in Ω
D
(although actually the potential Ψ̃ is multivalued

only on the cut surfaces). Furthermore, because of (3.31), the constants cn are the

jumps of Ψ̃ across the respective cuts Σn. Consequently, given Ψ̃ ∈ Θ, we have that
Ψ̃ ∈ H1(Ω) if and only if [[Ψ̃]]Σn = 0 for n = 1, . . . , N .

We use the following notation: given G
C
∈ L2(Ω

C
)3 and G

D
∈ L2(Ω

D
)3, (G

C
|G

D
)

denotes the field G ∈ L2(Ω)3 defined by G|Ω
C

:= G
C
and G|Ω

D

:= G
D
. We denote

by Y the linear space given by

Y :=
{
(G, Ψ̃) ∈ H(curl,Ω

C
)× (Θ/C) : (G|gr̃ad Ψ̃) ∈ H(curl,Ω)

}
.

Then (G, Ψ̃) ∈ Y if and only if (G|gr̃ad Ψ̃) ∈ X .
When a multivalued magnetic potential is used in the dielectric domain, the

boundary condition (3.7) can be imposed by fixing its jumps on the cut surfaces.

Indeed, if (G, Ψ̃) ∈ Y is smooth enough for the following integrals to make sense,
we have

(3.32) 〈curlG · n, 1〉Γn
J

=

∫

Γn
J

curlG · n =

∫

γn

G · tn =

∫

γn

gr̃ad Ψ̃ · tn = [[Ψ̃]]Σn ,

where we have used the Stokes Theorem and the fact that G×n = gr̃ad Ψ̃×n on
Γ
I
⊃ γn.
Because of this, given I ∈ C

N , it is natural to search the solution of our problem
in

W(I) :=
{
(G, Ψ̃) ∈ Y : [[Ψ̃]]Σn = In, n = 1, . . . , N

}
.

Note that the associated linear subspace is given by

W(0) :=
{
(G, Ψ̃) ∈ Y : [[Ψ̃]]Σn = 0, n = 1, . . . , N

}

=
{
(G,Ψ) ∈ H(curl,Ω

C
)×

(
H1(Ω

D
)/C

)
: (G|gradΨ) ∈ H(curl,Ω)

}
.

Then, Problem 3.2.1 can be written in terms of the magnetic potential as follows:

Problem 3.3.1. Given I ∈ C
N , find (H, Φ̃) ∈ W(I) such that

iω

∫

Ω
C

µH · Ḡ+ iω

∫

Ω
D

µgr̃ad Φ̃ · gr̃ad ¯̃
Ψ +

∫

Ω
C

1

σ
curlH · curl Ḡ = 0

∀(G, Ψ̃) ∈ W(0).

Problem 3.3.1 is the well-known magnetic field/magnetic potential hybrid for-
mulation introduced by Bossavit and Vérité in [15], adapted to our eddy current
problem with input current intensities as boundary data. One main advantage with
respect to Problem 3.2.1 lies in the fact that a vector field is replaced by a scalar
one in the dielectric domain.

Remark 3.3.1. When the available data are the voltage drops Vn instead of the
corresponding input currents In, the magnetic field/magnetic potential formulation
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of (3.23) reads as follows: Given V ∈ C
N , find (H, Φ̃) ∈ Y such that

(3.33) iω

∫

Ω
C

µH · Ḡ+ iω

∫

Ω
D

µgr̃ad Φ̃ · gr̃ad ¯̃
Ψ +

∫

Ω
C

1

σ
curlH · curl Ḡ

= −
N∑

n=1

Vn
〈
curl Ḡ · n, 1

〉
Γn
J

∀(G, Ψ̃) ∈ Y .

In such a case, the constants jumps [[Φ̃n]]Σn (which correspond to the intensities In
on each current entrance Γn

J
) are additional unknowns that will be computed while

solving the problem above.

3.4 Discretization

In this section, we introduce a discretization of Problem 3.2.1 and prove its conver-
gence. Then, we show that the obtained discrete problem is equivalent to a more
convenient discrete version of Problem 3.3.1.

We employ “edge” finite elements to approximate the magnetic field; more pre-
cisely, the lowest-order finite elements of the family introduced by Nédélec in [27].

We assume that Ω, Ω
C
and Ω

D
are Lipschitz polyhedra and consider regular

tetrahedral meshes Th of Ω, such that each element K ∈ Th is contained either in
Ω

C
or in Ω

D
(h stands as usual for the corresponding mesh-size).

The magnetic field is approximated in each tetrahedron K by a polynomial
vector field in the space

NK :=
{
Gh ∈ P1(K)3 : Gh(x) = a× x+ b, a, b ∈ C

3, x ∈ K
}
.

An explicit computation shows that vector fields of this type have constant tan-
gential components along each straight line in the Euclidean space. Moreover, the
tangential components along the edges of K can be taken as the degrees of freedom
defining an element in NK .

These elements are H(curl)-conforming in the sense that, for all Gh ∈ NK ,
their tangential traces on each triangular face F of K depend only on the degrees
of freedom of Gh on the three edges of F . So, if we set

N h(Ω) := {Gh ∈ H(curl,Ω) : Gh|K ∈ NK ∀K ∈ Th} ,

the elements in this space are piecewise linear vector fields with tangential traces
that are continuous through the faces of the mesh. This is the lowest-order Nédélec
finite element space introduced in [27]. See [22] for a detailed mathematical analysis
and [13] for useful implementation issues.

We introduce the finite-dimensional space

X h := {Gh ∈ N h(Ω) : curlGh = 0 in Ω
D
} ⊂ X ,

and, for I ∈ C
N , the linear manifold

Vh(I) :=

{
Gh ∈ X h :

∫

Γn
J

curlGh · n = In, n = 1, . . . , N

}
⊂ V(I).

Then we define the discrete problem as follows.
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Problem 3.4.1. Given I ∈ C
N , find Hh ∈ Vh(I) such that

(3.34) iω

∫

Ω

µHh · Ḡh +

∫

Ω
C

1

σ
curlHh · curl Ḡh = 0 ∀Gh ∈ Vh(0).

In the following theorem we prove existence and uniqueness of solution for this
problem under mild smoothness assumptions on the solution of Problem 3.2.1.
Moreover, an error estimate is deduced from the standard finite element approxi-
mation theory.

Theorem 3.5. Let us assume that the solution of Problem 3.2.1 satisfies H|Ω
C

∈
Hr(curl,Ω

C
) and H|Ω

D

∈ Hr(Ω
D
)3, with r ∈ ( 12 , 1]. Then, Problem 3.4.1 has a

unique solution Hh and

‖H −Hh‖H(curl,Ω) ≤ Chr
[
‖H‖Hr(curl,Ω

C
) + ‖H‖Hr(Ω

D
)3

]
,

where C is a strictly positive constant independent of h and H.

Proof. Under the assumptions of this theorem on H, its Nédélec interpolant, HI,
is well defined and satisfies

∫

Γn
J

curlHI · n =

∫

γn

HI · tn =

∫

γn

H · tn = 〈curlH · n, 1〉Γn
J

= In,

because of a density argument, the Stokes Theorem and the definition of HI. More-
over, in Ω

D
, since curlH = 0, we have that curlHI = 0 too. (See [25] and [6]

for the definition and the properties that we have used of the Nédélec interpolant.)
Then HI ∈ Vh(I). Consequently, Vh(I) 6= ∅ and, given that a is X -elliptic, Prob-
lem 3.4.1 has a unique solution Hh. Moreover, by using Cea’s Lemma, it is easy to
check that

‖H −Hh‖H(curl,Ω) ≤ C inf
Gh∈Vh(I)

‖H −Gh‖H(curl,Ω) ≤ C ‖H −HI‖H(curl,Ω)

≤ Chr
[
‖H‖Hr(curl,Ω

C
) + ‖H‖Hr(Ω

D
)3

]
,

the latter because of the standard approximation results for the Nédélec interpolant
(see [25, 6]). Thus, we conclude the proof.

Remark 3.4.1. The smoothness assumption on the solution H of Problem 3.2.1 is
not actually necessary to prove that Problem 3.4.1 has a unique solution. However,
such an assumption is needed for the error estimate.

In what follows we show how to impose efficiently the curl-free condition in the
definition of X h. We do it by introducing a discrete multivalued magnetic potential
in the dielectric domain.

We assume that the cut surfaces Σn are polyhedral and that the meshes are
compatible with them, in the sense that each Σn is a union of faces of tetrahedra

K ∈ Th. Therefore, T Ω
D

h := {K ∈ Th : K ⊂ Ω
D
} can also be seen as a mesh of Ω̃

D
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in which vertices, edges and faces on Σ+
n and the corresponding ones on Σ−

n are
different.

First, we introduce an approximation of the space Θ. Let

Lh(Ω̃D
) :=

{
Ψ̃h ∈ H1(Ω̃

D
) : Ψ̃h|K ∈ P1(K) ∀K ∈ T Ω

D

h

}

and consider the finite-dimensional subspace of Θ given by

Θh :=
{
Ψ̃h ∈ Lh(Ω̃D

) : [[Ψ̃h]]Σn = constant, n = 1, . . . N
}
.

The following lemma shows that the curl-free vector fields in N h(ΩD
) admit a

multivalued potential in Θh.

Lemma 3.6. Let Gh ∈ L2(Ω
D
)3. Then Gh ∈ N h(ΩD

) with curlGh = 0 in Ω
D
if

and only if there exists Ψ̃h ∈ Θh such that Gh = gr̃ad Ψ̃h in Ω
D
. Such Ψ̃h is unique

up to an additive constant.

Proof. According to (3.29), curlGh = 0 in Ω
D
if and only if there exists Ψ̃h ∈ Θ

such that Gh = gr̃ad Ψ̃h in Ω̃
D
. Moreover, since Ω̃

D
is connected, then Ψ̃h is

unique up to an additive constant. Now, let K ∈ T Ω
D

h be a tetrahedron of the
mesh. A direct calculation shows that Gh ∈ NK with curlGh|K = 0 if and only

if Gh|K ∈ P0(K)3, or, equivalently, if and only if Ψ̃h|K ∈ P1(K)3. Thus the lemma
follows from the definition of Θh.

Let us introduce the following finite-dimensional subsets of Y and W(I), I ∈
C
N , respectively:

Yh :=
{
(Gh, Ψ̃h) ∈ N h(ΩC

)× (Θh/C) : (Gh|gr̃ad Ψ̃h) ∈ H(curl,Ω)
}
,

Wh(I) :=
{
(Gh, Ψ̃h) ∈ Yh : [[Ψ̃h]]Σn = In, n = 1, . . . , N

}
.

Next, we define a new discrete problem as follows.

Problem 3.4.2. Given I ∈ C
N , find (Hh, Φ̃h) ∈ Wh(I) such that

iω

∫

Ω
C

µHh · Ḡh + iω

∫

Ω
D

µgr̃ad Φ̃h · gr̃ad ¯̃
Ψh +

∫

Ω
C

1

σ
curlHh · curl Ḡh = 0

∀(Gh, Ψ̃h) ∈ Wh(0).

The following theorem shows that Problems 3.4.1 and 3.4.2 are equivalent.

Theorem 3.7. Given I ∈ C
N , Hh is a solution of Problem 3.4.1 if and only if

there exists Φ̃h ∈ Θh such that Hh|Ω
D
= gr̃ad Φ̃h and (Hh|Ω

C
, Φ̃h) is a solution of

Problem 3.4.2

Proof. Let Hh be a solution of Problem 3.4.1. According to Lemma 3.6, there ex-
ists Φ̃h ∈ Θh such thatHh = gr̃ad Φ̃h in Ω

D
. Moreover, sinceHh ∈ Vh(I), because

of (3.32) and the definition of Wh(I), we have that (Hh|Ω
C
, Φ̃h) ∈ Wh(I). Anal-

ogously, ∀(Gh, Ψ̃h) ∈ Wh(0), (Gh|gr̃ad Ψ̃h) ∈ Vh(0). Then, because of (3.34),

(Hh|Ω
C
, Φ̃h) is a solution of Problem 3.4.2.
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Now, since the bilinear form of Problem 3.4.2 is Yh-elliptic, (Hh|Ω
C
, Φ̃h) is the

unique solution of Problem 3.4.2. Then both problems are equivalent.

Problem 3.4.2 leads to an important saving in computational effort, since it
involves a scalar instead of a vector field in the dielectric domain. However, its
implementation requires to impose the following constraints:

• (Gh|gr̃ad Ψ̃h) ∈ H(curl,Ω), which arises in the definition of Yh;

• [[Ψ̃h]]Σn = constant, n = 1, . . . , N , which arise in the definition of Θh.

To impose the first one we use that, for (Gh|gr̃ad Ψ̃h) ∈ H(curl,Ω), we have

that Gh × n = gr̃ad Ψ̃h × n on Γ
I
and, hence,

∫

ℓ

Gh · tℓ =
∫

ℓ

gr̃ad Ψ̃h · tℓ = Ψ̃h(P
+
ℓ )− Ψ̃h(P

−
ℓ ) ∀ edge ℓ of Th : ℓ ⊂ Γ

I
,

where P−
ℓ and P+

ℓ are the end points of ℓ and tℓ is the unit tangent vector pointing
from P−

ℓ to P+
ℓ . Then the degrees of freedom of Gh associated with the edges

ℓ ⊂ Γ
I
can be easily eliminated by static condensation in terms of those of Ψ̃h

corresponding to the vertices of the mesh on Γ
I
.

Regarding the second constraint, for each cut surface Σn we in principle distin-
guish the degrees of freedom of Ψ̃h on Σ+

n from those on Σ−
n . Then, the latter are

eliminated by using

Ψ̃h|Σ−

n
= Ψ̃h|Σ+

n
+ [[Ψ̃h]]Σn ,

with [[Ψ̃h]]Σn = In for the trial functions and [[Ψ̃h]]Σn = 0 for the test functions.
We refer to [8] for further implementation details.

Remark 3.4.2. The electric potentials Vn do not appear in this formulation. An
alternative that allows computing them is the following: To discretize Problem 3.2.2,
substituting Hh|Ω

D

by gr̃ad Φ̃h, with Φ̃h ∈ Θh, but without imposing the condi-

tion [[Φ̃h]]Σn = In on the multivalued magnetic potential. In this case [[Φ̃h]]Σn are

additional unknowns that must be also computed and the test functions Ψ̃h are also
taken in Θh without imposing [[Ψ̃h]]Σn = 0.

Remark 3.4.3. In case the available data are the voltage drops Vn, instead of the
corresponding input currents In, the discretization of (3.33) reads as follows: Given

V ∈ C
N , find (Hh, Φ̃h) ∈ Yh such that

iω

∫

Ω
C

µHh · Ḡh + iω

∫

Ω
D

µgr̃ad Φ̃h · gr̃ad ¯̃
Ψh +

∫

Ω
C

1

σ
curlHh · curl Ḡh

= −
N∑

n=1

Vn
〈
curl Ḡh · n, 1

〉
Γn
J

∀(Gh, Ψ̃h) ∈ Yh.

In this case, the jumps [[Φ̃h]]Σn = In are unknowns of the problem that have to

be computed and the test functions Ψ̃h have to be taken in Θh without imposing
[[Ψ̃h]]Σn = 0.
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3.5 Numerical experiments

In what follows we report some numerical results obtained with a code which im-
plements in Matlab the method described above.

As a first numerical experiment, we have solved a particular problem with a
known analytical solution to validate the computer code and to test the perfor-
mance and convergence properties of the method. We have considered a domain Ω
containing a conductor Ω

C
and a dielectric Ω

D
as shown in Figure 3.2.

Figure 3.2. Sketch of the domain. Coordinate system.

We assume that Ω̄
C
and Ω̄ = Ω̄

C
∪ Ω̄

D
are coaxial cylinders of radius R

C
and R

D
,

respectively, and height L. To obtain the data for a test problem in this domain
with known analytical solution, we consider that Ω

C
and Ω are bounded sections

of respective infinite cylinders. The electric conductivity σ is taken constant in Ω
C

and the magnetic permeability µ constant in the whole Ω. We consider that an
alternating current J goes through the conductor Ω

C
in the direction of its axis;

this current is assumed to be axially symmetric with an intensity I(t) = I0 cos(ωt).
We analyze this problem using a cylindrical coordinate system (r, θ, z) with the

z-axis coinciding with the common axis of both cylinders (see Figure 3.2). We
denote er, eθ and ez the unit vectors in the corresponding coordinate directions.

Because of the assumed conditions on J , only the z-component of the electric
field E = 1

σJ does not vanish in the conductor. Moreover, it depends on the radial
coordinate r, but is independent of the other two coordinates z and θ. Consequently,
only the θ-component of the magnetic field H = i

ωµ curlE does not vanish and it
also depends only on the coordinate r. In fact, taking into account that for a vector
field F = Fr(r, θ, z)er+Fθ(r, θ, z)eθ+Fz(r, θ, z)ez, the curl operator in cylindrical
coordinates reads

curlF =

(
1

r

∂Fz
∂θ

− ∂Fθ
∂z

)
er +

(
∂Fr
∂z

− ∂Fz
∂r

)
eθ +

(
1

r

∂(rFθ)

∂r
− 1

r

∂Fr
∂θ

)
ez,

we have that H(r, θ, z) = Hθ(r)eθ, with Hθ = − i
ωµ

dEz
dr . Moreover, eliminating

E in (3.2) from (3.5) and (3.1), we have that Hθ satisfies the ordinary differential
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equation

iωµHθ(r)−
d

dr

(
1

σr

d

dr
(rHθ(r))

)
= 0, 0 < r < R

C
,

and the boundary conditions

|Hθ(0)| <∞ and Hθ(RC
) =

I0
2πR

C

,

where the latter follows from the fact that I0 =
∫
Γ
J

curlH · ez =
∫
∂Γ

J

Hθ, where Γ
J

is the current entrance.
To solve this problem, we perform the change of variable x = γr, where γ :=√

iωµσ ∈ C. Thus, we obtain the equation

x2
d2

dx2
H̃θ(x) + x

d

dx
H̃θ(x)− (x2 + 1)H̃θ(x) = 0, 0 < x < γR

C
,

where H̃θ(x) = Hθ(x/γ). This is a Bessel equation, whose solution is given by

H̃θ(x) = αI1(x), with I1 being the modified Bessel function of the first kind and
α a constant to be obtained from the boundary condition at x = γR

C
. Thus, the

magnetic field in the conductor is given by

H(r, θ, z) =
I0

2πR
C

I1(γr)

I1(γRC
)
eθ, r ∈ (0, R

C
), θ ∈ [0, 2π], z ∈ R.

On the other hand, the magnetic field in the dielectric domain is also of the form
H(r, θ, z) = Hθ(r)eθ (see, for instance, [28]) with Hθ satisfying now

1

r

d

dr
(rHθ(r)) = 0, r > R

C
,

and the boundary condition Hθ(RC
) = I0

2πR
C

, which follows from the continuity of

Hθ. Then,

Hθ(r) =
I0
2πr

, r ≥ R
C
.

Let us remark that E and H satisfy automatically the boundary conditions (3.6)–
(3.9).

Moreover, from this expression, it is also possible to know the multivalued mag-
netic potential Φ̃ which corresponds to the magnetic field in the dielectric domain.
Indeed, taking into account the expression of the gradient operator in cylindrical
coordinates of a function f(r, θ, z),

grad f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez,

we obtain

Φ̃(r, θ, z) =
I0
2π
θ, r > R

C
, θ ∈ [0, 2π], z ∈ R.

Notice that the scalar potential depends only on the variable θ and experiments a
jump of magnitude I0 across the cut surface Σ placed at θ = 0.

For the numerical test, we have used the following geometrical and physical
data: R

C
= 1m; R

D
= 2m; L = 1m; σ = 151565.8 (Ωm)−1; µ = µ0 = 4π10−7 Hm−1

(magnetic permeability of free space); I0 = 62000A; ω = 50Hz.
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To determine the order of convergence, the numerical method has been used on
several successively refined meshes and we have compared the obtained numerical
solutions with the analytical one. Figure 3.3 shows a log-log plot of the errors
measured in H(curl,Ω)-norm versus the number of degrees of freedom (d.o.f.). The
slope of the line shows a clear linear dependence on the mesh-size. These O(h) errors
agree with the theoretical results, since the solution is smooth, and, hence, the
hypotheses of Theorem 3.5 are fulfilled for r = 1.
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Figure 3.3. Error versus number of d.o.f. (log-log scale).

As a second numerical test, we have applied the method to an electric furnace
with three electrodes, similar to that sketched in Figure 3.1, with the following
dimensions: furnace diameter: 8.88m; furnace height: 2m; electrodes diameter:
1m; electrodes height: 1.25m; distance from the center of each electrode to the
furnace wall: 3m].

We have considered ELSA compound electrodes (see [17]) which consist of a
graphite cylindrical core (diameter: 0.4m) and an outer part of Söderberg paste.
The electric current enter the electrodes through copper bars of rectangular section
(0.07m× 0.25m).

The physical parameters we have used are the following: σ = 106 (Ωm)−1 for
graphite; σ = 104 (Ωm)−1 for Söderberg paste; σ = 0.5 × 107 (Ωm)−1 for copper;
µ = 4π× 10−7 Hm−1; ω = 2π× 50Hz; one-phase intensities In = 7× 104 A for each
electrode.

Figures 3.4 and 3.5 show the intensity of the computed current density |Jh| :=
|curlHh| in the conductor domain Ω

C
and the computed magnetic potential Φ̃h in

the dielectric domain Ω
D
, respectively. Figures 3.6 and 3.7 show |Jh| in horizontal

and vertical sections of one of the electrodes, respectively.
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Figure 3.4. Intensity
of the current density, |Jh|, in
the conductors.

Figure 3.5. Magnetic potential Φ̃h

in the dielectric.

Figure 3.6. |Jh|:
Horizontal section of one of the
electrodes.

Figure 3.7. |Jh|: Vertical section of
one of the electrodes.



Chapter 4

A mixed formulation

4.1 Avoiding cut surfaces

Solving Problem 3.4.2 is a good alternative to obtain an approximate solution of
the eddy current problem. The only drawback is that it needs finite element meshes
involving cuts, which sometimes can be difficult to build. In what follows we will
introduce a mixed discrete formulation of the same eddy current problem analyzed
in the previous section. The main advantage of this mixed formulation is that it does
not need any cut. We will show that it is completely equivalent to Problem 3.4.1
and, hence, also to Problem 3.4.2.

This mixed formulation has been previously analyzed in [3] for other bound-
ary conditions and source terms, without establishing any relation with a magnetic
field/magnetic scalar potential discretization as that of Problem 3.4.1. The formu-
lation is based on using a Lagrange multiplier to impose the curl-free constraint in
the dielectric instead of introducing the scalar potential in Ω

D
, so that cuts are not

required in the mesh.
For each I ∈ C

N we introduce the linear manifold of N h(Ω)

Uh(I) :=

{
Gh ∈ N h(Ω) :

∫

Γn
J

curlGh · n = In, n = 1, . . . , N

}

with associated subspace Uh(0). The discrete mixed problem reads as follows.

Problem 4.1.1. Given I ∈ C
N , find Hh ∈ Uh(I) and Ah ∈ curl

(
N h(ΩD

)
)
such

that

iω

∫

Ω

µHh · Ḡh +

∫

Ω
C

1

σ
curlHh · curl Ḡh +

∫

Ω
D

Ah · curl Ḡh = 0

(4.1)

∀Gh ∈ Uh(0),

∫

Ω
D

curlHh · Z̄h = 0 ∀Zh ∈ curl
(
N h(ΩD

)
)
.

(4.2)

For each I ∈ C
N it is easy to find HI

h ∈ Uh(I). In fact, it is enough to take
the degrees of freedom corresponding to the constant values of HI

h · tn on each edge

27
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ℓ ⊂ γn so that
∫
γn

HI

h · tn = In, n = 1, . . . , N , and the rest of them arbitrarily.
Therefore, a translation argument similar to that used in the proof of Theorem 3.2
allows us to show that Problem 4.1.1 is equivalent to a standard discrete mixed
problem. Thus, we only need to check the ellipticity in the kernel and the inf-sup
condition to conclude that it is well posed. The former follows from the facts that
the kernel is given by
{
Gh ∈ Uh(0) :

∫
Ω

D

curlGh · Z̄h = 0 ∀Zh ∈ curl
(
N h(ΩD

)
)}

= {Gh ∈ Uh(0) : curlGh = 0 in Ω
D
} = Vh(0) ⊂ X

and the bilinear form a is elliptic on the whole X (cf. (3.14)). Thus, there only
remains to check the following inf-sup condition.

Proposition 4.1. There exist a constant βh > 0 such that

sup
Gh∈Uh(0): Gh 6=0

∣∣∣
∫
Ω

D

Zh · curl Ḡh

∣∣∣
‖Gh‖H(curl,Ω)

≥ βh ‖Zh‖L2(Ω
D
)3 ∀Zh ∈ curl

(
N h(ΩD

)
)
.

Proof. Since dim Uh(0) < ∞, it is enough to prove that for all non-vanishing
Zh ∈ curl

(
N h(ΩD

)
)
there exists Gh ∈ Uh(0) such that

∫
Ω

D

Zh · curlGh 6= 0. Let

Uh ∈ N h(Ω) be such that Zh = curlUh in Ω
D
. In general Uh /∈ Uh(0), but if

we are able to find Y h ∈ N h(Ω) satisfying curlY h = 0 in Ω
D
and

∫
γn

Y h · tn =

−
∫
γn

Uh · tn, n = 1, . . . , N , it is straightforward to check that Gh := Uh + Y h

satisfies the above requirements. Such a Y h can be defined as follows: Y h :=
−∑N

m=1

( ∫
γm

Uh · tm
)
Y m
h , where Y m

h ∈ N h(Ω) is such that Y m
h |Ω

D
= gr̃ad Φ̃mh ,

with Φ̃mh ∈ Θh satisfying [[Φ̃mh ]]Σn = δnm, n,m = 1, . . . , N .

Now we are in a position to conclude the well posedness of Problem 4.1.1.

Proposition 4.2. For each I ∈ C
N Problem 4.1.1 has a unique solution (Hh,Ah).

By repeating the arguments from the proof of Theorem 5.2 from [3], it is not
difficult to prove that the inf-sup condition from Proposition 4.1 holds uniformly in
h, which would allow us to prove an error estimate for the solution to Problem 4.1.1.
However, this is not actually necessary in our case, since such error estimate is a
direct consequence of Theorem 3.5 and the following equivalence result.

Proposition 4.3. Given I ∈ C
N , a discrete field Hh ∈ N h(Ω) is solution of

Problem 3.4.1 (and, equivalently, of Problem 3.4.2) if and only if there exists Ah ∈
curl

(
N h(ΩD

)
)
such that (Hh,Ah) solves Problem 4.1.1.

Proof. Since each problem has a unique solution, it is enough to prove that if
(Hh,Ah) solves Problem 4.1.1, then Hh solves Problem 3.4.1. For this purpose,
let us take Zh = curlHh as test function in (4.2). We deduce that curlHh = 0

in Ω
D
and, consequently, Hh ∈ Vh(I). Finally, we complete the proof by testing

(4.1) with Gh ∈ Vh(0) ⊂ Uh(0).

Although Problem 4.1.1 has a unique solution, its direct implementation leads
to a singular linear system. Indeed, when the functions Zh ∈ curl

(
N h(ΩD

)
)
are



4.1. Avoiding cut surfaces 29

written as Zh = curlUh, with Uh ∈ N h(ΩD
), such Uh is clearly not unique and

this leads to a singular matrix. However, as stated in [3, Remark 5.1], since the
kernel of this matrix is well separated from the rest of the spectrum, a conjugate
gradient type method will work for its numerical solution.

An alternative leading to a system with a non-singular matrix, was also proposed

in [3]. Let Qh(ΩD
) be the space of piecewise constant functions in T Ω

D

h :

Qh(ΩD
) :=

{
qh ∈ L2(Ω

D
) : qh|K ∈ P0(K) ∀K ∈ T Ω

D

h

}
.

Let CR0
h(ΩD

) be the space of lowest-order 3D Crouzeix-Raviart elements that vanish
at the mid-points of the faces lying on ∂Ω

D
:

CR0
h(ΩD

) :=
{
qh ∈ L2(Ω

D
) : qh|K ∈ P1(K) ∀K ∈ T Ω

D

h ,

qh is continuous at the centroid of each face F ∈ Fint

and qh vanishes at the centroid of each face F ∈ F∂Ω
D

}
,

where Fint denote the set of inner faces of the mesh T Ω
D

h and F∂Ω
D
the set of faces

lying on the boundary ∂Ω
D
. We recall that we have assumed that ∂Ω

D
is connected.

The point values at the centroids of the inner faces F ∈ Fint can be taken as the
degrees of freedom defining an element in CR0

h(ΩD
).

For qh ∈ CR0
h(ΩD

), let gradhqh denote the vector field in Q3
h(ΩD

) defined by

(gradhqh)|K := grad(qh|K) ∀K ∈ T Ω
D

h .

The following result has been proved in [24, Theorem 4.9] (see also [3, Lemma 5.4]
for ∂Ω

D
non connected).

Lemma 4.4. The following decomposition holds true and is orthogonal in L2(Ω
D
)3:

Q3
h(ΩD

) = curl
(
N h(ΩD

)
)
⊕ gradh

(
CR0

h(ΩD
)
)
.

Proof. First, we prove the orthogonality. Let Gh ∈ N h(ΩD
) and qh ∈ CR0

h(ΩD
).

Integrating by parts, we have

∫

Ω
D

curlGh ·gradhqh =
∑

K∈T
Ω
D

h

∫

K

curlGh ·grad qh =
∑

K∈T
Ω
D

h

∫

∂K

curlGh ·nK qh

= −
∑

F∈Fint

∫

F

curlGh · nF [[qh]]F +
∑

F∈F∂Ω
D

∫

F

curlGh · n∂Ω
D
qh,

where nK , nF and n∂Ω
D
are unit vectors, outer normal to ∂K, normal to F ∈ Fint

and outer normal to ∂Ω
D
, respectively. Moreover, for each inner face F ∈ Fint,

if K and K ′ are the tetrahedra sharing F so that nF points from K to K ′, then
the jump of qh across F is defined as [[qh]]F := (qh|K′)|F − (qh|K)|F . (Notice that
nF [[qh]]F is independent of the choice of the unit normal to F .)

The two terms on the right-hand side above vanish because, for each F ∈ Fint,
curlGh · nF is constant and [[qh]]F is a linear function vanishing at the centroid
of F , whereas for each F ∈ F∂Ω

D
the same happens with curlGh · n∂Ω

D
and qh,

respectively. Thus we conclude the claimed orthogonality.
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Since curl
(
N h(ΩD

)
)
and gradh

(
CR0

h(ΩD
)
)
both are subspaces of Q3

h(ΩD
), to

end the proof it is enough to show that the dimensions ofQ3
h(ΩD

) and curl
(
N h(ΩD

)
)
⊕

gradh
(
CR0

h(ΩD
)
)
coincide. Let NK be the number of tetrahedra of the mesh T Ω

D

h ,
NF the total number of faces and N∂

F the number of faces lying on ∂Ω
D
. The fol-

lowing identity can be easily proved by induction on the number of elements of the
mesh:

(4.3) 4NK = 2NF −N∂
F .

It is easy to check that if qh ∈ CR0
h(ΩD

) and gradh qh = 0, then qh = 0. Hence,

dim gradh(CR
0
h(ΩD

)) = dim CR0
h(ΩD

) = NF −N∂
F .

On the other hand, clearly

dim Q3
h(ΩD

) = 3NK .

To evaluate dim curl
(
N h(ΩD

)
)
, we introduce the lowest-order Raviart-Thomas

space:

RT h(Ω) := {Gh ∈ H(div,Ω) : Gh|K ∈ RT (K) ∀K ∈ Th} ,

where

RT (K) :=
{
Gh ∈ P1(K)3 : Gh(x) = a+ bx, a ∈ C

3, b ∈ C, x ∈ K
}
.

An explicit computation shows that vector fields of this type have constant normal
components along each plane of the Euclidean space. Moreover, the normal com-
ponents along the faces of K can be taken as the degrees of freedom defining an
element in RT (K). Thus dim RT h(Ω) = NF .

Since

N h(ΩD
)

curl−→ RT h(ΩD
)

div−→ Qh(ΩD
) −→ 0

is an exact sequence, dim RT h(ΩD
) = dim curl

(
N h(ΩD

)
)
+ dim Qh(ΩD

). There-
fore,

dim curl
(
N h(ΩD

)
)
= dim RT h(ΩD

)− dim Qh(ΩD
) = NF −NK

and, by virtue of (4.3),

dim curl
(
N h(ΩD

)
)
+ dim gradh

(
CR0

h(ΩD
)
)
= NF −NK +NF −N∂

F

= 3NK = dim Q3
h(ΩD

).

Thus, we conclude that Q3
h(ΩD

) = curl
(
N h(ΩD

)
)
⊕ gradh

(
CR0

h(ΩD
)
)
.

Consider the following discrete problem.

Problem 4.1.2. Given I ∈ C
N , find Hh ∈ Uh(I), Ah ∈ Q3

h(ΩD
) and ph ∈
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CR0
h(ΩD

) such that

iω

∫

Ω

µHh · Ḡh +

∫

Ω
C

1

σ
curlHh · curl Ḡh +

∫

Ω
D

Ah · curl Ḡh = 0

(4.4)

∀Gh ∈ Uh(0),

∫

Ω
D

curlHh · Z̄h +

∫

Ω
D

gradhph · Z̄h = 0 ∀Zh ∈ Q3
h(ΩD

),

(4.5)

∫

Ω
D

Ah · gradhq̄h = 0 ∀qh ∈ CR0
h(ΩD

).

(4.6)

Next result shows that Problems 4.1.2 is equivalent to Problems 4.1.1 and, hence,
to Problems 3.4.1 and 3.4.2, too.

Proposition 4.5. Let I ∈ C
N . If (Hh,Ah) is the solution of Problem 4.1.1, then

(Hh,Ah, 0) solves Problem 4.1.2. Conversely, if (Hh,Ah, ph) solves Problem 4.1.2,
then ph = 0 and (Hh,Ah) is the solution of Problem 4.1.1.

Proof. Let (Hh,Ah) be the solution of Problem 4.1.1. Then (Hh,Ah, 0) satisfies
(4.4) and (4.5), the latter by virtue of Lemma 4.4. On the other hand, (4.6) follows
from the fact that Ah ∈ curl

(
N h(ΩD

)
)
and Lemma 4.4 again. Conversely, let

(Hh,Ah, ph) solve Problem 4.1.2. By testing (4.5) with Zh = gradhph, it follows
from Lemma 4.4 that gradh ph = 0 and, hence, ph = 0. The same lemma and (4.6)
imply that Ah ∈ curl

(
N h(ΩD

)
)
. Hence, for ph = 0, (4.4) and (4.5) shows that

(Hh,Ah) solves Problem 4.1.1.

As a consequence of the above proposition and the well-posedness of Prob-
lem 4.1.1, it follows that Problem 4.1.2 has also a unique solution. Thus, using
standard basis for the finite element spaces leads to a linear system with a non-
singular matrix. On the other hand, the approximation properties proved for Prob-
lem 3.4.1, automatically lead to optimal order error estimates for the component
Hh of the solution to Problem 4.1.2.

4.2 Eddy current problems involving inner source currents

In other eddy current problems (e.g., in non-destructive testing) the source current
is fixed in a bounded subdomain. This typically happens, for instance, when the
source current is produced by a coil with a large number of turns, which is practically
not affected by the presence of other conductors.

In such a case, in the low-frequency harmonic Maxwell equations (3.1)–(3.5),
Ohm’s law (J = σE) is replaced by the so called generalized Ohm’s law :

J = σE + J
S
,

where J
S
is the imposed source current (whereas σE is the eddy current induced in

conductors).
A source current J

S
imposed on the conductor domain is easy to handle. It

leads to a problem similar to the analyzed above, but with an additional right-hand
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side arising from this imposed current (see [5]). However, in many applications
the support of the imposed current J

S
is contained in the dielectric domain. This

happens for instance with coils in which the eddy current induced in the same coil
is usually disregarded.
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Figure 4.1. Two-dimensional sketch of the domains.

In such a case, the whole problem is posed in a bounded domain Ω sufficiently
large to contain all the relevant conductors Ω

C
and the source current support Ω̄

S
,

with boundary ∂Ω = ∂Ω
D
sufficiently far from them so that vanishing boundary

conditions can be assumed. Moreover, the domain Ω is chosen topologically trivial
(i.e., simply connected with a connected boundary; see Fig 4.1 for a two-dimensional
sketch). Thus, we are led to the following equations:

curlH = σE + J
S

in Ω,(4.7)

iωµH + curlE = 0 in Ω,(4.8)

div(µH) = 0 in Ω,(4.9)

div(ǫE) = 0 in Ω
D
,(4.10)

µE × n = 0 on ∂Ω.(4.11)

As observed in Remark 3.2.3, additional constraints should also be imposed to de-
termine uniquely the electric field E in the dielectric domain Ω

D
(see [5]). Moreover,

as already mentioned, (4.9) is a consequence of (4.8). On the other hand, notice
that the boundary condition

µH · n = 0 on ∂Ω

is recovered from (4.11) by using (4.8) and the Stokes theorem.
As a consequence of (4.7), since the conductivity σ vanishes in dielectrics, the

source current J
S
has to be divergence-free in Ω

D
and

∫
Γj
I

J
S
· n

C
= 0, j = 1, . . . , J ,

with n
C
being the outer unit normal to Ω

C
and Γ1

I
, . . . ,ΓJ

I
the connected components

of the interface Γ
I
(which now are closed surfaces contained in Ω). We will make

the stringent assumption that the support Ω̄
S
is contained in the interior of the

dielectric domain, in which case

J
S
∈ H0(div

0,Ω
S
) :=

{
G ∈ L2(Ω

S
)3 : divG = 0 in Ω

S
and G · n

S
= 0 on ∂Ω

S

}
,
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where n
S
is the unit vector outer normal to ∂Ω

S
.

Proceeding as in Section 3.2, we can derive a magnetic field formulation, which
allows determining a fortiori the eddy current J = σE in the conductors. However,
the magnetic field no longer belongs to V(I) as above, but to the set

Ṽ(J
S
) := {G ∈ H(curl,Ω) : curlG = J

S
in Ω

D
} .

In fact, by repeating the steps used to derive Problem 3.2.1 we obtain the following:

Problem 4.2.1. Given J
S
∈ H0(div

0,Ω
S
), find H ∈ Ṽ(J

S
) such that

iω

∫

Ω

µH · Ḡ+

∫

Ω
C

1

σ
curlH · curl Ḡ = 0 ∀G ∈ Ṽ(0).

The existence and uniqueness of solution follows immediately from the Lax-
Milgram lemma and the fact that for all J

S
∈ H0(div

0,Ω
S
) there exists H

S
∈ Ṽ(J

S
).

To prove the latter, it is enough to extend J
S
by zero to the whole Ω and to use,

for instance, [22, Theor. I.3.4] to find H
S
∈ H(curl,Ω) such that curlH

S
= J

S
.

When a particular H
S
∈ Ṽ(J

S
) is available, one can write H = H

S
+ Ĥ with

Ĥ ∈ Ṽ(0) ≡ X , so that it can be written as Ĥ = gr̃ad Φ̃ for an appropriate

multivalued magnetic potential Φ̃ ∈ Θ. Thus, one can derive a problem for Ĥ

which could be analyzed and discretized as in Sections 3.3 and 3.4.
However, the computation of such H

S
is not straightforward. One possibility is

to use Biot-Savart law (see, for instance, [5, Sec. 5.4.1]). In what follows, instead of
pursuing this approach further, we will show that the mixed formulation analyzed
in Section 4 adapts perfectly well to this problem. In fact, this mixed formulation
was originally proposed and analyzed in [3] for a problem of this kind and it reads
as follows:

Problem 4.2.2. Given J
S
∈ H0(div

0,Ω
S
), find H ∈ H(curl,Ω) and

A ∈ curl
(
H(curl,Ω

D
)
)
such that

iω

∫

Ω

µH · Ḡ+

∫

Ω
C

1

σ
curlH · curl Ḡ+

∫

Ω
D

A · curl Ḡ = 0 ∀G ∈ H(curl,Ω),

∫

Ω
D

curlH · Z̄ =

∫

Ω
S

J
S
· Z̄ ∀Z ∈ curl

(
H(curl,Ω

D
)
)
.

To prove that Problem 4.2.2 is well posed, first notice that curl
(
H(curl,Ω

D
)
)
={

G ∈ H(div0,Ω
D
) :

∫
Γj
I

G · n = 0, j = 1, . . . , J
}

endowed with the L2(Ω
D
)-

norm is a Hilbert space. Thus, we only need to check the ellipticity in the ker-
nel and the inf-sup condition. The former follows from the fact that the kernel
is given by {G ∈ H(curl,Ω) : curlG = 0 in Ω

D
} = X , space in which the bilin-

ear form a is elliptic (cf. (3.14)). The latter follows from the fact that for all
Z ∈ curl

(
H(curl,Ω

D
)
)
there exists F ∈ H(curl,Ω

D
) such that Z = curlF and

‖F ‖H(curl,Ω
D
) ≤ C ‖Z‖L2(Ω

D
) (the proof of this is essentially contained in [4]; see

also [21]). Finally F can be continuously extended from H(curl,Ω
D
) into H(curl,Ω)

(see again [4]), which allows us to conclude that there exists β > 0 such that, for
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all Z ∈ curl
(
H(curl,Ω

D
)
)
,

sup
G∈H(curl,Ω): G 6=0

∣∣∣
∫
Ω

D

Z · curl Ḡ
∣∣∣

‖G‖H(curl,Ω)

≥

∣∣∣
∫
Ω

D

Z · curl F̄
∣∣∣

‖F ‖H(curl,Ω)

≥ β ‖Z‖L2(Ω
D
)3 .

The finite element discretization of this problem is as follows.

Problem 4.2.3. Given J
S
∈ H0(div

0,Ω
S
), find Hh ∈ N h(Ω) and

Ah ∈ curl
(
N h(ΩD

)
)
such that

iω

∫

Ω

µHh · Ḡh +

∫

Ω
C

1

σ
curlHh · curl Ḡh +

∫

Ω
D

Ah · curl Ḡh = 0 ∀Gh ∈ N h(Ω),

∫

Ω
D

curlHh · Z̄h =

∫

Ω
S

J
S
· Z̄h ∀Zh ∈ curl

(
N h(ΩD

)
)
.

Problem 4.2.3 satisfies the ellipticity in the discrete kernel and the discrete inf-
sup condition with constants independent of h. The former follows by repeating
the arguments used for the continuous kernel. The latter has been proved in [3,
Lemma 5.3] for a problem with different boundary conditions, but the same argu-
ments apply to the present case. Consequently, Problem 4.2.3 has a unique solution,
for which error estimates follow from the classical Babuška-Brezzi theory (see for
instance [22]).

As in the case of Problem 4.1.1, the direct implementation of Problem 4.2.3
leads to an underdetermined linear system, which anyway could be solved by a
conjugate gradient type method. The alternative three-field mixed formulation
used for Problem 4.1.1 also works in this case.

Problem 4.2.4. Given J
S
∈ H0(div

0,Ω
S
), find Hh ∈ N h(Ω), Ah ∈ Q3

h(ΩD
) and

ph ∈ CR0
h(ΩD

) such that

iω

∫

Ω

µHh · Ḡh +

∫

Ω
C

1

σ
curlHh · curl Ḡh +

∫

Ω
D

Ah · curl Ḡh = 0 ∀Gh ∈ N h(Ω),

∫

Ω
D

curlHh · Z̄h +

∫

Ω
D

gradhph · Z̄h =

∫

Ω
S

J
S
· Z̄h ∀Zh ∈ Q3

h(ΩD
),

∫

Ω
D

Ah · gradhq̄h = 0 ∀qh ∈ CR0
h(ΩD

).

Next result shows that Problems 4.2.4 is equivalent to Problems 4.2.3.

Proposition 4.6. Let J
S
∈ H0(div

0,Ω
S
). If (Hh,Ah) is the solution of Prob-

lem 4.2.3, then there exists a unique ph ∈ CR0
h(ΩD

) such that (Hh,Ah, ph) solves
Problem 4.2.4. Conversely, if (Hh,Ah, ph) solves Problem 4.2.4, then (Hh,Ah) is
the solution of Problem 4.2.3.

Proof. The proof is based on Lemma 4.4. We omit it because it runs almost
identical to that of Proposition 4.5. The only difference is that, now, ph does not
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necessarily vanish, but is the solution of the following well posed discrete problem:

ph ∈ CR0
h(ΩD

) :

∫

Ω
D

gradhph·gradhq̄h =

∫

Ω
S

J
S
·gradhq̄h ∀qh ∈ CR0

h(ΩD
).

As a consequence of the above proposition and the well-posedness of Prob-
lem 4.2.3, it follows that Problem 4.2.4 has also a unique solution. Thus, using
standard basis for the finite element spaces leads to a linear system with a non-
singular matrix. On the other hand, the error estimates valid for Problem 4.2.3
automatically hold for the solution of Problem 4.2.4.
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Chapter 5

A potential formulation

The first attempts to numerically solve the eddy current problem were based on so-
called potential formulations. In spite of the fact that these are the most frequently
used in applications, there is only a small number of papers dealing with their
mathematical analysis. Among them, we mention a paper by Alonso et al. [2],
where the well-posedness of some of these formulations is analyzed, and another
one by B́ıró and Valli [12] with the analysis of one such formulation in a general
topological setting.

Different potentials have been used for the eddy current problem: a vector
potentialA for the magnetic induction field, a scalar potential V for the electric field
in the conducting domain, a scalar potential ψ for the magnetic field in dielectric
domains, etc. A hierarchy of formulations involving these potentials have been
discussed by B́ıró and Preis in [11] and they conclude that the so-called A, V −A−ψ
formulation, which involves all of them, is the most convenient in terms of computer
cost. Numerical experiments illustrating the performance of this approach are also
reported in this reference.

In what follows, we provide a rigorous mathematical analysis of this formulation.
Under rather general topological conditions, we prove that it leads to a well-posed
problem, which can be numerically approximated by standard nodal finite elements.
We also prove error estimates for the resulting numerical method. These estimates
are valid as long as the three potentials are sufficiently smooth.

The smoothness of the scalar potentials V and ψ only relies on those of the
original physical variables of the problem: the electric and the magnetic fields,
respectively. Instead, the smoothness of the vector potential A also depends on the
geometry of the domain chosen to define this non-physical variable. In principle
this domain can be freely taken, as far as it contains the conductors and the source
current support. However, it has also to be chosen so that its connected components
are convex polyhedra, to ensure that the smoothness of A is only determined by
the regularity of the magnetic induction field B = µH.

Because of this, we make such a choice for the domain of A, which is not
restrictive in practice. However, it is convenient to choose it as small as possible,
because the magnetic field is written in terms of the more economical scalar potential
ψ outside this domain. Thus, in the applications, the domain of A typically consists
of a union of disjoint boxes, as small as possible, containing the current source and
the conductors.

37
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5.1 Eddy current problem

We consider the eddy current problem of determining the electromagnetic fields
induced in a three-dimensional conducting domain Ω

C
by a given source current

density J
S
. We assume that the support of J

S
is compact and disjoint with Ω

C
.

As above, we restrict the problem to a bounded domain Ω containing both, Ω
C

and the support of J
S
, such that appropriate vanishing boundary conditions can

be imposed on its boundary. To this aim, we choose the geometry of Ω as simple
as possible (e.g., simply connected with a connected boundary). See Fig. 5.1 for a
two-dimensional sketch.
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Figure 5.1. Two-dimensional sketch of the domain.

Let Ω
C
⊂ R

3 be an open and bounded set with boundary Γ
C
. Let Ω ⊂ R

3 be a
simply connected bounded domain with a connected boundary Γ, such that Ω

C
⊂ Ω.

We suppose that both, Ω and Ω
C
are either Lipschitz polyhedra or domains with

C1,1 boundaries. We denote by n and n
C
the outward unit normal vectors to Ω and

Ω
C
, respectively, and by Ω

D
:= Ω \ Ω

C
the subdomain of Ω occupied by dielectric

material, which includes the support of the source current Ω
S
(see Fig. 5.1).

The eddy current problem reads as follows:

Problem 5.1.1. Given J
S
∈ H0(div

0,Ω
S
), find E and H ∈ H(curl,Ω) such that:

curlH = σE in Ω
C
,(5.1)

iωµH + curlE = 0 in Ω,(5.2)

curlH = J
S

in Ω
D
,(5.3)

div(µH) = 0 in Ω,(5.4)

div(ǫE) = 0 in Ω
D
,(5.5)

H × n = 0 on Γ.(5.6)

The unknowns E and H are the magnetic and electric fields, respectively. The
magnetic permeability µ and the conductivity σ are assumed to be bounded func-
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tions satisfying:

0 < µmin ≤ µ ≤ µmax in Ω,

0 < σmin ≤ σ ≤ σmax in Ω
C
.

The source of the problem is the current density J
S
whose support is assumed to be

contained in Ω
D
, Notice that for (5.3) to make sense, J

S
has to belong to H0(div

0,Ω
S
).

As in the previous sections, our goal is to determine E in the conductor domain
Ω

C
and H in the whole Ω, but not E in the dielectric domain Ω

D
.

5.2 The A, V −A− ψ potential formulation

In this section we recall a classical formulation of the eddy current problem in terms
of three potentials, A, V and ψ, which was introduced by Leonard and Rodger
[23]. We refer to B́ıró and Preis [11] for a detailed discussion, which also includes
numerical tests showing the efficiency of this approach.

First, we introduce a vector potential A for the magnetic induction field B =
µH in a subdomain Ω

A
of Ω containing the conducting domain Ω

C
and the support

Ω
S
of the source current to be determined. This subdomain does not need to be

connected, but each of its connected components has to be convex; the reason for
such constraint will be discussed at the end of Section 5.4 below. On the other hand,
for the sake of discretization, it is convenient to choose Ω

A
polyhedral; moreover,

outside Ω
A
, we will use a scalar potential which will consequently require much less

degrees of freedom for its discretization. Because of this, Ω
A
will be chosen as small

as possible, but with convex polyhedral connected components containing Ω
C
and

Ω
S
(see Fig. 5.2).
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Figure 5.2. Two-dimensional sketch of the domains for the different potentials.

Let Ω
A
⊂ R

3 be an open set satisfying

(5.7) Ω
C
∪ suppJ

S
⊂ Ω

A
and Ω

A
⊂ Ω.

We denote by Ωj
A
, j = 1, . . . ,m

A
, the connected components of Ω

A
. We assume

that each Ωj
A
is a convex polyhedron and that Ω

j

A
are mutually disjoint. We denote

by Γ
A
the boundary of Ω

A
and by n

A
its outward unit normal vector (see Fig. 5.2).
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As a consequence of [22, Theorem I.3.5.], equation (5.4) implies that there exist
unique Aj ∈ H(curl,Ωj

A
) such that

µH = curlAj in Ωj
A
,(5.8)

divAj = 0 in Ωj
A
,(5.9)

Aj · nA
= 0 on ∂Ωj

A
.(5.10)

Thus, if we define A : Ω
A
−→ C by

A|ΩjA := Aj , j = 1, . . . ,m
A
,

then A belongs to the space

Z := H0(div,ΩA
) ∩H(curl,Ω

A
),

whose natural norm is given by

‖Z‖2
Z

:= ‖Z‖20,Ω
A
+ ‖divZ‖20,Ω

A
+ ‖curlZ‖20,Ω

A
.

Next, from (5.2) and (5.8), we have that

(5.11) curl(E + iωA) = 0 in Ω
C
.

Thus, according to [11] we introduce an electric scalar potential V ∈ H1(Ω
C
), such

that

(5.12) E = −iωA− iω gradV in Ω
C
.

Notice that if the connected components of Ω
C
are not all simply connected, in

principle we do not have the right to introduce such an electric potential. In fact,
in such a case, the space

H(curl0,Ω
C
) := {Z ∈ H(curl,Ω

C
) : curlZ = 0 in Ω

C
}

also contains gradients of potentials multivalued on the respective cut surfaces into
Ω

C
, which are not gradients of functions in H1(Ω

C
) (analogously to what was shown

in Section 3.3). In what follows we will show that, anyway, such a V ∈ H1(Ω
C
)

always exists.

 

Γ
CΩ

C

n
C

γ
SΣ

t

n
Σ

Figure 5.3. Non-simply connected conductor domain Ω
C
.

To make the argument simpler, we restrict ourselves to the case of a non-simply
connected domain as that shown in Fig. 5.3. In such a case, Let S be a cut surface
of Ω

C
such that Ω̃

C
:= Ω

C
\ S is simply connected. We denote by S− and S+ the
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two faces of this surface. Let γ be the curve shown in Fig. 5.3, i.e., the boundary
of a corresponding cut surface Σ of Ω

D
. This cut surface is chosen so that Σ ⊂ Ω

A
.

The orientation of the curve is given by the unit vector t, which is chosen so that γ
goes from S− to S+. Let n

Σ
be the unit vector normal to Σ as shown in Fig. 5.3.

Let ϕ̃ ∈ H1(Ω̃
C
) be the solution of the following elliptic problem:

[[ϕ̃]]S := ϕ̃|S− − ϕ̃|S+ = 1,∫

Ω̃
C

µgr̃ad ϕ̃ · grad ψ̄ = 0 ∀ψ ∈ H1(Ω
C
).

Proceeding as in Section 3.3, we have that

H(curl0,Ω
C
) = grad

(
H1(Ω

C
)
)
⊕
〈
gr̃ad ϕ̃

〉
.

Therefore, the fact that curl(E + iωA) = 0 in Ω
C
in principle implies that there

exist V ∈ H1(Ω
C
) and α ∈ C such that

E + iωA = −iω
(
gradV + αgr̃ad ϕ̃

)
in Ω

C
.

However,

∫

γ

(E + iωA) · t = −iω
∫

γ

gradV · t− iωα

∫

γ

gr̃ad ϕ̃ · t = iωα[[ϕ̃]]S = iωα,

whereas, because of the Stokes Theorem and (5.11),

∫

γ

(E + iωA) · t =
∫

Σ

curl(E + iωA) · n
Σ
= 0.

Hence, we conclude that α = 0 and, consequently, that there exists V ∈ H1(Ω
C
)

such that (5.12) holds true.
Notice that, from (5.1),

div (−iωσA− iωσ gradV ) = 0 in Ω
C
.

Moreover, since H ∈ H(curl,Ω), (5.1) and (5.3) also imply that

(iωσA+ iωσ gradV ) · n
C
= 0 on Γ

C
.

These last two equations will be also collected in the potential formulation.
Equation (5.12) determines the electric potential V on each connected compo-

nent of Ω
C
up to an additive constant. Thus, if Ω

C
has mC connected components

Ωj
C
, then the natural space for V is

M :=

mC∏

j=1

H1(Ωj
C
)/C,

endowed with the norm ‖gradV ‖0,Ω
C

.

Finally, we introduce a magnetic scalar potential ψ in

Ωψ := Ω \ Ω
A
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(see Fig. 5.2). To do this, notice that since Ω
A

is a disjoint union of convex sets
with Ω

A
⊂ Ω and Ω is simply connected, it turns out that Ωψ is simply connected

too. Therefore, from (5.3) and (5.7) we know that there exists a scalar potential
ψ ∈ H1(Ωψ) (unique up to an additive constant) such that

H = ω gradψ in Ωψ.

Moreover, by virtue of the boundary condition (5.6), the surface gradient of this
scalar potential gradΓ ψ := n×gradψ×n = 0 on Γ, so that ψ has to be constant
on this boundary. Therefore, we may choose ψ ∈ H1

Γ(Ωψ) and thus ψ is uniquely
determined.

Thus, we are led to the following formulation of Problem 5.1.1 in terms of the
potentials A ∈ Z, V ∈ M and ψ ∈ H1

Γ(Ωψ):

curl

(
1

µ
curlA

)
+ iωσA+ iωσ gradV = 0 in Ω

C
,(5.13)

div (−iωσA− iωσ gradV ) = 0 in Ω
C
,(5.14)

curl

(
1

µ
curlA

)
= J

S
in Ω

A
\ Ω

C
,(5.15)

(
1

µ
curlA

)∣∣∣∣
Ω

C

× n
C
−
(
1

µ
curlA

)∣∣∣∣
Ω
A
\Ω

C

× n
C
= 0 on Γ

C
,(5.16)

div (µgradψ) = 0 in Ωψ,(5.17)

divA = 0 in Ω
A
,(5.18)

A · n
A
= 0 on Γ

A
,(5.19)

curlA · n
A
− ωµgradψ · n

A
= 0 on Γ

A
,(5.20)

1

µ
curlA× n

A
− ω gradψ × n

A
= 0 on Γ

A
,(5.21)

(iωσA+ iωσ gradV ) · n
C
= 0 on Γ

C
.(5.22)

Let us remark that (5.16) and (5.21) are consequences of the fact that H ∈
H(curl,Ω), whereas (5.20) follows from the fact that µH ∈ H(div,Ω), which in
its turn is a consequence of (5.4)

5.3 Variational formulation. Existence and uniqueness of
solution

The aim of this section is to give a variational formulation of problem (5.13)–(5.22)
and to prove its well-posedness.

First, we recall some results settled in [16] for Lipschitz domains. We write
these results for Ω

A
, as will be used in the sequel. The tangential trace oper-

ator γτ (u) := u|Γ
A

× n
A

is a bounded linear operator from H(curl,Ω
A
) onto

H−1/2(divΓ,ΓA). The tangential projection πτ (v) := n
A
× v|Γ

A
× n

A
is a bounded

linear operator from H(curl,Ω
A
) onto H−1/2(rotΓ,ΓA). Thus, the duality pairing

between H−1/2(divΓ,ΓA) and H−1/2(rotΓ,ΓA) is well defined by

〈γτ (u), πτ (v)〉Γ
A
:=

∫

Ω
A

curlu · v −
∫

Ω
A

u · curlv ∀u,v ∈ H(curl,Ω
A
).
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For any w ∈ H(curl,Ωψ), its tangential trace on Γ
A
also belongs to H−1/2(divΓ,ΓA)

and, consequently, 〈w × n
A
, πτ (v)〉Γ

A
is also well defined.

To obtain a variational formulation of problem (5.13)–(5.22), notice that by
virtue of (5.13), (5.15) and (5.16) we have that 1

µ curlA ∈ H(curl,Ω
A
) and, for all

Z ∈ Z,

∫

Ω
A

curl

(
1

µ
curlA

)
· Z̄ = −iω

∫

Ω
C

σ (A+ gradV ) · Z̄ +

∫

Ω
A

J
S
· Z̄.

Integrating by parts the left-hand side above and using (5.18) and (5.21) lead to

(5.23)

∫

Ω
A

1

µ

[
curlA · curl Z̄ + (divA)

(
div Z̄

)]
+ iω

∫

Ω
C

σA · Z̄

+ iω

∫

Ω
C

σ gradV · Z̄ − ω 〈gradψ × n
A
, πτ (Z)〉Γ

A
=

∫

Ω
A

J
S
· Z̄ ∀Z ∈ Z.

On the other hand, from (5.14), by integrating by parts and using (5.22) we
obtain

(5.24) iω

∫

Ω
C

σA · grad Ū + iω

∫

Ω
C

σ gradV · grad Ū = 0 ∀U ∈ H1(Ω
C
).

Finally, for any ϕ ∈ H1
Γ(Ωψ), from (5.17), by integrating by parts and using

(5.20) we obtain

ω

∫

Ωψ

µgradψ · grad ϕ̄+ 〈curlA · n
A
, ϕ̄〉Γ

A
= 0,

Now, let ϕ∗ ∈ H1(Ω) be an extension of ϕ to the whole Ω. Hence,

〈curlA · n
A
, ϕ̄〉Γ

A
=

∫

Ω
A

curlA · grad ϕ̄∗ =
〈
grad ϕ̄× n

A
, πτ (Ā)

〉
Γ
A

.

Therefore, we obtain

(5.25) ω

∫

Ωψ

µgradψ · grad ϕ̄+
〈
grad ϕ̄× n

A
, πτ (Ā)

〉
Γ
A

= 0 ∀ϕ ∈ H1
Γ(Ωψ).

Equations (5.23)–(5.25) provide a variational formulation of (5.13)–(5.22). To
prove that this formulation has a unique solution, we write it in a more compact
form. With this end, let A be the bilinear form defined on Z ×M×H1

Γ(Ωψ) by

A ((A, V, ψ), (Z, U, ϕ))

:=

∫

Ω
A

1

µ

[
curlA · curl Z̄ + (divA)

(
div Z̄

)]
+ ω2

∫

Ωψ

µgradψ · grad ϕ̄

+ iω

∫

Ω
C

σ (A+ gradV ) ·
(
Z̄ + grad Ū

)

− ω 〈gradψ × n
A
, πτ (Z)〉Γ

A
+ ω

〈
grad ϕ̄× n

A
, πτ (Ā)

〉
Γ
A

.

Then, (5.23)–(5.25) can be equivalently written as follows:
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Problem 5.3.1. Given J
S
∈ H0(div

0,Ω
S
), find (A, V, ψ) ∈ Z ×M× H1

Γ(Ωψ) such
that

A ((A, V, ψ), (Z, U, ϕ)) =

∫

Ω
A

J
S
· Z̄ ∀(Z,U, ϕ) ∈ Z ×M×H1

Γ(Ωψ).

Theorem 5.1. Problem 5.3.1 has a unique solution.

Proof. It is enough to show that A is elliptic, since, in such a case, the theorem
follows from the Lax-Milgram’s Lemma.

To prove the ellipticity, for (Z, U, ϕ) ∈ Z ×M×H1
Γ(Ωψ) we write

A ((Z, U, ϕ), (Z, U, ϕ)) =

∫

Ω
A

1

µ

(
|curlZ|2 + |divZ|2

)
+ ω2

∫

Ωψ

µ |gradϕ|2

+ iω

{∫

Ω
C

σ
(
|Z|2 + |gradU |2

)
+ 2

∫

Ω
C

σRe(gradU · Z̄)

+ 2 Im
〈
grad ϕ̄× n

A
, πτ (Z̄)

〉
Γ
A

}
.

Thus,

|A ((Z, U, ϕ), (Z, U, ϕ))|2 = (a+ ω2b)2 + ω2(c+ 2d)2,

where

a :=

∫

Ω
A

1

µ

(
|curlZ|2 + |divZ|2

)
, b :=

∫

Ωψ

µ |gradϕ|2 ,

c :=

∫

Ω
C

σ
(
|Z|2 + |gradU |2

)
, d := e+ f,

with

e :=

∫

Ω
C

σRe(gradU · Z̄) and f := Im
〈
grad ϕ̄× n

A
, πτ (Z̄)

〉
Γ
A

.

Next, we proceed as in [12] and use the elementary inequality

(c+ 2d)2 ≥ ρc2 − 8ρd2 ∀c, d ∈ R, ∀ρ ∈ (0, 1/2],

to obtain

|A ((Z, U, ϕ), (Z, U, ϕ))|2 ≥ a2 + ω4b2 + ω2(ρc2 − 8ρd2) ∀ρ ∈ (0, 1/2].

Now, since1

a ≥ K

µmax
‖Z‖2

Z
and b ≥ µmin ‖gradϕ‖20,Ωψ ,

1For the first inequality see for instance, Lemma I.3.6 from [22].
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with K > 0 independent of Z, we have

|A ((Z, U, ϕ), (Z, U, ϕ))|2 ≥ K2

µ2
max

‖Z‖4
Z
+ ω4µ2

min ‖gradϕ‖40,Ωψ

+ ω2ρ

(∫

Ω
C

σ |gradU |2
)2

− 16ω2ρ(e2 + f2).

To estimate the last term on the right-hand side above, notice first that, for all
ε > 0,

e2 ≤
(∫

Ω
C

∣∣σ gradU · Z̄
∣∣
)2

≤ ε

2

(∫

Ω
C

σ |gradU |2
)2

+
1

2ε

(∫

Ω
C

σ |Z|2
)2

.

On the other hand, ∃C > 0 independent of ϕ and Z such that

f2 ≤ ‖grad ϕ̄× n
A
‖2H−1/2(divΓ,ΓA )

∥∥πτ (Z̄)
∥∥2
H−1/2(rotΓ,ΓA )

≤ C
(
‖gradϕ‖40,Ωψ + ‖Z‖4

Z

)
.

Therefore, by combining the last three inequalities and taking ε and ρ small enough,
we obtain that ∃α > 0 such that, ∀(Z, U, ϕ) ∈ Z ×M×H1

Γ(Ωψ),

|A ((Z, U, ϕ), (Z, U, ϕ))|2 ≥ α
(
‖Z‖4

Z
+ ‖gradU‖40,Ω

C

+ ‖gradϕ‖40,ψ
)
,

which allows us to conclude the ellipticity of A .

To end this section, we prove that the unique solution of Problem 5.3.1 is actually
a solution of the strong form of the problem given by equations (5.13)–(5.22).

Theorem 5.2. The solution (A, V, ψ) of Problem 5.3.1 satisfies (5.13)–(5.22).

Proof. Clearly the solution (A, V, ψ) of Problem 5.3.1 satisfies (5.23)–(5.25).
Now, let ξ ∈ H1(Ω

A
) be a solution of the compatible Neumann problem ∆ξ =

divA in Ω
A
, ∂ξ/∂n

A
= 0 on Γ

A
. By testing (5.23) with Z = grad ξ ∈ Z, we obtain

(5.18) by using (5.24) (since ξ|Ω
C

∈ M) and 〈gradψ × n
A
, πτ (grad ξ)〉Γ

A
= 0

(which is a consequence of the definition of the duality pairing).
On the other hand, by testing (5.23)–(5.25) with smooth functions supported

in adequate domains and proceeding in the standard way, it is easy to verify equa-
tions (5.13)–(5.17), (5.20) and (5.22). Since (5.19) is imposed in the definition of
the space Z, there only remains to prove (5.21) in H−1/2(divΓ,ΓA); namely, that
for all ζ ∈ H(curl,Ω

A
),

(5.26)

〈
1

µ
curlA× n

A
, πτ (ζ)

〉

Γ
A

− 〈gradψ × n
A
, πτ (ζ)〉Γ

A
= 0.

To do this, notice first that by substituting (5.18) in (5.23), integrating by parts
and having into account (5.13) and (5.15), we obtain

〈
1

µ
curlA× n

A
, πτ (Z)

〉

Γ
A

− 〈gradψ × n
A
, πτ (Z)〉Γ

A
= 0 ∀Z ∈ Z.
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Next, for ζ ∈ H(curl,Ω
A
), let ϕ be a solution of the following auxiliary problem:

ϕ ∈ H1(Ω
A
)/C :

∫

Ω
A

gradϕ · grad χ̄ =

∫

Ω
A

ζ · grad χ̄ ∀χ ∈ H1(Ω
A
)/C.

Hence, div(ζ − gradϕ) = 0 in Ω
A
and (ζ − gradϕ) ·n

A
= 0 on Γ

A
. Consequently,

Z := ζ − gradϕ ∈ Z and using it as a test function in the equation above we
obtain
〈
1

µ
curlA× n

A
, πτ (ζ − gradϕ)

〉

Γ
A

− 〈gradψ × n
A
, πτ (ζ − gradϕ)〉Γ

A
= 0.

Now, from (5.13) and (5.15), we have

〈
1

µ
curlA× n

A
, πτ (gradϕ)

〉

Γ
A

=

∫

Ω
A

curl

(
1

µ
curlA

)
· grad ϕ̄

= −
∫

Ω
C

(iωσA+ iωσ gradV ) · grad ϕ̄

+

∫

Ω
A

J
S
· grad ϕ̄

= 0,

where, for the last step, we have used integration by parts, (5.14), (5.22), the
assumption that J

S
is divergence-free and (5.7).

Thus, using again that 〈gradψ × n
A
, πτ (gradϕ)〉Γ

A
vanishes, (5.26) follows

from the last two equations and we conclude the proof.

5.4 Numerical approximation

In this section we describe and analyze a finite element method to approximate the
solution of Problem 5.3.1. We assume that all the domains are Lipschitz polyhedra.
Let {Th} be a family of tetrahedral meshes of Ω such that, for each mesh, all the
elements T ∈ Th are completely included in one of the three subdomains Ω

C
, Ω

A
\Ω

C

or Ωψ.
Consider the following finite element spaces:

Zh :=
{
Zh ∈ Z : Zh|T ∈ P3

m ∀T ∈ Th : T ⊂ Ω
A

}
,

Mh :=
{
Uh ∈ M : Uh|T ∈ Pm ∀T ∈ Th : T ⊂ Ω

C

}
,

Qh :=
{
ϕh ∈ H1(Ωψ) : ϕh|T ∈ Pm ∀T ∈ Th : T ⊂ Ωψ

}
,

QΓ,h := {ϕh ∈ Qh : ϕh|Γ = 0} ,

where Pm, m ≥ 1, is the set of polynomials of degree not greater than m.
Thus, we are led to the following discrete problem:

Problem 5.4.1. Given J
S
∈ H0(div

0,Ω
S
), find (Ah, Vh, ψh) ∈ Zh × Mh × QΓ,h

such that

A ((Ah, Vh, ψh), (Zh, Uh, ϕh)) =

∫

Ω
A

J
S
· Z̄h ∀(Zh, Uh, ϕh) ∈ Zh×Mh×QΓ,h.
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The existence and uniqueness of the solution of this discrete problem is again an
immediate consequence of the ellipticity of A , proved in the proof of Theorem 5.2,
and the Lax-Milgram Lemma. Moreover, if the solution of the continuous problem
is smooth enough, the standard finite element error analysis techniques yield the
following result:

Theorem 5.3. Let (A, V, ψ) and (Ah, Vh, ψh) be the solutions of problems 5.3.1
and 5.4.1, respectively. If A ∈ H1+s(Ω

A
)3, V ∈ H1+s(Ω

C
) and ψ ∈ H1+s(Ωψ) with

s > 0, then there exists a strictly positive constant C, independent of h, A, V and
ψ, such that

‖A−Ah‖Z + ‖grad (V − Vh)‖0,Ω
C

+ ‖grad (ψ − ψh)‖0,Ωψ
≤ Chr

(
‖A‖1+s,Ω

A
+ ‖V ‖1+s,Ω

C

+ ‖ψ‖1+s,Ωψ
)
,

with r := min {m, s}.

Proof. It is a direct consequence of the ellipticity of A , Cea’s lemma and the ap-
proximation properties of the Lagrange interpolant (see, for instance, [18]).

To end the paper we discuss the need of choosing the domain Ω
A
of the vector

potential so that its connected components be convex. For simplicity, in what
follows we take Ω

A
connected, but all the statements hold true for each of its

connected components. So let Ω
A
be simply connected with a connected boundary.

According to [22, Theorem I.3.4], since div(µH) = 0 in Ω, there exists Φ ∈
H1(Ω)3 satisfying:

curlΦ = µH in Ω,

divΦ = 0 in Ω.

Moreover, according to Remark I.3.12 of the same reference, if µH ∈ Hp(Ω)3 with
0 < p ≤ 1, then Φ ∈ H1+p(Ω)3.

Therefore, by virtue of (5.8)–(5.10), there holds:

curl(A−Φ) = 0 in Ω
A
,

div(A−Φ) = 0 in Ω
A
,

(A−Φ) · n
A
= −Φ · n

A
on Γ

A
.

The first equation above and the simple-connectedness of Ω
A

implies that there
exists a unique χ ∈ H1(Ω

A
)/C such that A −Φ = gradχ in Ω

A
, whereas the re-

maining equations imply that χ is the solution of the following compatible Neumann
problem:

∆χ = 0 in Ω
A
,

∂χ

∂n
A

= −Φ · n
A

on Γ
A
.

The Neumann data of this problem will be in general smooth on each polygonal face
F of Γ

A
, since Γ

A
is an arbitrary polyhedral surface within the dielectric domain.

In fact, if µH ∈ Hp(Ω)3 with 0 < p ≤ 1, then Φ|F · n
A
∈ H

1
2
+p(F ) for all faces F .
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Therefore, if Ω
A

is a convex polyhedron, then there exists q > 0 such that
χ ∈ H2+q(Ω

A
) (see [20]). Consequently,

A = Φ+ gradχ ∈ H1+s(Ω
A
)3,

with s := min {p, q} > 0. Conversely, if Ω
A
were a non-convex polyhedron, then, in

general, χ /∈ H2(Ω
A
) and, consequently,

A = Φ+ gradχ /∈ H1(Ω
A
)3.

In such a case, Theorem 5.3 would become meaningless.
Moreover, Ẑ :=

{
Z ∈ H1(Ω

A
)3 : Z · n

A
= 0 on Γ

A

}
is a closed subspace of Z

(see [19]). When Ω
A

is a polyhedron, it is well-known that Ẑ = Z if and only if
Ω
A
is convex (see [22, Theorem I.3.9] and [19]).

The finite element space Zh is clearly a subspace of Ẑ. Therefore, when Ω
A
is

a convex polyhedron, it makes sense to approximate A ∈ Z by finite elements from
Zh. Instead, if ΩA

were not convex, then there would be no hope of approximating
A by finite elements from Zh. Indeed, as stated above, in general A /∈ H1(Ω

A
)3

in such a case. Hence, A would not belong to the closed set Ẑ containing the
finite element spaces Zh for all meshes. So, there could not exist Ah such that
‖A−Ah‖Z → 0 as h goes to zero.
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[27] J.-C. Nédélec, Mixed finite elements in R
3, Numer. Math., 35 (1980) 315–341.
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