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Abstract. The discrete mollification method is a convolution-based filtering procedure for the regular-
ization of ill-posed problems. This method is applied here to stabilize explicit schemes, which were first

analyzed by Karlsen & Risebro [M2AN Math. Model. Numer. Anal. 35 (2001), 239–269], for the solution of
initial value problems of strongly degenerate parabolic PDEs in two space dimensions. Two new schemes are

proposed, which are based on direction-wise and two-dimensional discrete mollification of the second partial

derivatives forming the Laplacian of the diffusion function, respectively. The mollified schemes permit to use
substantially larger time steps than the original (basic) scheme. It is proven that both schemes converge to

the unique entropy solution of the initial value problem. Numerical examples demonstrate that the mollified

schemes are competitive in efficiency, and in many cases significantly more efficient, than the basic scheme.

1. Introduction

1.1. Scope. We study explicit finite difference schemes for the initial value problem

ut + f(u)x + g(u)y = ∆A(u), (x, y) ∈ R2, t ∈ (0, T ], (1.1)

u(x, y, 0) = u0(x, y), (x, y) ∈ R2, (1.2)

where we assume that

A(u) =
∫ u

0

a(s) ds, a(u) ≥ 0. (1.3)

We allow that a(u) = 0 on u-intervals of positive length, so (1.1) is, in general, a strongly degenerate
parabolic equation. Its solutions are in general discontinuous, and need to be defined as entropy solutions.
It is well known that certain monotone, and therefore first-order, finite difference schemes converge to the
entropy solution of (1.1), (1.2) (Evje & Karlsen, 2000; Karlsen & Risebro, 2001). The term ∆A(u) is usually
discretized in a standard way by direction-wise summation of second finite differences of A(u). If ∆x and
∆t denote the meshwidth of the underlying Cartesian spatial mesh and the time step, respectively, and
λ := ∆t/∆x, µ := ∆t/∆x2, then for an explicit scheme a CFL stability condition of the type

αλ
(
‖f ′‖∞ + ‖g′‖∞

)
+ βµ‖a‖∞ ≤ 1 (1.4)

must be satisfied, where the coefficients α, β > 0 depend on the precise numerical scheme and the choice of
the underlying convergence theory.

We herein study numerical schemes in which ∆A(u) is discretized by means of discrete mollification.
Roughly speaking, the mollification-based discretization of this term consists in either taking convex combi-
nations of second differences of A(u) in each direction, taken with respect to multiples of ∆x, or in directly
approximating ∆A(u) via convolution of discrete numerical values of u with a kernel in a neighborhood
of the meshpoint of interest, and subtracting the value of u at that point. (The first of these alternatives
corresponds to a direction-wise implementation of the mollified schemes for one-dimensional problems by
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Acosta et al. (2011).) Both procedures, addressed herein as “Scheme 1” and “Scheme 2”, respectively, give
rise to a CFL condition of the type

αλ
(
‖f ′‖∞ + ‖g′‖∞

)
+ εηβµ‖a‖∞ ≤ 1, (1.5)

where εη > 0 is a small parameter associated with the width 2η+ 1 of the stencil of mollification. Condition
(1.5) is more advantageous than (1.4) for εη < 1, a condition satisfied in most circumstances, since for a
given value of ∆x it permits to employ a larger time step for the corresponding mollified version than with
the basic version of a numerical scheme.

The present paper serves two purposes. Firstly, we prove that both Schemes 1 and 2 converge to the
unique entropy solution of the initial value problem (1.1), (1.2). In doing to we will appeal to the solution
concept utilized by Karlsen and Risebro (2001), which is based on requiring that ∇A(u) ∈ L2 rather than
∇A(u) ∈ L∞ (as in Acosta et al., 2011). This solution concept permits to prove convergence without
restrictions on the value of η or on the initial spatial total variation of ∇A(u0). Such restrictions were found
necessary for the one-dimensional case treated in Acosta et al. (2011), so the present treatment generalizes
these results, apart, of course, from the extension to two space dimensions. The proof that the limit u
of numerical solutions generated by Scheme 1 or 2 indeed satisfies ∇A(u) ∈ L2 leads to fairly involved
calculations, but we show that the extension of the corresponding analysis by Karlsen & Risebro (2001) to
mollified schemes is straightforward.

Secondly, we present a number of numerical experiments with Schemes 1 and 2 applied to non-degenerate
and degenerate problems. Our special interest is the issue of efficiency, that is the reduction of numerical
error per CPU time. Schemes 1 and 2 permit to use substantially larger time steps than the basic scheme,
but of course one numerical evaluation of ∆A(u) requires the evaluation of stencils of 4η+1 or even (2η+1)2

points (with Schemes 1 and 2, respectively) instead of five points with the basic scheme. Nevertheless, our
numerical experiments show that Schemes 1 and 2 in many situations are still more efficient than the basic
scheme, and otherwise only slightly less efficient than the basic scheme. We expect that the performance
of mollified schemes can still be improved by an optimal choice of the mollification weights, which we will,
however, not pursue herein.

1.2. Motivation and related work. Equations of the type (1.1) include a large number of known equations
such as the heat equation, one-point-degenerate porous-medium-type equations (where f = g ≡ 0, A(u) =
um), the two-point degenerate reservoir flow equation (in one space dimension defined by f(u) = u2/(u2 +
(1− u)2), A(u) = u(1− u)), and strongly degenerate parabolic equations, which appear in models of traffic
flow (Rouvre & Gagneux, 1999; Bürger & Karlsen, 2003), sedimentation-consolidation processes (Berres et
al., 2003), and aggregation (Betancourt et al., 2011). Furthermore, (1.1) explicitly includes the case A ≡ 0,
that is, a first-order, nonlinear scalar conservation law. Let us point out, however, that for this case the
mollified schemes presented herein reduce to known methods (see e.g. Karlsen & Risebro, 2001), since the
mollification device affects the discretization of the parabolic part of (1.1) only. For a short introduction to
the well-posedness analysis of strongly degenerate parabolic equations and an up-to-date list of references
we refer e.g. to the introductory parts of Holden et al. (2010).

Concerning numerical schemes, we mention that monotone schemes for first-order conservation laws (cor-
responding to A ≡ 0) were introduced by Harten et al. (1976) and Crandall & Majda (1980). It is well
known that these schemes convergence to an entropy solution, which remains valid for the application to
strongly degenerate parabolic equations. This was first exploited by Evje & Karlsen (2000). Related analy-
ses include implicit monotone schemes for degenerate parabolic equations (Evje & Karlsen, 1999), problems
with boundary conditions (Bürger et al., 2006), multidimensional degenerate parabolic equations (Karlsen
& Risebro, 2001), equations with discontinuous coefficients (Karlsen et al., 2002, 2003; Bürger et al., 2005),
and problems of parameter identification (Coronel et al., 2003) (this list is far from being complete). The
disadvantage of monotone schemes is their well-known generic limitation to first-order accuracy.

Discrete mollification is a versatile convolution-based filtering procedure for the regularization of ill-posed
problems and the stabilization of explicit schemes for the solution of PDEs. This technique was introduced
by Diego A. Murio and collaborators in a series of papers (cf., e.g., Murio, 1993, 2002; Mej́ıa & Murio 1995,
1996; Murio et al., 2001). Acosta & Mej́ıa (2008, 2009) introduced the mollification method as a stabilizer
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for numerical schemes for strictly parabolic convection-diffusion equations and nonlinear scalar conservation
laws. Acosta & Mej́ıa (2010) show that a particular discrete approximation of the second derivative of a
smooth function, based on discrete mollification, stabilizes operator splitting methods (Karlsen & Risebro,
1997) for the numerical solution of convection-diffusion problems. Acosta et al. (2011) applied the method
of Acosta & Mej́ıa (2010) to strongly degenerate parabolic equations.

1.3. Outline of the paper. The remainder of the paper is organized as follows. Section 2 provides some
preliminaries, including precise assumptions on the functions A, f and g and the initial datum u0, a definition
of an entropy solution, and L1

loc and L2
loc compactness criteria. In Section 3 we recall some basic facts from

one-dimensional discrete mollification and introduce the two-dimensional discrete mollification operator, the
basic montone numerical scheme, and its two mollified versions, Scheme 1 and 2. The respective CFL
conditions are discussed. Section 4, which is at the core of this paper, is devoted to the convergence analysis,
which is split into a series of lemmas. In Lemmas 4.1 and 4.2 we prove that Schemes 1 and 2 are monotone
under appropriate CFL conditions, and in Lemma 4.3 we invoke standard arguments to deduce that both
schemes are L∞- and L1-stable, and total variation diminishing (TVD). In Lemma 4.4 we prove that the
numerical solutions generated by both schemes are L1 Hölder continuous in time. The proof of this lemma is
based on the “interpolation lemma” by Kružkov (1969), and includes results related to summation by parts
for the mollified schemes that are useful in several instances. Then we prove in Lemmas 4.5 and 4.7 the
discrete analogue of ∇A(u) ∈ L2(ΠT ) for Scheme 1 and 2, respectively. To this end we need to strengthen
the CFL condition previously imposed to ensure monotonicity of the schemes. (Lemma 4.6 cites a result from
Karlsen & Risebro (2001).) Lemmas 4.8 and 4.9 state discrete entropy inequalities satisfied by Scheme 1
and 2, respectively. The main convergence result is stated in Theorem 4.1. Its proof is based on the
previous lemmas, and includes a proof of L2 continuity in time of the discrete analogue of A(u). Finally,
the convergence proof is concluded by appealing to the L1

loc and L2
loc compactness criteria. In Section 5 we

present numerical examples for five different cases, and in Section 6 we collect some conclusions.

2. Preliminaries

2.1. Assumptions. Concerning the functions A, f and g we assume that

A ∈ Liploc(R), and A(·) is nondecreasing with A(0) = 0, (2.1)

f, g : R→ R, f, g, f ′, g′ ∈ Lip(R,R), (2.2)

where f ′ ≡ df/du, g′ ≡ dg/du. Moreover, the initial datum u0 is assumed to satisfy

u0 ∈ L1(R2) ∩ L∞(R2) ∩BV (R2). (2.3)

2.2. Definition and uniqueness of an entropy solution.

Definition 2.1. A measurable function u = u(x, y, t) is said to be an entropy solution of (1.1), (1.2) if the
following conditions are satisfied:

(1) u ∈ L1(ΠT ) ∩ L∞(ΠT ) ∩ C(0, T ;L1(R2)).
(2) The following entropy inequality holds for all k ∈ R and all non-negative test functions ϕ ∈ C∞0 (ΠT ):∫∫

ΠT

{
|u− k|ϕt + sgn(u− k)

(
(f(u)− f(k))ϕx + (g(u)− g(k))ϕy

)
+
∣∣A(u)−A(k)

∣∣∆ϕ}dtdxdy ≥ 0.
(2.4)

(3) A(u) ∈ L2(0, T ;H1(R2)).
(4) The initial condition (1.2) is satisfied in the following sense:

ess lim
t↓0

∫
R2

∣∣u(x, y, t)− u0(x, y)
∣∣dx dy = 0.

Satbility of entropy solutions with respect to initial data, and therefore uniqueness, follows from the
analysis of a more general equation by Karlsen & Risebro (2003). We may state the following theorem.
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Theorem 2.1 (L1 stability of entropy solutions). Assume that (2.1) and (2.2) hold, and that u, v ∈
L∞(0, T ;BV (R2)) are entropy solutions of (1.1), (1.2) with respective initial data u0 and v0, which are
both assumed to satisfy (2.3). Then ‖u(·, t)− v(·, t)‖L1(R2) ≤ ‖u0 − v0‖L1(R2) for almost all t ∈ (0, T ).

2.3. Compactness criteria. To state the following L1
loc compactness criterion we recall that a modulus of

continuity is a nondecreasing function ν : R0
+ → R0

+ with ν(0) = 0. The following two lemmas are stated in
Karlsen & Risebro (2001).

Lemma 2.1 (L1
loc compactness lemma). Assume that {zh}h>0 is a sequence of functions defined on Rd ×

(0, T ) which satisfy the following:
(1) There exists a constant C1 > 0, which is independent of h, such that ‖zh(·, t)‖L1(Rd) ≤ C1 and
‖zh(·, t)‖L∞(Rd) ≤ C1 for all t ∈ (0, T ).

(2) There exists a spatial modulus of continuity ν which is independent of h such that∥∥zh(·+ y, t)− zh(·, t)
∥∥
L1(Rd)

≤ ν
(
|y|; zh

)
as y → 0, for all t ∈ (0, T ).

(3) There exists a temporal modulus of continuity ω which is independent of h such that∥∥zh(·, t+ τ)− zh(·, t)
∥∥
L1(Rd)

≤ ω(τ ; zh) for all t ∈ (0, T ), whenever τ ∈ (0, T ).

Then {zh}h>0 is compact in the strong topology of L1
loc(Rd × (0, T )). Moreover, any limit point of {zh}h>0

belongs to L1(Rd × (0, T )) ∩ L∞(Rd × (0, T )) ∩ C(0, T ;L1(Rd)).

Lemma 2.2 (L2
loc compactness lemma). Assume that {zh}h>0 is a sequence of functions defined on Rd ×

(0, T ) for which there exist constants C1, C2, C3 > 0, which may depend on T , but not on h, such that

‖zh‖L2(Rd×(0,T )) ≤ C1,∥∥zh(·+ y, ·)− zh(·, ·)
∥∥
L2(Rd×(0,T ))

≤ C2

(
|y|+ h

)
for all y as h ↓ 0,∥∥zh(·, ·+ τ)− zh(·, ·)

∥∥
L2(Rd×(0,T−τ))

≤ C3

√
|τ |+ h for all τ > 0 as h ↓ 0.

Then {zh}h>0 is compact in the strong topology of L2
loc(Rd × (0, T )). Moreover, any limit point of {zh}h>0

belongs to L2(0, T ;H1(Rd)).

3. Discrete mollification and numerical schemes

3.1. One-dimensional discrete mollification. The mollification method is based on replacing the discrete
function y = {yj}j∈Z, which can, for example, consist of evaluations or cell averages of a real function y = y(x)
given at equidistant grid points xj = x0 + j∆x, ∆x > 0, j ∈ Z, by its mollified version Jηy, where Jη is the
so-called mollification operator defined by

[Jηy]j :=
η∑

i=−η
wiyj+i, j ∈ Z,

where η ∈ N is the support parameter (indicating the width of the mollification stencil) and the so-called
weights wi satisfy

wi = w−i, 0 ≤ wi ≤ wi−1, i = 1, . . . , η; w−η + w−η+1 + · · ·+ wη = 1. (3.1)

The weights wi are obtained by numerical integration of the truncated Gaussian kernel

κpδ(t) :=

{
Apδ

−1 exp(−t2/δ2) for |t| ≤ pδ,
0 otherwise,

where Ap :=
(∫ p

−p
exp(−s2) ds

)−1

,

and δ and p are positive parameters. This kernel satisfies κpδ ≥ 0, κpδ ∈ C∞(−pδ, pδ), κpδ = 0 outside
[−pδ, pδ], and

∫
R κpδ = 1. Then we define ξj−1/2 := (j − 1/2)∆x for j ∈ Z and compute the weights by

wi :=
∫ ξi+1/2

ξi−1/2

κpδ(−s) ds, i = −η, . . . , η.
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η i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
0 1

1 0.84272 0.07864

2 0.60387 0.19262 5.4438e-3

3 0.45556 0.23772 3.3291e-2 1.2099e-3

4 0.36266 0.24003 6.9440e-2 8.7275e-3 4.7268e-4

5 0.30028 0.22625 9.6723e-2 2.3430e-2 3.2095e-3 2.4798e-4

6 0.25585 0.20831 0.11241 4.0192e-2 9.5154e-3 1.4905e-3 1.5434e-4

7 0.22270 0.19058 0.11942 5.4793e-2 1.8403e-2 4.5234e-3 8.1342e-4 1.0697e-4

8 0.19708 0.17444 0.12097 6.5725e-2 2.7973e-2 9.3255e-3 2.4348e-3 4.9782e-4 7.9691e-5...

12 0.13476 0.12729 0.10727 8.0645e-2 5.4093e-2 3.2370e-2 1.7282e-2 8.2314e-3 3.4977e-3

η i = 9 i = 10 i = 11 i = 12
12 1.3260e-3 4.4843e-4 1.3529e-4 3.6414e-5

Table 1. Discrete mollification weights wi.

Usually p = 3 is taken and δ, whose role is to determine the shape of the kernel’s Gaussian bell, is
considered as regularization parameter, and it is estimated by means of methods like Generalized Cross
Validation (GCV) (Mej́ıa & Murio, 1996; Murio, 2002). In any case, in this work the main relationship
between δ and η is given by δ = (η + 1/2)∆x/p. This choice generates weights w−η, . . . , wη, that are
independent of ∆x. For p = 3 these weights are same as those used in previous work (Acosta & Mej́ıa, 2008,
2009; Acosta et al., 2011), and are listed in Table 1.

We conclude this section with some approximation and stability results.

Lemma 3.1. The discrete mollification operator can be written in the forms

[Jηy]j = yj + (ψj − ψj−1) = yj −
η∑
i=1

ρi∆yj−i+1/2 +
η∑
i=1

ρi∆yj+i−1/2,

where we define

ψj :=
η∑
k=1

ρk (yj+k − yj−k+1) =
η−1∑

k=−η+1

Q−k∆yj+k+1/2,

ρk :=
η∑
i=k

wi, k = −η, . . . , η; Q−k = Qk :=
η∑

i=k+1

ρi, k = 0, . . . , η − 1.

We assume that g is a sufficiently smooth real function, set yj = g(xj), and employ the Taylor expansion

yj+i = yj + (i∆x) g′(xj) +
1
2

(i∆x)2g′′(xj) +
1
6

(i∆x)3
g′′′(xj) +

1
24

(i∆x)4
g(4)(ξj,i),

where ξj,i is a real number between xj and xj+i. Then, defining

Cη :=

(
η∑

i=−η
i2wi

)−1

=

(
2

η∑
i=1

i2wi

)−1

, (3.2)

we can write

[Jηy]j =
η∑

i=−η
wiyj+i = yj +

∆x2

2Cη
g′′(xj) +

∆x4

24

η∑
i=−η

i4wig
(4)(ξj,i).
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Theorem 3.1. Let g ∈ C4(R) with g(4) bounded on R, and set yj = g(xj). If the data {yεj}j∈Z satisfy
|yεj − yj | ≤ ε for all j ∈ Z, then |[Jηyε]j − [Jηy]j | ≤ ε for all j ∈ Z. Additionally, for each compact set
K = [a, b] there exists a constant C = C(K) such that∣∣∣∣[Jηy]j − g(xj)−

∆x2

2Cη
g′′(xj)

∣∣∣∣ ≤ C∆x4 for all j ∈ Z. (3.3)

Moreover, the following inequalities hold for all j ∈ Z, where C is a different constant in each inequality:∣∣[Jηy]j − g(xj)
∣∣ ≤ C∆x2,∣∣∆+ [Jηy]j −∆xg′(xj)
∣∣ ≤ C∆x2,

∣∣∆0 [Jηy]j −∆xg′(xj)
∣∣ ≤ C∆x3,∣∣∆−∆+ [Jηy]j −∆x2g′′(xj)
∣∣ ≤ C∆x4.

3.2. Two-dimensional discrete mollification. In this section we consider a uniform bidimensional grid
for the (x, y)-plane of the form (xi, yj) = (x0 + i∆x, y0 + j∆y) with ∆x,∆y > 0. Now, consider a discrete
function G defined on the grid by G(xi, yj) = Gij , again G can be the result of evaluations or cell averages
of another function defined on R2. For each η we define the two-dimensional discrete mollification of G as[

J2
ηG
]
ij

=
η∑

k=−η

η∑
l=−η

wkwlGi+l,j+k,

where we use the standard weights wk of the one-dimensional discrete mollification.
We begin by observing that[

J2
ηG
]
ij

=
η∑

k=−η

wk

(
η∑

l=−η

wlGi+l,j+k

)
=

η∑
k=−η

wk
[
JxηG

]
i,j+k

= Jyη
[
JxηG

]
ij
,

where the operators Jxη and Jyη are the usual one-dimensional discrete mollification working with respect to
the variables x and y respectly. Additionally, if Gij = G(xi, yj) is the evaluation of a sufficiently smooth
function, from (3.3) we have[
J2
ηG
]
ij

=
η∑

k=−η

wk
[
JxηG

]
i,j+k

=
η∑

k=−η

wk

(
Gi,j+k +

∆x2

2Cη
Gxx(xi, yj+k) +O(∆x4)

)

=
η∑

k=−η

wkGi,j+k +
∆x2

2Cη

η∑
k=−η

wkGxx(xi, yj+k) +O(∆x4)

= Gij +
∆y2

2Cη
Gyy(xi, yj) +O(∆y4) +

∆x2

2Cη

(
Gxx(xi, yj) +

∆y2

2Cη
Gxxyy(xi, yj) +O(∆y4)

)
+O(∆x4)

= Gij +
∆x2

2Cη
Gxx(xi, yj) +

∆y2

2Cη
Gyy(xi, yj) +

[
O(∆y4) +O(∆x4) +O(∆x2∆y2) +O(∆x2∆y4)

]
.

In the case ∆x = ∆y, we have[
J2
ηG
]
ij

= Gij +
∆x2

2Cη
(Gxx +Gyy)(xi, yj) +O(∆x4) = Gij +

∆x2

2Cη
(∆G)(xi, yj) +O(∆x4). (3.4)

For future use we also note the easily verifiable identity

[J2
ηG]ij −Gij =

η∑
k=−η

wk

η∑
l=1

wl(Gi+k,j+l − 2Gi+k,j +Gi+k,j−l) +
η∑
k=1

wk(Gi+k,j − 2Gij +Gi−k,j). (3.5)

3.3. Basic and mollified schemes. For the basic scheme and its mollified versions we assume a Cartesian
grid with ∆x = ∆y, and set xi = i∆x, yj = j∆x, xi+1/2 = (i+ 1/2)∆x, yj+1/2 = (j + 1/2)∆x. The initial
condition (1.2) is discretized by cell averaging, i.e.,

u0
ij =

1
∆x2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

u0(x, y) dy dx for all i, j ∈ Z.
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η Cη ε1
η ε̃2

η ε2
η

1 6.3581 1.0000 0.9214 1.8427

2 2.3321 0.9238 0.7409 1.4817

3 1.2097 0.7130 0.5189 1.0379

4 0.8280 0.5277 0.3595 0.7191

5 0.5672 0.3969 0.2580 0.5160

6 0.4116 0.3063 0.1923 0.3847

7 0.3118 0.2424 0.1482 0.2964

8 0.2442 0.1961 0.1173 0.2347...

12 0.1142 0.0988 0.1121 0.0560

Table 2. Stability parameters ε1
η for Scheme 1 (cf. (3.9)) and ε̃2

η and ε2
η for Scheme 2 (cf.

(3.10) and (3.13)) for the weights wi given in Table 1.

The basic scheme is given by

un+1
ij = unij − λ∆+

x F
(
uni−1,j , u

n
ij

)
− λ∆+

y G
(
uni,j−1, u

n
ij

)
+ µ

(
∆2
xA
(
unij
)

+ ∆2
yA
(
unij
))
. (3.6)

Here, the numerical flux by Engquist & Osher (1981) is given by F (u, v) = f+(u) + f−(v), where

f+(u) := f(0) +
∫ u

0

max
{
f ′(s), 0

}
ds, f−(u) :=

∫ u

0

min
{
f ′(s), 0

}
ds;

the function G is defined in the same way with f replaced by g.
The first mollified version of the basic scheme (3.6), denoted Scheme 1, is based on discretizing the terms

A(u)xx and A(u)yy separately by applications of the one-dimensional discrete mollification operator Jη in x-
and y-direction, respectively. Denoting the respective versions of Jη by Jxη and Jyη , we obtain the following
numerical scheme:

un+1
ij = unij − λ∆+

x F
(
uni−1,j , u

n
ij

)
− λ∆+

y G
(
uni,j−1, u

n
ij

)
+ 2µCη

([
JxηA(un)

]
ij

+
[
JyηA(un)

]
ij
− 2A

(
unij
))
.

(3.7)

Alternatively, we may discretize ∆A(u) in terms of the two-dimensional discrete mollification operator J2
η

introduced in Section 3.2. The resulting mollified scheme, Scheme 2, has the form

un+1
ij = unij − λ∆+

x F
(
uni−1,j , u

n
ij

)
− λ∆+

y G
(
uni,j−1, u

n
ij

)
+ 2µCη

([
J2
ηA(un)

]
ij
−A

(
unij
))
. (3.8)

3.4. CFL conditions and stabilization. We briefly summarize the CFL conditions that will appear in
our analysis. The basic scheme (3.6) results to be monotone under the CFL condition

λ
(
‖f ′‖∞ + ‖g′‖∞

)
+ 4µ‖a‖∞ ≤ 1.

In the next section we will prove that the same property holds under the CFL condition

λ
(
‖f ′‖∞ + ‖g′‖∞

)
+ 4ε1

ηµ‖a‖∞ ≤ 1, ε1
η := (1− w0)Cη (3.9)

for Scheme 1 and under the CFL condition

λ
(
‖f ′‖∞ + ‖g′‖∞

)
+ 4ε̃2

ηµ‖a‖∞ ≤ 1, ε̃2
η :=

1− w2
0

2
Cη (3.10)

for Scheme 2. Table 2 shows the values of ε1
η and ε̃2

η for the weights given in Table 1 and selected values
of η. We see that ε1

η and ε̃2
η decrease with η, and that ε1

η < 1 and ε̃2
η < 1 for η ≥ 2, so Schemes 1 and 2 are

monotone for larger values of ∆t for a given meshwidth ∆x than is the basic scheme.
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For the convergence analysis, however, we will need to impose a more restrictive CFL condition to ensure
that the limit of approximate solutions satisfies item (3) of Definition 2.1. For the basic scheme, this
condition, which we refer to as “strengthened CFL condition”, is given by

8λ
(
‖f ′‖∞ + ‖g′‖∞

)
+ 8µ‖a‖∞ ≤ 1− ε (3.11)

for a number ε ∈ (0, 1), see Karlsen & Risebro (2001). The corresponding strengthened CFL condition for
Scheme 1 is given by

8λ
(
‖f ′‖∞ + ‖g′‖∞

)
+ 8ε1

ηµ‖a‖∞ ≤ 1− ε, 0 < ε < 1, (3.12)

while that for Scheme 2 is given by

8λ
(
‖f ′‖∞ + ‖g′‖∞

)
+ 8ε2

ηµ‖a‖∞ ≤ 1− ε, 0 < ε < 1, ε2
η := 2ε̃2

η. (3.13)

From Table 2 we infer that for the weights of Table 1, only for η ≥ 4 we have ε2
η < 1, and Scheme 2 thus

has a favorable CFL condition compared with that of the basic scheme. However, for large values of η the
coefficients ε1

η and ε2
η are nearly equal.

4. Convergence analysis

Lemma 4.1. Scheme 1 given by (3.7) is monotone under the CFL condition (3.9).

Proof. The proof is similar to the one of Lemma 3.2 by Acosta et al. (2011). We denote by un and vn the
respective data {unij}i,j∈Z and {vnij}i,j∈Z, and assume that unij = vnij for i, j ∈ Z with the exception of i = k,
j = l, for which we assume that unkl ≤ vnkl. We rewrite Scheme 1, (3.7), as un+1

ij = Sij(un), where Sij(un)
denotes the right-hand side of (3.7). Analogously, we define vn+1

ij = Sij(vn). Clearly, Sij(un)− Sij(vn) = 0
if k < i−η or k > i+η and l < j−η or l > j+η. Similarly, in the remaining cases combinations of arguments
of the proof of Lemma 3.2 by Acosta et al. (2011) will be sufficient to establish that Sij(un)− Sij(vn) ≤ 0
provided that i 6= k or j 6= l. It remains to deal with the case i = k, j = l. We then have

Sij(un)− Sij(vn) = unij − vnij − λ
(
F
(
unij , u

n
i+1,j

)
− F

(
vnij , u

n
i+1,j

))
+ λ
(
F
(
uni−1,j , u

n
ij

)
− F

(
uni−1,j , v

n
ij

))
− λ
(
G
(
unij , u

n
i,j+1

)
−G

(
vnij , u

n
i,j+1

))
+ λ

(
G
(
uni,j−1, u

n
ij

)
−G

(
uni,j−1, v

n
ij

))
+ 2µCη

([
Jxη
(
A(un)−A(vn)

)]
ij

+
[
Jyη
(
A(un)−A(vn)

)]
ij
− 2
(
A
(
unij
)
−A

(
vnij
)))

.

Considering that[
Jxη
(
A(un)−A(vn)

)]
ij

=
η∑

ν=−η
wν
(
A
(
uni+ν,j

)
−A

(
vni+ν,j

))
= w0

(
A
(
unij
)
−A

(
vnij
))

(and analogously [Jyη (A(un)−A(vn))]ij = w0(A(unij)−A(vnij))) and that we have

F
(
unij , u

n
i+1,j

)
− F

(
vnij , u

n
i+1,j

)
= f+

(
unij
)
− f+

(
vnij
)
,

F
(
uni−1,j , u

n
ij

)
− F

(
uni−1,j , v

n
ij

)
= f−

(
unij
)
− f−

(
vnij
)
,

G
(
unij , u

n
i,j+1

)
−G

(
vnij , u

n
i,j+1

)
= g+

(
unij
)
− g+

(
vnij
)
,

G
(
uni,j−1, u

n
ij

)
−G

(
uni,j−1, v

n
ij

)
= g−

(
unij
)
− g−

(
vnij
) (4.1)

by the definition of F and G, we obtain for i = k and j = l

Sij(un)− Sij(vn) = unij − vnij − λ
(
f+
(
unij
)
− f+

(
vnij
))

+ λ
(
f−
(
unij
)
− f−

(
vnij
))

− λ
(
g+
(
unij
)
− g+

(
vnij
))

+ λ
(
g−
(
unij
)
− g−

(
vnij
))

+ 4µCη(w0 − 1)
(
A
(
unij
)
−A

(
vnij
))

=
∫ vnij

unij

{
−1 + λmax

{
f ′(s), 0

}
− λmin

{
f ′(s), 0

}
+ λmax

{
g′(s), 0

}
− λmin

{
g′(s), 0

}
+ 4µCη(1− w0)a(s)

}
ds
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≤ −
∫ vnij

unij

{
1− λ

∣∣f ′(s), 0∣∣− λ∣∣g′(s), 0∣∣− 4µCη(1− w0)a(s)
}

ds. (4.2)

Under the CFL condition (3.9) the integrand in (4.2) is non-negative, so Sij(un) ≤ Sij(vn) and Scheme 1,
(3.7), is indeed montone. �

Lemma 4.2. Scheme 2 defined by (3.8) is monotone under the CFL condition (3.10).

Proof. The proof is similar to that of Lemma 4.1. We define un and vn as in the proof of Lemma 4.1, and
denote by S̃ij(un) the right-hand side of (3.8), so that un+1

ij = S̃ij(un) and vn+1
ij = S̃ij(vn). By arguments

similar to those of the proof of Lemma 4.1 one can straightforwardly show that S̃ij(un)− S̃ij(vn) ≤ 0 if i 6= k
or j 6= l. For i = k and j = l we obtain

S̃ij(un)− S̃ij(vn) = unij − vnij − λ
(
F
(
unij , u

n
i+1,j

)
− F

(
vnij , u

n
i+1,j

))
+ λ
(
F
(
uni−1,j , u

n
ij

)
− F

(
uni−1,j , v

n
ij

))
− λ
(
G
(
unij , u

n
i,j+1

)
−G

(
vnij , u

n
i,j+1

))
+ λ
(
G
(
uni,j−1, u

n
ij

)
−G

(
uni,j−1, v

n
ij

))
+ 2µCη

([
J2
η

(
A(un)−A(vn)

)]
ij
−
(
A
(
unij
)
−A

(
vnij
)))

.

Now, taking into account that[
J2
η

(
A(un)−A(vn)

)]
ij

=
η∑

ν=−η

η∑
κ=−η

wνwκ
(
A
(
uni+ν,j+κ

)
−A

(
vni+ν,j+κ

))
= w2

0

(
A
(
unij
)
−A

(
vnij
))

and using again (4.1), we obtain for i = k and j = l

S̃ij(un)− S̃ij(vn) = unij − vnij − λ
(
f+
(
unij
)
− f+

(
vnij
))

+ λ
(
f−
(
unij
)
− f−

(
vnij
))

− λ
(
g+
(
unij
)
− g+

(
vnij
))

+ λ
(
g−
(
unij
)
− g−

(
vnij
))

+ 2µCη
(
w2

0 − 1
) (
A
(
unij
)
−A

(
vnij
))
.

The remainder of the proof is now analogous to that of Lemma 4.1. �

In what follows, we denote by u∆ the piecewise constant function that satisfies

u∆(x, y, t) = unij for xi−1/2 ≤ x < xi+1/2, yj−1/2 ≤ y < yj+1/2, tn ≤ t < tn+1. (4.3)

Moreover, we define

Fni−1/2,j := F
(
uni−1,j , u

n
ij

)
, Gni,j−1/2 := G

(
uni,j−1, u

n
ij

)
, An := A(un), Anij := A

(
unij
)
.

A sum over “i, j” is understood as simultaneous summation over i ∈ Z, j ∈ Z, and a sum over “i, j, n”
denotes summation over i ∈ Z, j ∈ Z and n = 0, . . . , N − 1. Furthermore, C denotes a constant whose
meaning may change from line to line, but whose value is always independent of ∆ = (∆x,∆t).

Lemma 4.3. Under the respective CFL conditions (3.9) and (3.10) the approximate solutions generated by
Schemes 1 and 2 satisfy the uniform L∞ and L1 bounds

‖un‖∞ ≤ ‖u0‖∞ for n = 1, . . . , N , (4.4)

‖un‖1 ≤ ‖u1‖1 for n = 1, . . . , N , (4.5)

and the uniform total variation diminishing (TVD) property holds:∑
i,j

(∣∣un+1
i+1,j − u

n+1
ij

∣∣+
∣∣un+1
i,j+1 − u

n+1
ij

∣∣) ≤∑
i,j

(∣∣uni+1,j − unij
∣∣+
∣∣uni,j+1 − unij

∣∣), n = 0, . . . , N − 1. (4.6)

Proof. Inequality (4.4) follows from monotonicity by a standard argument if we take into account that if
wnij = ‖u0‖∞ for all i, j ∈ Z or wnij = −‖u0‖∞ for all i, j ∈ Z and wn+1

ij = Sij(wn) or wn+1
ij = S̃ij(wn), then

wn+1
ij = ‖u0‖∞ for all i, j ∈ Z or wn+1

ij = −‖u0‖∞ for all i, j ∈ Z. Inequalities (4.5) and (4.6) are standard
properties of monotone schemes, and are established by an application of the Crandall-Tartar lemma (see
Karlsen & Risebro, 2001). �
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Lemma 4.4. For both Schemes 1 and 2 there exists a constant C, which is independent of ∆, such that∥∥u∆(·, t1)− u∆(·, t2)
∥∥
L1(R2)

≤ C
√
|t1 − t2|. (4.7)

Proof. The proof is similar to that of Karlsen & Risebro (2001), and proceeds by appealing to the Kružkov
interpolation lemma (Kružkov, 1969; see Lemma 2.4 by Karlsen & Risebro, 2001). The proof proceeds by
selecting a test function ϕ = ϕ(x, y), multiplying (3.7) (or (3.8)) by ∆x2ϕij = ϕ(xi, yj), summing the result
over i, j ∈ Z, and applying summation by parts. Taking into account that for Scheme 1, we have that

Cη
∑
i,j

([
JxηA

n
]
ij

+
[
JyηA

n
]
ij
− 2Anij

)
ϕij

= Cη
∑
i,j

(
η∑
k=1

wk

((
Ani+k,j − 2Anij +Ani−k,j

)
+
(
Ani,j+k − 2Anij +Ani,j−k

)))
ϕij

= Cη

η∑
k=1

wk
∑
i,j

((
Ani+k,j −Anij

)(
ϕij − ϕi+k,j

)
+
(
Ani,j+k −Anij

)(
ϕij − ϕi,j+k

))

= −Cη
η∑
k=1

wk
∑
i,j

k−1∑
p,q=0

((
∆+
xA

n
i+p,j

)(
∆+
x ϕi+q,j

)
+
(
∆+
y A

n
i,j+p

)(
∆+
y ϕi,j+q

))
= −Cη

η∑
k=1

k2wk
∑
i,j

((
∆+
xA

n
ij

)(
∆+
x ϕij

)
+
(
∆+
y A

n
ij

)(
∆+
y ϕij

))
= −1

2

∑
i,j

((
∆+
xA

n
ij

)(
∆+
x ϕij

)
+
(
∆+
y A

n
ij

)(
∆+
y ϕij

))
,

(4.8)

we deduce that

2µCη∆x2

∣∣∣∣∣∑
i,j

([
JxηA

n
]
ij

+
[
JyηA

n
]
ij
− 2Anij

)
ϕij

∣∣∣∣∣ ≤ ∆t∆x‖∇ϕ‖∞
∑
i,j

(∣∣∆+
xA

n
ij

∣∣+
∣∣∆+

y A
n
ij

∣∣).
In a similar way, in light of (3.5) we obtain for Scheme 2, by a summation by parts and using (3.2),

Cη
∑
i,j

([
J2
ηA

n
]
ij
−Anij

)
ϕij

= −Cη

(
η∑

k=−η

wk

η∑
l=1

wl
∑
i,j

(
Ani+k,j+l −Ani+k,j

)
(ϕi+k,j − ϕij) +

η∑
k=1

wk
∑
i,j

(
Ani+k,j −Anij

)
(ϕi+k,j − ϕij)

)

= −Cη

(
η∑

k=−η

wk

η∑
l=1

wl
∑
i,j

l−1∑
p,q=0

(
∆+
y A

n
i+k,j+p

)(
∆+
y ϕi,j+q

)
+

η∑
k=1

wk
∑
i,j

k−1∑
r,s=0

(
∆+
xA

n
i+r,j

)(
∆+
x ϕi+s,j

))

= −Cη

(
η∑

k=−η

wk

η∑
l=1

l2wl
∑
i,j

(
∆+
y A

n
ij

)(
∆+
y ϕij

)
+

η∑
k=1

k2wk
∑
i,j∈Z

(
∆+
xA

n
ij

)(
∆+
x ϕij

))

= −1
2

∑
i,j

((
∆+
xA

n
ij

)(
∆+
x ϕij

)
+
(
∆+
y A

n
ij

)(
∆+
y ϕij

))
,

(4.9)

which implies that

2µ∆x2Cη

∣∣∣∣∣∑
i,j

([
J2
ηA

n
]
ij
−Anij

)
ϕij

∣∣∣∣∣ ≤ ∆t∆x‖∇ϕ‖∞
∑
i,j

(∣∣∆+
xA

n
ij

∣∣+
∣∣∆+

y A
n
ij

∣∣).
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Consequently, for both schemes there exists a constant C, which is independent of ∆, such that∑
i,j

∣∣un+1
ij − unij

∣∣ϕij∆x2 ≤ C∆t‖∇ϕ‖L∞(R2)

∑
i,j

((∣∣Fni−1/2,j

∣∣+
∣∣Gni,j−1/2

∣∣)∆x2 +
(∣∣∆+

xA
n
ij

∣∣+
∣∣∆+

y A
n
ij

∣∣)∆x
)
.

The proof of (4.7) can now be concluded exactly as in Karlsen & Risebro (2001) by an application of the
Kružkov interpolation lemma, and appealing to the uniform L1 and BV bounds (4.5) and (4.6). �

Lemma 4.5. Assume that the CFL condition (3.12) is satisfied. Then for Scheme 1 there exists a constant
C, which is independent of ∆, such that∑

i,j,n

[(
∆+
xA

n
ij

∆x

)2

+
(

∆+
y A

n
ij

∆x

)2]
∆x2∆t ≤ C. (4.10)

For the proof of Lemma 4.4, we need the following result by Karlsen & Risebro (2001).

Lemma 4.6. The following inequality holds:

S := ∆x∆t
∑
i,j,n

(
∆+
x F

n
i−1/2,j + ∆+

y G
n
i,j−1/2

)
unij ≥

∆t∆x
Mf ′,g′

S̃, (4.11)

where Mf ′,g′ := 2 max{‖f ′‖∞, ‖g′‖∞} and

S̃ :=
∑
i,j,n

((
f+
(
unij
)
− f+

(
uni−1,j

))2 +
(
f−
(
uni+1,j

)
− f−

(
unij
))2

+
(
g+
(
unij
)
− g+

(
uni,j−1

))2 +
(
g−
(
uni,j+1

)
− g−

(
unij
))2)

.

The proof of Lemma 4.6 follows as a special case from the analysis of Section 4 of Karlsen & Risebro
(2001). For sake of completeness we provide the proof in the Appendix.

Proof of Lemma 4.5. Noting that the one-dimensional discrete mollification operator Jxη satisfies

[JxηA
n]ij −Anij =

η∑
k=−η

wkA
n
i+k,j −Anij =

η∑
k=1

wk
(
Ani+k,j − 2Anij +Ani−k,j

)
(with an analogous identity for Jyη ), we can rewrite the marching formula (3.7) as

− 2µCη
η∑
k=1

wk

((
Ani+k,j − 2Anij +Ani−k,j

)
+
(
Ani,j+k − 2Anij +Ani,j−k

))
= un+1

ij − unij − λ
(
∆+
x F

n
i−1/2,j + ∆+

y G
n
i,j−1/2

)
.

(4.12)

Next, we multiply (4.12) by ∆x2unij , sum the result over i, j ∈ Z and n = 0, . . . , N − 1, use that(
un+1
ij − unij

)
unij =

1
2

((
un+1
ij

)2 − (unij)2 − (un+1
ij − unij

)2)
,

apply summation by parts and take into account (4.9) (with ϕij replaced by unij) to obtain∑
i,j,n

((
∆+
xA

n
ij

)(
∆+
x u

n
ij

)
+
(
∆+
y A

n
ij

)(
∆+
y u

n
ij

))
= −∆x2

2

∑
i,j,n

((
un+1
ij

)2 − (unij)2)+
∆x2

2

∑
i,j,n

(
un+1
ij − unij

)2 − S
=

∆x2

2

∑
i,j∈Z

(
u0
ij

)2 +
∆x2

2

∑
i,j,n

(
un+1
ij − unij

)2 − S.
We define a∗ := ‖a‖∞. Then we can write(

∆+
xA

n
ij

)(
∆+
x u

n
ij

)
≥ 1
a∗
(
∆+
xA

n
ij

)2
,
(
∆+
y A

n
ij

)(
∆+
y u

n
ij

)
≥ 1
a∗
(
∆+
y A

n
ij

)2
. (4.13)
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Consequently, taking into account that µ∆x2 = ∆t and Lemma 4.6, we obtain the inequality

∆t
a∗

∑
i,j,n

((
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)+
∆t∆x
Mf ′,g′

S̃ ≤ ∆x2

2

∑
i,j∈Z

(
u0
ij

)2 +
∆x2

2

∑
i,j,n

(
un+1
ij − unij

)2
. (4.14)

On the other hand, noting that (a+ b)2 ≤ 2a2 + 2b2 we obtain from (3.7)
1
2
(
un+1
ij − unij

)2 − 2λ2
(
∆+
x F

n
i−1/2,j + ∆+

y G
n
i,j−1/2

)2
≤ 4µ2C2

η

(
η∑

k=−η

wkA
n
i+k,j −Anij +

η∑
k=−η

wkA
n
i,j+k −Anij

)2

≤ 8µ2C2
η

[(
η∑

k=−η

wkA
n
i+k,j −Anij

)2

+

(
η∑

k=−η

wkA
n
i,j+k −Anij

)2]

= 8µ2C2
η

[(
η∑
k=1

wk

[(
Ani+k,j −Anij

)
+
(
Ani−k,j −Anij

)])2

+

(
η∑

k=−η

wk

[(
Ani,j+k −Anij

)
+
(
Ani,j−k −Anij

)])2]
.

Applying the Cauchy-Schwarz inequality and noting that w1 + · · ·+ wη = (1− w0)/2, we get
1
2
(
un+1
ij − unij

)2 − 2λ2
(
∆+
x F

n
i−1/2,j + ∆+

y G
n
i,j−1/2

)2
≤ 8µ2C2

η(1− w0)
η∑
k=1

wk

((
Ani+k,j −Anij

)2 +
(
Ani−k,j −Anij

)2 +
(
Ani,j+k −Anij

)2 +
(
Ani,j−k −Anij

)2)
.

(4.15)

Next, we note that

16µ2∆x2C2
η(1− w0)

η∑
k=1

wk
∑
i,j,n

((
Ani+k,j −Anij

)2 +
(
Ani,j+k −Anij

)2)

= 16µ2∆x2C2
η(1− w0)

η∑
k=1

wk
∑
i,j,n

k−1∑
p,q=0

((
∆+
xA

n
i+p,j

)(
∆+
xA

n
i+q,j

)
+
(
∆+
y A

n
i,j+p

)(
∆+
y A

n
i,j+q

))
= 16µ2∆x2C2

η(1− w0)
η∑
k=1

k2wk
∑
i,j,n

((
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)
= 8µ2∆x2Cη(1− w0)

∑
i,j,n

((
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)
.

(4.16)

Thus, we obtain the following inequality by multiplying inequality (4.15) by ∆x2 and summing the result
over i, j ∈ Z and n = 0, . . . , N − 1:

∆x2

2

∑
i,j,n

(
un+1
ij − unij

)2 ≤ 2∆t2
∑
i,j,n

(
∆+
x F

n
i−1/2,j + ∆+

y G
n
i,j−1/2

)2
+ 8µ2∆x2Cη(1− w0)

∑
i,j,n

((
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)
.

Taking into account that by (A.1),∑
i,j,n

(
∆+
x F

n
i−1/2,j + ∆+

y G
n
i,j−1/2

)2 ≤ 4S̃,

we arrive at
∆x2

2

∑
i,j,n

(
un+1
ij − unij

)2 ≤ 8∆t2S̃ + 8µ2∆x2Cη(1− w0)
∑
i,j,n

((
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)
. (4.17)
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Adding (4.14) and (4.17) we obtain the inequality(
∆t
a∗
− 8µ2∆x2Cη(1− w0)

)∑
i,j,n

((
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)+
(

∆t∆x
Mf ′,g′

− 8∆t2
)
S̃ ≤ ∆x2

2

∑
i,j

(
u0
ij

)2 := C̃.

(4.18)

Now, if the strengthened CFL condition (3.12) is imposed instead of (3.9), we get

8µ2∆x2Cη(1− w0) = 8µCη(1− w0)∆t ≤ ∆t(1− ε)
a∗

, 8∆t ≤ (1− ε)∆x
‖f ′‖∞ + ‖g′‖∞

≤ (1− ε)∆x
Mf ′,g′

, (4.19)

and therefore
∆t
a∗
− 8µ∆x2Cη(1− w0) ≥ ε∆t

a∗
,

∆t∆x
Mf ′,g′

− 8∆t2 = ∆t
(

∆x
Mf ′,g′

− 8∆t
)
≥ ε∆x∆t

Mf ′,g′
> 0. (4.20)

Clearly, under the CFL condition (3.12) the coefficient of S̃ on the left-hand side of (4.18) is positive. Thus,
we get from (4.18) the inequality

ε

a∗
∆t∆x2

∑
i,j,n

[(
∆+
xA

n
ij

∆x

)2

+
(

∆+
y A

n
ij

∆x

)2]
≤ C̃,

from which we deduce that (4.10) holds with C = C̃a∗/ε. �

Lemma 4.7. Assume that the CFL condition (3.13) is satisfied. Then inequality (4.10) is also valid for
Scheme 2.

Proof. The proof is similar to that of Lemma 4.4. In fact, we obtain by multiplying (3.8) by ∆x2unij , summing
the result over i, j ∈ Z and n = 0, . . . , N − 1, applying summation by parts (where we bear in mind (4.9)
with ϕij replaced by unij), using (4.13) and applying Lemma 4.6, that (4.14) is also valid for Scheme 2. On
the other hand, a straightforward computation yields(

2µCη
([
J2
ηA

n
]
ij
−Anij

))2

= 4µ2C2
η

(
η∑

k,l=−η

wkwl
(
Ani+l,j+k −Anij

))2

≤ 4µ2C2
η

(
η∑

k,l=−η

wkwl − w2
0

)
η∑

k,l=−η

wkwl
(
Ani+l,j+k −Anij

)2
≤ 8µ2C2

η(1− w2
0)

η∑
k,l=−η

wkwl

((
Ani+l,j+k −Ani+l,j

)2 +
(
Ani+l,j −Anij

)2)
,

from which we deduce (by arguments similar to those used in (4.16)) that∑
i,j

(
2µCη

([
J2
ηA

n
]
ij
−Anij

))2

≤ 8µ2C2
η(1− w2

0)

(
η∑

k,l=−η

wlwk
∑
i,j

(
Ani+l,j+k −Ani+l,j

)2 +
η∑

l=−η

wl
∑
i,j

(
Ai+l,j −Anij

)2)

= 8µ2C2
η(1− w2

0)

(
2

η∑
l=−η

wl

η∑
k=1

k2wk
∑
i,j∈Z

(
∆+
y A

n
ij

)2 + 2
η∑
l=1

l2wl
∑
i,j

(
∆+
xA

n
ij

)2)

= 8µ2Cη(1− w2
0)
∑
i,j

((
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)
.

Taking into account this inequality, we obtain from the inequality
1
2
(
un+1
ij − unij

)2 ≤ 2λ2
(
∆+
x F

n
i−1/2,j + ∆+

y G
n
i,j−1/2

)2 +
(

2µCη
([
J2
ηA

n
]
ij
−Anij

))2

, (4.21)
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by multiplying (4.21) by ∆x2, summing the result over i, j ∈ Z and n = 0, . . . , N − 1 and dealing with the
first term on the right-hand side exactly as in the proof of Lemma 4.4, the following analogue of (4.17):

∆x2

2

∑
i,j,n

(
un+1
ij − unij

)2 ≤ 8∆2S̃ + 8µ2Cη(1− w2
0)
∑
i,j,n

((
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)
.

Adding (4.14) to this inequality we obtain(
∆t
a∗
− 8µ2∆x2Cη(1− w2

0)
)∑
i,j,n

((
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)+
(

∆t∆x
Mf ′,g′

− 8∆t2
)
S̃ ≤ ∆x2

2

∑
i,j

(
u0
ij

)2 =: Ĉ.

Now let impose instead of (3.10) the strengthened condition (3.13). Then we have

∆t
a∗
− 8µ∆x2Cη(1− w2

0) ≥ ε∆t
a∗

,

while the second inequalities in (4.19) and (4.20) are valid as before. Consequently, (4.10) holds as in the
proof of Lemma 4.4. �

Lemma 4.8. We recall the standard notation a ∧ b := min{a, b} and a ∨ b := max{a, b}, and define the
numerical entropy fluxes

Qf (k, u, v) := F (u ∨ k, v ∨ k)− F (u ∧ k, v ∧ k), Qg(k, u, v) := G(u ∨ k, v ∨ k)−G(u ∧ k, v ∧ k).

Then Scheme 1 satisfies the following cell entropy inequality:

∀k ∈ R :
∣∣un+1
ij − k

∣∣ ≤ ∣∣unij − k∣∣− λ∆−xQf
(
k, unij , u

n
i+1,j

)
− λ∆−y Qg

(
k, unij , u

n
i,j+1

)
+ 2µCη

η∑
l=−η

wl

(∣∣Ani+l,j −A(k)
∣∣− ∣∣Anij −A(k)

∣∣+
∣∣Ani,j+l −A(k)

∣∣− ∣∣Anij −A(k)
∣∣). (4.22)

Proof. Replacing every occurrence of unij in the definition of Sij(un) (i.e., in the right-hand side of (3.7)) by
unij ∨ k, we obtain the following identity, where un ∨ k = {unij ∨ k}i,j∈Z:

Sij(un ∨ k) = unij ∨ k − λ∆−x F
(
unij ∨ k, uni+1,j ∨ k

)
− λ∆−y G

(
unij ∨ k, uni,j+1 ∨ k

)
+ 2µCη

(
η∑

l=−η

wl
(
A
(
uni+l,j ∨ k

)
−A

(
unij ∨ k

))
+

η∑
l=−η

wl
(
A
(
uni,j+l ∨ k

)
−A

(
unij ∨ k

)))

The same identity holds if every “∨” is replaced by “∧”, and we define un ∧ k = {unij ∧ k}i,j∈Z. Subtracting
the second version from the first, we get

Sij(un ∨ k)− Sij(un ∧ k) = unij ∨ k − unij ∧ k − λ∆−xQf
(
k, unij , u

n
i+1,j

)
− λ∆−y Qg

(
k, unij , u

n
i,j+1

)
+ 2µCη

(
η∑

l=−η

wl

((
A
(
uni+l,j ∨ k

)
−A

(
uni+l,j ∧ k

))
−
(
A
(
unij ∨ k

)
−A

(
unij ∧ k

)))

+
η∑

l=−η

wl

((
A
(
uni,j+l ∨ k

)
−A

(
uni,j+l ∧ k

))
−
(
A
(
unij ∨ k

)
−A

(
unij ∧ k

))))
(4.23)

Since A is nondecreasing, we can rewrite the right-hand side of (4.23) as that of (4.22). On the other hand,
due to the monotonicity of the scheme we have that

Sij(un ∨ k)− Sij(un ∧ k) ≥ Sij(un) ∨ k − Sij(un) ∧ k =
∣∣unij − k∣∣. (4.24)

Combining (4.23) and (4.24) we arrive at the desired entropy inequality (4.22). �
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Lemma 4.9. Scheme 2 satisfies the following cell entropy inequality:

∀k ∈ R :
∣∣un+1
ij − k

∣∣ ≤ ∣∣unij − k∣∣− λ∆−xQf
(
k, unij , u

n
i+1,j

)
− λ∆−y Qg

(
k, unij , u

n
i,j+1

)
+ 2µCη

(
η∑

p,q=−η
wpwq

∣∣Ani+p,j+q −A(k)
∣∣− ∣∣Anij −A(k)

∣∣). (4.25)

Proof. The proof is similar to that of Lemma 4.8 if we take into account that

S̃ij(un ∨ k)− S̃ij(un ∧ k)

=
∣∣unij − k∣∣− λ∆−xQf

(
k, unij , u

n
i+1,j

)
− λ∆−y Qg

(
k, unij , u

n
i,j+1

)
+ 2µCη

(
η∑

p,q=−η
wpwq

(
A
(
uni+p,j+q ∨ k

)
−A

(
uni+p,j+q ∧ k

))
−
(
A
(
unij ∨ k

)
−A

(
unij ∧ k

)))
.

�

Theorem 4.1. Assume that the integrated diffusion coefficient A, the functions f and g, and the initial
datum u0 satisfy the respective assumptions (2.1), (2.2), and (2.3). Assume that for the cases of Scheme 1
and 2, ∆t and ∆x are always chosen such that the respective strengthened CFL condition (3.12) or (3.13) is
satisfied. Then the piecewise constant approximate solutions (4.3) generated by Scheme 1 or 2 converge to
the unique entropy solution of (1.1), (1.2) as ∆ = (∆x,∆t) ↓ 0.

Proof. From Lemma 4.3 we deduce that there exists a constant C1, which does not depend on ∆, such that

∥∥u∆(·, t)
∥∥
L1(R2)

≤ C,
∥∥u∆(·, t)

∥∥
L∞(R2)

≤ C,
∣∣u∆(·, t)

∣∣
BV (R2)

≤ C. (4.26)

In view of the uniform L1 and BV estimates in (4.26) and (4.7) in Lemma 4.4 we may appeal to Lemma 2.1
to conclude that {u∆}∆>0 is compact in L1

loc(ΠT ), and any limit point u (obtained as ∆ ↓ 0) will satisfy
items (1) and (4) in Definition 2.1.

Next, we prove that u satisfies (2) in Definition 2.1, i.e., the entropy inequality (2.4). This can be done by
a standard Lax-Wendroff-type argument; namely, we choose a nonnegative test function φ ∈ C∞(ΠT ) with
compact support on R2 × [0, T ), multiply the discrete entropy inequalities for Schemes 1 and 2, (4.22) and
(4.25), respectively, by ∆x2φnij , where φnij = φ(xi, yi, tn), sum the result over i, j ∈ Z and n = 0, . . . , N − 1,
apply summation by parts, and let ∆ ↓ 0. Details will be omitted here (see, e.g., Acosta et al., 2011; Evje
& Karlsen, 2000; Karlsen & Risebro, 2001), however, we will explicitly demonstrate how the summation by
parts procedure works for the mollification-based discretizations of ∆A(u) for Schemes 1 and 2, respectively.

As a slight extension of the calculus of Acosta et al. (2011) we here obtain

∆x2∆t
∑
i,j,n

2Cη
∆x2

(
η∑

l=−η

wl

(∣∣Ani+l,j −A(k)
∣∣− ∣∣Anij −A(k)

∣∣+
∣∣Ani,j+l −A(k)

∣∣− ∣∣Anij −A(k)
∣∣))φnij

= ∆x2∆t
∑
i,j,n

∣∣Anij −A(k)
∣∣ 2Cη
∆x2

(
η∑

l=−η

wlφ
n
i−l,j − φnij +

η∑
l=−η

wlφ
n
i,j−l − φnij

)
= ∆x2∆t

∑
i,j,n

∣∣Anij −A(k)
∣∣(φxx(xi, yj , tn) + φyy(xi, yj , tn)

)
+O(∆x2),

(4.27)
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while the analogous result for Scheme 2 is

∆x2∆t
N−1∑
n=0

2Cη
∆x2

∑
i,j

φnij

η∑
p,q=−η

wpwq

(∣∣Ani+p,j+q −A(k)
∣∣− ∣∣Anij −A(k)

∣∣)

= ∆x2∆t
N−1∑
n=0

2Cη
∆x2

η∑
p,q=−η

wpwq
∑
i,j

(∣∣Ani+p,j+q −A(k)
∣∣− ∣∣Anij −A(k)

∣∣)φnij
= ∆x2∆t

N−1∑
n=0

2Cη
∆x2

η∑
p,q=−η

wpwq
∑
i,j

∣∣Anij −A(k)
∣∣(φni−p,j−q − φnij)

= ∆x2∆t
∑
i,j,n

∣∣Anij −A(k)
∣∣( 2Cη

∆x2

η∑
p,q=−η

wpwq
(
φni+p,j+q − φnij

))

= ∆x2∆t
∑
i,j,n

∣∣Anij −A(k)
∣∣ 2Cη
∆x2

([
J2
ηφ(·, ·, tn)

]
ij
− φ(xi, yj , tn)

)
= ∆x2∆t

∑
i,j,n

∣∣Anij −A(k)
∣∣(φxx(xi, yj , tn) + φyy(xi, yj , tn)

)
+O(∆x2).

(4.28)

In both calculations, (4.27) and (4.28), we use that wp = w−p for p = 0, . . . , η, and that φ is smooth, so (3.4)
holds for G = φ. Clearly, both expressions duely converge to

∫∫
ΠT
|A(u)−A(k)|∆φ dt dx dy as ∆ ↓ 0.

It remains to prove that a limit u of {u∆}∆>0 satisfies item (3) of Definition 2.1. This will be done by
deriving a weak BV estimate (see Champier et al., 1993; Eymard et al., 1998a, 1998b; Afif & Amaziane,
2002). To this end, we may directly follow the analysis by Karlsen & Risebro (2001) to deduce from the
weak space estimate (4.10) that there exists a constant C > 0, which is independent of ∆, such that∥∥A(u∆(·+ y, ·)

)
−A

(
u∆(·, ·)

)∥∥
L2(ΠT )

≤ C
(
|y|+ h

)
.

The weak space estimate and the difference schemes themeselves can be employed to prove that A(u∆) is
also L2 continuous in time. To this end, let n(t) ∈ N0 be chosen such that t ∈ [tn(t), tn(t)+1). Then∫∫

ΠT−τ

(
A
(
u∆(x, t+ τ)

)
−A

(
u∆(x, t)

))2

dtdx ≤ ‖a‖∞
∫ T−τ

0

B(t) dt,

where

B(t) := ∆x2
∑
i,j

(
A
n(t+τ)
ij −An(t)

ij

)(
u
n(t+τ)
ij − un(t)

ij

)
=
n(t)+n(τ)−1∑
n=n(t)

Qn(t),

where we define

Qn(t) := ∆x2
∑
i,j

(
A
n(t+τ)
ij −An(t)

ij

)(
un+1
ij − unij

)
.

Consider now Scheme 1. Then Qn(t) = Q̃n(t) +Q1
n(t), where

Q̃n(t) = −∆x∆t
∑
i,j

(
A
n(t+τ)
ij −An(t)

ij

)(
∆+
x F

n
i−1/2,j + ∆+

y G
n
i,j−1/2

)
,

Q1
n(t) = 2∆tCη

∑
i,j

(
A
n(t+τ)
ij −An(t)

ij

)(
[JxηA

n]ij + [JyηA
n]ij − 2Anij

)
.

By summation by parts we obtain

Q̃n(t) = ∆x∆t
∑
i,j

(
∆+
x

(
A
n(t+τ)
ij −An(t)

ij

)
Fni−1/2,j + ∆+

y

(
A
n(t+τ)
ij −An(t)

ij

)
Gni,j−1/2

)
.
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Consequently,∣∣Q̃n(t)
∣∣ ≤ ∆x2∆t

∑
i,j

((
Fni−1/2,j

)2 +
(
Gni,j−1/2

)2)
+

∆t
2

∑
i,j

((
∆+
xA

n(t+τ)
ij

)2 +
(
∆+
xA

n(t)
ij

)2 +
(
∆+
y A

n(t+τ)
ij

)2 +
(
∆+
y A

n(t)
ij

)2)
,

so there exists a constant C1, which is independent of ∆, such that∣∣Q̃n(t)
∣∣ ≤ C1∆t+

∆t
2

∑
i,j

((
∆+
xA

n(t+τ)
ij

)2 +
(
∆+
xA

n(t)
ij

)2 +
(
∆+
y A

n(t+τ)
ij

)2 +
(
∆+
y A

n(t)
ij

)2)
.

On the other hand, following (4.8) with ϕij replaced by An(t)
ij and A

n(t+τ)
ij we get

∣∣Q1
n(t)

∣∣ = ∆t

∣∣∣∣∣∑
i,j

((
∆+
xA

n
ij

)(
∆+
xA

n(t+τ)
ij −∆+

xA
n(t)
ij

)
+
(
∆+
y A

n
ij

)(
∆+
y A

n(t+τ)
ij −∆+

y A
n(t)
ij

))∣∣∣∣∣,
which implies that∣∣Q1

n(t)
∣∣ ≤ ∆t

2

∑
i,j

((
∆+
xA

n(t)
ij

)2 +
(
∆+
xA

n(t+τ)
ij

)2 +
(
∆+
y A

n(t)
ij

)2 +
(
∆+
y A

n(t+τ)
ij

)2 + 2
(
∆+
xA

n
ij

)2 + 2
(
∆+
y A

n
ij

)2)
(4.29)

and therefore∣∣Q̃n(t)
∣∣+
∣∣Q1

n(t)
∣∣ ≤ C1∆t+ ∆t

∑
i,j

((
∆+
xA

n(t)
ij

)2 +
(
∆+
xA

n(t+τ)
ij

)2 +
(
∆+
y A

n(t)
ij

)2 +
(
∆+
y A

n(t+τ)
ij

)2
+
(
∆+
xA

n
ij

)2 +
(
∆+
y A

n
ij

)2)
.

(4.30)

Consequently, ∫ T−τ

0

B(t) dt ≤ (T − τ)C1n(τ)∆t+
∫ T−τ

0

(
B1(t) + · · ·+B6(t)

)
dt,

where we define

B1(t) :=
n(t)+n(τ)−1∑
n=n(t)

∆t
∑
i,j

(
∆+
xA

n(t)
ij

)2
,

and similarly B2(t), . . . , B6(t) according to the summands in (4.30). Then, in view of (4.10), we get∫ T−τ

0

B1(t) dt =
∫ T−τ

0

(
∆t
∑
i,j

n(t)+n(τ)−1∑
n=n(t)

(
∆+
xA

n(t)
ij

)2)dt =
N−n(τ)∑
m=0

∆t2
∑
i,j

n(tm)+n(τ)−1∑
n=n(tm)

(
∆+
xA

n(tm)
ij

)2
≤ n(τ)∆t

(
∆t∆x2

∑
i,j,n

(
∆+
xA

n
ij

∆x

)2
)
≤ C(τ + ∆t),

(4.31)

where C does not depend on ∆t. Analogous inequalities hold for B2, B3 and B4. On the other hand,∫ T−τ

0

B5(t) dt ≤
N−n(τ)∑
m=0

∆t2
m+n(τ)−1∑
n=m

∑
i,j

(
∆+
xA

n
ij

)2 ≤ ∆t
n(τ)−1∑
k=0

(
∆t∆x2

∑
i,j,n

(
∆+
xA

n
ij

∆x

)2
)
≤ C(τ + ∆t).

(4.32)
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An analogous bound holds for the corresponding integral over B6. In view of the bounds (4.31) and (4.32),
we deduce that ∫ T−τ

0

B(t) dt ≤ C(∆t+ τ),

and therefore the following bound holds for approximate solutions u∆ generated by Scheme 1:∥∥A(u∆(·, ·+ τ)
)
−A

(
u∆(·, ·)

)∥∥
L2(R2×(0,T−τ))

≤ C
√

∆t+ τ . (4.33)

To deal with Scheme 2, note that in this case Qn(t) = Q̃n(t) +Q2
n(t), where Q̃n(t) is defined above, and

Q2
n(t) := 2∆tCη

∑
i,j

(
A
n(t+τ)
ij −An(t)

ij

)([
J2
ηA

n
]
ij
−Anij

)
.

Following (4.9) with ϕij replaced by A
n(t)
ij and A

n(t+τ)
ij we obtain that (4.29) remains valid with Q1

n(t)
replaced by Q2

n(t), so following exactly the same steps as for Scheme 1 we may deduce that (4.33) also
holds for Scheme 2. In view of Lemma 2.2 we conclude that for both schemes, A(u∆) converges strongly in
L2

loc(R2 × (0, T )) to a limit Ā as ∆ ↓ 0, with Ā ∈ L2(0, T ;H1(R)). In light of the strong convergence u∆ → u
a.e., we conclude that Ā = A(u), so the limit function u also satisfies (3) of Definition 2.1. �

5. Numerical examples

In this section we include a well selected collection of numerical examples. The purpose here is to
evaluate the performance of Scheme 1, (3.7), and Scheme 2, (3.8), versus the basic scheme (3.6). We employ
the weights given in Table 2, and select the values η = 3, η = 8 and η = 12 for comparison. Examples 1
and 2 are two-dimensional linear convection-diffusion problems with known exact solution and are used for
accuracy and order comparisons, these examples were taken from Cecchi & Pirozzi (2005). Next we present
two nonlinear examples, Examples 3 and 4, which were suggested by Karlsen & Risebro (1997) as test
for multidimensional nonlinear convection-diffusion problems. Finally, Example 5 for a strongly degenerate
parabolic equation was taken from Holden et al. (2000).

In all examples, the time step ∆t is chosen for each of the basic scheme and Schemes 1 and 2 such that
the respective strengthened CFL condition, (3.11), (3.12) or (3.13), is satisfied with 1− ε = 0.98. The plots
and tables of errors and illustrations of numerical solutions are taken at the respective final time t = T . A
discussion of the numerical results will be provided in Section 6.

5.1. Examples 1 and 2: accuracy and order. In Examples 1 and 2 we consider the two dimensional
linear convection-diffusion equation

ut + ux + uy = ε0 (uxx + uyy) . (5.1)

In Example 1 we consider this equation for (x, y) ∈ [0, 2π]2 and 0 < t ≤ T = 1 along with the initial datum

u(x, y, 0) = u0(x, y) = sinx sin y.

This problem has the exact solution

u(x, y, t) = exp (−2ε0t) sin (x− t) sin (y − t) .

Here, we use the parameter value ε0 = 1/2. The results are summarized in Figure 1 (a), while Table 3
provides details of the error history for η = 8.

In Example 2 we consider (x, y) ∈ [0, 3]2 for 0 < t ≤ T = 1 and the initial datum

u(x, y, 0) = u0(x, y) = exp
(
− (x− 1)2 + (y − 1)2

4ε0

)
. (5.2)

The exact solution of the initial value problem (5.1), (5.2) is given by

u(x, y, t) =
1

1 + t
exp
(
− (x− (1 + t))2 + (y − (1 + t))2

4ε0 (1 + t)

)
.
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Figure 1. Examples 1 (a), 2 (b), 3 (c) and 4 (d): CPU time versus L1 error, corresponding
to the numerical solution at final time t = T in each example.

Scheme 1, η = 8 Scheme 2, η = 8 Basic scheme
∆x L1-re L1-cr cpu [s] L1-re L1-cr cpu [s] L1-re L1-cr cpu [s]

π/16 0.0886 – 0.145 0.0666 – 0.153 0.1194 – 0.197

π/32 0.0538 0.7208 0.451 0.0477 0.4822 0.485 0.0661 0.8523 0.684

π/64 0.0297 0.8568 2.224 0.0281 0.7643 2.387 0.0348 0.9274 3.963

π/128 0.0156 0.9281 16.83 0.0152 0.8861 16.73 0.0178 0.9625 37.09

π/256 0.0080 0.9637 270.1 0.0079 0.9443 279.0 0.0090 0.9813 679.6

Table 3. Example 1: L1 relative errors (L1-re), convergence rates (L1-cr) and CPU times (cpu [s]).

We here employ the parameter value ε0 = 1/16. See Figure 1 (b) for a summary of the numerical results,
and Table 4 for details on the error history for η = 12.

5.2. Examples 3 and 4: nonlinear, non-degenerate convection-diffusion problems. In Example 3
we focus on the nonlinear problem

ut +
(
u+ (u− 0.25)3

)
x
−
(
u+ u2

)
y

= ε0 (uxx + uyy) , (x, y) ∈ [−2, 4]2 , 0 < t ≤ T = 0.5,

u0(x, y) =

{
1 for (x− 0.25)2 + (y − 0.25)2

< 5,
0 otherwise.
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Scheme 1, η = 12 Scheme 2, η = 12 Basic scheme
∆x L1-re L1-cr cpu [s] L1-re L1-cr cpu [s] L1-re L1-cr cpu [s]

1/16 0.2418 – 0.416 0.2358 – 0.428 0.2636 – 0.359

1/32 0.1409 0.7789 1.411 0.1388 0.7640 1.419 0.1500 0.8130 1.088

1/64 0.0768 0.8757 8.305 0.0762 0.8656 5.845 0.0809 0.8916 6.610

1/128 0.0403 0.9319 71.07 0.0401 0.9255 46.65 0.0423 0.9366 85.65

1/256 0.0209 0.9486 784.3 0.0208 0.9448 575.8 0.0217 0.9633 2217

Table 4. Example 2: L1 relative errors (L1-re), convergence rates (L1-cr) and CPU times (cpu [s]).

Scheme 1, η = 3 Scheme 2, η = 3 Basic scheme
∆x L1-re L1-cr cpu [s] L1-re L1-cr cpu [s] L1-re L1-cr cpu [s]

1/20 0.0968 – 2.537 0.0967 – 2.925 0.0975 – 2.464

1/24 0.0813 0.9556 4.283 0.0813 0.9514 4.975 0.0818 0.9605 4.253

1/30 0.0651 0.9989 8.119 0.0651 0.9962 9.640 0.0655 0.9993 8.263

1/32 0.0612 0.9589 10.52 0.0612 0.9568 11.92 0.0616 0.9552 10.17

1/40 0.0490 0.9984 21.99 0.0490 0.9956 23.62 0.0492 1.0000 21.57

1/48 0.0402 1.0795 39.35 0.0403 1.0773 45.24 0.0404 1.0819 39.31

1/60 0.0316 1.0754 83.72 0.0317 1.0733 95.39 0.0318 1.0757 97.21

1/80 0.0229 1.1282 247.4 0.0229 1.1267 268.3 0.0230 1.1290 299.2

1/96 0.0184 1.2045 510.5 0.0184 1.2035 585.1 0.0184 1.2058 552.4

1/120 0.0139 1.2605 1209 0.0139 1.2596 1358 0.0139 1.2611 1355

Table 5. Example 3: L1 relative errors (L1-re), convergence rates (L1-cr) and CPU times (cpu [s]).

Scheme 1, η = 8 Scheme 2, η = 8 Scheme 1, η = 12 Scheme 2, η = 12
∆x L1-re L1-cr cpu [s] L1-re L1-cr cpu [s] L1-re L1-cr cpu [s] L1-re L1-cr cpu [s]

1/20 0.0927 – 2.892 0.0913 – 2.745 0.0878 – 2.786 0.0849 – 2.687

1/24 0.0785 0.9113 4.649 0.0776 0.8932 4.510 0.0753 0.8399 4.820 0.0735 0.7941 4.455

1/30 0.0629 0.9916 8.632 0.0622 0.9865 8.174 0.0605 0.9845 8.762 0.0590 0.9792 8.154

1/32 0.0591 0.9789 10.36 0.0584 0.9818 9.766 0.0567 1.0098 10.23 0.0553 1.0233 8.611

1/40 0.0474 0.9832 18.59 0.0470 0.9744 18.68 0.0457 0.9579 19.24 0.0448 0.9400 15.43

1/48 0.0391 1.0587 33.41 0.0388 1.0491 32.03 0.0380 1.0247 31.32 0.0373 1.0054 30.02

1/60 0.0308 1.0714 67.75 0.0306 1.0661 65.07 0.0299 1.0620 55.36 0.0295 1.0525 57.65

1/80 0.0223 1.1225 170.8 0.0222 1.1171 167.1 0.0218 1.1099 162.3 0.0215 1.1001 134.5

1/96 0.0179 1.1975 341.5 0.0179 1.1923 320.1 0.0175 1.1837 276.3 0.0174 1.1740 266.2

1/120 0.0135 1.2594 736.5 0.0135 1.2553 647.0 0.0133 1.2539 605.2 0.0131 1.2469 599.3

Table 6. Example 3: L1 relative errors (L1-re), convergence rates (L1-cr) and CPU times
(cpu [s]) (continued). The corresponding results for the basic scheme are given in Table 5.

Here and in Examples 4 and 5, the reference solution is computed by the basic scheme (3.6) using ∆x = 1/480.
A sample numerical solution of the problem, together with the reference solution, is shown in Figure 2 (a).
The results concerning convergence are summarized in Figure 1 (c). Moreover, for the purpose of comparison
we select this example for a record of detailed information on the convergence history for all three parameters,
η = 3, η = 8 and η = 12. See Tables 5 and 6.

In Example 4 we consider the Buckley-Leverett-type problem

ut + f (u)x + g (u)y = ε0 (uxx + uyy) , (x, y) ∈ [−3, 3]2 , 0 < t ≤ T = 1,
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Figure 2. Example 3 (a): (left) numerical solution computed by Scheme 1, (3.7), with
η = 8 and ∆x = 1/20, (right) reference solution; Example 4 (b): (left) numerical solution
computed by Scheme 2, (3.8), with η = 8 and ∆x = 1/40, (right) reference solution. In
both examples, the reference solution is computed by the basic scheme with ∆x = 1/480.

Scheme 1, η = 8 Scheme 2, η = 8 Basic scheme
∆x L1-re L1-cr cpu [s] L1-re L1-cr cpu [s] L1-re L1-cr cpu [s]

1/20 0.0636 – 4.317 0.0626 – 4.155 0.0666 – 3.905

1/24 0.0548 0.8223 7.031 0.0541 0.8025 6.244 0.0572 0.8297 6.284

1/30 0.0436 1.0181 12.32 0.0432 1.0124 10.51 0.0450 1.0833 13.30

1/32 0.0409 1.0204 14.95 0.0405 1.0055 12.64 0.0421 1.0211 15.92

1/40 0.0329 0.9730 27.13 0.0326 0.9671 22.97 0.0337 0.9970 33.46

1/48 0.0275 0.9707 47.08 0.0274 0.9628 38.85 0.0282 0.9683 64.39

1/60 0.0216 1.0918 115.2 0.0215 1.0872 81.40 0.0220 1.1143 155.8

1/80 0.0156 1.1251 408.2 0.0156 1.1199 249.3 0.0159 1.1357 595.1

1/96 0.0127 1.1545 624.4 0.0126 1.1507 462.9 0.0129 1.1568 1301

1/120 0.0096 1.2597 1093 0.0095 1.2564 990.8 0.0097 1.2656 3555

Table 7. Example 4: L1 relative errors (L1-re), convergence rates (L1-cr) and CPU times (cpu [s]).

where we choose the functions

g(u) =
u2

u2 + (1− u)2
, f(u) = g(u)

(
1− 5(1− u)2

)
,

the parameter ε0 = 0.1, and the initial datum

u(x, y, 0) = u0(x, y) =

{
1 for (x− 0.25)2 + (y − 0.25)2 < 5,
0 otherwise.

Figure 2 (b) shows a sample numerical solution of the problem, together with the reference solution. The
convergence history is summarized in Figure 1 (d), and details for η = 8 are provided in Table 7.

5.3. Example 5: strongly degenerate parabolic problem. Consider the strongly degenerate parabolic
Burgers-like equation

ut + (u2)x + (u2)y = ∆A(u), (x, y) ∈ [−1.5, 1.5]2 , 0 < t ≤ T = 0.5,
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Scheme 1, η = 3 Scheme 2, η = 3 Basic scheme
∆x L1-re L1-cr cpu [s] L1-re L1-cr cpu [s] L1-re L1-cr cpu [s]

1/20 0.0958 – 0.774 0.0986 – 0.864 0.0901 – 0.720

1/24 0.0750 1.3421 1.041 0.0772 1.3376 1.200 0.0718 1.2466 0.998

1/30 0.0673 0.4831 1.632 0.0695 0.4745 1.851 0.0630 0.5850 1.562

1/32 0.0602 1.7301 1.885 0.0622 1.7089 2.118 0.0564 1.7264 1.781

1/40 0.0505 0.7912 3.117 0.0520 0.8061 3.567 0.0475 0.7670 2.988

1/48 0.0418 1.0299 4.927 0.0430 1.0333 5.752 0.0393 1.0359 5.055

1/60 0.0341 0.9107 9.245 0.0352 0.9033 10.86 0.0319 0.9423 11.92

1/80 0.0251 1.0645 21.55 0.0259 1.0691 26.16 0.0234 1.0684 31.71

1/96 0.0203 1.1833 40.31 0.0209 1.1789 55.94 0.0189 1.1737 65.75

1/120 0.0162 0.9982 89.49 0.0167 0.9963 124.2 0.0150 1.0387 163.2

Table 8. Example 5: L1 relative errors (L1-re), convergence rates (L1-cr) and CPU times (cpu [s]).

Scheme 1, η = 8 Scheme 2, η = 8 Scheme 1, η = 12 Scheme 2, η = 12
∆x L1-re L1-cr cpu [s] L1-re L1-cr cpu [s] L1-re L1-cr cpu [s] L1-re L1-cr cpu [s]

1/20 0.1210 – 0.685 0.1343 – 0.677 0.1479 – 0.694 0.1723 – 0.671

1/24 0.0948 1.3376 0.924 0.1052 1.3383 0.918 0.1170 1.2824 0.957 0.1376 1.2357 0.905

1/30 0.0858 0.4505 1.411 0.0939 0.5109 1.428 0.1048 0.4940 1.494 0.1204 0.5953 1.404

1/32 0.0772 1.6220 1.594 0.0846 1.6115 1.602 0.0948 1.5501 1.707 0.1092 1.5233 1.570

1/40 0.0647 0.7972 2.607 0.0702 0.8378 2.602 0.0786 0.8399 2.765 0.0892 0.9036 2.461

1/48 0.0538 1.0078 4.231 0.0583 1.0182 3.945 0.0654 1.0086 4.295 0.0740 1.0235 3.561

1/60 0.0445 0.8505 7.231 0.0481 0.8595 7.275 0.0542 0.8410 7.668 0.0607 0.8879 6.287

1/80 0.0330 1.0375 15.85 0.0357 1.0410 14.53 0.0405 1.0157 16.64 0.0451 1.0316 13.12

1/96 0.0268 1.1433 28.16 0.0290 1.1383 24.77 0.0330 1.1200 28.73 0.0368 1.1158 21.98

1/120 0.0218 0.9213 63.72 0.0236 0.9225 51.33 0.0271 0.8823 57.34 0.0302 0.8967 43.98

Table 9. Example 5: L1 relative errors (L1-re), convergence rates (L1-cr) and CPU times
(cpu [s]) (continued). The corresponding results for the basic scheme are given in Table 8.

where A(u) is defined by (1.3) with

a(u) =

{
0.1 for |u| ≥ 0.25,
0 otherwise,

with zero boundary conditions. The initial condition is given by

u0(x, y) =


−1 for (x− 0.5)2 + (y − 0.5)2

< 0.16,
1 for (x+ 0.4)2 + (y + 0.4)2

< 0.16,
0 otherwise.

Figure 3 (a) shows a sample numerical solution. Figures 3 (b) and (c) present cuts of the numerical solutions
generated for ∆x = 1/60 and different values of η, and for η = 3 and different values of ∆x, respectively.
Tables 8 and 9 provide a detailed error history for η = 3, η = 8 and η = 15. Figure 4 summarizes this
information graphically.

6. Conclusions

The analysis of Section 4 shows that Schemes 1 and 2 converge to the unique entropy solution of the
initial value problem (1.1), (1.2). The corresponding proofs only rely on the generic properties (3.1) of the
mollification weights, and do not depend on the particular way in which these are generated. Furthermore,
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Figure 3. Example 5: numerical solution computed with Scheme 1 (a) with η = 3 and
∆x = 1/60, (b) enlarged view of the diagonal of the numerical solution computed with
Scheme 1 with η = 3, 8, 12 and ∆x = 1/60, (c) enlarged view of the diagonal of the numerical
solution computed with Scheme 1 with η = 3 and ∆x = 1/40, 1/80, 1/120.

it is clear hat simpler versions of the present proofs will cover the one-dimensional case; on the other hand,
the analysis could be extended to a general number of space dimensions and convective fluxes that depend
on position, see Karlsen & Risebro (2001). Concerning the one-dimensional case, let us emphasize that
our solution concept differs from that of Acosta et al. (2011). The one-dimensional analogue of item (3) of
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Figure 4. Example 5: CPU time versus approximate L1 error.

our Defintion 2.1 implies the requirement A(u)x ∈ L2(ΠT ), while the requirement in Acosta et al. (2011),
A(u) ∈ C1,1/2(ΠT ), where ΠT = R × (0, T ), amounts to establishing a uniform L∞ bound on A(u∆)x. In
Lemma 3.5 of Acosta et al. (2011) this bound is established, but appears to be feasible only under restrictions
on η; for example, for the weights of Table 1, one needs to impose η ≤ 5. On the other hand, in Acosta et
al. (2011) we seek solutions in BV (ΠT ), which makes it necessary to establish an L1 Lipschitz continuity
in time bound (Lemma 3.3 of Acosta et al., 2011); the proof of this bound depends, in turn, on a uniform
bound of the spatial total variation of A(u0)x. None of the two restrictions appears in the present analysis.
Having said this, it should be pointed out that the final CFL condition imposed by Acosta et al. (2011) is
analogous to the milder condition (3.9) (obviously, with the term ‖g′‖∞ not present in 1-d and a coefficient 2
instead of 4), while the present analysis relies on strengthened CFL conditions.

Concerning the numerical results, let us for a moment consider the CPU times only. We observe in general
that for η = 3, Schemes 1 and 2 generate little savings in CPU time (compared with the basic scheme), and
in some instances Scheme 2 or even both mollified schemes are slower (always considering the same value
of ∆x), as can be seen in Tables 4, 5 or 8. This is in agreement with the entries for η = 3 in Table 2.
For Scheme 2, ε2

3 = 1.0379 > 1 means that ∆t even has to be slightly smaller than for the basic scheme.
Combined with the fact that even for that small value of η, Scheme 2 is based on a stencil of 49 points for
one evaluation of A(u), it seems surprising that at least for small values of ∆x, this scheme can still compete
with the basic scheme. Indeed, all tables indicate that the CPU times for Scheme 2 with η = 3 are close to,
and in many cases for small ∆x, even smaller than those of the basic scheme. For η = 8 and η = 12, the
CPU times for Schemes 1 and 2 are substantially smaller than those of the basic scheme, with the exception
of large values of ∆x. This trend is evident in Tables 3, 4, 6, 7 and 9. Moreover, the CPU times for η = 12
become consistently smaller than those for η = 8 as ∆x increases. For example, the two last lines of Tables 6
and Table 9 for η = 12, corresponding to ∆x = 1/96 and ∆x = 1/120 in the respective cases of Examples 3
and 5, indicate a factor of acceleration (compared with the basic scheme) ranging between 2.00 and 3.71.
This is remarkable since although the maximal factor by which ∆t can be increased is 1/ε1

12 = 10.12 and
1/ε2

12 = 8.92 for Scheme 1 and 2, respectively, the evaluation of ∆A(u) for each of these schemes is based on
a stencil of 4η + 1 = 49 and (2η + 1)2 = 625 points, respectively.

Let us now relate the CPU times to the observed exact or approximate relative L1 errors. First of all,
the observed L1 convergence rates are consistent with the first order of accuracy of all numerical schemes
considered herein. Moreover, for Examples 1 to 4 the errors for the mollified versions are, for a given value
of ∆x, slightly larger, but in general very close to those of the basic scheme. For Example 5, which has a
discontinuous exact solution, the error produced by the mollified versions can become twice as large as that
of the basic scheme, as can be seen, for example, in the case of Scheme 2 with η = 12 and ∆x = 120 for
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Example 5 (see Table 9). Of course, Scheme 2 generates the solution in only 27% of the CPU time required
by the basic scheme. Thus, we need to assess which scheme is most efficient, i.e., reduces the error below
a given treshold in shortest time. To this end we have plotted the error histories of all runs in L1 error
versus CPU time diagrams, see Figures 1 for Examples 1 to 4 and Figure 4 for Example 5, respectively. In
each diagram the graph that is lowest, at least for small errors and large CPU times (corresponding to small
values of ∆x) corresponds to the most efficient method. In this sense, we conclude from the plots of Figure 1
that for these examples, the schemes for η = 8 or η = 12 are always more efficient than the basic scheme or
Scheme 1 or 2 for η = 3. On the other hand, Figure 4 indicates that for Example 5, these schemes (with the
exception of Scheme 1 for η = 3 and small ∆x) are always slightly less efficient than the basic scheme. This
is most likely related to the non-smooth nature of the solution.

To put this observation into the proper perspective, let us recall that we are using a given set of weights
to be consistent with previous work (see Section 3.1). Although this should be a very interesting question for
further research, we are not investigating the problem of how to construct the family of weights optimally
for a given PDE. In other words, through a change in the weights the performance of Schemes 1 and 2 for
degenerate problems (such as our Example 5) can possibly be improved, and these schemes could eventually
turn out to be more efficient than the basic scheme. Having said this, there are applications in which the
use of a larger time step through a mollified scheme is an asset even if the scheme is not more efficient.
For example, the solution of certain parameter identification problems for strongly degenerate parabolic
equations by the adjoint equation method (see, e.g., Coronel et al., 2003) requires the storage of the full
numerical solution of the direct problem as a function of time and space. Evidently, the storage space
requirements would be decreased by the factor the time step can be increased.

Finally, we mention that for simplicity it is assumed that the parameter η and the weights employed are
the same on all portions of the computational domain, and for all times. It would be very interesing to make
the effort to generate additional gains in accuracy, and savings in CPU time, by choosing these parameters
adaptively in response to local information on the smoothness of the approximate solution.

Appendix

Proof of Lemma 4.6. We recall that
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)
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(
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)
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∆+
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(A.1)

If we define the functions F±(u) :=
∫ u

0
sf±(s) ds and G±(u) :=

∫ u
0
sg±(s) ds, then for all a, b ∈ R
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(
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−
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with the same identity holding for G± and g±. We then obtain(
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(A.3)

Therefore, considering that the sums over i, j ∈ Z of the differences of evaluations of F± and G± in (A.3)
and related identities involving G± and g± are zero, we obtain
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(A.3)
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As a consequence of the identity∣∣∣∣∣
∫ b

a

(
h(ξ)− h(a)

)
dξ

∣∣∣∣∣ ≥ (h(b)− h(a))2

2Lh
for all a, b ∈ R

valid for all monotone Lipschitz continuous functions with Lipschitz constant Lh (see Karlsen & Risebro,
2001), we obtain ∫ unij

uni−1,j

(
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(
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ds ≥ 1
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,

and analogous inequalities for the two remaining integrals in (A.3). This concludes the proof of (4.11).
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