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Abstract

We introduce and analyse an augmented mixed variational formulation for the non-isothermal
Oldroyd-Stokes problem. More precisely, the underlying model consists of the Stokes-type equa-
tion for Oldroyd viscoelasticity, coupled with the heat equation through a convective term and the
viscosity of the fluid. The original unknowns are the polymeric part of the extra-stress tensor, the
velocity, the pressure, and the temperature of the fluid. In turn, for convenience of the analysis, the
strain tensor, the vorticity, and an auxiliary symmetric tensor are introduced as further unknowns.
This allows to join the polymeric and solvent viscosities in an adimensional viscosity, and to elimi-
nate the polymeric part of the extra-stress tensor and the pressure from the system, which, together
with the solvent part of the extra-stress tensor, are easily recovered later on through suitable post-
processing formulae. In this way, a fully mixed approach is applied, in which the heat flux vector is
incorporated as an additional unknown as well. Furthermore, since the convective term in the heat
equation forces both the velocity and the temperature to live in a smaller space than usual, we aug-
ment the variational formulation by using the constitutive and equilibrium equations, the relation
defining the strain and vorticity tensors, and the Dirichlet boundary condition on the temperature.
The resulting augmented scheme is then written equivalently as a fixed-point equation, so that the
well-known Schauder and Banach theorems, combined with the Lax-Milgram theorem and certain
regularity assumptions, are applied to prove the unique solvability of the continuous system. As for
the associated Galerkin scheme, whose solvability is established similarly to the continuous case by
using the Brouwer fixed-point and Lax-Milgram theorems, we employ Raviart–Thomas approxima-
tions of order k for the stress tensor and the heat flux vector, continuous piecewise polynomials of
order ≤ k + 1 for velocity and temperature, and piecewise polynomials of order ≤ k for the strain
tensor and the vorticity. Finally, we derive optimal a priori error estimates and provide several
numerical results illustrating the good performance of the scheme and confirming the theoretical
rates of convergence.
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1 Introduction

The numerical simulation of viscoelastic fluid flows has become increasingly important for a variety
of research areas in the fields of the natural sciences and engineering branches. This fact has been
motivated by its diverse applications in industry such as design of heat exchangers and chemical re-
actors, cooling processes, and polymer processing (see, e.g., [22, 10, 25, 29]), to name a few. The
complexity of the governing equations and the physical domains makes analysis of the mathematical
models and the associated numerical methods especially difficult. Current efforts to model isothermal
viscoelastic flows often revolve around the solution of the Stokes problem for the Oldroyd viscoelastic
model (see, e.g., [5, 4, 8, 3], and the references therein). In particular, in [3] the authors analysed
an extra stress-vorticity formulation and proved that this formulation satisfies an inf-sup condition
and consequently, classical finite element spaces can be used for its approximation. We remark that,
although most of the research on the viscoelastic fluid flows concerns isothermal cases, many flows
of practical interest in polymeric melt processing are non-isothermal (see, e.g., [31, 27, 15, 24]). The
combination of high viscosities of polymeric melts and high deformation rates results in the transfor-
mation of large amounts of mechanical energy into heat, and therefore in a temperature rise of the
material. This phenomenon is, for instance, used in extruders where viscous dissipation is employed
to enhance melting of the material (see [31] for details). This kind of fluid flows has motivated the
introduction of the coupled problem between the Stokes equation for the Oldroyd viscoelastic model
and the heat equation through a convective term and the viscosity of the fluid, thus arising the so
called non-isothermal Oldroyd–Stokes problem.

Up to the authors’ knowledge, [14] constitutes one of the first works in analysing a finite element
discretization for the non-isothermal Oldroyd–Stokes equations. In that work, the authors provide a
complete analysis of a mixed-primal formulation for the coupled problem, in which the main unknowns
are the polymeric part of the extra-stress tensor, the velocity, the pressure and the temperature of
the fluid. The focus of this work is the discrete scheme, where by considering piecewise quadratic
elements for the velocity and the temperature, continuous piecewise linear elements for the pressure,
and discontinuous piecewise linear elements for the polymeric part of the extra-stress tensor, it is
proved existence of at least one solution by using inverse inequalities of L∞ into L2 and the Schaefer
fixed-point theorem. In addition, the Galerkin scheme has optimal rates of convergence under a
smallness assumption on the data. Later on, a new dual-mixed formulation was introduced and
analysed in [17], where the solvent part of the extra-stress tensor, the vorticity, and the heat flux
vector are set as further unknowns (besides the polymeric part of the extra-stress tensor, the velocity,
the pressure and the temperature). The corresponding mixed finite element scheme employs Raviart–
Thomas elements of lowest order plus bubble function for the solvent part of the extra-stress tensor,
Raviart–Thomas elements of lowest order for the heat flux vector, continuous piecewise linear elements
for the vorticity, and piecewise constants for the polymeric part of the extra-stress tensor, velocity,
pressure and the temperature of the fluid. Existence of solution and convergence of the numerical
scheme are proved and optimal error estimates are also provided by using inverse inequalities of L∞

into L2, smallnes assumption on the data and the Schaefer fixed-point theorem. We remark that
this formulation has properties analogous to finite volume methods, namely local conservation of
momentum and mass.

The purpose of the present paper is to contribute in the development of new numerical methods
for the non-isothermal Oldroyd–Stokes problem. To that end, unlike to [14] and [17], and in order
to obtain a new fully-mixed formulation of this coupled problem, we first introduce the strain tensor
as a new unknown, which allows us, on one hand, to eliminate the polymeric part of the extra-stress
tensor from the system and compute it as a simple post-process of the solution, and on the other
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hand, to join the polymeric and solvent viscosities in an adimensional viscosity. In addition, for
convenience of the analysis we also consider the stress and vorticity tensors as auxiliary unknowns,
thanks to which the pressure can be eliminated from the system and approximated later on by a
postprocessing formula. In turn, for deriving the mixed formulation of the heat equation we proceed
similarly to [17] (see also [12, 13]) and set the heat-flux vector as a further unknown. Furthermore,
the difficulty given by the fact that the fluid velocity and the temperature lives in H1 instead of L2 as
usual, is resolved as in [12, 13] by augmenting the variational formulation with suitable Galerkin type
expressions arising from the constitutive and equilibrium equations, the relation defining the strain
and vorticity tensors, and the Dirichlet boundary condition on the temperature. Then, following [12]
and [2], we combine classical fixed-point arguments, suitable regularity assumptions on the decoupled
problems, the Lax–Milgram lemma, the Sobolev embedding and Rellich–Kondrachov theorems, and
sufficiently small data assumptions to establish existence and uniqueness of solution of the continuous
problem. Similarly, the existence of solution of the discrete problem relies on the Brouwer fixed-point
theorem and analogous arguments to those employed in the continuous analysis. Moreover, applying a
Strang-type lemma valid for linear problems, we are able to derive the corresponding Céa estimate and
to provide optimal a priori error bounds for the Galerkin solution. Finally, we point out that the main
advantages of approximating the solution of the coupled system through this new approach include,
on one hand, the fact that no discrete inf-sup conditions are required for the discrete analysis, and
therefore arbitrary finite element subspaces can be employed, and on the other hand, the possibility
of recovering by post-processing formulae the pressure, the polymeric part and solvent part of the
extra-stress tensor in terms of the solution, conserving the same rates of convergence.

The rest of this work is organised as follows. The remainder of this section describes standard
notations and functional spaces to be employed along the paper. In Section 2 we introduce the
model problem and derive the augmented fully-mixed variational formulation. Next, in Section 3 we
establish the well-posedness of this continuous scheme by means of a fixed-point strategy and the
Schauder and Banach fixed point theorems. The corresponding Galerkin system is introduced and
analysed in Section 4, where the discrete analogue of the theory used in the continuous case is employed
to prove existence of solution. In addition, a suitable Strang-type lemma is utilized here to derive the
corresponding a priori error estimate and the resulting rates of convergence. Finally, in Section 5 we
report several numerical essays illustrating the accuracy of our augmented fully-mixed finite element
method.

Preliminary notations

Let Ω ⊆ Rn, n ∈ {2, 3}, denote a bounded domain with Lipschitz boundary Γ = ΓD ∪ ΓN, with
ΓD ∩ΓN = ∅ and |ΓD|, |ΓN| > 0, and denote by n the outward unit normal vector on Γ. For s ≥ 0 and
p ∈ [1,+∞], we define by Lp(Ω) and Ws,p(Ω) the usual Lebesgue and Sobolev spaces endowed with
the norms ‖·‖Lp(Ω) and ‖·‖Ws,p(Ω), respectively. Note that W0,p(Ω) = Lp(Ω). If p = 2, we write Hs(Ω)
in place of Ws,2(Ω), and denote the corresponding Lebesgue and Sobolev norms by ‖ · ‖0,Ω and ‖ · ‖s,Ω,
respectively, and the seminorm by | · |s,Ω. By M and M we will denote the corresponding vectorial
and tensorial counterparts of the generic scalar functional space M, and ‖ · ‖, with no subscripts, will
stand for the natural norm of either an element or an operator in any product functional space. In
turn, for any vector field v = (vi)i=1,n, we set the gradient, and divergence operator, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

and div v :=
n∑
j=1

∂vj
∂xj

.
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Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let divτ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr (τ )I,

where I is the identity matrix in Rn×n. In addition, we recall that

H(div; Ω) :=
{
τ ∈ L2(Ω) : divτ ∈ L2(Ω)

}
,

equipped with the usual norm

‖τ‖2div;Ω := ‖τ‖20,Ω + ‖divτ‖20,Ω,

is a standard Hilbert space in the realm of mixed problems. Furthermore, given an integer k ≥ 0
and a set S ⊆ Rn, Pk(S) denotes the space of polynomial functions on S of degree ≤ k. In addition,
we set Pk(S) := [Pk(S)]n and Pk(S) := [Pk(S)]n×n. Finally, we end this section by mentioning that,
throughout the rest of the paper, we employ 0 to denote a generic null vector (or tensor), and use C
and c, with or without subscripts, bars, tildes or hats, to denote generic constants independent of the
discretization parameters, which may take different values at different places.

2 The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation.

2.1 The model problem

The non-isothermal Oldroyd–Stokes problem consists of a system of equations where the Stokes equa-
tion for the Oldroyd viscoelastic model introduced in [5], is coupled with the heat equation through a
convective term and the viscosity of the fluid (cf. [14, 17]). More precisely, given a body force f , and
a heat source g, the aforementioned system of equations is given by

σP − 2µP(θ)e(u) = 0 in Ω,

−div(σP + 2εµN(θ)e(u)) +∇p = f in Ω,

div u = 0 in Ω,

−div (κ∇θ) + u · ∇θ = g in Ω,

u = 0 on Γ,

θ = θD on ΓD,

κ∇θ · n = 0 on ΓN,

(2.1)

where the unknowns are the polymeric part of the extra-stress tensor σP, the velocity u, the pressure

p, and the temperature θ of a fluid occupying the region Ω. In addition, e(u) :=
1

2

{
∇u + (∇u)t

}
stands for the strain tensor of small deformations, κ is the thermal conductivity coefficient, µP and µN

are the polymeric and solvent (or newtonian) viscosities, respectively, which are given by the following
Arrhenius relationship:

µP(θ) = a1 exp

(
b1
θ

)
, µN(θ) = a2 exp

(
b2
θ

)
, (2.2)
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where the coefficients a1, b1, a2, and b2 are defined so that

0 < µP(s) ≤ 1, 0 < µN(s) ≤ 1 ∀s ≥ 0. (2.3)

Furthermore, we assume that both the polymeric and solvent viscosities are Lipschitz continuous and
bounded from above and from below, that is,

|µP(s)− µP(t)| ≤ LµP |s− t|, |µN(s)− µN(t)| ≤ LµN |s− t| ∀s, t ≥ 0, (2.4)

and
µ1,P ≤ µP(s) ≤ µ2,P, µ1,N ≤ µN(s) ≤ µ2,N ∀s ≥ 0. (2.5)

Note that a small real parameter ε > 0 on the second equation of (2.1) is introduced to make the effect
of the solvent viscosity much smaller than that of the polymeric part. Moreover, it is well known that
uniqueness of a pressure solution of (2.1) (see, e.g., [30]) is ensured in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Now, in order to derive our augmented fully-mixed formulation we first need to rewrite (2.1) as a
first-order system of equations. To this end, unlike to [14] and [17], we begin by introducing the strain
tensor as an additional unknown t := e(u), whence the polymeric and solvent parts of the extra-stress
tensor can be written, respectively, as

σP = 2µP(θ)t and σN = 2εµN(θ)t in Ω . (2.6)

Next, defining the dimensionless effective viscosity as in [17], that is

µ(θ) := 2µP(θ) + 2εµN(θ) , (2.7)

and adopting the approach from [20] (see also [19, 9, 7]), we introduce the auxiliary unknowns

ρ := ∇u− e(u) and σ := µ(θ)t− pI in Ω,

where ρ is the vorticity (or skew-symmetric part of the velocity gradient). In this way, utilising the
incompressibility condition div u = tr (e(u)) = 0, we find that the equations modelling the fluid in
(2.1) can be rewritten, equivalently, as the set of equations with unknowns t,σ,ρ and u, given by

t + ρ = ∇u in Ω, σd = µ(θ)t in Ω, −divσ = f in Ω,

u = 0 on Γ, p = − 1

n
trσ in Ω,

∫
Ω

trσ = 0,
(2.8)

where both t and σ are symmetric tensors, and tr t = 0 holds in Ω. Note that the fifth equation in
(2.8) allows us to eliminate the pressure p from the system (which anyway can be approximated later
on through a post–processing procedure), whereas the last equation takes care of the requirement that
p ∈ L2

0(Ω). In addition, it easy to see from (2.4) and (2.5) that the fluid viscosity µ(·) is Lipschitz
continuous and bounded from above and from below, that is, there exist constants Lµ > 0 and
µ1, µ2 > 0, such that

|µ(s)− µ(t)| ≤ Lµ|s− t| ∀s, t ≥ 0, (2.9)

and
µ1 ≤ µ(s) ≤ µ2 ∀s ≥ 0. (2.10)
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Similarly, for the convection-diffusion equation modelling the temperature of the fluid in (2.1), we
adopt the approach from [17] (see also [12, 13]) and introduce as a further unknown the heat flux
vector

p := κ∇θ − θ u in Ω,

so that, utilising the incompressibility condition div u = 0 in Ω and the homogenous Dirichlet boundary
condition u = 0 on Γ, the remaining equations in the system (2.1) can be rewritten, equivalently, as

κ−1p + κ−1θ u = ∇θ in Ω, −div p = g in Ω,

θ = θD on ΓD, p · n = 0 on ΓN.
(2.11)

We end this section emphasizing from (2.6) that we can recover the polymeric and solvent parts
of the extra-stress tensor in terms of θ and t, whereas from the fifth equation of (2.8) we obtain the
pressure in terms of σ. Alternatively, from (2.6), (2.7), and the second equation of (2.8), we arrive at
the identity

σP + σN = σd in Ω , (2.12)

from which each part of the extra stress can be computed in terms of σd and the other part. The
formulae provided by (2.6), (2.12), and the fifth equation of (2.8), will suggest in Section 5 suit-
able approximations of the polymeric and solvent parts of the extra-stress tensor, and the pressure
(cf. (4.25)). They will all depend on the unique finite element solution of a Galerkin scheme to be
introduced below (cf. (4.2)), and hence the same rates of convergence will be obtained.

2.2 The augmented fully-mixed variational formulation

In this section we derive the weak formulation of the coupled system (2.8)–(2.11). We begin by
recalling (see, e.g., [6, 18, 21]) that there holds

H(div; Ω) = H0(div; Ω)⊕ RI, (2.13)

where

H0(div; Ω) :=

{
τ ∈ H(div; Ω) :

∫
Ω

tr τ = 0

}
.

In this way, decomposing τ ∈ H(div; Ω) as τ = τ 0 + cI, with τ 0 ∈ H0(div; Ω) and c ∈ R, noticing
that τ d = τ d

0 and divτ = divτ 0, and using the last equation of (2.8), we deduce that both σ and τ
can be considered hereafter in H0(div; Ω). In addition, thanks to the incompressibility condition and
the first equation of (2.8), we can look for the strain tensor t in the space

L2
tr (Ω) :=

{
r ∈ L2(Ω) : rt = r and tr r = 0

}
,

whereas the vorticity ρ lives in

L2
skew(Ω) :=

{
η ∈ L2(Ω) : ηt = −η

}
.

In turn, the homogeneous Neumann boundary condition for p on ΓN (cf. fourth equation in (2.11))
suggests the introduction of the functional space

HΓN
(div ; Ω) :=

{
q ∈ H(div ; Ω) : q · n = 0 on ΓN

}
.

Hence, we begin the derivation of our weak formulation by testing the first equations of (2.8) and
(2.11) with arbitrary τ ∈ H0(div; Ω) and q ∈ HΓN

(div ; Ω), respectively. Then, integrating by parts,
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utilising the identity t : τ = t : τ d (which follows from the fact that t : I = tr t = 0), and imposing the
remaining equations weakly, which includes the symmetry of σ, we arrive at the variational problem:
Find t ∈ L2

tr (Ω), σ ∈ H0(div; Ω), ρ ∈ L2
skew(Ω), p ∈ HΓN

(div ; Ω), and u, θ in suitable spaces to be
defined, such that ∫

Ω
µ(θ)t : r−

∫
Ω
σd : r = 0 ∀r ∈ L2

tr (Ω),∫
Ω

t : τ d +

∫
Ω

u · divτ +

∫
Ω
ρ : τ = 0 ∀τ ∈ H0(div; Ω),

−
∫

Ω
v · divσ −

∫
Ω
σ : η =

∫
Ω

f · v ∀(v,η) ∈ L2(Ω)× L2
skew(Ω),

κ−1

∫
Ω

p · q +

∫
Ω
θ div q + κ−1

∫
Ω
θ u · q = 〈q · n, θD〉ΓD

∀q ∈ HΓN
(div ; Ω),

−
∫

Ω
ψ div p =

∫
Ω
g ψ ∀ψ ∈ L2(Ω).

(2.14)

Before continuing we observe that the third term on the left-hand side of the fourth equation in (2.14)
requires a suitable regularity for both unknowns u and θ. Indeed, by applying Cauchy–Schwarz and
Hölder’s inequalities, and then the continuous injection i of H1(Ω) into L4(Ω) (see, e.g., [1, Theorem
6.3] or [32, Theorem 1.3.5]), we find that there exist a positive constant c(Ω) := ‖i‖2, such that∣∣∣∣∫

Ω
θ u · q

∣∣∣∣ ≤ c(Ω)‖θ‖1,Ω‖u‖1,Ω‖q‖0,Ω ∀ θ ∈ H1(Ω) ∀u ∈ H1(Ω) ∀q ∈ L2(Ω). (2.15)

According to the above, and in order to be able to analyse the present variational formulation of
the coupled system (2.8)–(2.11), we propose to seek u ∈ H1

0(Ω) and θ ∈ H1(Ω), and to restrict the
set of corresponding test functions v and ψ to the same spaces, respectively. In this way, similarly
as in [12] (see also [13]), we augment (2.14) through the following redundant Galerkin terms arising
from the constitutive and equilibrium equations, the relation between the strain tensor and t, the
definition of the vorticity in terms of the velocity gradient, and the Dirichlet boundary condition on
the temperature:

κ1

∫
Ω

{
σd − µ(θ)t

}
: τ d = 0 ∀τ ∈ H0(div; Ω),

κ2

∫
Ω

divσ · divτ = −κ2

∫
Ω

f · divτ ∀τ ∈ H0(div; Ω),

κ3

∫
Ω

{
e(u)− t

}
: e(v) = 0 ∀v ∈ H1

0(Ω),

κ4

∫
Ω

(
ρ−

{
∇u− e(u)

})
: η = 0 ∀η ∈ L2

skew(Ω),

(2.16)

and

κ5

∫
Ω

{
∇θ − κ−1p− κ−1θ u

}
· ∇ψ = 0 ∀ψ ∈ H1(Ω),

κ6

∫
Ω

div p div q = −κ6

∫
Ω
g div q ∀q ∈ HΓN

(div ; Ω),

κ7

∫
ΓD

θ ψ = κ7

∫
ΓD

θD ψ ∀ψ ∈ H1(Ω),

(2.17)
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where (κ1, . . . , κ7) is a vector of positive parameters to be specified later.

At this point we remark that there are many different ways of ordering the augmented fully-mixed
variational formulation described above, but for the sake of the subsequent analysis we proceed as in
[12, Section 3.1], and adopt one leading to an uncoupled structure. To that end, we start by grouping
appropriately some of the unknowns and spaces as follows:

t := (t,σ,ρ) ∈ H := L2
tr (Ω)×H0(div; Ω)× L2

skew(Ω),

where H is endowed with the norm

‖r‖2H := ‖r‖20,Ω + ‖τ‖2div;Ω + ‖η‖20,Ω ∀r := (r, τ ,η) ∈ H.

Hence, the augmented fully-mixed variational formulation for the non-isothermal Oldroyd–Stokes
problem reads: Find (t,u,p, θ) ∈ H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) such that

Aθ((t,u), (r,v)) = F(r,v) ∀(r,v) ∈ H×H1
0(Ω),

Ã((p, θ), (q, ψ)) + B̃u((p, θ), (q, ψ)) = F̃(q, ψ) ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω),

(2.18)

where, given φ ∈ H1(Ω) and w ∈ H1
0(Ω), Aφ, Ã, and B̃w are the bilinear forms defined, respectively,

as

Aφ((t,u), (r,v)) :=

∫
Ω
µ(φ)t :

{
r− κ1τ

d
}

+

∫
Ω
σd :

{
κ1τ

d − r
}

+

∫
Ω

t : τ d

+

∫
Ω

{
u + κ2divσ

}
· divτ −

∫
Ω

v · divσ +

∫
Ω
ρ : τ −

∫
Ω
σ : η

+ κ3

∫
Ω

{
e(u)− t

}
: e(v) + κ4

∫
Ω

(
ρ−

{
∇u− e(u)

})
: η,

(2.19)

Ã((p, θ), (q, ψ)) := κ−1

∫
Ω

p ·
{

q− κ5∇ψ
}

+

∫
Ω

{
θ + κ6div p

}
div q−

∫
Ω
ψ div p

+ κ5

∫
Ω
∇θ · ∇ψ + κ7

∫
ΓD

θ ψ,

(2.20)

and

B̃w((p, θ), (q, ψ)) := κ−1

∫
Ω
θw ·

{
q− κ5∇ψ

}
, (2.21)

for all (t,u), (r,v) ∈ H ×H1
0(Ω) and for all (p, θ), (q, ψ) ∈ HΓN

(div ; Ω) × H1(Ω). In turn, F and F̃
are the bounded linear functionals given by

F(r,v) :=

∫
Ω

f ·
{

v − κ2divτ
}
, (2.22)

for all (r,v) ∈ H×H1
0(Ω) and

F̃(q, ψ) := 〈q · n, θD〉ΓD
+

∫
Ω
g
{
ψ − κ6div q

}
+ κ7

∫
ΓD

θDψ, (2.23)

for all (q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω).
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3 Analysis of the continuous formulation

In this section we proceed similarly as in [12] (see also [13, 2]) and utilise a fixed-point strategy to prove
that problem (2.18) is well posed. More precisely, in Section 3.1 we rewrite (2.18) as an equivalent
fixed-point equation in terms of an operator T. Next in Section 3.2 we show that T is well defined,
and finally in Section 3.3 we apply the well known Schauder and Banach fixed–point theorems to
conclude that T has a unique fixed point.

3.1 The fixed-point approach

We start by defining the operator S : H1(Ω)→ H×H1
0(Ω) by

S(φ) := (S1(φ),S2(φ)) = (t,u) ∀φ ∈ H1(Ω), (3.1)

where S1(φ) := (St
1(φ),Sσ

1 (φ),Sρ
1 (φ)) and (t,u) is the unique solution of the problem: Find (t,u) ∈

H×H1
0(Ω) such that

Aφ((t,u), (r,v)) = F(r,v) ∀(r,v) ∈ H×H1
0(Ω), (3.2)

where the bilinear form Aφ is given by (2.19). In turn, the functional F is defined exactly as in (2.22).

In addition, we also introduce the operator S̃ : H1
0(Ω)→ HΓN

(div ; Ω)×H1(Ω) defined as

S̃(w) := (S̃1(w), S̃2(w)) = (p, θ) ∀w ∈ H1
0(Ω), (3.3)

where (p, θ) is the unique solution of the problem: Find (p, θ) ∈ HΓN
(div ; Ω)×H1(Ω) such that

Ã((p, θ), (q, ψ)) + B̃w((p, θ), (q, ψ)) = F̃(q, ψ) ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω) . (3.4)

Here the bilinear form Ã and the functional F̃ are defined exactly as in (2.20) and (2.23), respectively.
In turn, the bilinear form B̃w is given by (2.21). In this way, we define the operator T : H1(Ω)→ H1(Ω)
as

T(φ) := S̃2(S2(φ)) ∀φ ∈ H1(Ω), (3.5)

and realise that (2.18) can be rewritten as the fixed-point problem: Find θ ∈ H1(Ω) such that

T(θ) = θ. (3.6)

This fact certainly requires both operators S and S̃ to be well defined. In other words, we first need
to analyse the well-posedness of the uncoupled problems (3.2) and (3.4). The next section is devoted
to this matter.

We end this section by recalling, for later use, that there exist positive constants c1(Ω) and c2(Ω),
such that (see [18, Lemma 2.3] and [26, Theorem 5.11.2], respectively, for details)

c1(Ω)‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div τ‖20,Ω ∀ τ ∈ H0(div; Ω), (3.7)

|ψ|1,Ω + ‖ψ‖0,ΓD
≥ c2(Ω)‖ψ‖1,Ω ∀ψ ∈ H1(Ω), (3.8)

and

‖e(v)‖20,Ω ≥
1

2
|v|21,Ω ∀v ∈ H1

0(Ω), (3.9)

where (3.9) is the well known Korn inequality (see [28, Theorem 10.1]).
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3.2 Well-posedness of the uncoupled problems

We begin by establishing a result that provides conditions under which the operator S in (3.1) is
well-defined, or equivalently, the problem (3.2) is well-posed.

Lemma 3.1 Assume that

κ1 ∈
(

0,
2δ1µ1

µ2

)
, κ3 ∈

(
0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
, κ4 ∈

(
0, 2δ3κ3

(
1− δ2

2

))
, and κ2 > 0,

with δ1 ∈
(

0,
2

µ2

)
, and δ2, δ3 ∈ (0, 2). Then, for each φ ∈ H1(Ω), the problem (3.2) has a unique

solution (t,u) := S(φ) ∈ H×H1
0(Ω). Moreover, there exists a constant cS > 0, independent of φ, such

that there holds
‖S(φ)‖ = ‖(t,u)‖ ≤ cS‖f‖0,Ω. (3.10)

Proof. For a given φ ∈ H1(Ω), we observe from (2.19) that Aφ is clearly a bilinear form. Also, from
Cauchy–Schwarz inequality we deduce that there exists a positive constant, which we denote by ‖Aφ‖,
only depending on κ1, κ2, κ3, κ4, and µ2 (cf. (2.10)), such that∣∣∣Aφ((t,u), (r,v))

∣∣∣ ≤ ‖Aφ‖‖(t,u)‖‖(r,v)‖, (3.11)

for all (t,u), (r,v) ∈ H×H1
0(Ω). It turn, we have from (2.19) that

Aφ((r,v), (r,v)) =

∫
Ω
µ(φ)r : r− κ1

∫
Ω
µ(φ)r : τ d + κ1‖τ d‖20,Ω + κ2‖divτ‖20,Ω + κ3‖e(v)‖20,Ω

− κ3

∫
Ω

r : e(v) + κ4‖η‖20,Ω − κ4

∫
Ω

{
∇v − e(v)

}
: η.

Hence, we proceed similarly to the proof of [7, Lemma 3.6], utilise the Cauchy–Schwarz and Young
inequalities, apply the boundedness of µ (cf. (2.10)), and the fact that

‖∇v − e(v)‖20,Ω = |v|21,Ω − ‖e(v)‖20,Ω,

to obtain that for any δ1, δ2, δ3 > 0, and for all (r,v) ∈ H×H1
0(Ω), there holds

Aφ((r,v), (r,v)) ≥
{(

µ1 −
κ1µ2

2δ1

)
− κ3

2δ2

}
‖r‖20,Ω + κ1

(
1− µ2δ1

2

)
‖τ d‖20,Ω + κ2‖divτ‖20,Ω

+

{
κ3

(
1− δ2

2

)
+
κ4

2δ3

}
‖e(v)‖20,Ω −

κ4

2δ3
|v|21,Ω + κ4

(
1− δ3

2

)
‖η‖20,Ω,

which, together with the Korn inequality (3.9), implies

Aφ((r,v), (r,v)) ≥
{(

µ1 −
κ1µ2

2δ1

)
− κ3

2δ2

}
‖r‖20,Ω + κ1

(
1− µ2δ1

2

)
‖τ d‖20,Ω + κ2‖divτ‖20,Ω

+

{
κ3

2

(
1− δ2

2

)
− κ4

4δ3

}
|v|21,Ω + κ4

(
1− δ3

2

)
‖η‖20,Ω.

(3.12)

Then, assuming the stipulated hypotheses on δ1, κ1, κ3, δ2, δ3, κ4, and κ2, and applying the inequality
(3.7), we can define the positive constants

α1(Ω) :=

(
µ1 −

κ1µ2

2δ1

)
− κ3

2δ2
, α2(Ω) := min

{
κ1

(
1− µ2δ1

2

)
,
κ2

2

}
,

α3(Ω) := min

{
c1(Ω)α2(Ω),

κ2

2

}
, α4(Ω) :=

κ3

2

(
1− δ2

2

)
− κ4

4δ3
, and α5(Ω) := κ4

(
1− δ3

2

)
,
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which allow us to deduce from (3.12) that

Aφ((r,v), (r,v)) ≥ α(Ω)‖(r,v)‖2 ∀(r,v) ∈ H×H1
0(Ω), (3.13)

where
α(Ω) := min

{
α1(Ω), α3(Ω), cpα4(Ω), α5(Ω)

}
,

and cp is the positive constant provided by Poincaré’s inequality (see [33, Théorème 1.2-5]). In turn,
concerning the linear functional F and using the Cauchy–Schwarz inequality, we find that

‖F‖ ≤MS‖f‖0,Ω, (3.14)

where MS := (1 + κ2
2)1/2. We conclude by Lax–Milgram theorem (see, e.g., [18, Theorem 1.1]) that

there is a unique solution (t,u) := S(φ) ∈ H × H1
0(Ω) of (3.2), and the corresponding continuous

dependence result together with the ellipticity constant α(Ω) and the estimate (3.14) imply (3.10)
with the positive constant cS := MS/α(Ω), which is clearly independent of φ. �

On the other hand, again we use the Lax–Milgram theorem to establishes the well-posedness of
problem (3.4), or equivalently, that the operator S̃ (cf. (3.3)) is well-defined.

Lemma 3.2 Assume that κ5 ∈ (0, 2δ̃), with δ̃ ∈ (0, 2κ), and κ6, κ7 > 0. Let w ∈ H1
0(Ω) such

that ‖w‖1,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, where c(Ω) is the constant in (2.15) and α̃(Ω) is the ellipticity

constant of the bilinear form Ã given below in (3.17). Then, there exists a unique (p, θ) := S̃(w) ∈
HΓN

(div ; Ω) × H1(Ω) solution of (3.4). Moreover, there exists a constant c
S̃
> 0, independent of w,

such that there holds

‖S̃(w)‖ = ‖(p, θ)‖ ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
. (3.15)

Proof. For a given w ∈ H1
0(Ω) as stated, we observe from (2.20) and (2.21) that Ã + B̃w is clearly a

bilinear form. Now, applying the Cauchy–Schwarz inequality and the estimate (2.15), we deduce that∣∣∣Ã((p, θ), (q, ψ))
∣∣∣ ≤ ‖Ã‖‖(p, θ)‖‖(q, ψ)‖

and ∣∣∣B̃w((p, θ), (q, ψ))
∣∣∣ ≤ κ−1(1 + κ2

5)1/2c(Ω)‖w‖1,Ω‖θ‖1,Ω‖(q, ψ)‖, (3.16)

for all (p, θ), (q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω). Then, by gathering the foregoing inequalities, we find that

there exists a positive constant, which we denote by ‖Ã + B̃w‖, only depending on κ, κ5, κ6, κ7, c(Ω),
and the bound for ‖w‖1,Ω assumed here, such that∣∣∣(Ã + B̃w)((p, θ), (q, ψ))

∣∣∣ ≤ ‖Ã + B̃w‖‖(p, θ)‖‖(q, ψ)‖,

for all (p, θ), (q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω). In turn, from (2.20) we have that

Ã((q, ψ), (q, ψ)) = κ−1‖q‖20,Ω + κ6‖div q‖20,Ω − κ−1κ5

∫
Ω

q · ∇ψ + κ5|ψ|21,Ω + κ7‖ψ‖0,ΓD
,

and hence, using the Cauchy–Schwarz and Young inequalities, we obtain that for any δ̃ > 0 and for
all (q, ψ) ∈ HΓN

(div ; Ω)×H1(Ω), there holds

Ã((q, ψ), (q, ψ)) ≥ κ−1

(
1− κ5

2δ̃

)
‖q‖20,Ω + κ6‖div q‖20,Ω + κ5

(
1− κ−1

2
δ̃

)
|ψ|21,Ω + κ7‖ψ‖0,ΓD

.
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In this way, applying the inequality (3.8), we can define the constants

α̃1(Ω) := min

{
κ−1

(
1− κ5

2δ̃

)
, κ6

}
and α̃2(Ω) := c2(Ω) min

{
κ5

(
1− κ−1

2
δ̃

)
, κ7

}
,

which are positive thanks to the hypotheses on δ̃, κ5, κ6, and κ7. In this way, it follows that

Ã((q, ψ), (q, ψ)) ≥ α̃(Ω)‖(q, ψ)‖2 ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω), (3.17)

with α̃(Ω) := min
{
α̃1(Ω), α̃2(Ω)

}
, which shows that Ã is elliptic. Therefore, combining now (3.16),

(3.17), and the bound for ‖w‖1,Ω assumed here, we deduce that for all (q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω),

there holds

(Ã + B̃w)((q, ψ), (q, ψ)) ≥
{
α̃(Ω)− κ−1(1 + κ2

5)1/2c(Ω)‖w‖1,Ω
}
‖(q, ψ)‖2 ≥ α̃(Ω)

2
‖(q, ψ)‖2, (3.18)

which proves the ellipticity of Ã + B̃w, with constant
α̃(Ω)

2
, independent of w. On the other hand, it

is easy to see from (2.23), by using Cauchy–Schwarz’s inequality and the trace theorems in H(div ; Ω)
and H1(Ω), whose boundedness constants are given by 1 and ‖γ0‖, respectively, that the functional F̃
is bounded with

‖F̃‖ ≤M
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
, (3.19)

where M
S̃

:= max
{

(1 +κ2
6)1/2, κ7‖γ0‖

}
. Summing up, and owing to the hypotheses on κ5, κ6 and κ7,

we have proved that for any sufficiently small w ∈ H1
0(Ω), the bilinear form Ã+B̃w and the functional

F̃ satisfy the hypotheses of the Lax–Milgram theorem (see, e.g., [18, Theorem 1.1]), which guarantees
the well-posedness of (3.4) and the continuous dependence estimate (3.15) with c

S̃
:= 2M

S̃
/α̃(Ω). �

At this point we remark that the restriction on ‖w‖1,Ω in Lemma 3.2 could also have been taken

as ‖w‖1,Ω ≤ ω
α̃(Ω)

κ−1(1 + κ2
5)1/2c(Ω)

with any ω ∈ (0, 1). However, we have chosen ω =
1

2
for simplicity

and because it yields a joint maximization of the ellipticity constant of Ã + B̃w and the upper bound
for ‖w‖1,Ω. In addition, we also remark that the constants α(Ω) and α̃(Ω) yielding the ellipticity of

Aφ and Ã + B̃w, respectively, can be maximized by taking the parameters δ1, κ1, δ2, κ3, δ3, κ4, δ̃, and
κ5 as the middle points of their feasible ranges, and by choosing κ2, κ6 and κ7 so that they maximize
the minima defining α2(Ω), α̃1(Ω), and α̃2(Ω), respectively. More precisely, we simply take

δ1 =
1

µ2
, κ1 =

δ1µ1

µ2
=
µ1

µ2
2

, δ2 = 1, κ3 = δ2

(
µ1 −

κ1µ2

2δ1

)
=
µ1

2
, δ3 = 1,

κ4 = δ3κ3

(
1− δ2

2

)
=
µ1

4
, κ2 = 2κ1

(
1− µ2δ1

2

)
=
µ1

µ2
2

, δ̃ = κ,

κ5 = δ̃ = κ, κ6 = κ−1

(
1− κ5

2δ̃

)
=
κ−1

2
, κ7 = κ5

(
1− κ−1

2
δ̃

)
=
κ

2
,

(3.20)

which yields

α1(Ω) =
µ1

4
, α2(Ω) =

µ1

2µ2
2

, α3(Ω) = min
{
c1(Ω), 1

} µ1

2µ2
2

,

α4(Ω) =
µ1

16
, α5(Ω) =

µ1

8
, α̃1(Ω) =

κ−1

2
, α̃2(Ω) = c2(Ω)

κ

2
,
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and hence

α(Ω) = min

{
min

{
c1(Ω), 1

} µ1

2µ2
2

, cp
µ1

16
,
µ1

8

}
, and α̃(Ω) =

1

2
min

{
κ−1, c2(Ω)κ

}
.

The explicit values of the stabilization parameters κi, i ∈ {1, . . . , 7}, given in (3.20), will be employed
in Section 5 for the corresponding numerical experiments.

3.3 Solvability analysis of the fixed-point equation

Having proved the well-posedness of the uncoupled problems (3.2) and (3.4), which ensures that the
operators S, S̃ and T are well defined, we now aim to establish the existence of a unique fixed point
of the operator T. For this purpose, in what follows we verify the hypothesis of the Schauder and
Banach fixed-point theorems. We begin the analysis with the following straightforward consequence
of Lemmas 3.1 and 3.2.

Lemma 3.3 Suppose that the parameters κi, i ∈ {1, . . . , 7}, satisfy the conditions required by Lemmas
3.1 and 3.2. Let W be the closed and convex subset of H1(Ω) defined by

W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
,

where c
S̃

is the constant given by (3.15). In addition, assume that the datum f satisfy

cS‖f‖0,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, (3.21)

where cS is the constant given by (3.10). Then T(W) ⊆ W.

Proof. Given φ ∈ W, we get from (3.10) (cf. Lemma 3.1) that

‖S(φ)‖ = ‖(t,u)‖ ≤ cS‖f‖0,Ω,

and hence, thanks to the constraint (3.21), we observe that u = S2(φ) satisfies the hypotheses of
Lemma 3.2. Moreover, the corresponding estimate (3.15) gives

‖T(φ)‖1,Ω = ‖S̃2(u)‖1,Ω ≤ cS̃
{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
,

which implies that T(φ) ∈ W, thus finishing the proof. �

Next, we establish two lemmas that will be useful to derive conditions under which the operator T
is continuous and compact. To that end, and similarly as in [2, Section 3.3], we first introduce suitable
regularity hypotheses on the operator S, which will be employed later on. In fact, for the remainder
of this paper we proceed as in [2, eq. (3.22)], and suppose that f ∈ Hδ(Ω), for some δ ∈ (0, 1)
(when n = 2) or δ ∈ (1/2, 1) (when n = 3). Then, we assume that for each φ ∈ H1(Ω) there holds
S(φ) ∈

(
Hδ(Ω)× (H0(div; Ω) ∩Hδ(Ω))×Hδ(Ω)

)
×H1+δ(Ω), with

‖St
1(φ)‖δ,Ω + ‖Sσ

1 (φ)‖δ,Ω + ‖Sρ
1 (φ)‖δ,Ω + ‖S2(φ)‖1+δ,Ω ≤ ĈS‖f‖δ,Ω, (3.22)

where ĈS is a positive constant independent of φ. The reason of the stipulated ranges for δ will be
clarified in the forthcoming analysis (see below proof of Lemmas 3.4 and 3.7). More precisely, we
remark in advance that the regularity estimate (3.22) is needed in the proof of Lemmas 3.4 and 3.7 to
bound an expression of the form ‖St

1(φ)‖L2p(Ω) in terms of ‖St
1(φ)‖δ,Ω, and hence of the data at the

right-hand side of (3.22).
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Lemma 3.4 There exists a positive constant CS, depending on Lµ, the parameter κ1, the ellipticity
constant α(Ω) of the bilinear form Aφ (cf. (3.2)), and δ (cf. (3.22)), such that

‖S(φ)− S(φ̃)‖ ≤ CS‖St
1(φ)‖δ,Ω‖φ− φ̃‖Ln/δ(Ω) ∀φ, φ̃ ∈ H1(Ω). (3.23)

Proof. We proceed as in [2, Lemma 3.9]. In fact, given φ, φ̃ ∈ H1(Ω), we let (t,u) := S(φ) and
(t̃, ũ) := S(φ̃) be the corresponding solutions of problem (3.2). Then, using the bilinearity of Aφ for
any φ, it follows easily from (3.2) that

A
φ̃
((t,u)− (t̃, ũ), (r,v)) = −

∫
Ω

{
µ(φ)− µ(φ̃)

}
t :
{

r− κ1τ
d
}
,

for all (r,v) ∈ H × H1
0(Ω). Hence, applying the ellipticity of Aφ (cf. (2.19)), Cauchy–Schwarz

inequality, the Lipschitz-continuity assumption (2.9), and then Hölder inequality, we find that

α(Ω)‖(t,u)− (t̃, ũ)‖2 ≤ A
φ̃
((t,u)− (t̃, ũ), (t,u)− (t̃, ũ))

= −
∫

Ω

{
µ(φ)− µ(φ̃)

}
t :
{(

t− t̃
)
− κ1

(
σd − σ̃d)}

≤ Lµ(1 + κ2
1)1/2‖t‖L2p(Ω)‖φ− φ̃‖L2q(Ω)‖(t,u)− (t̃, ũ)‖,

(3.24)

where p, q ∈ [1,+∞) are such that 1/p + 1/q = 1. Next, given the further regularity δ assumed in
(3.22), we recall that the Sobolev embedding theorem (cf. [1, Theorem 4.12], [32, Theorem 1.3.4])
establishes the continuous injection iδ : Hδ(Ω)→ Lδ

∗
(Ω) with boundedness constant Cδ > 0, where

δ∗ :=


2

1− δ
if n = 2,

6

3− 2δ
if n = 3.

Thus, choosing p such that 2p = δ∗ and recalling that t := St
1(φ), we find that

‖t‖L2p(Ω) = ‖St
1(φ)‖L2p(Ω) ≤ Cδ‖St

1(φ)‖δ,Ω. (3.25)

In turn, according to the above choice of p, that is p = δ∗/2, it readily follows that

2q :=
2p

p− 1
=


2

δ
if n = 2

3

δ
if n = 3

=
n

δ
. (3.26)

Therefore, inequalities (3.24) and (3.25) together with identity (3.26) conclude (3.23) with constant
CS := Lµ(1 + κ2

1)1/2Cδ/α(Ω). �

In turn, the following result establishes the Lipschitz-continuity of the operator S̃.

Lemma 3.5 There exists a positive constant C
S̃

, depending on κ, the parameter κ5, the ellipticity

constant α̃(Ω) of the bilinear form Ã (cf. (3.17)), and the constant c(Ω) (cf. (2.15)), such that for all

w, w̃ ∈ H1
0(Ω) with ‖w‖1,Ω, ‖w̃‖1,Ω ≤

α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, there holds

‖S̃(w)− S̃(w̃)‖ ≤ C
S̃
‖S̃2(w)‖1,Ω‖w − w̃‖1,Ω. (3.27)
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Proof. It follows almost straightforwardly from a slight modification of the proof of [13, Lemma 3.7].
We omit further details. �

As a consequence of the previous lemmas we establish the following result providing an estimate
needed to derive next the required continuity and compactness properties of the operator T.

Lemma 3.6 Let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and assume

that the datum f satisfies (3.21). Then, there holds

‖T(φ)−T(φ̃)‖1,Ω ≤ CSCS̃
‖T(φ)‖1,Ω‖St

1(φ)‖δ,Ω‖φ− φ̃‖Ln/δ(Ω), (3.28)

where CS and C
S̃

are the constants given by (3.23) and (3.27), respectively.

Proof. It suffices to recall that T(φ) = S̃2(S2(φ)) ∀φ ∈ H1(Ω) (cf. (3.5)), and then apply Lemmas 3.3,
3.4 and 3.5. �

Owing to the above analysis, we establish now the announced properties of the operator T.

Lemma 3.7 Let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and assume

that the datum f satisfies (3.21). Then, T :W →W is continuous and T(W) is compact.

Proof. The required result follows basically from (3.28), the Rellich–Kondrachov compactness theorem
(cf. [1, Theorem 6.3], [32, Theorem 1.3.5]), the specified range of the constant δ involved in the
further regularity assumptions given by (3.22), and the well-known fact that every bounded sequence
in a Hilbert space has a weakly convergent subsequence. We omit further details and refer to [2,
Lemma 3.12]. �

Finally, the main result of this section is given as follows.

Theorem 3.8 Suppose that the parameters κi, i ∈ {1, . . . , 7}, satisfy the conditions required by Lem-

mas 3.1 and 3.2. Let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and as-

sume that the datum f satisfy (3.21). Then the augmented fully-mixed problem (2.18) has at least one
solution (t,u,p, θ) ∈ H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) with θ ∈ W, and there holds

‖(t,u)‖ ≤ cS‖f‖0,Ω, (3.29)

and
‖(p, θ)‖ ≤ c

S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
, (3.30)

where cS and c
S̃

are the constants specified in Lemmas 3.1 and 3.2, respectively. Moreover, assume that

the data f , g and θD are sufficiently small so that, with the constants CS, C
S̃

and ĈS from Lemmas

3.4 and 3.5, and estimate (3.22), respectively, and denoting by C̃δ the boundedness constant of the
continuous injection of H1(Ω) into Ln/δ(Ω), there holds

C̃δĈSCSCS̃
c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
‖f‖δ,Ω < 1. (3.31)

Then the solution θ is unique in W.

Proof. The equivalence between (2.18) and the fixed-point equation (3.6), together with Lemmas 3.3
and 3.7, confirm the existence of solution of (2.18) as a direct application of the Schauder fixed-point
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theorem [11, Theorem 9.12-1(b)]. In addition, it is clear that the estimates (3.29) and (3.30) follow
straightforwardly from (3.10) and (3.15), respectively. Furthermore, given another solution θ̃ ∈ W of

(3.6), the estimates ‖T(θ)‖1,Ω = ‖θ‖1,Ω ≤ cS̃
{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
,

‖St
1(θ)‖δ,Ω ≤ ĈS‖f‖δ,Ω,

and
‖φ‖Ln/δ(Ω) ≤ C̃δ‖φ‖1,Ω ∀φ ∈ H1(Ω), (3.32)

confirm (3.31) as a sufficient condition for concluding, together with (3.28), that θ = θ̃. In other words,
(3.31) constitutes the condition that makes the operator T to become a contraction, thus yielding,
thanks to the Banach fixed-point theorem, the existence of a unique fixed point of T in W. �

4 The Galerkin scheme

In this section we introduce and analyse the Galerkin scheme of the augmented fully-mixed formulation
(2.18). We analyse its solvability by employing a discrete version of the fixed-point strategy developed
in Sections 3.1 and 3.2. Finally, we derive the corresponding Céa estimate and rates of convergence
of our Galerkin scheme.

4.1 Discrete setting

Let Th be a regular triangulation of Ω made up of triangles K (when n = 2) or tetrahedra K (when

n = 3) of diameter hK , and define the meshsize h := max
{
hK : K ∈ Th

}
. Then, for each K ∈ Th

we set the local Raviart–Thomas space of order k as

RTk(K) := Pk(K)⊕ Pk(K)x,

where x := (x1, . . . , xn)t is a generic vector of Rn. Then, we introduce the finite element subspaces
approximating the unknowns t,σ,ρ,u,p and θ as follows

Ht
h :=

{
rh ∈ L2

tr (Ω) : rh|K ∈ Pk(K) ∀K ∈ Th
}
,

Hσ
h :=

{
τ h ∈ H0(div; Ω) : ctτ h|K ∈ RTk(K) ∀c ∈ Rn ∀K ∈ Th

}
,

Hρ
h :=

{
ηh ∈ L2

skew(Ω) : ηh|K ∈ Pk(K) ∀K ∈ Th
}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|K ∈ Pk+1(K) ∀K ∈ Th, vh = 0 on Γ

}
,

Hp
h :=

{
qh ∈ HΓN

(div ; Ω) : qh|K ∈ RTk(K) ∀K ∈ Th
}
,

Hθ
h :=

{
ψh ∈ C(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th

}
.

(4.1)

In this way, by defining th := (th,σh,ρh), rh := (rh, τ h,ηh) ∈ Hh := Ht
h × Hσ

h × Hρ
h, the Galerkin

scheme of (2.18) reads: Find (th,uh,ph, θh) ∈ Hh ×Hu
h ×Hp

h ×Hθ
h such that

Aθh((th,uh), (rh,vh)) = F(rh,vh) ∀(rh,vh) ∈ Hh ×Hu
h ,

Ã((ph, θh), (qh, ψh)) + B̃uh((ph, θh), (qh, ψh)) = F̃(qh, ψh) ∀(qh, ψh) ∈ Hp
h ×Hθ

h.
(4.2)
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Similarly to the continuous context, in order to analyse problem (4.2) we rewrite it equivalently as
a fixed-point problem. Indeed, we firstly define Sh : Hθ

h → Hh ×Hu
h by

Sh(φh) := (S1,h(φh),S2,h(φh)) = (th,uh) ∀φh ∈ Hθ
h, (4.3)

where S1,h(φh) := (St
1,h(φh),Sσ

1,h(φh),Sρ
1,h(φh)) and (th,uh) is the unique solution of the discrete

version of the problem (3.2): Find (th,uh) ∈ Hh ×Hu
h such that

Aφh((th,uh), (rh,vh)) = F(rh,vh) ∀(rh,vh) ∈ Hh ×Hu
h , (4.4)

where the bilinear form Aφh (with φh in place of φ) and the functional F are defined as in (2.19) and

(2.22), respectively. Secondly, we define the operator S̃h : Hu
h → Hp

h ×Hθ
h as

S̃h(wh) := (S̃1,h(wh), S̃2,h(wh)) = (ph, θh) ∀wh ∈ Hu
h , (4.5)

where (ph, θh) is the unique solution of the discrete version of the problem (3.4): Find (ph, θh) ∈
Hp
h ×Hθ

h such that

Ã((ph, θh), (qh, ψh)) + B̃wh((ph, θh), (qh, ψh)) = F̃(qh, ψh) ∀(qh, ψh) ∈ Hp
h ×Hθ

h, (4.6)

where the bilinear form Ã and the functional F̃ are defined as in (2.20) and (2.23), respectively,
whereas, B̃wh is the bilinear form given by (2.21) (with wh instead of w). Finally, we introduce the
operator Th : Hθ

h → Hθ
h as

Th(φh) := S̃2,h(S2,h(φh)) ∀φh ∈ Hθ
h, (4.7)

and realise that solving (4.2) is equivalent to seeking a fixed point of the operator Th, that is: Find
θh ∈ Hθ

h such that
Th(θh) = θh. (4.8)

4.2 Solvability analysis

Now we establish the solvability of problem (4.2) by studying the equivalent fixed-point problem (4.8).
To that end, first we guarantee that the discrete problems (4.4) and (4.6) are well-posed. Indeed, it
is easy to see that the respective proofs are almost verbatim of the continuous analogues provided in
Section 3.2, and hence we simply state the corresponding results as follows.

Lemma 4.1 Assume that κi, i ∈ {1, . . . , 4}, satisfy the conditions required by Lemma 3.1. Then, for
each φh ∈ Hθ

h, the problem (4.4) has a unique solution (th,uh) := Sh(φh) ∈ Hh ×Hu
h . Moreover, with

the same constant cS > 0 from (3.10), which is independent of φh, there holds

‖Sh(φh)‖ = ‖(th,uh)‖ ≤ cS‖f‖0,Ω. (4.9)

Lemma 4.2 Assume that κi, i ∈ {5, 6, 7}, satisfy the conditions required by Lemma 3.2. Let wh ∈ Hu
h

such that ‖wh‖1,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, where c(Ω) and α̃(Ω) are the positive constants provided by

(2.15) and (3.17), respectively. Then, there exist a unique (ph, θh) := S̃h(wh) ∈ Hp
h × Hθ

h solution of
(4.6). Moreover, with the same constant c

S̃
> 0 from (3.15), which is independent of wh, there holds

‖S̃h(wh)‖ = ‖(ph, θh)‖ ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
. (4.10)
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We now proceed to analyse the fixed-point equation (4.8). More precisely, in what follows we verify
the hypotheses of the Brouwer fixed-point theorem (cf. [11, Theorem 9.9-2]). We begin with the
discrete version of Lemma 3.3. Its proof, being a simple translation of the arguments proving that
lemma, is omitted.

Lemma 4.3 Let Wh :=
{
φh ∈ Hθ

h : ‖φh‖1,Ω ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and assume

that the datum f satisfies (3.21). Then T(Wh) ⊆ Wh.

The discrete analogue of Lemma 3.4 is provided next. We notice in advance that, instead of the
regularity assumptions employed in the proof of that result, which actually are not needed nor could
be applied in the present discrete case, we simply utilise a L4 − L4 − L2 argument.

Lemma 4.4 There exists a positive constant CSh, depending on Lµ, κ1, and α(Ω), such that

‖Sh(φh)− Sh(φ̃h)‖ ≤ CSh‖S
t
1,h(φh)‖L4(Ω)‖φh − φ̃h‖L4(Ω) ∀φh, φ̃h ∈ Hθ

h. (4.11)

Proof. Given φh, φ̃h ∈ Hθ
h, we first let (th,uh) := Sh(φh) and (t̃h, ũh) := Sh(φ̃h) be the corresponding

solutions of problem (4.4). Next, we proceed analogouly as in the proof of Lemma 3.4, except for
the derivation of the discrete analogue of the right-hand side of (3.24), where, instead of choosing the
values of p and q determined by the regularity parameter δ, it suffices to take p = q = 2 (see [2]), thus
obtaining

α(Ω)‖(th,uh)− (t̃h, ũh)‖2 ≤ Lµ(1 + κ2
1)1/2‖th‖L4(Ω)‖φh − φ̃h‖L4(Ω)‖(th,uh)− (t̃h, ũh)‖.

Then, the fact that the elements of Ht
h are piecewise polynomials insures that ‖th‖L4(Ω) < +∞,

and hence the foregoing equation yields (4.11) with CSh := Lµ(1 + κ2
1)1/2/α(Ω). Further details are

omitted. �

Next, we address the Lipschitz-continuity of S̃h, its proof is omitted since it is almost verbatim as
that of the corresponding continuous estimate provided by Lemma 3.5.

Lemma 4.5 Let C
S̃

be the constant provided by Lemma 3.5. Then, given wh, w̃h ∈ Hu
h such that

‖wh‖1,Ω, ‖w̃h‖1,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, there holds

‖S̃h(wh)− S̃h(w̃h)‖ ≤ C
S̃
‖S̃2,h(wh)‖1,Ω‖wh − w̃h‖1,Ω. (4.12)

Now, utilising Lemmas 4.4 and 4.5, we can prove the discrete version of Lemma 3.6.

Lemma 4.6 Let Wh :=
{
φh ∈ Hθ

h : ‖φh‖1,Ω ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and assume

that the datum f satisfies (3.21). Then, there holds

‖Th(φh)−Th(φ̃h)‖1,Ω ≤ CShCS̃
‖T(φh)‖1,Ω‖St

1,h(φh)‖L4(Ω)‖φh − φ̃h‖L4(Ω), (4.13)

where C
S̃

and CSh are the constants provided by Lemmas 3.5 and 4.4, respectively.

Consequently, since the foregoing lemma and the continuous injection of H1(Ω) into L4(Ω) confirm
the continuity of Th, we conclude, thanks to the Brouwer fixed-point theorem (cf. [11, Theorem 9.9-2])
and Lemmas 4.3 and 4.6, the main result of this section.
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Theorem 4.7 Suppose that the parameters κi, i ∈ {1, . . . , 7}, satisfy the conditions required by Lem-

mas 3.1 and 3.2. Let Wh :=
{
φh ∈ Hθ

h : ‖φh‖1,Ω ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and

assume that the datum f satisfies (3.21). Then the Galerkin scheme (4.2) has at least one solution
(th,uh,ph, θh) ∈ Hh ×Hu

h ×Hp
h ×Hθ

h with θh ∈ Wh, and there holds

‖(th,uh)‖ ≤ cS‖f‖0,Ω, (4.14)

and
‖(ph, θh)‖ ≤ c

S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
, (4.15)

where cS and c
S̃

are the constants provided by Lemmas 3.1 and 3.2, respectively.

We end this section by remarking that the lack of suitable estimates for ‖St
1,h(φh)‖L4(Ω) stops us of

trying to use (4.13) to derive a contraction estimate for Th. This is the reason why in the foregoing
Theorem 4.7 we are able only to guarantee existence, but no uniqueness, of a discrete solution.

4.3 Convergence of the Galerkin scheme

Given (t,u,p, θ) ∈ H × H1
0(Ω) × HΓN

(div ; Ω) × H1(Ω) with θ ∈ W, and (th,uh,ph, θh) ∈ Hh ×
Hu
h × Hp

h × Hθ
h with θh ∈ Wh, solutions of (2.18) and (4.2), respectively, we now aim to derive a

corresponding a priori error estimate. For this purpose, we first observe from (2.18) and (4.2) that the
above problems can be rewritten as two pairs of corresponding continuous and discrete formulations,
namely

Aθ((t,u), (r,v)) = F(r,v) ∀(r,v) ∈ H×H1
0(Ω),

Aθh((th,uh), (rh,vh)) = F(rh,vh) ∀(rh,vh) ∈ Hh ×Hu
h ,

(4.16)

and

Ã((p, θ), (q, ψ)) + B̃u((p, θ), (q, ψ)) = F̃(q, ψ) ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω),

Ã((ph, θh), (qh, ψh)) + B̃uh((ph, θh), (qh, ψh)) = F̃(qh, ψh) ∀(qh, ψh) ∈ Hp
h ×Hθ

h.
(4.17)

Then, as suggested by the structure of the foregoing systems, in what follows we apply the well-known
Strang lemma for elliptic variational problems (see, e.g., [34, Theorem 11.1]) to (4.16) and (4.17). This
auxiliary result is stated first.

Lemma 4.8 Let V be a Hilbert space, F ∈ V ′, and A : V × V → R be a bounded and V -elliptic
bilinear form. In addition, let {Vh}h>0 be a sequence of finite dimensional subspaces of V , and for
each h > 0 consider a bounded bilinear form Ah : Vh × Vh → R and a functional Fh ∈ V ′h. Assume
that the family {Ah}h>0 is uniformly elliptic, that is, there exists a constant α̃ > 0, independent of h,
such that

Ah(vh, vh) ≥ α̃‖vh‖2V ∀vh ∈ Vh, ∀h > 0.

In turn, let u ∈ V and uh ∈ Vh such that

A(u, v) = F (v) ∀v ∈ V and Ah(uh, vh) = Fh(vh) ∀vh ∈ Vh.
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Then, for each h > 0 there holds

‖u− uh‖V ≤ CST

 sup
wh∈Vh
wh 6=0

∣∣∣F (wh)− Fh(wh)
∣∣∣

‖wh‖V

+ inf
vh∈Vh
vh 6=0

‖u− vh‖V + sup
wh∈Vh
wh 6=0

∣∣∣A(vh, wh)−Ah(vh, wh)
∣∣∣

‖wh‖V


 ,

where CST := α̃−1 max
{

1, ‖A‖
}

.

In the sequel, for the sake of simplicity, we denote as usual

dist
(

(t,u),Hh ×Hu
h

)
:= inf

(rh,vh)∈Hh×Hu
h

‖(t,u)− (rh,vh)‖

and
dist

(
(p, θ),Hp

h ×Hθ
h

)
:= inf

(qh,ψh)∈Hp
h×Hθh

‖(p, θ)− (qh, ψh)‖.

The following Lemma provides a preliminary estimate for the error ‖(t,u)− (th,uh)‖.

Lemma 4.9 Let CST :=
1

α(Ω)
max

{
1, ‖Aθ‖

}
, where α(Ω) is the constant yielding the ellipticity of

Aφ for any φ ∈ H1(Ω) (cf. (3.13)). Then, there holds

‖(t,u)− (th,uh)‖ ≤ CST

{
Lµ(1 + κ2

1)1/2Cδ‖t‖δ,Ω‖θ − θh‖Ln/δ(Ω)

+ (1 + 2‖Aθ‖)dist
(

(t,u),Hh ×Hu
h

)} (4.18)

Proof. We proceed similarly as in [2, Lemma 5.3]. In fact, from Lemmas 3.1 and 4.1, we have that the
bilinear forms Aθ and Aθh are both bounded and elliptic with the same constants ‖Aθ‖ and α(Ω),
respectively. In addition, F is a linear and bounded functional in H ×H1

0(Ω) and, in particular, in
Hh ×Hu

h . Then, by applying Lemma 4.8 to the context (4.16), we obtain

‖(t,u)− (th,uh)‖ ≤ CST inf
(rh,vh)∈Hh×Hu

h
(rh,vh) 6=0

{
‖(t,u)− (rh,vh)‖

+ sup
(sh,wh)∈Hh×Hu

h
(sh,wh)6=0

∣∣∣Aθ((rh,vh), (sh,wh))−Aθh((rh,vh), (sh,wh))
∣∣∣

‖(sh,wh)‖

}
.

(4.19)

In turn, in order to estimate the supremum in (4.19), we add and subtract suitable terms to write

Aθ((rh,vh), (sh,wh))−Aθh((rh,vh), (sh,wh)) = Aθ((rh,vh)− (t,u), (sh,wh))

+ (Aθ −Aθh)((t,u), (sh,wh)) + Aθh((t,u)− (rh,vh), (sh,wh)),
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whence, applying the boundedness (3.11) to the first and third terms on the right-hand side of the
foregoing equation, and proceeding analogously as for the derivation of (3.24) with the second one,
we find that

sup
(sh,wh)∈Hh×Hu

h
(sh,wh)6=0

∣∣∣Aθ((rh,vh), (sh,wh))−Aθh((rh,vh), (sh,wh))
∣∣∣

‖(sh,wh)‖

≤ Lµ(1 + κ2
1)1/2Cδ‖t‖δ,Ω‖θ − θh‖Ln/δ(Ω) + 2‖Aθ‖‖(t,u)− (rh,vh)‖.

(4.20)

Finally, by replacing the inequality (4.20) into (4.19), we get (4.18), which ends the proof. �

Next, we have the following result concerning ‖(p, θ)− (ph, θh)‖.

Lemma 4.10 Let C̃ST :=
2

α̃(Ω)
max

{
1, ‖Ã+B̃u‖

}
, where α̃(Ω) is the constant yielding the ellipticity

of both Ã and Ã + B̃w, for any w ∈ H1
0(Ω) (cf. (3.17) and (3.18)). Then, there holds

‖(p, θ)− (ph, θh)‖ ≤ C̃ST

{
κ−1(1 + κ2

5)1/2c(Ω)‖θ‖1,Ω‖u− uh‖1,Ω

+
(

1 + κ−1(1 + κ2
5)1/2c(Ω)‖u− uh‖1,Ω

)
dist

(
(p, θ),Hp

h ×Hθ
h

)}
.

(4.21)

Proof. It follows almost straightforwardly from a slight modification of the proof of [13, Lemma 5.3].
We omit further details. �

We now combine the inequalities provided by Lemmas 4.9 and 4.10 to derive the a priori estimate
for the total error ‖(t,u,p, θ) − (th,uh,ph, θh)‖. Indeed, by gathering together the estimates (4.18)
and (4.21), it follows that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C̃STκ
−1(1 + κ2

5)1/2c(Ω)‖θ‖1,Ω‖u− uh‖1,Ω

+ CSTLµ(1 + κ2
1)1/2Cδ‖t‖δ,Ω‖θ − θh‖Ln/δ(Ω) + CST(1 + 2‖Aθ‖)dist

(
(t,u),Hh ×Hu

h

)
+ C̃ST

(
1 + κ−1(1 + κ2

5)1/2c(Ω)‖u− uh‖1,Ω
)

dist
(

(p, θ),Hp
h ×Hθ

h

)
.

Then, by noting that θ ∈ W, using the estimate (3.22) to bound ‖t‖δ,Ω, and recalling that C̃δ is the
boundedness constant of the continuous injection of H1(Ω) into Ln/δ(Ω) (cf. (3.32)), from the latter
inequality we find that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C(f , g, θD)‖(t,u,p, θ)− (th,uh,ph, θh)‖

+ CST(1 + 2‖Aθ‖)dist
(

(t,u),Hh ×Hu
h

)
+ C̃ST

(
1 + κ−1(1 + κ2

5)1/2c(Ω)‖u− uh‖1,Ω
)

dist
(

(p, θ),Hp
h ×Hθ

h

)
,

(4.22)

where
C(f , g, θD) := max

{
C1(f , g, θD),C2(f , g, θD)

}
,

with
C1(f , g, θD) := C̃STκ

−1(1 + κ2
5)1/2c(Ω)c

S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
and

C2(f , g, θD) := CSTLµ(1 + κ2
1)1/2CδĈSC̃δ‖f‖δ,Ω.

Consequently, we can establish the following result providing the complete Céa estimate.
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Theorem 4.11 Assume that the data f , g and θD satisfy:

Ci(f , g, θD) ≤ 1

2
∀i ∈ {1, 2}. (4.23)

Then, there exists a positive constant C, depending only on parameters, data and other constants, all
of them independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C
{

dist
(

(t,u),Hh ×Hu
h

)
+ dist

(
(p, θ),Hp

h ×Hθ
h

)}
. (4.24)

Proof. From (4.22) and (4.23), it follows that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ 2CST(1 + 2‖Aθ‖)dist
(

(t,u),Hh ×Hu
h

)
+ 2C̃ST

(
1 + κ−1(1 + κ2

5)1/2c(Ω)‖u− uh‖1,Ω
)

dist
(

(p, θ),Hp
h ×Hθ

h

)
,

and then, the rest of the proof reduces to employ the triangle inequality on the term ‖u−uh‖1,Ω and
use that both ‖u‖1,Ω and ‖uh‖1,Ω are bounded by cS‖f‖0,Ω (cf. Lemmas 3.1 and 4.1). �

Now, in order to approximate the polymeric and solvent parts of the extra-stress tensor, as well as
the pressure, we propose, motivated by (2.6), (2.12), and the fifth equation of (2.8), the expressions

σ̃P,h = 2µP(θh)th, σN,h = 2εµN(θh)th, σ̂P,h = σd
h − σN,h, and ph = − 1

n
trσh , (4.25)

respectively, with (th,uh,ph, θh) ∈ Hh × Hu
h × Hp

h × Hθ
h being the unique solution of the discrete

problem (4.2). The corresponding error estimates are established in the following lemma.

Lemma 4.12 Assume that the hypotheses of Theorem 4.11 hold. Let (t,u,p, θ) ∈ H × H1
0(Ω) ×

HΓN
(div ; Ω) × H1(Ω) and (th,uh,ph, θh) ∈ Hh ×Hu

h ×Hp
h × Hθ

h be the unique solutions of the con-
tinuous and discrete problems (2.18) and (4.2), respectively. Then, there exists a positive constant C,
depending only on parameters, data and other constants, all of them independent of h, such that

‖p− ph‖0,Ω + ‖σN−σN,h‖0,Ω + ‖σP− σ̃P,h‖0,Ω ≤ C
{

dist
(

(t,u),Hh×Hu
h

)
+ dist

(
(p, θ),Hp

h ×Hθ
h

)}
.

Proof. From (2.6) and (4.25), adding and subtracting 2µP(θh)t, it is clear that

σP − σ̃P,h = 2(µP(θ)− µP(θh))t + 2µP(θh)(t− th).

Next, employing the triangle and Hölder inequalities, the estimate (3.22) to bound ‖t‖δ,Ω, the contin-
uous injection of H1(Ω) into Ln/δ(Ω), and the Lipschitz-continuity assumption (2.4), it is not difficult
to see that there exists a positive constant c, depending only on data and other constants, all of them
independent of h, such that

‖σP − σ̃P,h‖0,Ω ≤ c
{
‖t− th‖0,Ω + ‖θ − θh‖1,Ω

}
.

In this way, following similar arguments for the solvent part of the extra-stress tensor σN (cf. (4.25)),
we obtain

‖p− ph‖0,Ω + ‖σN − σN,h‖0,Ω + ‖σP − σ̃P,h‖0,Ω ≤ C
{
‖t− th‖0,Ω + ‖σ − σh‖div;Ω + ‖θ − θh‖1,Ω

}
.

Then, the result is a direct application of Theorem 4.11. Observe that the proof is also valid if we
consider σ̂P,h in place of σ̃P,h. �

Finally, we complete our a priori error analysis with the following results which provides the corre-
sponding rate of convergence of our Galerkin scheme (4.2).
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Theorem 4.13 In addition to the hypotheses of Theorems 3.8, 4.7 and 4.11, assume that there exists
s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω), ρ ∈ Hs(Ω), u ∈ Hs+1(Ω), p ∈ Hs(Ω),
div p ∈ Hs(Ω), and θ ∈ Hs+1(Ω). Then, there exists C > 0, independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ Chmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω + ‖ρ‖s,Ω

+ ‖u‖s+1,Ω + ‖p‖s,Ω + ‖div p‖s,Ω + ‖θ‖s+1,Ω

}
.

(4.26)

Proof. It follows directly from the Céa estimate (4.24) and the well-known approximation properties
of the discrete spaces Ht

h,Hσ
h ,H

ρ
h,H

u
h ,H

p
h , and Hθ

h (cf. [6, 11]). �

Consequently, from Lemma 4.12 and Theorem 4.13 we obtain the optimal convergence of the post-
processed unknowns introduced in (4.25).

Lemma 4.14 Let (t,u,p, θ) ∈ H × H1
0(Ω) × HΓN

(div ; Ω) × H1(Ω) be the unique solutions of the
continuous problem (2.18), and let σP, σN, and p given by (2.6) and the fifth equation of (2.8) In
addition, let σ̃P,h (or σ̂P,h), σN,h, and ph be the discrete counterparts introduced in (4.25). Assume
that hypotheses of Theorem 4.13 hold. Then, there exist C > 0, independent of h, such that

‖p− ph‖0,Ω + ‖σN − σN,h‖0,Ω + ‖σP − σ̃P,h‖0,Ω ≤ Chmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω

+ ‖ρ‖s,Ω + ‖u‖s+1,Ω + ‖p‖s,Ω + ‖div p‖s,Ω + ‖θ‖s+1,Ω

}
.

5 Numerical results

In this section we present some examples illustrating the performance of our augmented fully-mixed
finite element scheme (4.2), and confirming the rates of convergence provided by Theorem 4.13 and
Lemma 4.14. Our implementation is based on a FreeFem++ code [23], in conjunction with the direct
linear solver UMFPACK [16]. A Picard algorithm with a fixed tolerance tol = 1E − 8 has been used
for the corresponding fixed-point problem (4.8) and the iterations are terminated once the relative
error of the entire coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces Ht

h,Hσ
h ,H

ρ
h,H

u
h ,H

p
h , and Hθ

h. As usual, the individual errors are
denoted by:

e(t) := ‖t− th‖0,Ω, e(σ) := ‖σ − σh‖div;Ω, e(ρ) := ‖ρ− ρh‖0,Ω, e(u) := ‖u− uh‖1,Ω,

e(p) := ‖p− ph‖div ;Ω, e(θ) := ‖θ − θh‖1,Ω, e(p) := ‖p− ph‖0,Ω,

e(σN) := ‖σN − σN,h‖0,Ω, e(σ̃P) := ‖σP − σ̃P,h‖0,Ω, e(σ̂P) := ‖σP − σ̂P,h‖0,Ω.

In addition, we let r(·) be the experimental rate of convergence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
for each % ∈

{
t,σ,ρ,u,p, θ, p,σN, σ̃P, σ̂P

}
,

where e and e′ denote errors computed on two consecutive meshes of sizes h and h′, respectively.
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The examples to be considered in this section are described next. In all of them, as in [14, Section 2],
we choose the coefficients of the polymer and solvent viscosity a1, b1, a2 and b2 (cf. (2.2)) as follow:

b1 = b2 =
∆E

R
, a2 = exp

(
−∆E

RθR

)
, and a1 = (1− ε)a2,

where ∆E is the activation energy, R is the ideal gas constant, and θR is a reference temperature of
the fluid. Note that the constraint (2.3) will be satisfied as long as the temperature of the system stays
above θR. In turn, we consider κ = 1, ε = 0.01, and according to (3.20), the stabilization parameters
are taken as κ1 = µ1/µ

2
2, κ2 = κ1, κ3 = µ1/2, κ4 = µ1/4, κ5 = κ, κ6 = κ−1/2, and κ7 = κ/2. In

addition, the conditions
∫

Ω trσh = 0 is imposed via a penalization strategy.

In our first example we illustrate the accuracy of our method in 2D by considering the square
domain Ω := (0, 1)2, the boundary Γ = ΓD ∪ ΓN, with ΓD := {0} × (0, 1) and ΓN := Γ \ ΓD. The
following viscosity parameters correspond to polystyrene [24, Section 4.2]:

∆E

R
= 14500, θR = 538.

The data f , g, and θD are chosen so that the exact solution is given by

u(x) :=

(
πx2

1(x1 − 1)2 sin(2πx2)

−2x1(x1 − 1)(2x1 − 1) sin(πx2)2

)
,

p(x) := cos(πx1) sin(πx2),

θ(x) := 10(x1 − 1)2 sin(πx2)2 + 540 ∀x := (x1, x2) ∈ Ω.

In our second example we consider a four-to-one contraction domain Ω := (0, 2) × (0, 1) \ (1, 2) ×
(0.25, 1), the boundary Γ = ΓD∪ΓN, with ΓD := {0}×(0, 1) and ΓN := Γ\ΓD. The following viscosity
parameters correspond to Nylon-6,6 [24, Section 4.2]:

∆E

R
= 6600, θR = 563.

The data f , g, and θD are chosen so that the exact solution is given by

u(x) :=

(
2x2

1x2(x1 − 1)2(x1 − 2)2(x2 − 1)(4x2 − 1)(12x2
2 − 10x2 + 1)

−2x1x
2
2(x1 − 1)(x1 − 2)(3x2

1 − 6x1 + 2)(x2 − 1)2(4x2 − 1)2

)
,

p(x) := (x1 − 0.5) cos(4πx2),

θ(x) := x1(2x2
1 − 9x1 + 12) sin(2πx2)2 + 580 ∀x := (x1, x2) ∈ Ω.

In our third example we illustrate the accuracy of our method in 3D by considering the cube domain
Ω := (0, 1)3, the boundary Γ = ΓD ∪ ΓN, with ΓD := (0, 1)2 × {0} and ΓN := Γ \ ΓD. The viscosity
parameters are the same as in the first example and the data f , g, and θD are chosen so that the exact
solution is given by

u(x) :=

 8x2
1x2x3(x1 − 1)2(x2 − 1)(x3 − 1)(x2 − x3)

−8x1x
2
2x3(x1 − 1)(x2 − 1)2(x3 − 1)(x1 − x3)

8x1x2x
2
3(x1 − 1)(x2 − 1)(x3 − 1)2(x1 − x2)

 ,

p(x) := (x1 − 0.5)3 sin(x2 + x3),

θ(x) := 10 sin(πx1)2 sin(πx2)2(x3 − 1)2 + 540 ∀x := (x1, x2, x3) ∈ Ω.
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Finally, in our fourth example we illustrate the accuracy of the 3D version of the four-to-one domain
Ω := (0, 2) × (0, 1)2 \ (1, 2) × (0.25, 1)2, the boundary Γ = ΓD ∪ ΓN, with ΓD := {0} × (0, 1)2 and
ΓN := Γ \ΓD. The viscosity parameters are the same as in the second example and the data f , g, and
θD are chosen so that the exact solution is given by

u(x) :=

 4x2
1(x1 − 1)2(x1 − 2)2x2(x2 − 1)(2x2 − 1)x3(x3 − 1)(4x3 − 1)(12x2

3 − 10x3 + 1)

4x1(x1 − 1)(x1 − 2)(3x2
1 − 6x1 + 2)x2

2(x2 − 1)2x3(x3 − 1)(4x3 − 1)(12x2
3 − 10x3 + 1)

−8x1(x1 − 1)(x1 − 2)(3x2
1 − 6x1 + 2)x2(x2 − 1)(2x2 − 1)x2

3(4x3 − 1)2(x3 − 1)2

 ,

p(x) := (x1 − 0.5)(x2 − 0.5) cos(4πx3),

θ(x) := x1(2x2
1 − 9x1 + 12) sin(πx2)2 sin(2πx3)2 + 570 ∀x := (x1, x2, x3) ∈ Ω.

We remark that in all the examples, the temperature is given as a function θ̂(x) plus a big constant
chosen such that c > θR, that is, θ(x) := θ̂(x) + c. Then, the heat-flux vector is compute as:

p(x) = κ∇θ̂(x)− θ̂(x)u(x)− cu(x),

which implies that the errors of p are influenced for c, and then they are higher than in the other
unknowns as we will see below.

In Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6, we summarise the convergence history for a sequence of
quasi-uniform triangulations, which required around four fixed-point iterations. In particular, for the
2D examples in Tables 5.1, 5.2, 5.3, and 5.4, we observe that the rate of convergence O(hk+1) predicted
by Theorem 4.13 and Lemma 4.14 (when s = k + 1) is attained in all the variables (with k = 0 and
k = 1). Notice that the higher the order of the finite element chosen the lower the number of iterations.
In turn, in Tables 5.5 and 5.6 we observe that optimal rates of convergence are also obtained (with
k = 0) for our 3D examples. On the other hand, some components of the approximate solutions for
the four examples are displayed in Figures 5.1, 5.2, 5.3, and 5.4. All the figures were built using the
P0 − RT0 − P0 −P1 −RT0 − P1 approximation with 353853, 430221, 3314052, and 4148740 degrees
of freedom for the Examples 1, 2, 3, and 4, respectively. In particular, we can observe in Figure 5.1
that the temperature is higher in the left side and then it dissipates to the others sides meanwhile in
Figure 5.2 the temperature is lightly higher in the right side. Next, analogously to Figures 5.1 and
5.2, in Figures 5.3 and 5.4 we can observe that the temperature is higher at the bottom of the cube
and at the left side of the four-to-one domain and then it dissipates at the others sides, respectively.
Moreover, it can be seen that the velocity streamlines of the fluid are higher inside of the domain and
lower close to the boundary as expected.
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N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1467 0.196 0.1540 – 1.2323 – 0.2549 – 0.2609 – 18.7854 –
5631 0.097 0.0759 1.002 0.6258 0.961 0.1452 0.784 0.1266 1.025 9.6388 0.946

22131 0.048 0.0376 0.995 0.3099 0.993 0.0799 0.844 0.0618 1.014 4.7401 1.003
87837 0.025 0.0189 1.031 0.1564 1.024 0.0396 1.052 0.0311 1.026 2.4056 1.015

353853 0.013 0.0092 1.096 0.0768 1.090 0.0193 1.103 0.0155 1.072 1.1875 1.082

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

3.6159 – 0.1322 – 0.3557 – 0.3521 – 0.3095 – 5
1.4896 1.257 0.0677 0.949 0.1717 1.033 0.1700 1.033 0.1493 1.033 5
0.6674 1.135 0.0325 1.039 0.0830 1.026 0.0822 1.026 0.0727 1.018 4
0.3326 1.042 0.0150 1.154 0.0417 1.031 0.0413 1.031 0.0361 1.047 4
0.1631 1.093 0.0073 1.105 0.0201 1.119 0.0199 1.119 0.0175 1.111 4

Table 5.1: Example 1, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P0 − RT0 − P0 − P1 −RT0 − P1 approximation of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

3666 0.196 0.0264 – 0.1535 – 0.0227 – 0.0370 – 2.4423 –
14076 0.097 0.0063 2.037 0.0374 2.002 0.0056 1.987 0.0086 2.073 0.5847 2.027
55326 0.048 0.0015 2.045 0.0089 2.024 0.0013 2.048 0.0020 2.065 0.1379 2.041

219591 0.025 0.0004 1.989 0.0023 2.037 0.0003 1.998 0.0005 1.986 0.0357 2.024
884631 0.013 0.0001 2.187 0.0006 2.153 0.0001 2.196 0.0001 2.195 0.0088 2.148

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

0.2957 – 0.0155 – 0.0455 – 0.0450 – 0.0861 – 4
0.0692 2.060 0.0041 1.899 0.0107 2.049 0.0106 2.049 0.0177 2.246 4
0.0154 2.119 0.0010 1.965 0.0025 2.039 0.0025 2.039 0.0041 2.063 4
0.0039 2.047 0.0003 2.074 0.0007 2.006 0.0007 2.006 0.0011 2.018 4
0.0010 2.133 0.0001 2.138 0.0002 2.185 0.0002 2.185 0.0003 2.198 4

Table 5.2: Example 1, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P1 − RT1 − P1 − P2 −RT1 − P2 approximation of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).
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N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1803 0.190 0.1627 – 2.3476 – 0.1990 – 0.2346 – 91.0099 –
6987 0.103 0.0872 1.017 1.1683 1.139 0.1209 0.814 0.1138 1.181 43.1779 1.217

27345 0.049 0.0432 0.953 0.5758 0.959 0.0650 0.841 0.0553 0.978 21.7689 0.929
107985 0.026 0.0219 1.052 0.2936 1.040 0.0326 1.066 0.0279 1.058 10.9728 1.059
430221 0.013 0.0108 1.062 0.1449 1.062 0.0168 0.996 0.0136 1.076 5.4528 1.051

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

10.2650 – 0.2544 – 0.2532 – 0.2507 – 0.2724 – 5
4.4925 1.348 0.1108 1.356 0.1339 1.040 0.1325 1.040 0.1387 1.101 4
2.1518 0.998 0.0495 1.092 0.0668 0.942 0.0662 0.942 0.0702 0.924 4
1.0794 1.066 0.0230 1.185 0.0339 1.051 0.0335 1.051 0.0349 1.078 3
0.5271 1.077 0.0112 1.085 0.0167 1.060 0.0166 1.060 0.0171 1.072 3

Table 5.3: Example 2, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P0 − RT0 − P0 − P1 −RT0 − P1 approximation of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

4506 0.190 0.0357 – 0.4304 – 0.0318 – 0.0504 – 16.7122 –
17466 0.103 0.0085 2.334 0.1039 2.319 0.0073 2.397 0.0117 2.386 4.0081 2.330
68361 0.049 0.0021 1.906 0.0247 1.946 0.0018 1.927 0.0028 1.938 1.0104 1.868

269961 0.026 0.0005 2.096 0.0064 2.087 0.0005 2.097 0.0007 2.095 0.2605 2.095
1075551 0.013 0.0001 2.131 0.0016 2.117 0.0001 2.125 0.0002 2.136 0.0627 2.141

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

1.9318 – 0.0741 – 0.0509 – 0.0504 – 0.0911 – 4
0.4124 2.520 0.0152 2.582 0.0122 2.325 0.0121 2.325 0.0238 2.191 3
0.1039 1.869 0.0033 2.055 0.0030 1.909 0.0030 1.909 0.0056 1.952 3
0.0264 2.115 0.0087 2.087 0.0008 2.097 0.0008 2.097 0.0015 2.089 3
0.0065 2.097 0.0002 2.148 0.0002 2.131 0.0002 2.131 0.0003 2.156 3

Table 5.4: Example 2, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P1 − RT1 − P1 − P2 −RT1 − P2 approximation of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).
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N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

7028 0.354 0.0149 – 0.1252 – 0.0181 – 0.0259 – 23.7426 –
53604 0.177 0.0082 0.862 0.0644 0.959 0.0119 0.606 0.0139 0.899 12.3360 0.945

419012 0.088 0.0042 0.970 0.0324 0.994 0.0068 0.812 0.0070 0.979 6.2286 0.986
3314052 0.044 0.0021 0.995 0.0162 1.001 0.0036 0.927 0.0035 0.998 3.1220 0.997

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

5.1532 – 0.0170 – 0.0328 – 0.0325 – 0.0312 – 4
2.8687 0.845 0.0096 0.817 0.0194 0.758 0.0192 0.758 0.0187 0.736 3
1.4810 0.954 0.0046 1.055 0.0103 0.908 0.0102 0.908 0.0103 0.868 3
0.7470 0.987 0.0022 1.076 0.0053 0.966 0.0052 0.966 0.0054 0.938 3

Table 5.5: Example 3, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P0 − RT0 − P0 −P1 −RT0 − P1 approximations of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

8884 0.354 0.0657 – 1.0895 – 0.0705 – 0.1070 – 120.9619 –
67396 0.177 0.0414 0.667 0.6751 0.691 0.0478 0.559 0.0711 0.590 55.2472 1.131

525316 0.088 0.0227 0.865 0.3443 0.971 0.0290 0.723 0.0376 0.917 28.2498 0.968
4148740 0.044 0.0116 0.966 0.1727 0.995 0.0157 0.882 0.0189 0.992 14.2047 0.992

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

7.6590 – 0.1087 – 0.1318 – 0.1305 – 0.1300 – 3
6.1383 0.319 0.0755 0.525 0.0793 0.732 0.0785 0.732 0.0810 0.683 3
3.2313 0.926 0.0337 1.165 0.0443 0.841 0.0439 0.841 0.0463 0.806 3
1.6359 0.982 0.0144 1.224 0.0233 0.926 0.0231 0.926 0.0244 0.926 3

Table 5.6: Example 4, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P0 − RT0 − P0 −P1 −RT0 − P1 approximations of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).
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Figure 5.1: Example 1: P0−RT0−P0−P1−RT0−P1 approximated spectral norm of strain tensor and
the stress tensor components (top panels), velocity and heat flux vector components (centre panels),
and temperature and pressure fields, and polymeric part of the extra-stress tensor component (bottom
row).
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Figure 5.2: Example 2: P0 − RT0 − P0 − P1 −RT0 − P1 approximation of some components of the
approximate solutions.
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Figure 5.3: Example 3: P0−RT0−P0−P1−RT0−P1 approximation of the strain tensor component,
approximated spectral norm of the stress tensor component, and vorticity streamlines (top panels),
velocity streamlines, heat flux streamlines, and temperature field (centre panels), and pressure field,
polymeric part and solvent part of the extra-stress tensor component (bottom row).
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