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Abstract

We propose and analyze a high order mixed finite element method for diffusion problems with
Dirichlet boundary condition on a domain Ω with curved boundary Γ. The method is based on
approximating Ω by a polygonal subdomain Dh, with boundary Γh, where a high order conforming
Galerkin method is considered to compute the solution. To approximate the Dirichlet data on the
computational boundary Γh, we employ a transferring technique based on integrating the extrap-
olated discrete gradient along segments joining Γh and Γ. Considering general finite dimensional
subspaces we prove that the resulting Galerkin scheme, which is H(div ; Dh)-conforming, is well-
posed provided suitable hypotheses on the aforementioned subspaces and integration segments. A
feasible choice of discrete spaces is given by Raviart–Thomas elements of order k ≥ 0 for the vec-
torial variable and discontinuous polynomials of degree k for the scalar variable, yielding optimal
convergence if the distance between Γh and Γ is at most of the order of the meshsize h. We also
approximate the solution in Dc

h := Ω\Dh and derive the corresponding error estimates. Numerical
experiments illustrate the performance of the scheme and validate the theory.
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1 Introduction

This work proposes and analyzes a high order mixed finite element method applied to a diffusion
problem with Dirichlet boundary conditions on a domain Ω not necessarily polygonal. More precisely,
given f ∈ L2(Ω) and g ∈ H1/2(Γ) we are interested in approximating, by a mixed finite element
discretization, the vector field σ and the scalar field u satisfying the following first–order system of
equations

σ = ∇u in Ω, divσ = −f in Ω, u = g on Γ, (1.1)
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where Γ := ∂Ω is the boundary of Ω, which is assumed to be piecewise C2 and Lipschitz. Our approach
is based on a technique originally developed in the context of high order hybridizable discontinuous
Galerkin (HDG) methods [13, 15, 17]. It consists of approximating Ω by a polygonal subdomain Dh,
with boundary Γh, and transferring the Dirichlet boundary datum g from Γ to the computational
boundary Γh, in such a way that the method keeps high order accuracy when Dh does not necessarily
fit Ω. As we will detail below in Section 2.1, the transferred boundary datum on Γh, denoted by
g̃, is obtained by integrating σ = ∇u along a family of segments joining Γh and Γ, which will be
referred as transferring paths. At discrete level, g̃ is approximated by a boundary datum g̃h obtained
by integrating the extrapolation of the discrete approximation of σ along the transferring paths. Thus,
the problem is solved in Dh by means of any standard mixed method for polygonal domains.

This technique, as mentioned before, has been introduced for HDG methods. It was first proposed
and analyzed for the one-dimensional case in [13]. The approach was extended in [15] to two dimen-
sions where numerical evidence indicated that the method performs optimally. Later, the authors in
[17] proved that the method converges with optimal order in two and three dimensions under assump-
tions regarding the transferring paths. In addition, this technique has been successfully applied to
convection-diffusion problems [16], exterior diffusion equations [14] and the Stokes flow problem [31].
We point out that in all these work the distance d(Γh,Γ) between Γh and Γ is only of the order of
the meshize h and there is no need of fitting the domain Ω. On the other hand, also in the context of
HDG methods, [29] applied this technique to a diffusion problem with mixed boundary conditions and
to an elliptic transmission problem where the interface is not piecewise flat. In these two cases, the
boundary/interface needs to be interpolated by a piecewise linear computational boundary/interface
in order to obtain high order accuracy, which means that the distance between the computational
boundary/interface and the true boundary/interface has to be at most of order h2. The reason why
this approach works for the Dirichlet problem under less restrictive assumption than the Neumann
problem (d(Γh,Γ) of order h versus order h2) relies on the fact that the PDE provides a way to deter-
mine the Dirichlet data at the computational boundary through performing a line integration of the
equation σ = ∇u. An appropriate transferring procedure of the Neumann datum, allowing d(Γh,Γ)
to be of order h, remains as an open problem.

On the other hand, a variety of numerical methods dealing with curved boundaries or interfaces
have been proposed since the seventies, most of them provide low order approximations. In general,
they can be classified in two groups: fitted and unfitted methods. Fitted methods fit the computational
boundary to Γ. For example, Γh can be constructed by a linear interpolation of Γ and the boundary
data is transferred in a natural way, i.e., if x ∈ Γh and x̄ ∈ Γ is a projection of x in Γ, then g̃(x) := g(x̄).
We recall that g̃ denotes the boundary data on Γh. This idea, which was first introduced in [4] and
then extended to interface problems in [5], leads to a low order approximation. To achieve a high order
approximation in the context of fitted methods, an alternative procedure is to use isoparametric finite
elements (see e.g. [25]). However, these meshes are not easy to construct, especially for complicated
geometries or when dealing with moving domains. On the contrary, unfitted methods, such as the
immersed boundary method, allow us to work with background meshes, which is useful in complicated
geometries. Nevertheless, since the boundary of the resulting polygonal domain is “far” from the curved
boundary, the boundary data must be incorporated differently from the classical approaches. We refer
the reader to [17, Section 1] for a review of unfitted methods, including the work [3, 26, 27, 28].

The method presented in this manuscript can be classified as an unfitted method, where the bound-
ary data is transferred in such a way that optimal high order accuracy is achieved. To the best of
our knowledge, this technique has only been applied to HDG methods. Therefore, the purpose of our
work is to consider this approach to the context of dual–mixed formulations of elliptic problems. The
literature regarding mixed methods in polygonal/polyhedral domains is extensive. For instance we
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refer the reader to [9] and [21] for a detailed analysis of mixed methods applied to different problems.
However, in the context of curved domains the literature is scarce. Up to the author’s knowledge,
probably the only work dealing with mixed methods in curved domains are [7, 8], where a parametric
Raviart–Thomas finite elements for domains with curved boundaries is employed.

The rest of this work is organized as follows. In the remainder of this section we recall notation
and general definitions. Then, the domain Ω is approximated by a polygonal subdomain where a
Galerkin scheme is introduced and analyzed in Section 2. In Section 3, we derive the corresponding
a priori error analysis whenever the distance d(Γ,Γh) is at most O(h). Next, in Section 4 we make
precise the definition of the involved discrete spaces, recall some approximation properties, and Finally,
conclusions are drawn in Section 6.

We end this section by introducing definitions and notations. In the sequel, when no confusion
arises, | · | will denote the Euclidean norm in R2. Additionally, in what follows we utilize standard
simplified terminology for Sobolev spaces and norms, where spaces of vector-valued functions are
denoted in bold face. In particular, if O is a domain in R2, Σ is an open or closed Lipschitz curve,
and s ∈ R, we define

Hs(O) := [Hs(O)]2 and Hs(Σ) := [Hs(Σ)]2.

However, when s = 0 we write L2(O) and L2(Σ) instead of H0(O) and H0(Σ), respectively. The
corresponding norms are denoted by ‖ · ‖s,O for Hs(O), Hs(O), and ‖ · ‖s,Σ for Hs(Σ) and Hs(Σ). For
s ≥ 0, we write | · |s,O for the Hs-seminorm and Hs-seminorm. In addition, we define the Sobolev
space (see, e.g. [9, 21, 23]):

H(div ;O) :=
{
τ := (τ1, τ2)t ∈ L2(O) : div τ ∈ L2(O)

}
,

equipped with the norm ‖τ‖div ;O :=
(
‖τ‖20,O + ‖div τ‖20,O

)1/2
, where the divergence operator div is

understood in the sense of distributions, that is,

〈div τ , ϕ〉D ′(O)×D(O) := −
∫
O
τ · ∇ϕdx ∀ϕ ∈ D(O) := C∞0 (O),

with 〈·, ·〉D ′(O)×D(O) being the distributional paring between D ′(O) and D(O). Note that if τ ∈
H(div ;O), then τ · ν∂O ∈ H−1/2(∂O), where ν∂O denotes the outward unit vector normal to the
boundary ∂O and H−1/2(∂O) corresponds to the dual space of H1/2(O). Hereafter, 〈·, ·〉∂O denotes
the duality pairing between H−1/2(∂O) and H1/2(∂O) with respect to the L2(∂O)-inner product.

Finally, by 0 we will refer to the generic null vector (including the null functional and operator),
and we will denote by C and c, with or without subscripts, bars, tildes or hats, generic constants
independent of the meshsize, but might depend on the polynomial degree, the shape-regularity of the
triangulation and the domain. Moreover, for quantities A and B, we write A . B, whenever there
exists C > 0 such that A ≤ CB.

2 The Galerkin method

In this section we derive our numerical scheme and analyze its well-posedness. We begin by introducing
some notations and auxiliary results.
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2.1 Notation and preliminaries

For the sake of completeness and easy presentation of the main ideas, we start by briefly recalling the
mixed formulation of the Poisson problem, which reads: Find (σ, u) ∈ H(div ; Ω)× L2(Ω) such that

a(σ, τ ) + b(τ , u) =G(τ ) ∀ τ ∈ H(div ; Ω),

b(σ, v) =F (v) ∀ v ∈ L2(Ω),
(2.1)

where the bilinear forms a : H(div ; Ω) ×H(div ; Ω) → R, b : H(div ; Ω) × L2(Ω) → R, and the linear
functionals G : H(div ; Ω)→ R, F : L2(Ω)→ R are defined by

a(σ, τ ) :=
∫

Ω
σ · τ dx, b(τ , v) :=

∫
Ω
v div τ dx, G(τ ) := 〈τ · νΓ, g〉Γ, F (v) := −

∫
Ω
f v dx.

Here νΓ stands for the outward unit normal to Γ. For the well-posedness analysis of this problem we
refer the reader to [21, Chapter 2].

Next, to derive our numerical method, from now on we suppose that Ω can be approximated by
a family of polygonal subdomains Dh. To construct such a family, the most natural choice, guided
by [15, Section 2.1], consists of considering a background domain B ⊃ Ω easy to triangulate. More
precisely, given a mesh Th of B made up of triangles K of diameter hK , we use a level set function ϕ
to determine which elements are inside of Ω in order to set our subdomain Dh; see an illustration in
Figure 1. Here ϕ : B → R is a continuous function such that ϕ < 0 in Ω, ϕ = 0 in Γ and ϕ > 0 in
B \ Ω. Then, we define Th := {K ∈ Th : ϕ(x) ≤ 0 ∀x ∈ K} and set Dh := (∪K∈Th

K)◦. Also, we set
Γh := ∂Dh and Dc

h := Ω \Dh.

Figure 1: Example of a curved domain Ω (annulus of boundary Γ in blue color), a corresponding
background domain B, and the polygonal subdomain Dh (gray color).

Now, we introduce notation associated with the sets introduced above. Hereafter, h denotes the
meshsize of the triangulation Th of Dh, that is h := max{hK : K ∈ Th}. In addition, we denote by
Eh the set of all edges/faces of Th, subdivided as follows

Eh = E0
h ∪ E∂h ,

where E0
h := {e ∈ Eh : e ⊆ Dh} and E∂h := {e ∈ Eh : e ⊆ Γh}. Finally, for all K, νK will denote the

the unit outward normal vector on the boundary ∂K. However, to emphasize that ν is normal to Γh
or to an edge e of K, we will write νΓh

or νe, respectively.
In the computational domain Dh, the solution of (2.1) satisfies in a distributional sense,

σ = ∇u in Dh, divσ = −f in Dh. (2.2)
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Moreover, thanks to the first equation in (2.2), the trace of u on Γh, denoted by g̃, can be written as

g̃(x) := g(x)−
∫

C (x)
σ ·m(x) dr, (2.3)

where C (x) is, in principle, any path starting at x ∈ Γh and ending at x̃ ∈ Γ, m(x) is the unit tangent
vector of C (x), and g(x) := g(x̃(x)). In Section 2.2 we specify a construction of a suitable family of
paths. Note that the value of g̃ is independent of the integration path since it comes from integrating
σ = ∇u. In addition, it is easy to see that the solution of (2.1) also satisfies

ah(σ, τ ) + bh(τ , u)− 〈τ · νΓh
, g̃〉Γh

= 0 ∀ τ ∈ H(div ; Dh),

bh(σ, v) =Fh(v) ∀ v ∈ L2(Dh),
(2.4)

where the bilinear forms ah : H(div ; Dh)×H(div ; Dh)→ R and bh : H(div ; Dh)× L2(Dh)→ R, and
the functional Fh : H(div ; Dh)→ R are given by

ah(σ, τ ) :=
∫

Dh

σ · τ dx, bh(τ , v) :=
∫

Dh

v div τ dx, Fh(v) := −
∫

Dh

f v dx. (2.5)

We end this section by mentioning that, while the classical mixed finite element method provides
a Galerkin scheme for (2.1), we aim to propose a Galerkin scheme for (2.4), under a suitable approxi-
mation of the Dirichlet data on the boundary Γh, denoted by g̃h, allowing a high order approximation
and keeping high order accuracy when the distance between Γ and Γh is of only order h. Before doing
that, we proceed analogously to [17] and construct the aforementioned family of transferring paths.

2.2 Family of transferring paths

We now summarize the procedure introduced in [15] to construct the family of transferring paths
{C (x)}x∈Γh

connecting Γh and Γ. Let u and v be the vertices of a boundary edge e, x be a point on
e and Ke the only element of Th where e belongs. We first determine points ũ and ṽ in Γ associated
to u and v, respectively:

Step 1 : For the vertex u, we suggest two approaches to define ũ.
• One possibility is to use the algorithm proposed in [15, Section 2.4.1] that uniquely
determines a point ũ as the closest point to u such that C (u) does not intersect any
other path and does not intersect the interior of the domain Dh. In Figure 2 (left) we
display an illustration where ũ is the point in Γ associated to u.
• An alternative is to assume that Γ is C2 and the mesh is fine enough. In this case ũ

can be set as the orthogonal projections of u into Γ.
Let m̂u := ũ− u. We set mu := m̂u/|m̂u| if |m̂u| 6= 0 and mu = νe, otherwise. To define
ṽ and mv we proceed similarly.

Then, for a point x̃ ∈ e, which is not a vertex,

Step 2 : C (x) is determined as a convex combination of those paths originated from the vertices of e.
More precisely, for θ ∈ [0, 1], we write x = u(1− θ) + θv and define m̂ := mu(1− θ) + θmv.
Then, we write m := m̂/|m̂| if |m̂| 6= 0 and m := νe, otherwise. Thus, we set x̃ as the
intersection between the boundary Γ and the ray starting at x whose unit tangent vector is
m; see Figure 2 (right) for an illustration.
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Figure 2: Transferring paths from the boundary edge e.

Subsequently, the transferring path connecting a point x ∈ Γh to the point x̃ := x+ `(x)m ∈ Γ, where
`(x) := |x̃− x|, is given by

C (x) := {x + tm : t ∈ [0, `(x)]} . (2.6)

Additionally, for each edge e ∈ E∂h of vertices u and v, we define K̃e
ext as the region enclosed by the

intersection of Dc
h with the cones (see Figure 3):

C1 :=
{

u + η1(ũ− u) + η2(v− u) : η1, η2 ∈ R+
}
,

C2 :=
{

v + η1(ṽ− v) + η2(u− v) : η1, η2 ∈ R+
}
,

and denote by T̃h :=
{
K̃e
ext : e ∈ E∂h

}
the partition of Dc

h, satisfying,

Dc
h =

⋃
e∈E∂

h

K̃e
ext.

2.3 Statement of the Galerkin scheme

Let us introduce generic finite dimensional subspaces Hh(Dh) and Qh(Dh) of H(div ; Dh) and L2(Dh),
respectively. On each K ∈ Th, we let (M(K),W(K)) be a pair of arbitrary finite dimensional sub-
spaces, where M(K) is the space of two-dimensional vector functions on K, and W(K) is the space
of scalar functions on K. Then, our approach consists of approximating the exact solution (σ, u) by
a pair (σh, uh) belonging to the product space Hh(Dh)×Qh(Dh), where

Hh(Dh) :=
{
τ h ∈ H(div ; Dh) : τ h

∣∣
K
∈M(K) ∀K ∈ Th

}
,

Qh(Dh) :=
{
vh ∈ L2(Dh) : vh

∣∣
K
∈W(K) ∀K ∈ Th

}
.

(2.7)

A feasible choice of (M(K),W(K)) will be specified in Section 4. Now, inspired by (2.3), for any x
lying in e ∈ E∂h , g̃ can be approximated by

g̃h(x) := g(x)−
∫ `(x)

0
Eh(σh)(x + tm) ·m dt, (2.8)

where Eh(σh) is a local extension operator from Ke to K̃e
ext acting on σh. In practice, since M(K) is

a space of polynomials, given ζh ∈M(K) we consider Eh(ζh) as the extrapolation of ζh from Ke to
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K̃e
ext. In this way, defining now

dh(ζh, τ h) :=
∑
e∈E∂

h

∫
e

(∫ `(x)

0
Eh(ζh)(x + tm) ·m dt

)
τ h · νe dSx, (2.9)

and
Gh(τ h) :=

∑
e∈E∂

h

∫
e
g τ h · νe dSx, (2.10)

for ζh, τ h ∈ Hh(Dh), the Galerkin scheme associated to (2.4), reads: Find (σh, uh) ∈ Hh(Dh)×Qh(Dh)
such that

(ah + dh)(σh, τ h) + bh(τ h, uh) =Gh(τ h) ∀ τ h ∈ Hh(Dh),

bh(σh, vh) =Fh(vh) ∀ vh ∈ Qh(Dh),
(2.11)

where the bilinear forms ah, bh and the functional Fh have been introduced in Section 2.1. We remark
that problem (2.11) can be seen as the discrete version of problem (2.4) where g̃ has been approximated
by g̃h (cf. (2.8)). Moreover, if Ω were a polygonal domain coinciding with Dh, the term dh(ζh, τ h)
would be zero for all ζh, τ h ∈ Hh(Dh), and then problem (2.11) would become well-posed provided the
Babuška–Brezzi conditions are proved, namely, the coercivity of ah on the kernel of bh, the discrete
inf-sup condition for bh and the boudedness of all the forms involved.

2.4 Solvability analysis

We now aim to prove the well-posedness of problem (2.11). We begin by stating the assumptions
regarding the Galerkin method, the triangulation and the closeness between Γh and Γ. Let us first
introduce some assumptions on the boundary Γ and the mesh Th.

A. For some technical results concerning inverse inequalities, we first assume that the elements K in
Th are shape-regular in the sense of Ciarlet (see [10]):
(A.1) There is a constant γK such that hK ≤ γKρK , where ρK is the radius of the largest ball

contained in K.
Next, in order to give sense to the integrals involved in Gh and dh in (2.11), we need g̃h (cf.

(2.8)) to be a measurable function, which certainly holds under the following assumptions on the
boundary Γ (see [17, Lemma 3.1]):

(A.2) Γ is a compact Lipschitz boundary,
(A.3) There exits Γ̃ ⊂ Γ closed in Γ such that |Γ̃| = 0 and Γ\Γ̃ is C2.

Owing to the latter hypothesis we can also define extension operators from Ω to R2. In fact, relax-
ing the smoothness requirement in assumption (A.3) to C1 only, we have the following extension
theorem. For its proof we refer to [32, Chapter VI].

Theorem 2.1. There is an extension mapping E : Hm(Ω)→ Hm(R2) defined for all non-negative
integers m satisfying E (ζ)

∣∣
Ω = ζ for all ζ ∈ Hm(Ω) and

‖E (ζ)‖m,R2 ≤ C‖ζ‖m,Ω,

where C is independent of ζ.
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In order to simplify the technicalities of the analysis on the region Dc
h, for every edge e ∈ E∂h and

x ∈ e, we assume that

(A.4) the intersection of the ray {x + η(x̃− x), η ∈ R+} with Γ is unique.

This prevents situations like the one shown at the right of Figure 3.

Figure 3: Examples of sets K̃e
ext.

Next, we describe two sets of hypothesis establishing the constraints on the choice of the discrete
subspaces in (2.7).

B. Let VDh be the discrete kernel of bh, i.e.,

VDh = {τ h ∈ Hh(Dh) : bh(τ h, vh) = 0 ∀ vh ∈ Qh(Dh)} .

In order to have a more explicit definition of VDh we introduce the following assumption:
(B.1) div Hh(Dh) ⊆ Qh(Dh).
If fact, owing to (B.1) the subspace VDh can be characterized as follows

VDh = {τ h ∈ Hh(Dh) : div τ h ≡ 0 in Dh} .

Consequently, the bilinear form ah satisfies the identity

ah(τ h, τ h) = ‖τ h‖2div ;Dh
∀ τ h ∈ VDh ,

which clearly shows that ah is coercive on VDh with constant α̂ = 1. In turn, we assume that bh
satisfies the inf-sup condition:
(B.2) There exists β̂ > 0, independent of h, such that

sup
τh∈Hh(Dh)

τh 6=0

bh(τ h, vh)
‖τ h‖div ;Dh

≥ β̂‖vh‖0,Dh
∀ vh ∈ Qh(Dh).

For the subsequent analysis we will also need the following hypotheses on the local discrete
spaces.

C. Given an integer k ≥ 0 and a region O ⊂ R2, we denote by Pk(O) the space of polynomials of
degree at most k defined on O, and let Pk(O) := [Pk(O)]2. Let n1, n2 and n3 be integers such
that n1, n2 ≥ 1 and n3 ≥ 0. Then, for all e ∈ E∂h ,
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(C.1) M(Ke) ⊆ Pn1(Ke),
(C.2) M(Ke) · νKe

∣∣
ẽ
⊆ Pn2(ẽ) for all edge ẽ ⊂ ∂Ke,

(C.3) W(Ke) ⊆ Pn3(Ke),
Next, in Section 4 we specify suitable choices of finite element subspaces satisfying hypotheses

(B.1), (B.2) and (C.1)–(C.3).

Now we introduce assumptions related to the sets K̃e
ext and the bilinear form dh. More precisely, in

what follows we introduce smallness assumptions on certain quantities that will appear in the analysis
of our method when approximating the L2-norm of functions defined on K̃e

ext. These conditions
determine how close the boundaries Γ and Γh must be.

D. Let e be any edge in E∂h . We define r̃e := H̃e/h
⊥
e , where H̃e := maxx∈e `(x) and h⊥e is the distance

between the vertex of Ke, opposite to e, and the plane determined by e. We assume
(D.1) r̃e ≤ R,
where R denotes a constant that does not depend on the meshsize h. This hypothesis indicates
that the distance d(Γ,Γh) must be at most O(h). In particular, the family of paths (Σh) (cf.
Section 2.2) satisfies this hypothesis by construction.

To establish the remaining hypotheses, for each K ∈ Th we denote

Nh(∂K) =
{
w ∈ L2(∂K) : w|e ∈ Pn2(e) for all edges e of K

}
,

and introduce the following constant:

Ceeq := h
1/2
Ke sup

wh∈Nh(∂Ke)
wh 6=0

‖wh‖0,∂Ke

‖wh‖−1/2,∂Ke
. (2.12)

This definition can be inferred using the equivalence of the norms ‖ · ‖0,∂K and ‖ · ‖−1/2,∂K on
the space Nh(∂K) for all K ∈ Th; see [18, Lemma 3.2] for further details. Moreover, the value of
Ceeq depends solely on the shape-regularity constant γKe and the polynomial degree of the space
Nh(∂Ke).

We shall also make frequent use of the quantity

|||p|||e :=
(∫

e

∫ `(x)

0
|p(x + tm(x))|2 dt dSx

)1/2

, (2.13)

where e ∈ E∂h and p is smooth enough in order to make the integral well-defined. In addition, we
define

C̃eext := r̃−1/2
e sup

ζh∈M(Ke)
ζh 6=0

|||Eh(ζh)|||e
‖ζh‖0,Ke

. (2.14)

We recall that Eh(ζh) is the extrapolation of the polynomial ζh from Ke to K̃e
ext, since if M(Ke)

is a space of polynomials thanks to (C.1). The constant C̃eext is independent of the meshsize h,
but depends on the shape-regularity constant γKe and on the polynomial degree; see Appendix A.

We are now in a position of discussing the boundedness of the bilinear form dh. Let ζh ∈
Hh(Dh). According to the notations stated in Section 2.2, for any x lying on a boundary edge e,
we set

w̃h(x) :=
∫ `(x)

0
Eh(ζh)(x + tm(x)) ·m(x) dt.
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Applying the Cauchy–Schwarz inequality, considering (2.13), (2.14) and the fact that, for all x ∈ e,
`(x) ≤ H̃e = r̃eh

⊥
e ≤ r̃ehKe , we obtain

‖w̃h‖20,e≤
∫
e
`(x)

∫ `(x)

0
|Eh(ζh)|2(x + tm(x)) dt dSx

≤ r̃eH̃e

(
C̃eext

)2
‖ζh‖20,Ke

≤ r̃2
ehKe

(
C̃eext

)2
‖ζh‖20,Ke .

(2.15)

In turn, by definition of dh (cf. (2.9)), utilizing again the Cauchy–Schwarz inequality, and using
definition (2.12) together with assumption (C.2), we deduce that

|dh(ζh, τ h)| ≤
∑
e∈E∂

h

‖w̃h‖0,e‖τ h · νe‖0,∂Ke ≤ max
e∈E∂

h

{
r̃eC̃

e
extC

e
eq

}
‖ζh‖div ;Dh

‖τ h‖div ;Dh
, (2.16)

for all ζh, τ h ∈ Hh(Dh), where we have utilized the continuity of the normal trace operator acting
from H(div ;Ke) onto H−1/2(∂Ke) (see e.g. [21, Theorem 1.7]). Thus, the boundedness of dh is
certainly satisfied if we assume that:
(D.2)

max
e∈E∂

h

{
r̃eC̃

e
extC

e
eq

}
≤ 1/2.

We emphasize that, in general, the condition above is not entirely verifiable because, in most
cases, some of the quantities involved cannot be calculable explicitly. Certainly it holds if r̃e for h
is small enough, as it happens when the boundary is interpolated by a piecewise linear function.

Having introduced the aforementioned hypotheses we are now in position of establishing the main
result of this section, namely, the well-posedness of problem (2.11).

Theorem 2.2. Suppose that assumptions A, B, C and D are satisfied. Then, given f ∈ L2(Ω) and
g ∈ H1/2(Γ), there exists a unique (σh, uh) ∈ Hh(Dh) × Qh(Dh) solution to problem (2.11) which
satisfies

‖(σh, uh)‖H(div ;Dh)×L2(Dh) ≤ C

 sup
wh∈Qh(Dh)

wh 6=0

|Fh(wh)|
‖wh‖0,Dh

+ sup
ζh∈Hh(Dh)

ζh 6=0

|Gh(ζh)|
‖ζh‖div ;Dh

 .
Proof. Let us start by providing the boundedness of the forms involved. Since x̃ : Γh → Γ is a
continuous mapping and we have assumed g ∈ H1/2(Γ), the composition g(·) := g(x̃(·)) is a function
in H1/2(Γh), and then we can apply the normal trace theorem (see e.g. [21, Theorem 1.7]) to obtain
|Gh(τ h)| ≤ ‖τ h‖div ;Dh

‖g‖1/2,Γh
for all τ h ∈ Hh(Dh), which implies Gh bounded with constant ‖Gh‖ ≤

1. Moreover, we easily obtain ah, bh and Fh bounded with constants ≤ 1.
On the other hand, the bilinear form ah + dh is coercive on VDh . Indeed, it is clear that

(ah + dh)(τ h, τ h) ≥ 1
2‖τ h‖

2
div ;Dh

∀ τ h ∈ VDh ,

owing to (2.16), assumptions (B.1) and (D.2), confirming the assertion. Finally, the discrete inf-sup
condition for bh is fulfilled by virtue of assumption (B.2) and hence the result is a straightforward
consequence of the classical Babuška–Brezzi theory. �
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3 Error analysis

In this section we carry out the error analysis for our Galerkin scheme (2.11). We first derive error
estimates on Dh by considering the arbitrary finite element subspaces satisfying the assumptions in
Section 2.4, and well-known Strang-type estimates for saddle point problems. Then, we will follow
the procedure in [17, Section 5.2] to control the errors on Dc

h. Moreover, we use the aforementioned
analysis to state the theoretical rates of convergence when using the specific discrete spaces provided
in Section 4.

3.1 Error estimates on Dh

Let (σ, u) ∈ H(div ; Ω)× L2(Ω) be the solution of (2.1) satisfying (2.4) and let (σh, uh) ∈ Hh(Dh)×
Qh(Dh) be the solution of (2.11). Firstly, we are interested in obtaining upper bounds for

‖(σ, u)− (σh, uh)‖H(div ;Dh)×L2(Dh).

To this end, we rearrange (2.4) and (2.11) as the following pairs of continuous and discrete formulations:

ah(σ, τ ) + bh(τ , u) = 〈τ · νΓh
, g̃〉Γh

∀ τ ∈ H(div ; Dh),

bh(σ, v) =Fh(v) ∀ v ∈ L2(Dh),
(3.1)

and
ah(σh, τ h) + bh(τ h, uh) =Gh(τ h)− dh(σh, τ h) ∀ τ h ∈ Hh(Dh),

bh(σh, vh) =Fh(vh) ∀ vh ∈ Qh(Dh).
(3.2)

Thus, as we have already pointed out before and as suggested by the structure of the foregoing systems,
in what follows we proceed similarly to [22] (see also [11]) and apply a Strang-type estimate for saddle
point problems whose continuous and discrete schemes differ only in the functionals involved, which
for the sake of completeness is introduced next. We refer the reader to [30, Theorem 11.2] for more
details.

Theorem 3.1. Let H and Q be two Hilbert spaces, G ∈ H′, F ∈ Q′, and let a : H ×H → R and
b : H×Q→ R be bounded bilinear forms satisfying the Babuška–Brezzi conditions, that is,

(i) There exists α > 0 such that
a(τ , τ ) ≥ α‖τ‖2H ∀ τ ∈ V,

where V := {τ ∈ H : b(τ , v) = 0 ∀ v ∈ Q}.
(ii) There exists β > 0 such that

sup
τ∈H
τ 6=0

b(τ , v)
‖τ‖H

≥ β‖v‖Q ∀ v ∈ Q.

In addition, let Hh and Qh be two finite dimensional subspaces of H and Q, respectively, and for each
h > 0 consider functionals Gh ∈ H′h and Fh ∈ Q′h. Assume that:

(iii) There exists α̂ > 0, independent of the discretization parameter h, such that

a(τ h, τ h) ≥ α̂‖τ h‖2H ∀ τ h ∈ Vh,

where Vh := {τ h ∈ Hh : b(τ h, vh) = 0 ∀ vh ∈ Qh}.
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(iv) There exists β̂ > 0, independent of the discretization parameter h, such that

sup
τh∈Hh
τh 6=0

b(τ h, vh)
‖τ h‖H

≥ β̂‖vh‖Q ∀ vh ∈ Qh.

In turn, let (σ, u) ∈ H×Q and (σh, uh) ∈ Hh ×Qh such that

a(σ, τ ) + b(τ , u) = G(τ ) ∀ τ ∈ H,

b(σ, v) =F(v) ∀ v ∈ Q,
(3.3)

and
a(σh, τ h) + b(τ h, uh) = Gh(τ h) ∀ τ h ∈ Hh,

b(σh, vh) =Fh(vh) ∀ vh ∈ Qh.
(3.4)

Then, for each h > 0 the following estimates hold

‖σ − σh‖div ;Dh
≤
(

1 + ‖a‖
α̂

)(
1 + ‖b‖

β̂

)
inf

ζh∈Hh

‖σ − ζh‖H + ‖b‖
α̂

inf
wh∈Qh

‖u− wh‖Q

+ 1
β̂

(
1 + ‖a‖

α̂

)
sup

wh∈Qh
wh 6=0

|(F − Fh)(wh)|
‖wh‖Q

+
( 1
α̂

)
sup
τh∈Hh
τh 6=0

∣∣(G − Gh)(τ h)
∣∣

‖τ h‖H
,

(3.5)

and
‖u− uh‖0,Dh

≤ ‖a‖
β̂

(
1 + ‖a‖

α̂

)(
1 + ‖b‖

β̂

)
inf

ζh∈Hh

‖σ − ζh‖H

+
(

1 + ‖bh‖
β̂

+ ‖b‖
β̂

‖a‖
α̂

)
inf

wh∈Qh

‖u− wh‖Q

+‖a‖
β̂2

(
1 + ‖a‖

α̂

)
sup

wh∈Qh
wh 6=0

|(F − Fh)(wh)|
‖wh‖Q

+ 1
β̂

(
1 + ‖a‖

α̂

)
sup
τh∈Hh
τh 6=0

∣∣(G − Gh)(τ h)
∣∣

‖τ h‖H
.

(3.6)

Hence, applying (3.5) and (3.6) to (3.1) and (3.2), noticing that in our case α̂ = 1 and ‖a‖ ≤ 1, we
can easily deduce that

‖σ − σh‖div ;Dh
≤C1

S inf
ζh∈Hh(Dh)

‖σ − ζh‖div ;Dh
+ C2

S inf
wh∈Qh(Dh)

‖u− wh‖0,Dh
+ Tσ, (3.7)

and
‖u− uh‖0,Dh

≤C3
S inf
ζh∈Hh(Dh)

‖σ − ζh‖div ;Dh
+ C4

S inf
wh∈Qh(Dh)

‖u− wh‖0;Dh
+ 2
β̂
Tσ, (3.8)

with C1
S , C

2
S , C

3
S and C4

S being positive constants independent of the discretization parameters and

Tσ := sup
τh∈Hh(Dh)

τh 6=0

∣∣〈τ h · νΓh
, g̃〉Γh

− (Gh(τ h)− dh(σh, τ h))
∣∣

‖τ h‖div ;Dh

. (3.9)

We now proceed to bound Tσ.
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Lemma 3.2. There exists a positive constant C, independent of h, such that

Tσ ≤ inf
ζh∈Hh(Dh)

∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(ζh)|||e + 1
2‖σ − ζh‖Dh

+ 1
2‖σ − σh‖Dh

(3.10)

Proof. First of all, using the Cauchy–Schwarz inequality, (2.8) and (2.12), we immediately have that

Tσ ≤
∑
e∈E∂

h

Ceeqh
−1/2
Ke ‖g̃ − g̃h‖0,e. (3.11)

Moreover, for e ∈ E∂h , from the definitions of g̃ and g̃h (resp. (2.3) and (2.8)), we obtain that

(g̃ − g̃h)(x) = −
∫ `(x)

0
(σ −Eh(σh))(x + tm(x)) ·m(x) dt,

for each point x of e. Then, by Cauchy–Schwarz inequality, we find that

‖g̃ − g̃h‖20,e ≤ H̃e|||σ −Eh(σh)|||2e ≤ r̃ehKe |||σ −Eh(σh)|||2e,

which, together with (3.11), yields

Tσ ≤
∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(σh)|||e.

Let now ζh ∈ Hh(Dh). Adding and subtracting Eh(ζh) to the term on the right hand side of last
inequality, considering (2.14) and Assumption (D.2), we obtain

Tσ ≤
∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(ζh)|||e +
∑
e∈E∂

h

(r̃e)1/2Ceeq|||Eh(ζh)−Eh(σh)|||e

≤
∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(ζh)|||e + 1
2
∑
e∈E∂

h

‖ζh − σh‖0,Ke .

Thus, adding and subtracting σ we obtain (3.10). �

In summary, (3.7), (3.8) and (3.10), yield the following result.

Theorem 3.3. Suppose that assumptions of Theorem 2.2 are satisfied. Let (σ, u) ∈ H(div ; Ω)×L2(Ω)
be the solution of (2.1) satisfying (2.4) and (σh, uh) ∈ Hh(Dh) × Qh(Dh) be the solution of (2.11).
Then,

‖(σ, u)− (σh, uh)‖H(div ;Dh)×L2(Dh)

. inf
wh∈Qh(Dh)

‖u− wh‖0,Dh
+ inf
ζh∈Hh(Dh)

‖σ − ζh‖div ;Dh
+
∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(ζh)|||e

 .
(3.12)
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3.2 Approximating σ and u in Dc
h

In this section we provide error estimates outside the computational domain. Before doing so, we need
to show that, under certain conditions, the norms ‖ · ‖0,K̃e

ext
and |||·|||e are equivalent.

Let u and v be the vertices of a boundary edge e, and ũ and ṽ be their corresponding points
in Γ described in Section 2.2. We recall that K̃e

ext is the region determined by u, v, ũ and ṽ as
Figure 3 (left) shows. Then, a point x on e can be represented as x(θ) = u + θ(v − u) for θ ∈ [0, 1].
Now, according to Section 2.2, the tangent vector of the path associated to x can be written as
m̂(θ) := mu + θ(mv−mu). Moreover, m(θ) := m̂(θ)/|m̂(θ)| if m̂(θ) 6= 0; and m(θ) = νe, otherwise.

Thus, for y ∈ K̃e
ext we have:

y(θ, s) = x(θ) + m(θ)s s ∈ [0, `(θ)], θ ∈ [0, 1], (3.13)

where `(θ) is the length of the transferring associated to x(θ).
Now, for a vector w = (w1, w2), we define w⊥ := (−w2, w1) and the Jacobian of the above trans-

formation is given by

J(s, θ) =
∣∣∣∣∣|e|m(θ) · νe + s

α(θ)m(θ) · (mv −mu)⊥
∣∣∣∣∣, (3.14)

where α(θ) = |m̂(θ)| if m̂(θ) 6= 0; and α(θ) = 1, otherwise. In turn, considering the parametrization
(3.13), we have that

‖p‖20,K̃e
ext

=
∫
K̃e

ext

|p(y)|2 dy =
∫ 1

0

∫ `(θ)

0
|p(y(s, θ))|2|J(s, θ)| ds dθ. (3.15)

Thus, the equivalence of norms holds if |J(s, θ)| is bounded from above and below for which specific
conditions must be satisfied by the vectors appearing in (3.14). More precisely, we have,

Lemma 3.4. Let p ∈ L2(K̃e
ext) and suppose assumptions (A.1)-(A.5) are satisfied. In addition, let

us consider the following conditions:

(i) mu ·mv ≥ 0,
(ii) there exists constant βe, independent of h, such that m(θ) · νe ≥ βe > 0 for all θ ∈ [0, 1] ; and
(iii) mu · (mv)⊥ ≥ 0.

If (i) holds, then
‖p‖0,K̃e

ext
≤ Ce2 |||p|||e, (3.16)

where Ce2 =
(
1 + 2

√
2 γKe r̃e

)1/2
. Moreover, if (ii) and (iii) hold, then

Ce1 |||p|||e ≤ ‖p‖0,K̃e
ext
, (3.17)

with Ce1 = β
1/2
e .

We point out that, if mu is parallel to mv, then |J(s, θ)| = |e|, which means that |||p|||e = ‖p‖0,K̃e
ext

and conditions (i)-(iii) are not required.
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Proof. By assumption (i) we have that

α(θ)2 = θ2 + (θ − 1)2 + 2θ(1− θ)mu ·mv ≥ θ2 + (θ − 1)2 ≥ 1/2.

Since `(θ) ≤ H̃e ≤ r̃ehKe ≤ γKe r̃e|e| for all θ ∈ [0, 1], then

|J(s, θ)| ≤ |e|+ `(θ)
α(θ)(|mu|+ |mv|) ≤ |e|+ 2

√
2 γKe r̃e|e|.

Thus,

‖p‖20,K̃e
ext

≤
(
1 + 2

√
2 γKe r̃e

)
|e|
∫ 1

0

∫ `(θ)

0
|p(y(s, θ))|2 ds dθ =

(
1 + 2

√
2 γKe r̃e

)
|||p|||2e,

which implies (3.16).
On the other hand, we notice that the Jacobian (3.14) can be written as

J(s, θ) =
∣∣∣∣∣|e|m(θ) · νe + s

α(θ)mu · (mv)⊥
∣∣∣∣∣. (3.18)

Then, by assumptions (ii) and (iii), we have that J(s, θ) ≥ βe|e|. Thus, by (3.15) we obtain (3.17). �

Then we have the following intermediate result.

Lemma 3.5. In addition to the hypotheses of Theorem 2.2 and assumption (i) in Lemma 3.4, we
suppose that there exists an integer m ≥ 0 such that σ ∈ Hm+1(Ω). Then, for any ζh ∈ Hh(Dh),
there hold

∑
e∈E∂

h

‖σ −Eh(ζh)‖0,K̃e
ext
. hm+1‖σ‖m+1,Ω + ‖σ − ζh‖0,Dh

(3.19)

and ∑
e∈E∂

h

‖σ −Eh(ζh)‖div ;K̃e
ext
. ‖σ − ζh‖div ;Dh

+ hm+1
(
‖σ‖m+1,Ω + ‖divσ‖m+1,Ω

)
. (3.20)

Proof. Let ζh ∈ Hh(Dh) and E : Hm+1(Ω) → Hm+1(R2) be the extension operator introduced in
Theorem 2.1. Then, since Γ is Lipschitz (cf. assumption (A.1)), we define

ψe := (Tm+1
e (E σ1),Tm+1

e (E σ2))t, (3.21)

where, for each i ∈ {1, 2} and for any e ∈ E∂h , Tm+1
e (E σi) is the Taylor polynomial of degree m+ 1 of

the function E σi around the center of the ball B̃e (see [6, Chapter IV] for details), with B̃e being the
ball of radius h

B̃e (equal to the diameter of K̃e
ext ∪Ke) centered at the middle point of the edge e; see

Figure 4. Thus, by definition, ψe ∈ Ps(B̃e) with s < m+ 1.
Then, by triangle inequality, definition (2.14) and Lemma 3.4, we obtain

‖σ −Eh(ζh)‖0,K̃e
ext
≤ ‖σ −ψe‖0,K̃e

ext
+ ‖ψe −Eh(ζh)‖0,K̃e

ext

≤ ‖σ −ψe‖0,K̃e
ext

+ Ce2 r̃
1/2
e C̃eext‖ψe − ζh‖0,Ke

≤
(
1 + Ce2 r̃

1/2
e C̃eext

)
‖σ −ψe‖0,K̃e

ext
+ Ce2 r̃

1/2
e C̃eext‖σ − ζh‖0,Ke ,

(3.22)
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Figure 4: Example of the ball B̃e associated with the boundary edge e.

where in the last inequality we added and subtracted σ. On the other hand, by approximations
properties of the Taylor polynomials (cf. Section 4.1 in [6]), we have

‖σ −ψe‖0,K̃e
ext
≤ hm+1|EEEσ|

m+1,B̃e , (3.23)

where EEEσ := (E σ1,E σ2)t. Thus, replacing (3.23) in (3.22), adding over e ∈ E∂h , using the continuity
of EEE and Assumptions in D, we obtain (3.19).

On the other hand, we notice that div Eh(ζh)(y) = Eh(div ζh)(y) for all y ∈ K̃e
ext. Then, repeating

the arguments that led us to (3.19), but this time taking we := Tm
e (E (divσ)) ∈ Ps(B̃e), with s < m,

instead of ψe, we readily deduce that

∑
e∈E∂

h

‖divσ − div Eh(ζh)‖0,K̃e
ext
≤
∑
e∈E∂

h

{
‖divσ − we‖0,K̃e

ext
+ ‖div Eh(ζh)− we‖0,K̃e

ext

}

. hm+1‖divσ‖m+1,Ω + ‖div (σ − ζh)‖0,Dh
,

which together with (3.19) implies (3.20). �

We now propose suitable approximations for σ and u in Dc
h. These approximations, in abuse of

notation, we will be named also σh and uh. To that end we let (σh, uh) ∈ Hh(Dh) × Qh(Dh) be the
unique solution of (2.11).

First, to approximate σ in Dc
h, we proceed analogously to [17, Section 2.1.3] and simply take the

extrapolation of σh in Dc
h, that is, for any e ∈ E∂h and any y ∈ K̃e

ext, we define

σh(y) := Eh(σh)(y). (3.24)

Observe that, for each edge e ∈ E∂h , the extrapolation of σh|Ke to K̃e
ext belongs to H(div ; K̃e

ext), but
not necessarily to H(div ; Dc

h). Consequently, for the subsequent analysis we introduce the broken
space (see for instance [12]):

H(div ; T̃h) :=
∏
e∈E∂

h

H(div ; K̃e
ext)

endowed with the broken norm

‖ξ‖div ;T̃h
:=


∑
e∈E∂

h

‖ξ‖2div ;K̃e
ext


1/2

.

The following result establishes the estimate for σ − σh in Dc
h.
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Lemma 3.6. Suppose that assumptions of Lemma 3.5 are satisfied. Then

‖σ − σh‖div ;T̃h
. inf
ζh∈Hh(Dh)

‖σ − ζh‖div ;Dh
+ inf
wh∈Qh(Dh)

‖u− wh‖0,Dh

+‖σ − σh‖div ;Dh
+ hm+1

(
‖σ‖m+1,Ω + ‖divσ‖m+1,Ω

) (3.25)

and
‖σ − σh‖0,Dc

h
. inf
ζh∈Hh(Dh)

‖σ − ζh‖0,Dc
h

+ inf
wh∈Qh(Dh)

‖u− wh‖0,Dh

+‖σ − σh‖0,Dh
+ hm+1‖σ‖m+1,Ω.

(3.26)

Proof. Let ζh ∈ Hh(Dh). By applying estimate (3.20), we deduce that

‖σ − σh‖div ;T̃h
≤
∑
e∈E∂

h

‖σ − σh‖div ;K̃e
ext

. ‖ζh − σh‖div ;Dh
+ ‖σ − ζh‖div ;Dh

+ hm+1
(
‖σ‖m+1,Ω + ‖divσ‖m+1,Ω

)
,

Hence, adding an subtracting σ in ‖ζh − σh‖div ;Dh
we obtain (3.25). In addition, (3.26) is obtained

analogously, but considering the estimate (3.19) instead of (3.20). �

Now, to define the approximation of u in Dc
h, we proceed again analogously to [17, Section 2.1.3]

and adopt the same ideas when defining g̃h (cf. (2.8)). More precisely, given an edge e ∈ E∂h , for any
point y ∈ K̃e

ext there is a path C (x) starting at x ∈ Γh and ending at x̃ ∈ Γ so that we can write
y = x + (η/`(x))(x̃− x) for some η ∈ [0, `(x)]. Then, for any e ∈ E∂h and y ∈ K̃e

ext, we set

uh(y) := u(ỹ)−
∫ |ỹ−y|

0
σh(y + sw(y)) ·w(y)ds, (3.27)

where ỹ := x̃, w(y) := (ỹ− y)/|ỹ− y| and σh is defined as in (3.24).
Now we address the estimate for u− uh by using the L2-norm on Dc

h.

Lemma 3.7. Suppose that assumptions of Lemmas 3.4 and 3.5 are satisfied, then

‖u− uh‖0,Dc
h
. hm+2‖σ‖m+1,Ω + h

(
inf

wh∈Qh(Dh)
‖u− wh‖0,Dh

+ inf
ζh∈Hh(Dh)

‖σ − ζh‖div ;Dh

)
.

Proof. We first use (3.16) to obtain

‖u− uh‖20,Dc
h
≤
∑
e∈E∂

h

(Ce2)2 |||u− uh|||2e =
∑
e∈E∂

h

(Ce2)2
∫
e

∫ `(x)

0
|u− uh|2(x + tm(x)) dt dSx. (3.28)

Let y = x + tm(x), then using the definition of uh(y) in (3.27) and the facts that ỹ = x̃ and
w(y) = m(x), we have

(u− uh)(y) =−
∫ |ỹ−y|

0
(σ − σh)(y + sw(y)) ·w(y) ds

=−
∫ (`(x)−t)

0
(σ − σh)(x + (t+ s)m(x)) ·m(x) ds.
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This expression, together with the Cauchy–Schwarz inequality and a simple change of variables, implies

|u− uh|2(y)≤ (`(x)− t)
∫ `(x)

t
|(σ − σh)(x + rm(x))|2 dr

≤ `(x)
∫ `(x)

0
|(σ − σh)(x + rm(x))|2 dr.

(3.29)

In this way, replacing (3.29) into (3.28), we obtain

‖u− uh‖20,Dc
h
≤
∑
e∈E∂

h

(Ce2)2
∫
e
`(x)2

∫ `(x)

0
|(σ − σh)(x + rm(x))|2 dr. (3.30)

Since `(x) ≤ H̃e = r̃eh
⊥
e ≤ r̃ehKe , thanks to assumption (D.1) and (3.17), we obtain

‖u− uh‖20,Dc
h
≤
∑
e∈E∂

h

(Ce2)2 r̃ehKe |||σ − σh|||2e ≤ (Rh)2 max
e∈E∂

h

(Ce2)2 (Ce1)−2‖σ − σh‖20,Dc
h
.

and the result follows from (3.26). �

Remark 3.1. The solvability and error analyses in previous sections do not rely on how the com-
putational subdomain and the transferring paths are constructed, as long as Assumptions A, D and
assumptions of Lemma 3.4 are satisfied.

Remark 3.2. We now illustrate an alternative way to construct the computational domain Dh. If Ω
is convex, we can construct Γh interpolating Γ by a piecewise linear function. Thus, the subdomain Dh

is the region enclosed by Γh and the transferring paths associated to the interior points of a boundary
edge e can be chosen so that they are perpendicular to e. In this setting, Assumptions A and D hold
and actually r̃e is of order h. Moreover, the norms ‖ · ‖0,K̃e

ext
and |||·||| coincide and hence Assumptions

(i) − (iii) of Lemma 3.4 are not necessary. If Ω is not convex, we can proceed similarly and our
analysis still holds under the additional assumption that the solution (σ, u) of (2.1) can be extended
to the region Ωc ∩Dh.

4 Particular choice of finite elements

Given an integer k ≥ 0 and a set O in R2, we denote by P̃k(O) ⊂ Pk(O) the space of polynomials
of total degree equal to k. Then, with the same notations and definitions introduced in Section 2.1
concerning the triangulation Th of Dh, we start by defining the local Raviart–Thomas space of order
k as

RTk(K) := Pk(K)⊕ P̃k(K)x,

or each K ∈ Th, where x := (x1, x2)t is a generic vector of R2, and Pk(K) stands for the space of
vector-valued polynomials of degree at most k on K ∈ Th. Then, a concrete example of discrete spaces
for is given by the sets:

Hh(Dh) :=
{
τ h ∈ H(div ; Dh) : τ h

∣∣
K
∈ RTk(K) ∀K ∈ Th

}
,

Qh(Dh) :=
{
vh ∈ L2(Dh) : vh

∣∣
K
∈ Pk(K) ∀K ∈ Th

}
.

(4.1)

It is well-known that these spaces satisfy assumptions B and C (cf. Section 2.4). Moreover, they have
the following approximation properties (see, e.g. [21, 24]):
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(APσ
h) For each r ∈ (0, k + 1], and for each σ ∈ Hr(Dh) ∩H(div ; Dh) with divσ ∈ Hr(Dh), there

holds
inf

ζh∈Hh(Dh)
‖σ − ζh‖div ;Dh

. hr
(
‖σ‖r,Dh

+ ‖divσ‖r,Dh

)
.

(APu
h) For each r ∈ (0, k + 1], and for each u ∈ Hr(Dh), there holds

inf
wh∈Qh(Dh)

‖u− wh‖0,Dh
. hr‖u‖r,Dh

.

The following theorem establishes the a priori error estimates associated to the scheme (2.4), under
suitable regularity assumptions on the exact solution. It also provides estimates of the error in the
non-meshed region Dc

h.

Theorem 4.1. In addition to the hypotheses of Theorem 3.3, Lemma, Lemma 3.4 and 3.5, let us
assume that the exact solution (σ, u) satisfies σ ∈ Hk+1(Ω) ∩H(div ; Ω) with divσ ∈ Hk+1(Ω) and
u ∈ Hk+1(Ω). Then

‖(σ, u)− (σh, uh)‖H(div ;Dh)×L2(Dh) . h
k+1

(
‖σ‖k+1,Ω + ‖divσ‖k+1,Ω + ‖u‖k+1,Ω

)
,

‖σ −Eh(σh)‖div ;T̃h
. hk+1

(
‖σ‖k+1,Ω + ‖divσ‖k+1,Ω + ‖u‖k+1,Ω

)
,

and
‖u− uh‖0,Dc

h
. hk+2

(
‖σ‖k+1,Ω + ‖divσ‖k+1,Ω + ‖u‖k+1,Ω

)
.

Proof. It follows from Theorem 3.3, Lemmas 3.6, 3.7, and the approximations properties (APu
h) and

(APσ
h) specified above. �

Remark 4.1. The theory developed above covers other similar finite element subspaces available in
the literature, such as the local Brezzi–Douglas–Marini space of order k ≥ 1 (see for instance [9]):

BDMk(K) := Pk(K).

More precisely, one can also choose the discrete spaces in (2.7) as:

Hh(Dh) :=
{
τ h ∈ H(div ; Dh) : τ h

∣∣
K
∈ BDMk(K) ∀K ∈ Th

}
,

Qh(Dh) :=
{
vh ∈ L2(Dh) : vh

∣∣
K
∈ Pk−1(K) ∀K ∈ Th

}
,

and obtain the well–posedness of the discrete problem and optimal error estimates, as well.

5 Numerical results

In this section we present numerical experiments in R2 illustrating the performance of the discrete
scheme introduced and analized in Section 2. The numerical results shown below were obtained using
a MATLAB code, along with the direct linear solver UMFPACK (cf. [19]), also incorporated as a built-in
function into MATLAB. In all the computations we consider the specific finite element subspaces Hh(Dh)
and Qh(Dh) defined in terms of the discrete spaces given by (4.1) with k = 0, 1, 2, 3. At this regard, an
important issue is the computational implementation of specific basis functions providing high order
approximations. This is facilitated through the use of hierarchical basis for the local Raviart–Thomas
space of order k, as was introduced in [1], and Dubiner basis for the local polynomial space of degree
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at most k (see e.g. [20]). We begin by introducing additional notations. Firstly, we must take into
account that, in all our examples, the computational domain Dh and the region Dc

h change with h.
That is why we compute the relative errors

eint(u) := ‖u− uh‖0,Dh

‖u‖0,Dh

, eint(σ) := ‖σ − σh‖div ;Dh

‖σ‖div ;Dh

,

eext(u) :=
‖u− uh‖0,Dc

h

‖u‖0,Dc
h

, eext(σ) :=
‖σ −Eh(σh)‖div ;T̃h

‖σ‖div ;T̃h

.

Subsequently, we define the experimental rates of convergence as

rint(·) := −2
{

log(eint(·)/e′int(·))
log(N/N ′)

}
, rext(·) := −2

{
log(eext(·)/e′ext(·))

log(N/N ′)

}
,

where N and N ′ denote the number of elements of two consecutive meshes with their respective errors
eint and e′int (resp. eext and e′ext).

Example 1. We take u(x1, x2) := sin(πx1) sin(πx2) as exact solution, and choose Ω to be the an-
nular domain consisting in two concentric circles of radius 1.5 and 0.7, respectively. As required by
assumption (D.1), the subdomain Dh is constructed in such a way that the distance d(Γ,Γh) is at
most O(h). To do that, we consider a background triangulation Th of the square B ⊃ Ω, obtained
by subdividing the squares of the Cartesian grid into four congruent triangles, and then follow the
process in Section 2.1 to choose those elements of Th inside of Ω. In Table 1 we present the history
of convergence and observe that the convergence rates predicted by Theorem 4.1 are attained by all
the unknowns, namely O(hk+1) for eint(σ), eext(σ) and eint(u), and O(hk+2) for eext(u). Next, in
Figure 5 we display the approximate value of the second component of σ, denoted by σh,2, obtained
for the approximation RT3 − P3 with total number of degrees of freedom (d.o.f) equal to 32560 and
N = 1152 elements. The corresponding extrapolated solution on the set Dc

h is also displayed there.

Example 2. We set f and g such that u(x1, x2) := x2
1 exp(2(x2 − 1)), and consider a kidney-shaped

domain Ω whose boundary satisfies the equation

(2[(x1 + 0.5)2 + x2
2]− x1 − 0.5)2 − [(x1 + 0.5)2 + x2

2] + 0.1 = 0.

The way to construct Dh is the same as in the previous example. In Table 2 we present the corre-
sponding convergence history and again observe there that optimal convergence rates predicted by
Theorem 4.1 are reached by all the unknowns. In Figure 6 we display the approximate value of the
first component of σ, denoted by σh,1, obtained for the approximation RT3 − P3 with total number
of degrees of freedom (d.o.f) equal to 18480 and N = 654 elements.

Example 3. We consider exactly the same domain Ω as in Example 2, but this time we choose
u(x1, x2) := sin(10πx1 − 5πx2) as exact solution instead. The goal is to explore how the error of our
method is affected when we consider keeping a triangulation of Dh fixed and varying the degree k of
the finite element spaces in (4.1). In Figure 7 we show the results for three fixed meshes with N = 146,
N = 654 and N = 3068 elements, respectively. As expected, it can be appreciated there that the
quality of the approximations improves as h diminishes or k increases.

Example 4. In our last experiment, we observe the performance of the method considering another
type of computational domain, as Remark 3.2 mentioned. We take u(x1, x2) := sin(x1) sin(x2) as
exact solution and consider Ω to be the annular domain consisting of two concentric circles of radius
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Errors on Dh Errors on Dc
h

k N h d.o.f eint(u) rint(u) eint(σ) rint(σ) eext(u) rext(u) eext(σ) rext(σ)

0

248 0.262 664 2.28e− 01 – 2.30e− 01 – 9.84e− 03 – 2.99e− 01 –
1152 0.131 2956 1.08e− 01 0.96 1.10e− 01 0.96 2.28e− 03 1.90 1.24e− 01 1.14
4840 0.065 12260 5.31e− 02 0.99 5.39e− 02 0.99 5.52e− 04 1.97 6.50e− 02 0.90
22028 0.031 55352 2.20e− 02 1.16 2.26e− 02 1.14 1.62e− 04 1.61 3.28e− 02 0.90
89384 0.015 224020 1.09e− 02 0.99 1.12e− 02 0.99 3.22e− 05 2.30 1.58e− 02 1.03

1

248 0.262 2072 2.79e− 02 – 2.37e− 02 – 3.62e− 03 – 1.08e− 01 –
1152 0.131 9368 5.44e− 03 2.13 5.51e− 03 1.90 4.72e− 04 2.65 2.43e− 02 1.94
4840 0.065 39040 1.32e− 03 1.96 1.36e− 03 1.95 5.35e− 05 3.03 6.70e− 03 1.79
22028 0.031 176790 2.95e− 04 1.97 3.03e− 04 1.97 5.02e− 06 3.12 1.79e− 03 1.74
89384 0.015 716200 7.36e− 05 1.98 7.56e− 05 1.98 5.86e− 07 3.06 4.41e− 04 1.99

2

248 0.262 4224 6.51e− 03 – 2.88e− 03 – 9.75e− 04 – 2.16e− 02 5.87
1152 0.131 19236 2.74e− 04 4.12 2.58e− 04 3.14 4.57e− 05 3.98 1.76e− 03 3.26
4840 0.065 80340 3.01e− 05 3.07 3.13e− 05 2.93 4.51e− 06 3.22 2.97e− 04 2.48
22028 0.031 364310 2.32e− 06 3.38 2.42e− 06 3.37 1.18e− 07 4.80 2.53e− 05 3.24
89384 0.015 1476500 2.84e− 07 2.99 2.96e− 07 3.00 7.08e− 09 4.02 2.92e− 06 3.08

3

248 0.262 7120 2.27e− 03 – 7.27e− 04 – 2.25e− 04 – 5.59e− 03 –
1152 0.131 32560 2.83e− 05 5.70 1.70e− 05 4.88 3.48e− 06 5.43 2.82e− 04 3.88
4840 0.065 136160 1.16e− 06 4.44 1.22e− 06 3.67 2.25e− 07 3.81 2.56e− 05 3.34
22028 0.031 617910 1.67e− 08 5.59 2.18e− 08 5.31 1.72e− 09 6.43 1.52e− 06 3.72
89384 0.015 2505000 9.51e− 10 4.09 1.14e− 09 4.20 4.27e− 11 5.28 8.87e− 08 4.05

Table 1: History of convergence of the approximation in Example 1.

Figure 5: Example 1: σh,2 for the approximation RT3 − P3 with N = 1152 elements.
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Errors on Dh Errors on Dc
h

k N h d.o.f eint(u) rint(u) eint(σ) rint(σ) eext(u) rext(u) eext(σ) rext(σ)

0

146 0.131 384 1.65e− 01 – 5.12e− 02 – 3.51e− 03 – 1.01e− 01 –
654 0.065 1677 7.88e− 02 0.98 2.61e− 02 0.89 1.51e− 03 1.12 5.25e− 02 0.88
3068 0.031 7748 3.84e− 02 0.93 1.12e− 02 1.09 2.91e− 04 2.13 2.63e− 02 0.89
12579 0.015 31602 1.89e− 02 0.99 5.64e− 03 0.97 7.13e− 05 1.99 1.32e− 02 0.96
50877 0.007 127500 9.44e− 03 0.99 2.82e− 03 0.98 1.66e− 05 2.08 6.68e− 03 0.98

1

146 0.131 1206 1.22e− 02 – 2.19e− 03 – 4.48e− 04 – 8.88e− 03 –
654 0.065 5316 2.68e− 03 2.02 5.23e− 04 1.91 6.60e− 05 2.55 2.40e− 03 1.74
3068 0.031 24700 6.84e− 04 1.76 1.17e− 04 1.93 7.47e− 06 2.81 6.89e− 04 1.61
12579 0.015 100940 1.67e− 04 1.99 2.89e− 05 1.98 9.24e− 07 2.96 1.78e− 04 1.91
50877 0.007 4076400 4.12e− 05 2.00 7.20e− 06 1.99 1.29e− 07 2.81 4.29e− 05 2.03

2

146 0.131 2466 2.74e− 04 – 6.18e− 05 – 1.59e− 05 – 5.59e− 04 –
654 0.065 10917 3.16e− 05 2.88 1.23e− 05 2.14 2.66e− 06 2.38 9.84e− 05 2.31
3068 0.031 50856 2.83e− 06 3.12 5.62e− 07 4.00 6.59e− 08 4.78 1.09e− 05 2.83
12579 0.015 208020 3.40e− 07 3.00 6.31e− 08 3.10 2.96e− 09 4.39 1.36e− 06 2.95
50877 0.007 840400 4.20e− 08 2.99 7.67e− 09 3.01 2.00e− 10 3.85 1.66e− 07 3.01

3

146 0.131 4164 4.76e− 06 – 1.58e− 06 4.94 6.26e− 07 – 2.62e− 05 –
654 0.065 18480 4.73e− 07 3.07 2.78e− 07 2.31 6.11e− 08 3.10 3.00e− 06 2.89
3068 0.031 86216 9.83e− 09 5.01 4.52e− 09 5.33 6.07e− 10 5.96 1.40e− 07 3.96
12579 0.015 352830 5.27e− 10 4.14 1.66e− 10 4.67 1.42e− 11 5.32 8.00e− 09 4.06
50877 0.007 1425800 3.15e− 11 4.03 8.91e− 12 4.19 4.87e− 13 4.82 5.05e− 10 3.95

Table 2: History of convergence of the approximation in Example 2.

Figure 6: Example 2: σh,2 for the approximation RT3 − P3 with N = 654 elements.
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Figure 7: Example 3: Log of the error vs. (k + 1) for k = 0, 7 and three fixed meshes.

2 and 0.5, respectively. In this case, the computational boundary Γh is defined through a piecewise
linear interpolation of Γ as Figure 8 shows. Here, the distance d(Γ,Γh) is at most O(h2). Table 3
shows that the experimental rates of convergence for eint(σ), eext(σ) and eint(u) are optimal, i.e.,
O(hk+1). In addition, the convergence rate of eext(u) is O(hk+3). This behavior can be explained by
the proof of Theorem 3.7. In fact, since now r̃e is of order h, the estimate becomes

‖u− uh‖0,Dc
h
. h2‖σ −Eh(σh)‖div ;T̃h

. hk+3.

Appendices
In this section we use the equivalence of the the norms |||·|||e and ‖ · ‖0,K̃e

ext
(cf. Lemma 3.4) to provide

an estimate of C̃eext defined in (2.14).

A Estimates of C̃e
ext

The following result extends the estimation in [17, Lemma A.1] to the case when the norm ‖ · ‖0,K̃e
ext

is considered.

Lemma A.1. Let e be any edge in E∂h . Let L be the line segment with endpoints given by the center
of the biggest ball contained in Ke, and the point of the set K̃ext where the polynomial p achieves its
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Errors on Dh Errors on Dc
h

k N h d.o.f eint(u) rint(u) eint(σ) rint(σ) eext(u) rext(u) eext(σ) rext(σ)

0

150 0.660 395 1.39e− 01 – 1.26e− 01 – 8.03e− 05 – 9.38e− 02 –
608 0.355 1560 6.89e− 02 1.00 6.25e− 02 1.00 9.51e− 06 3.04 4.62e− 02 1.01
2396 0.187 6070 3.50e− 02 0.98 3.16e− 02 0.99 1.16e− 06 3.05 2.35e− 02 0.98
9358 0.095 23555 1.78e− 02 0.99 1.61e− 02 0.99 1.46e− 07 3.04 1.18e− 02 1.00
37798 0.050 94815 8.98e− 03 0.98 8.05e− 03 0.99 1.87e− 08 2.94 5.99e− 03 0.97

1

150 0.660 1240 8.68e− 03 – 1.10e− 02 – 2.42e− 05 – 1.39e− 02 –
608 0.355 4944 2.23e− 03 1.93 2.73e− 03 1.99 1.68e− 06 3.81 3.36e− 03 2.03
2396 0.187 19328 5.69e− 04 1.99 6.98e− 04 1.99 1.02e− 07 4.07 9.36e− 04 1.86
9358 0.095 75184 1.46e− 04 1.98 1.79e− 04 1.99 7.27e− 09 3.89 2.44e− 04 1.97
37798 0.050 30302 3.63e− 05 2.00 4.44e− 05 1.99 4.72e− 10 3.91 6.31e− 05 1.94

2

150 0.660 2535 5.86e− 04 – 5.65e− 04 – 1.44e− 06 – 6.96e− 04 –
608 0.355 10152 6.99e− 05 3.03 7.02e− 05 2.98 5.43e− 08 4.68 1.01e− 04 2.74
2396 0.187 39774 8.92e− 06 3.00 9.17e− 06 2.96 1.70e− 09 5.04 1.40e− 05 2.88
9358 0.095 154890 1.14e− 06 3.01 1.18e− 06 2.99 5.64e− 11 5.00 1.73e− 06 3.06
37798 0.050 624630 1.42e− 07 2.98 1.47e− 07 2.99 1.90e− 12 4.85 2.40e− 07 2.83

3

150 0.660 4280 1.81e− 05 – 2.36e− 05 – 6.37e− 08 – 4.11e− 05 –
608 0.355 17184 1.29e− 06 3.77 1.49e− 06 3.94 8.55e− 10 6.16 2.80e− 06 3.84
2396 0.187 67408 8.32e− 08 4.00 9.66e− 08 3.99 1.58e− 11 5.81 1.78e− 07 4.01
9358 0.095 262660 5.54e− 09 3.97 6.37e− 09 3.99 2.55e− 13 6.05 1.21e− 08 3.93
37798 0.050 1059600 3.38e− 10 4.00 3.90e− 10 3.99 4.13e− 15 5.90 8.40e− 10 3.83

Table 3: History of convergence of the approximation in Example 4.

Figure 8: Example 4: (Left) Mesh with N = 150 elements, where Γh is constructed by piecewise
linear interpolation of the boundary Γ (blue line). (Right) Part of the domain Ω that lies in the first
quadrant of the Cartesian plane.

maximum. Suppose that assumption (A.1) holds. Assume further that L is contained in interior of
the closure of the set Ke ∪ K̃e

ext, denoted by Be. Then, for any p ∈ Pl(Be) we have

‖p‖0,K̃e
ext
≤ C(r̃e)1/2(l + 1)2ηle‖p‖0,Ke ,

where r̃e := H̃e/h
⊥
e and ηe := 1+2γKe r̃e+2

(
γKe r̃e(1+γKe r̃e)

)1/2
. Here the constant C solely depends

on the shape-regularity constant γKe.
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Proof. We begin by noting that L can be subdivided as

Ieint :=
{

x ∈ L : x ∩Ke 6= ∅
}

and Ieext :=
{

x ∈ L : x ∩ K̃e
ext 6= ∅

}
,

from which

‖p‖20,K̃e
ext

≤ |K̃e
ext| max

x∈K̃e
ext

|p(x)| ≤ |K̃e
ext|‖p‖2L∞(Ie

ext)
≤ Chd−1

Ke ‖p‖2L∞(Ie
ext)

,

owing to the relation |K̃e
ext| ≤ Chd−1

Ke . Next, we proceed as in [17, Lemma A.1] and prove that
‖p‖L∞(Ie

ext) ≤ η
l
e‖p‖L∞(Ie

int). In fact, in virtue of [13, Lemma 4.3], this is fulfilled by observing that

|Ieext|
|Ieint|

≤ |I
e
ext|
ρKe

≤ H̃e

ρKe
≤ γKe

H̃e

hKe
≤ γKe r̃e,

where ρKe is the radius of the biggest ball contained in Ke, since h⊥e ≤ hKe and hKe ≤ γKeρKe . In
addition, by standard scaling arguments there holds

‖p‖L∞(Ie
int) ≤ ‖p‖L∞(Ke) ≤ C (hKe)−

d
2 (l + 1)2‖p‖0,Ke .

Finally, the proof is completed by noting that h−1
Ke ≤

(
h⊥e

)−1
≤ r̃e/H̃e. �

The previous result, together with the estimates in Lemma 3.4, implies that

C̃eext ≤ (Ce1)−1Ce2(l + 1)2ηle.

6 Concluding remarks

We have proposed and analyzed a mixed finite element method for diffusive problems with Dirichlet
boundary condition on a curved domain Ω with boundary Γ. In particular, we have considered a novel
technique in which the approximation to the solution is first computed over a polygonal subdomain
Dh of Ω and then extended to the complement Dc

h = Ω \Dh of Dh. We showed that our H(div ; Dh)-
conforming method, is well-posed and optimal provided the approximation of the boundary data given
in (2.8). We presented numerical experiments validating our theory.

On the other hand, as Remark 3.1 mentioned, we observe that our analysis is independent of how
the computational subdomain Dh and the transferring paths are constructed, as long as Assumptions
A, D and assumptions of Lemma 3.4 are satisfied. Moreover, as it is mentioned in Remark 3.2,
our technique also covers the case of a fitted method resulting of interpolating the boundary Γ by a
piecewise linear function. Finally, we believe the theory developed in this work can be adapted to
three dimensions. In fact, the result in Theorem 2.2 and the estimates in Section 3.1 are independent
of the dimension of the problem.
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