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Abstract

In this paper we consider a partially augmented fully-mixed variational formulation that has been
recently proposed for the coupling of the stationary Brinkman–Forchheimer and double-diffusion
equations, and develop an a posteriori error analysis for the 2D and 3D versions of the associated
mixed finite element scheme. Indeed, we derive two reliable and efficient residual-based a posteriori
error estimators for this problem on arbitrary (convex or non-convex) polygonal and polyhedral
regions. The reliability of the proposed estimators draws mainly upon the uniform ellipticity
and inf-sup condition of the forms involved, a suitable assumption on the data, stable Helmholtz
decompositions in Hilbert and Banach frameworks, and the local approximation properties of the
Clément and Raviart–Thomas operators. In turn, inverse inequalities, the localization technique
based on bubble functions, and known results from previous works, are the main tools yielding the
efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the
estimators and illustrating the performance of the associated adaptive algorithms, are reported. In
particular, the case of flow through a 3D porous media with channel networks is considered.
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1 Introduction

We have recently introduced in [8] a partially augmented-mixed finite element method for the problem
of steady double-diffusive convection in a fluid-saturated porous medium described by the coupling of
the stationary Brinkman–Forchheimer and double-diffusion equations in Rd, d ∈ {2, 3}. In there, the
fluid pseudostress tensor, and the pseudoheat and pseudodiffusive vectors are introduced as further
unknowns of the system (besides the velocity, temperature and concentration fields), thus yielding a
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fully-mixed formulation. Furthermore, since the nonlinear term in the Brinkman–Forchheimer equa-
tion requires the velocity to live in H1 instead of L2 as usual, the approach in [8] follows similarly to
[13], [14] and [27], so that the variational formulation is augmented with suitable Galerkin type terms,
which forces both the temperature and concentration scalar fields to live in L4. As a consequence, the
aforementioned pseudoheat and pseudodiffusive vectors live in a suitable H(div)-type Banach space.
The resulting augmented scheme is written equivalently as a fixed point equation, and the well-known
Schauder and Banach theorems, combined with the Lax–Milgram and Banach–Nečas–Babuška theo-
rems, are utilized to address the solvability of the continuous problem. As for the associated Galerkin
scheme, whose solvability is established similarly to the continuous case by using the Brouwer and
Banach fixed-point theorems, we use Raviart–Thomas spaces of order k ≥ 0 to approximate the
pseudostress tensor, and the pseudoheat and pseudodiffusive vectors, whereas continuous piecewise
polynomials of degree ≤ k+ 1 are employed for the velocity, and piecewise polynomials of degree ≤ k
for the temperature and concentration fields. Optimal a priori error estimates were also derived in
[8].

On the other hand, it is well known that under the eventual presence of singularities or high gradients
of some components of the solution, most of the standard Galerkin procedures such as finite element
and mixed finite element methods inevitably lose accuracy, and hence one usually tries to recover it by
applying an adaptive algorithm based on a posteriori error estimates. In particular, this powerful tool
has been applied to quasi-Newtonian fluid flows obeying the power law, which include the Brinkman–
Forchheimer model, and among the respective references we first mention [19], where the authors
propose and analyze an a posteriori error estimator, defined via a non-linear projection of the residues
of the variational equations, for a three-field model of a generalized Stokes problem. In turn, a fully
local residual-based a posteriori error estimator for the mixed formulation of the p-Laplacian problem
in a polygonal domain, is derived in [16]. In this case, the authors study the reliability of the estimator
defining two residues and then bounding the norm of the errors in terms of the norms of these residues.
Later on, a posteriori error analyses for the aforementioned Brinkman–Darcy–Forchheimer model in
velocity-pressure formulation have been developed in [31]. In fact, two types of error indicators related
to the discretization and to the linearization of the problem are established there. Furthermore, the
first a posteriori error analysis of the primal-mixed finite element method for the Navier–Stokes/Darcy–
Forchheimer coupled problem was developed in [9]. More precisely, usual techniques employed within
the Hilbertian framework are extended in [9] to the case of Banach spaces by deriving a reliable and
efficient a posteriori error estimator for the mixed finite element method introduced in [6]. The above
includes corresponding local estimates and new Helmholtz decompositions for the reliability, as well as
respective inverse inequalities and local estimates of bubble functions for the efficiency. We refer to [4]
for a recent a posteriori error analysis of a momentum conservative Banach space-based mixed finite
element method for the Navier–Stokes problem. Standard arguments relying on duality techniques, a
suitable Helmholtz decomposition in a Banach framework and classical approximation properties, are
combined there with corresponding small data assumptions to derive the reliability of the estimators.
Finally, we also refer to some works devoted to the a posteriori error analysis of Hilbert spaces-based
variational formulations of nonlinear and coupled problems, particularly Navier–Stokes, Boussinesq,
Oldroyd–Stokes, and related flow-transport coupling models (see, e.g. [23], [25], [17], [28], [10], [14],
[27], [15], and [7]).

According to the above discussion, and in order to complement the study started in [8] for the cou-
pling of the Brinkman–Forchheimer and double-diffusion equations, in the present paper we combine
the a posteriori error analysis techniques developed in [7], [14], [26], and [28] for augmented-mixed
formulations in Hilbert spaces, with the ones recently obtained in [9], [4], [11], and [24] for Banach
spaces-based mixed formulations, and develop two reliable and efficient residual-based a posteriori
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error estimators in 2D and 3D for the partially augmented-mixed finite element method from [8].
More precisely, in each case we derive a global quantity Θ that is expressed in terms of calculable
local indicators ΘT defined on each element T of a given triangulation T . This information can be
afterwards used to localize sources of error and construct an algorithm to efficiently adapt the mesh.
In this way, the estimator Θ is said to be efficient (resp. reliable) if there exists a positive constant
Ceff (resp. Crel), independent of the meshsizes, such that

Ceff Θ + h.o.t. ≤ ‖error‖ ≤ Crel Θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. We observe that, up
to our knowledge, the present work provides the first a posteriori error analyses of mixed finite element
methods for the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations.

This paper is organized as follows. The remainder of this section introduces some standard notations
and functional spaces. In Section 2 we recall from [8] the model problem and its continuous and discrete
augmented fully-mixed variational formulations. Next, in Section 3 we provide some preliminary
results to be employed in the derivation and analysis of our a posteriori error estimator. The core of
the present work is given by Section 4, where we develop the a posteriori error analysis. In Section
4.1 we employ the uniform ellipticity and inf-sup condition of the bilinear forms involved, suitable
Helmholtz decompositions in Hilbert and Banach frameworks, the local approximation properties of
the Clément and Raviart–Thomas operators, and known estimates from [4] and [26], to derive a reliable
residual-based a posteriori error estimator. Then, inverse inequalities, and the localization technique
based on element-bubble and edge-bubble functions are utilized in Section 4.2 to prove the efficiency
of the estimator. A second (also reliable and efficient) residual-based a posteriori error estimator is
introduced and studied in Section 5, where the Helmholtz decomposition in a Hilbert framework is not
employed in the corresponding proof of reliability. Finally, numerical results confirming the reliability
and efficiency of the a posteriori error estimators, and showing the good performance of the associated
adaptive algorithms, are presented in Section 6.

1.1 Preliminary notations

Let Ω ⊂ Rd, d ∈ {2, 3}, denote a bounded domain with polyhedral boundary Γ, and denote by n the
outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and
Sobolev spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the scalar,
vector, or tensor case, are denoted by ‖ · ‖0,p;Ω and ‖ · ‖s,p;Ω, respectively. In particular, when p = 2,
Ws,2(Ω) is also denoted by Hs(Ω), and the writing of its norm and seminorm are simplified to ‖ · ‖s,Ω
and | · |s,Ω, respectively. By M and M we will denote the corresponding vector and tensor counterparts
of the generic scalar functional space M, and ‖ · ‖, with no subscripts, will stand for the natural norm
of either an element or an operator in any product functional space. In turn, for any vector field
v = (vi)i=1,d, we let ∇v and div(v) be its gradient and divergence, respectively. Furthermore, given
tensor fields τ = (τij)i,j=1,d and ζ = (ζij)i,j=1,d, we let div(τ ) be the divergence operator div acting
along the rows of τ , and define the transpose, the trace, and the deviatoric tensor of τ , as well as the
tensor inner product between τ and ζ, respectively, as

τ t := (τji)i,j=1,d, tr(τ ) :=

d∑

i=1

τii, τ d := τ − 1

d
tr(τ ) I, and τ : ζ :=

d∑

i,j=1

τij ζij ,

where I is the identity matrix in Rd×d. In what follows, when no confusion arises, | · | will denote the
Euclidean norm in Rd or Rd×d. Additionally, given p > 1, we define the following tensor and vector
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functional spaces (see [8, Section 2.2] for details):

H0(div; Ω) :=
{
τ ∈ H(div; Ω) :

∫

Ω
tr(τ ) = 0

}
(1.1)

and
H(divp; Ω) :=

{
η ∈ L2(Ω) : div(η) ∈ Lp(Ω)

}
, (1.2)

endowed with the norms

‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div(τ )‖20,Ω and ‖η‖divp;Ω := ‖η‖0,Ω + ‖div(η)‖0,p;Ω,

respectively. In addition, H1/2(Γ) is the space of traces of functions of H1(Ω) and H−1/2(Γ) denotes
its dual. Also, by 〈·, ·〉Γ we will denote the corresponding product of duality between H−1/2(Γ) (resp.
H−1/2(Γ)) and H1/2(Γ) (resp. H1/2(Γ)).

2 The model problem and its variational formulation

In this section we recall from [8] the model problem of interest, its fully-mixed variational formulation,
the associated Galerkin scheme, and the main results concerning the corresponding solvability analyses.

2.1 The coupling of the Brinkman–Forchheimer and double-diffusion equations

In what follows we consider the model introduced in [29] (see also [8]), which is given by a steady
double-diffusive convection system in a fluid saturated porous medium. More precisely, we focus
on solving the coupling of the incompressible Brinkman–Forchheimer and double-diffusion equations,
which reduces to finding a velocity field u, a pressure field p, a temperature field φ1 and a concentration
field φ2, the latter two defining a vector φ := (φ1, φ2), such that

−ν∆u + K−1u + F |u|u +∇p = f(φ) in Ω,

div(u) = 0 in Ω,

−div(Q1∇φ1) + R1 u · ∇φ1 = 0 in Ω,

−div(Q2∇φ2) + R2 u · ∇φ2 = 0 in Ω,

u = uD, φ1 = φ1,D, and φ2 = φ2,D on Γ,
∫

Ω
p = 0,

(2.1)

with parameters ν := Da µ̃/µ and F := ϑ Da R1, where Da stands for the Darcy number, µ̃ the viscosity,
µ the effective viscosity, R1 the thermal Rayleigh number, R2 the solute Rayleigh number, and ϑ is a
real number that can be calculated experimentally. In addition, the Dirichlet boundary data is given
by uD ∈ H1/2(Γ), φ1,D ∈ H1/2(Γ) and φ2,D ∈ H1/2(Γ). Owing to the incompressibility of the fluid and
the Dirichlet boundary condition for u, the datum uD must satisfy the compatibility condition

∫

Γ
uD · n = 0. (2.2)

In turn, the external force f is defined by

f(φ) := − (φ1 − φ1,r) g +
1

%
(φ2 − φ2,r) g,
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with g representing the potential type gravitational acceleration, φ1,r the reference temperature, φ2,r

the reference concentration of a solute, both of them in L4(Ω), and % is another parameter experimen-
tally valued that can be assumed to be greater than 1 (see [29, Section 2] for details). In turn, the
permeability, thermal diffusion and concentration diffusion tensors are denoted, respectively, by K,Q1

and Q2, all them lying in L∞(Ω). Moreover, K and the inverses of Q1 and Q2, are uniformly positive
definite tensors, which means that there exist positive constants CK, CQ1 , and CQ2 , such that

v ·K(x)v ≥ CK |v|2 and v ·Q−1
j (x)v ≥ CQj |v|2 ∀v ∈ Rn, ∀x ∈ Ω, j ∈ {1, 2}. (2.3)

Next, in order to derive a fully-mixed formulation for (2.1), in which the Dirichlet boundary condi-
tions become natural ones, we now proceed as in [8], and introduce the pseudostress tensor, and the
pseudoheat and pseudodiffusive vectors as further unknowns, that is

σ := ν∇u− p I, ρ1 := Q1∇φ1 − R1 φ1 u, ρ2 := Q2∇φ2 − R2 φ2 u in Ω. (2.4)

In this way, applying the trace operator to σ and utilizing the incompressibility condition div(u) = 0
in Ω, one arrives at

p = −1

d
tr(σ) in Ω. (2.5)

Hence, replacing (2.5) back into the first equation of (2.4), we find that our model problem (2.1) can
be rewritten, equivalently, as follows: Find (σ,u) and (ρj , φj), j ∈ {1, 2}, in suitable spaces to be
indicated below, such that

1

ν
σd = ∇u in Ω,

−div(σ) + K−1u + F |u|u = f(φ) in Ω,

Q−1
j ρj + Rj Q−1

j φj u = ∇φj in Ω,

−div(ρj) = 0 in Ω,

u = uD and φ = φD on Γ,
∫

Ω
tr(σ) = 0,

(2.6)

where the Dirichlet datum for φ is certainly given by φD := (φ1,D, φ2,D). At this point we stress
that, as suggested by (2.5), p is eliminated from the present formulation and computed afterwards in
terms of σ by using that identity. This fact justifies the last equation in (2.6), which ensures that the
resulting p satisfies

∫
Ω p = 0.

2.2 The fully-mixed variational formulation

We begin by recalling from [8, Section 2.2] the augmented fully-mixed variational formulation for the
coupling of the Brinkman–Forchheimer and double-diffusion equations (cf. (2.6)), which reads: Find
(σ,u) ∈ H0(div; Ω)×H1(Ω) and (ρj , φj) ∈ H(div4/3; Ω)× L4(Ω), j ∈ {1, 2}, such that

A((σ,u), (τ ,v)) +Bu((σ,u), (τ ,v)) = FD(τ ,v) + Fφ(τ ,v),

aj(ρj ,ηj) + b(ηj , φj) + cj(u;φj ,ηj) = Gj(ηj),

b(ρj , ψj) = 0,

(2.7)
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for all (τ ,v) ∈ H0(div; Ω)×H1(Ω) and for all (ηj , ψj) ∈ H(div4/3; Ω)×L4(Ω), where, given w ∈ H1(Ω),
A,Bw, aj , b, and cj(w; ·, ·) are the forms defined, respectively, as

A((σ,u), (τ ,v)) :=
1

ν

∫

Ω
σd : τ d +

∫

Ω
Kdiv(σ) ·div(τ )+κ1

∫

Ω

(
∇u− 1

ν
σd
)

: ∇v +κ2

∫

Γ
u ·v, (2.8)

Bw((σ,u), (τ ,v)) := −F
∫

Ω
K |w|u · div(τ ) , (2.9)

and

aj(ρj ,ηj) :=

∫

Ω
Q−1
j ρj · ηj , b(ηj , ψj) :=

∫

Ω
ψj div(ηj) , (2.10)

cj(w;ψj ,ηj) := Rj

∫

Ω
Q−1
j ψj w · ηj , (2.11)

for all (σ,u), (τ ,v) ∈ H0(div; Ω) × H1(Ω) and for all (ρj , φj), (ηj , ψj) ∈ H(div4/3; Ω) × L4(Ω). In
turn, given ϕ := (ϕ1, ϕ2) ∈ L4(Ω), FD, Fϕ, and Gj are the bounded linear functionals defined by

FD(τ ,v) := 〈τn,uD〉Γ + κ2

∫

Γ
uD · v, Fϕ(τ ,v) := −

∫

Ω
K f(ϕ) · div(τ ) , (2.12)

for all (τ ,v) ∈ H0(div; Ω)×H1(Ω) and

Gj(ηj) :=
〈
ηj · n, φj,D

〉
Γ
, (2.13)

for all ηj ∈ H(div4/3; Ω). Notice that κ1 and κ2 are positive parameters that can be taken as (see [8,
Lemma 3.2 and eq. (3.36)] for details):

κ1 = ν and κ2 =
ν

2
. (2.14)

These particular values will be used later on for the computational implementation of the Galerkin
scheme associated with (2.7). Next, we recall from [8] that u ∈ Wr :=

{
w ∈ H1(Ω) : ‖w‖1,Ω ≤ r

}
,

where r ∈ (0, r0), with r0 := min{r1, r2} and

r1 :=
αA

2 F ‖K‖∞ ‖i4‖2
, r2 := min{r1

2, r
2
2}, rj2 :=

γj

2 Rj ‖Q−1
j ‖∞ ‖i4‖

, (2.15)

where i4 is the injection of H1(Ω) into L4(Ω), whereas αA and γj are positive constants establishing
ellipticity and a global inf-sup condition, respectively, of A and the bilinear form Aj that arises after
adding the left hand sides of the last two equations of (2.7), but excluding cj (cf. [8, eqns. (3.23) and
(3.28)]). According to [8, eq. (3.25)], and using the fact that u ∈Wr, we have that the bilinear form
A+Bu is uniformly elliptic on HBF := H0(div; Ω)×H1(Ω) with positive constant αA/2 independent
of h. This implies that

sup
06=(τ ,v)∈HBF

(A+Bu)((ζ, z), (τ ,v))

‖(τ ,v)‖
≥ αA

2
‖(ζ, z)‖ , (2.16)

for all (ζ, z) ∈ HBF. In turn, we recall from [8, eq. (3.33)] the following inf-sup condition

sup
0 6=(ηj ,ψj)∈HD

aj(χj ,ηj) + b(ηj , ϕj) + b(χj , ψj) + cj(u;ϕj ,ηj)

‖(ηj , ψj)‖
≥ γj

2
‖(χj , ϕj)‖ , (2.17)
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for all (χj , ϕj) ∈ HD := H(div4/3; Ω) × L4(Ω). Further details yielding the solvability of (2.7) were
developed in [8, Theorem 3.9]. In particular, we recall for later use the following a priori estimates

‖(σ,u)‖ ≤ cT

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖φD‖1/2,Γ + ‖φr‖0,4;Ω

)}
(2.18)

and
2∑

j=1

‖(ρj , φj)‖ ≤ c
S̃
‖φD‖1/2,Γ , (2.19)

where cT := cS max
{

1, c
S̃

}
, and cS and c

S̃
are positive constants defined in [8, eqns. (3.21) and

(3.29)].

2.3 The fully-mixed finite element method

We denote by Th a regular partition of Ω made up of triangles T (when d = 2) or tetrahedral T (when
d = 3) of diameter hT , and meshsize h := max

{
hT : T ∈ Th

}
. In addition, for each T ∈ Th, we let

RTk(T ) be the local Raviart–Thomas space of order k ≥ 0, i.e.,

RTk(T ) := Pk(T )⊕ Pk(T ) x,

where Pk(T ) is the space of polynomials defined on T of degree ≤ k, Pk(T ) stands for its vector
version (as indicated in Section 1.1), and x := (x1, . . . , xd)

t is a generic vector of Rd. Next, we recall
from [8, Section 4.3] the finite element spaces

Hσh :=
{
τ h ∈ H0(div; Ω) : ctτ h|T ∈ RTk(T ) ∀ c ∈ Rd, ∀T ∈ Th

}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|T ∈ Pk+1(T ) ∀T ∈ Th

}
,

Hρ
h :=

{
ηh ∈ H(div4/3; Ω) : ηh|T ∈ RTk(T ) ∀T ∈ Th

}
,

Hφ
h :=

{
ψh ∈ L4(Ω) : ψh|T ∈ Pk(T ) ∀T ∈ Th

}
,

(2.20)

and set φh := (φ1,h, φ2,h) ∈ Hφ
h := Hφ

h × Hφ
h. Then the Galerkin scheme associated with (2.7) reads:

Find (σh,uh) ∈ Hσh ×Hu
h and (ρj,h, φj,h) ∈ Hρ

h ×Hφ
h, j ∈ {1, 2}, such that

A((σh,uh), (τ h,vh)) +Buh
((σh,uh), (τ h,vh)) = FD(τ h,vh) + Fφh

(τ h,vh),

aj(ρj,h,ηj,h) + b(ηj,h, φj,h) + cj(uh;φj,h,ηj,h) = Gj(ηj,h),

b(ρj,h, ψj,h) = 0,

(2.21)

for all (τ h,vh) ∈ Hσh ×Hu
h and (ηj,h, ψj,h) ∈ Hρ

h × Hφ
h. The solvability analysis and a priori error

bounds for (2.21) are established in [8, Theorems 4.7, 5.4 and 5.6]. In particular, we recall the a priori
estimates

‖(σh,uh)‖ ≤ cTh

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
‖φD‖1/2,Γ + ‖φr‖0,4;Ω

)}
(2.22)

and
2∑

j=1

‖(ρj,h, φj,h)‖ ≤ c
S̃h
‖φD‖1/2,Γ , (2.23)

where cTh
:= cS max

{
1, c

S̃h

}
and c

S̃h
is a positive constant, independent of h, defined in [8, eq.

(4.15)].
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3 Preliminaries for the a posteriori error analysis

We start by introducing a few useful notations for describing local information on elements and edges
or faces depending on wether d = 2 or d = 3, respectively. Let Eh be the set of edges or faces of Th,
whose corresponding diameters are denoted by he, and define

Eh(Ω) :=
{
e ∈ Eh : e ⊆ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊆ Γ

}
.

For each T ∈ Th, we let Eh,T be the set of edges or faces of T , and denote

Eh,T (Ω) =
{
e ⊆ ∂T : e ∈ Eh(Ω)

}
and Eh,T (Γ) =

{
e ⊆ ∂T : e ∈ Eh(Γ)

}
.

We also define the unit normal vector ne on each edge or face by

ne := (n1, . . . , nd)
t ∀ e ∈ Eh .

Hence, when d = 2 we can define the tangential vector se by

se := (−n2, n1)t ∀ e ∈ Eh .

However, when no confusion arises, we will simply write n and s instead of ne and se, respectively.

The usual jump operator [[·]] across internal edges or faces is defined for piecewise continuous matrix,
vector, or scalar-valued functions ζ, by

[[ζ]] = (ζ
∣∣
T+

)
∣∣
e
− (ζ

∣∣
T−

)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common edge or face. Finally, for sufficiently
smooth scalar ψ, vector v := (v1, . . . , vd)

t, and tensor fields τ := (τij)i,j=1,d, we let

curl(ψ) :=
(
− ∂ψ

∂x2
,
∂ψ

∂x1

)t
, curl(v) :=

(
curl(v1)t

curl(v2)t

)
for d = 2,

curl(v) :=





∂v2

∂x1
− ∂v1

∂x2
, for d = 2,

∇× v , for d = 3,

curl(τ ) =





(
curl(τ 1)
curl(τ 2)

)
, for d = 2,




curl(τ 1)
curl(τ 2)
curl(τ 3)


 , for d = 3,

γ∗(v) =





v · s , for d = 2,

v × n , for d = 3,
and γ∗(τ ) =





τs , for d = 2,


τ 1 × n
τ 2 × n
τ 3 × n


 , for d = 3,

where τ i is the i-th row of τ and the derivatives involved are taken in the distributional sense.

Now, let Πk
h : H1(Ω) → Hρ

h (cf. (2.20)) be the Raviart–Thomas interpolation operator, which is
characterized by the following identities

∫

e
(Πk

h(v) · n) q =

∫

e
(v · n) q ∀ edge/face e ∈ Eh, ∀ q ∈ Pk(e) when k ≥ 0 , (3.1)

and ∫

T
Πk
h(v) · q =

∫

T
v · q ∀T ∈ Th, ∀q ∈ Pk−1(K) when k ≥ 1 , (3.2)
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for all v ∈ H1(Ω). As a consequence of (3.1) and (3.2), it is easy to show that (see [20, Lemma 3.7])

div(Πk
h(v)) = Pkh(div(v)),

where Pkh is the L2(Ω)-orthogonal projector onto the picewise polynomials of degree ≤ k on Ω. A
tensor version of Πk

h, say Πk
h : H1(Ω) → Hσh , which is defined row-wise by Πk

h, and a vector version
of Pkh , say Pk

h, which is the L2(Ω)-orthogonal projector onto the piecewise polynomial vectors of
degree ≤ k, might also be required. The local approximation properties of Πk

h (and hence of Πk
h) are

established in what follows. For the corresponding proofs we refer to [20, Lemma 3.16] and [4, Lemma
4.2] (see also [3]).

Lemma 3.1 Let p > 1. Then, there exist positive constants c1, c2, independent of h, such that for all
v ∈ H1(Ω) there hold

‖v −Πk
h(v)‖0,T ≤ c1 hT ‖v‖1,T ∀T ∈ Th,

and
‖v · n−Πk

h(v) · n‖0,p;e ≤ c2 h
1−1/p
e ‖v‖1,p;Te ∀ e ∈ Eh,

where Te is a triangle of Th containing the edge e on its boundary.

In turn, let Ih : H1(Ω)→ H1
h(Ω) be the Clément interpolation operator, where

H1
h(Ω) :=

{
v ∈ C(Ω) : v|T ∈ P1(T ) ∀T ∈ Th

}
.

The local approximation properties of this operator are established in the following lemma (see [12]).

Lemma 3.2 There exist positive constants c3, c4, independent of h, such that for all v ∈ H1(Ω) there
holds

‖v − Ih(v)‖0,T ≤ c3 hT ‖v‖1,∆(T ) ∀T ∈ Th,

and
‖v − Ih(v)‖0,e ≤ c4 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh,

where
∆(T ) := ∪

{
T ′ ∈ Th : T ′ ∩ T 6= ∅

}
and ∆(e) := ∪

{
T ′ ∈ Th : T ′ ∩ e 6= ∅

}
.

In what follows, a vector version of Ih, say Ih : H1(Ω)→ H1
h(Ω), which is defined component-wise

by Ih, will be needed as well. For the forthcoming analysis we will also utilize a couple of results
providing stable Helmholtz decompositions for H0(div; Ω) and H(divp; Ω) (cf. (1.1), (1.2)). More
precisely, we have the following lemmas.

Lemma 3.3 For each τ ∈ H(div; Ω) there exist

a) z ∈ H2(Ω) and χ ∈ H1(Ω) such that τ = ∇z + curl(χ) when d = 2,

b) z ∈ H2(Ω) and χ ∈ H1(Ω) such that τ = ∇z + curl(χ) when d = 3.

In addition, in both cases,
‖z‖2;Ω + ‖χ‖1,Ω ≤ CHel ‖τ‖div;Ω,

where CHel is a positive constant independent of all the foregoing variables.
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Proof. For the proof of a) and b) we refer to [28, Lemma 3.7] and [21, Theorem 3.1], respectively. We
omit further details. �

Lemma 3.4 Let 1 < p ≤ 2 when d = 2 and 6/5 ≤ p ≤ 2 when d = 3. Then, for each η ∈ H(divp; Ω)
there exist

a) ξ ∈W1,p(Ω) and w ∈ H1(Ω) such that η = ξ + curl(w) when d = 2,

b) ξ ∈W1,p(Ω) and w ∈ H1(Ω) such that η = ξ + curl(w) when d = 3.

In addition, we have that

‖ξ‖1,p;Ω + ‖w‖1,Ω ≤ CHel ‖η‖divp;Ω and ‖ξ‖1,p;Ω + ‖w‖1,Ω ≤ CHel ‖η‖divp;Ω,

for d = 2 and d = 3, respectively, where CHel is a positive constant independent of all the foregoing
variables.

Proof. See [4, Lemma 4.4]. �

4 First residual-based a posteriori error estimator

In this section we derive a reliable and efficient residual based a posteriori error estimator for the
Galerkin scheme (2.21). To this end, in what follows we assume the hypotheses from [8, Theorems
3.9 and 4.7], which guarantee the existence of unique solutions (σ,u,ρj , φj) ∈ H0(div; Ω)×H1(Ω)×
H(div4/3; Ω)× L4(Ω) and (σh,uh,ρj,h, φj,h) ∈ Hσh ×Hu

h ×Hρ
h ×Hφ

h, j ∈ {1, 2} of the continuous and
discrete problems (2.7) and (2.21), respectively. Then, the first global a posteriori error estimator is
defined by:

Θ1 :=




∑

T∈Th

(
Θ2

BF,T +
2∑

j=1

Θ2
D,j,T

)


1/2

+




∑

T∈Th

2∑

j=1

‖div(ρj,h)‖4/30,4/3;T





3/4

, (4.1)

where, for each T ∈ Th, the local error indicators Θ2
BF,T and Θ2

D,j,T are defined as follows:

Θ2
BF,T :=

∥∥f(φh) + div(σh)−K−1uh − F |uh|uh
∥∥2

0,T
+
∥∥∥∇uh −

1

ν
σd
h

∥∥∥
2

0,T

+ h2
T

∥∥∥∥curl

(
1

ν
σd
h

)∥∥∥∥
2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥
[[
γ∗

(
1

ν
σd
h

)]]∥∥∥∥
2

0,e

+
∑

e∈Eh,T (Γ)

‖uD − uh‖20,e +
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗
(

1

ν
σd
h −∇uD

)∥∥∥∥
2

0,e

(4.2)

and

Θ2
D,j,T := h

2−d/2
T

∥∥∥∇φj,h −Q−1
j

(
ρj,h + Rjφj,huh

)∥∥∥
2

0,T
+ h2

T

∥∥∥curl
(
Q−1
j

(
ρj,h + Rjφj,huh

))∥∥∥
2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥
[[
γ∗

(
Q−1
j

(
ρj,h + Rjφj,huh

))]]∥∥∥
2

0,e
+

∑

e∈Eh,T (Γ)

h1/2
e ‖φj,D − φj,h‖20,4;e

+
∑

e∈Eh,T (Γ)

he

∥∥∥γ∗
(
Q−1
j

(
ρj,h + Rjφj,huh

)
−∇φj,D

)∥∥∥
2

0,e
.

(4.3)
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Notice that the last term of Θ2
BF,T requires γ∗(∇uD)

∣∣
e
∈ L2(e) for all e ∈ Eh(Γ), which is overcome

below (cf. Lemma 4.4) by simply assuming that uD ∈ H1(Γ). Similarly, the last two terms of Θ2
D,j,T

are well defined if we assume that φj,D ∈ H1(Γ) ∩ L4(Γ) for each j ∈ {1, 2}.
The main goal of the present section is to establish, under suitable assumptions, the existence

of positive constants Ceff and Crel, independent of the meshsizes and the continuous and discrete
solutions, such that

Ceff Θ1 + h.o.t. ≤ ‖(σ,u)− (σh,uh)‖+
2∑

j=1

‖(ρj , φj)− (ρj,h, φj,h)‖ ≤ Crel Θ1 , (4.4)

where h.o.t. is a generic expression denoting one or several terms of higher order. The upper and
lower bounds in (4.4), which are known as the reliability and efficiency of Θ1, are derived below in
Sections 4.1 and 4.2, respectively.

4.1 Reliability of the a posteriori error estimator

The main result of this section is stated in the following theorem.

Theorem 4.1 Assume that the data uD, φD and φr satisfy

cTh

r0

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
2 ‖φD‖1/2,Γ + ‖φr‖0,4;Ω

)}
≤ 1

2
, (4.5)

with r0 := min{r1, r2}, and r1, r2 are defined in (2.15). Then, there exists a positive constant Crel,
independent of h, such that

‖(σ,u)− (σh,uh)‖+
2∑

j=1

‖(ρj , φj)− (ρj,h, φj,h)‖ ≤ Crel Θ1 . (4.6)

We begin the derivation of (4.6) with a preliminary lemma, for which we first recall that

HBF := H0(div; Ω)×H1(Ω) and HD := H(div4/3; Ω)× L4(Ω) .

Lemma 4.2 Assume that the data uD, φD and φr satisfy (4.5). Then, there exists a positive constant
C, independent of h, such that

‖(σ,u)− (σh,uh)‖+
2∑

j=1

‖(ρj , φj)− (ρj,h, φj,h)‖

≤ C

(
sup

0 6=(τ ,v)∈HBF

|RBF(τ ,v)|
‖(τ ,v)‖

+
2∑

j=1

sup
0 6=(ηj ,ψj)∈HD

|RD
j (ηj , ψj)|
‖(ηj , ψj)‖

)
,

(4.7)

where RBF : HBF → R and RD
j : HD → R are the residual functionals given by

RBF(τ ,v) = FD(τ ,v) + Fφh
(τ ,v)−A((σh,uh), (τ ,v))−Buh

((σh,uh), (τ ,v))

for all (τ ,v) ∈ HBF, and

RD
j (ηj , ψj) = Gj(ηj)− aj(ρj,h,ηj)− b(ηj , φj,h)− b(ρj,h, ψj)− cj(uh;φj,h,ηj)

for all (ηj , ψj) ∈ HD.
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Proof. First, applying the inf-sup condition (2.16) to the error (ζ, z) = (σ − σh,u− uh), adding and
substracting Buh

((σh,uh), (τ ,v)) and Fφh
(τ ,v), and using the first equation of (2.7), we deduce that

αA
2
‖(σ − σh,u− uh)‖ ≤ sup

0 6=(τ ,v)∈HBF

∣∣RBF(τ ,v)
∣∣

‖(τ ,v)‖

+ sup
0 6=(τ ,v)∈HBF

∣∣Bu−uh
((σh,uh), (τ ,v))

∣∣
‖(τ ,v)‖

+ sup
0 6=(τ ,v)∈HBF

∣∣Fφ−φh
(τ ,v)

∣∣
‖(τ ,v)‖

.

(4.8)

In turn, the continuities of Bw (cf. (2.9)) and Fϕ (cf. (2.12)) establish (cf. [8, eqns. (3.4), (3.9)])

∣∣Bu−uh
((σh,uh), (τ ,v))

∣∣ ≤ F ‖K‖∞ ‖i4‖2 ‖uh‖1,Ω ‖u− uh‖1,Ω ‖τ‖div;Ω ,

∣∣Fφ−φh
(τ ,v)

∣∣ ≤ ‖K‖∞ ‖g‖0,4;Ω ‖φ− φh‖0,4;Ω ‖τ‖div;Ω ,

which, replaced back into (4.8), yields

‖(σ − σh,u− uh)‖

≤ 2

αA
sup

06=(τ ,v)∈HBF

∣∣RBF(τ ,v)
∣∣

‖(τ ,v)‖
+

1

r1
‖uh‖1,Ω‖u− uh‖1,Ω + CS ‖g‖0,4;Ω‖φ− φh‖0,4;Ω ,

(4.9)

where CS := 2 ‖K‖∞/αA (cf. [8, eq. (3.40)]) and r1 is defined in (2.15). Similarly, applying the inf-sup
condition (2.17) to (χj , ϕj) = (ρj − ρj,h, φj − φj,h), making use of the second and third equations of
(2.7), adding and substracting cj(uh;φj,h,ηj), and using the continuity of cj , which states that (cf.
[8, eq. (3.7)]) ∣∣cj(w;ψ,η)

∣∣ ≤ Rj ‖Q−1
j ‖ ‖i4‖ ‖w‖1,Ω‖ψ‖0,4;Ω ‖η‖div4/3;Ω ,

we deduce that

γj
2
‖(ρj − ρj,h, φj − φj,h)‖ ≤ sup

0 6=(ηj ,ψj)∈HD

∣∣RD
j (ηj , ψj)

∣∣
‖(ηj , ψj)‖

+ sup
0 6=(ηj ,ψj)∈HD

∣∣cj(u− uh;φj,h,ηj)
∣∣

‖ηj‖div4/3;Ω

≤ sup
0 6=(ηj ,ψj)∈HD

∣∣RD
j (ηj , ψj)

∣∣
‖(ηj , ψj)‖

+ Rj ‖Q−1
j ‖ ‖i4‖ ‖φj,h‖0,4;Ω ‖u− uh‖1,Ω .

Thus, summing up over j ∈ {1, 2}, recalling the definition of r2 in (2.15) and using (2.23) to bound
‖φh‖0,4;Ω := ‖φ1,h‖0,4;Ω + ‖φ2,h‖0,4;Ω, we obtain

2∑

j=1

‖(ρj − ρj,h, φj − φj,h)‖ ≤
2∑

j=1

2

γj
sup

0 6=(ηj ,ψj)∈HD

∣∣RD
j (ηj , ψj)

∣∣
‖(ηj , ψj)‖

+
c
S̃h

r2
‖φD‖1/2,Γ‖u− uh‖1,Ω , (4.10)

with c
S̃h
> 0 defined in [8, eq. (4.15)]. Then, using the estimate (4.10) to bound the last term in (4.9),

recalling the definition of r0 in (2.15), using (2.22) to bound ‖uh‖1,Ω, and recalling that CS and c
S̃h

,

as well as 1/r1 and 1/r2, are bounded by cTh
and 1/r0 (cf. [8, eq. (3.43)]), respectively, we deduce

that

‖(σ − σh,u− uh)‖

≤ C1 sup
06=(τ ,v)∈HBF

|RBF(τ ,v)|
‖(τ ,v)‖

+ C2

2∑

j=1

sup
0 6=(ηj ,ψj)∈HD

|RD
j (ηj , ψj)|
‖(ηj , ψj)‖

+
cTh

r0

{
‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖g‖0,4;Ω

(
2 ‖φD‖1/2,Γ + ‖φr‖0,4;Ω

)}
‖u− uh‖1,Ω ,

(4.11)
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with C1, C2 > 0, independent of h. Thus, according to the assumption (4.5), (4.11) yields

‖(σ − σh,u− uh)‖ ≤ Ĉ1 sup
0 6=(τ ,v)∈HBF

|RBF(τ ,v)|
‖(τ ,v)‖

+ Ĉ2

2∑

j=1

sup
0 6=(ηj ,ψj)∈HD

|RD
j (ηj , ψj)|
‖(ηj , ψj)‖

, (4.12)

with Ĉ1, Ĉ2 > 0, independent of h. Next, using (4.12) to bound the last term in (4.10), we easily find
that

2∑

j=1

‖(ρj − ρj,h, φj − φj,h)‖ ≤ Ĉ3 sup
06=(τ ,v)∈HBF

|RBF(τ ,v)|
‖(τ ,v)‖

+ Ĉ4

2∑

j=1

sup
0 6=(ηj ,ψj)∈HD

|RD
j (ηj , ψj)|
‖(ηj , ψj)‖

, (4.13)

with Ĉ3, Ĉ4 > 0, independent of h. In this way, estimate (4.7) follows from (4.12) and (4.13). �

We now aim to bound the suprema in (4.7). Indeed, in virtue of the definitions of the forms
A, Bw, aj , b and cj (cf. (2.8)–(2.11)), we find that, for any (τ ,v) ∈ H0(div; Ω) × H1(Ω) and
(ηj , ψj) ∈ H(div4/3; Ω)× L4(Ω), j ∈ {1, 2}, there holds

RBF(τ ,v) = RBF
1 (τ ) +RBF

2 (v) and RD
j (ηj , ψj) = RD

j,1(ηj) +RD
j,2(ψj) ,

where

RBF
1 (τ ) = 〈τn,uD〉Γ −

1

ν

∫

Ω
σd
h : τ d −

∫

Ω
uh · div(τ )

−
∫

Ω
K
(
f(φh) + div(σh)−K−1uh − F |uh|uh

)
· div(τ ) ,

(4.14)

RBF
2 (v) = κ2

∫

Γ
(uD − uh) · v − κ1

∫

Ω

(
∇uh −

1

ν
σd
h

)
: ∇v , (4.15)

RD
j,1(ηj) =

〈
ηj · n, φj,D

〉
Γ
−
∫

Ω
Q−1
j

(
ρj,h + Rj φj,h uh

)
· ηj −

∫

Ω
φj,h div(ηj) , (4.16)

and

RD
j,2(ψj) = −

∫

Ω
ψj div(ρj,h) . (4.17)

Notice that for convenience of the subsequent analysis we have added and subtracted the term given
by
∫

Ω uh · div(τ ) in (4.14). Then, the supremum in (4.7) can be bounded in terms of RBF
1 , RBF

2 , RD
j,1,

and RD
j,2 as follows

‖(σ,u)− (σh,uh)‖+
2∑

j=1

‖(ρj , φj)− (ρj,h, φj,h)‖

≤ C
{
‖RBF

1 ‖H0(div;Ω)′ + ‖RBF
2 ‖H1(Ω)′ +

2∑

j=1

(
‖RD

j,1‖H(div4/3;Ω)′ + ‖RD
j,2‖L4(Ω)′

)}
,

(4.18)

and hence our next purpose is to derive suitable upper bounds for each one of the terms on the
right hand side of (4.18). We begin by establishing the corresponding estimates for RBF

2 and RD
j,2 (cf.

(4.15) and (4.17)), which follow from a straightforward application of the Cauchy–Schwarz and Hölder
inequalities.
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Lemma 4.3 There exist positive constants C1, C2, independent of h, such that

‖RBF
2 ‖H1(Ω)′ ≤ C1




∑

T∈Th

(∥∥∥∇uh −
1

ν
σd
h

∥∥∥
2

0,T
+

∑

e∈Eh,T (Γ)

‖uD − uh‖20,e

)


1/2

and
2∑

j=1

‖RD
j,2‖L4(Ω)′ ≤ C2




∑

T∈Th

2∑

j=1

‖div(ρj,h)‖4/30,4/3;T





3/4

.

We now bound the term ‖RBF
1 ‖H0(div;Ω)′ . To this end, we first observe that integrating by parts the

expression
∫

Ω uh · div(τ ) in (4.14), the functional RBF
1 can be rewritten as follows

RBF
1 (τ ) = 〈τn,uD − uh〉Γ +

∫

Ω

(
∇uh −

1

ν
σd
h

)
: τ

−
∫

Ω
K
(
f(φh) + div(σh)−K−1uh − F |uh|uh

)
· div(τ ) .

(4.19)

For simplicity, we prove the aforementioned result for the two-dimensional case. The three dimensional
one proceeds analogously. Given τ ∈ H0(div; Ω), it follows from Lemma 3.3 that there exist z ∈ H2(Ω)
and χ ∈ H1(Ω), such that τ = ∇z + curl(χ) in Ω, and

‖z‖2,Ω + ‖χ‖1,Ω ≤ CHel ‖τ‖div;Ω . (4.20)

Then, we set τ h := Πk
h(∇z) + curl (Ih(χ)) + c0 I, where c0 ∈ R is chosen so that

∫
Ω tr(τ h) = 0. In

addition, bearing in mind the definition of RBF
1 (cf. (4.14)), and employing the first equation of the

Galerkin scheme (2.21) and the compatibility condition (2.2), we deduce that RBF
1 (τ h) = 0, whence

RBF
1 (τ ) = RBF

1 (τ − τ h) = RBF
1 (∇z−Πk

h(∇z)) +RBF
1 (curl(χ− Ih(χ))) . (4.21)

The following lemma establishes the estimate for RBF
1 .

Lemma 4.4 Assume that uD ∈ H1(Γ). Then, there exists a positive constant C, independent of h,
such that

‖RBF
1 ‖H0(div;Ω)′ ≤ C

{ ∑

T∈Th

Θ
2
BF,T

}1/2

,

where

Θ
2
BF,T :=

∥∥f(φh) + div(σh)−K−1uh − F |uh|uh
∥∥2

0,T
+ h2

T

∥∥∥∇uh −
1

ν
σd
h

∥∥∥
2

0,T

+ h2
T

∥∥∥∥curl

(
1

ν
σd
h

)∥∥∥∥
2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥
[[
γ∗

(
1

ν
σd
h

)]]∥∥∥∥
2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗
(

1

ν
σd
h −∇uD

)∥∥∥∥
2

0,e

+
∑

e∈Eh,T (Γ)

he ‖uD − uh‖20,e .

(4.22)
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Proof. We begin by considering the expression for RBF
1 given by (4.19)). Thus, proceeding analogously

as in the proof of [26, Lemma 4.4], that is, applying the Cauchy–Schwarz inequality, and using the
approximation properties of Πh (cf. Lemma 3.1), we find that

∣∣RBF
1 (∇z−Πk

h(∇z))
∣∣ ≤ C1

{ ∑

T∈Th

∥∥f(φh) + div(σh)−K−1uh − F |uh|uh
∥∥2

0,T

+
∑

T∈Th

h2
T

∥∥∥∇uh −
1

ν
σd
h

∥∥∥
2

0,T
+

∑

e∈Eh(Γ)

he ‖uD − uh‖20,e

}1/2

‖z‖2,Ω ,
(4.23)

with C1 > 0, independent of h. In turn, in order to bound RBF
1 (curl(χ − Ih(χ))), we appeal to the

original definition of RBF
1 in (4.14), and proceed as in [26, Lemma 4.3] by using the integration by

parts formula on the boundary Γ (cf. [17, Lemma 3.5, eq. (3.34)]):

〈curl(χ− Ih(χ)) n,uD〉Γ = −〈∇uD s,χ− Ih(χ)〉Γ = −
〈
γ∗(∇uD),χ− Ih(χ)

〉
Γ
, (4.24)

so that applying local integration by parts, the Cauchy–Schwarz inequality, and the approximation
properties of Ih (cf. Lemma 3.2), we obtain

∣∣RBF
1 (curl(χ− Ih(χ)))

∣∣ ≤ C2

{ ∑

T∈Th

h2
T

∥∥∥∥curl

(
1

ν
σd
h

)∥∥∥∥
2

0,T

+
∑

e∈Eh(Ω)

he

∥∥∥∥
[[
γ∗

(
1

ν
σd
h

)]]∥∥∥∥
2

0,e

+
∑

e∈Eh(Γ)

he

∥∥∥∥γ∗
(

1

ν
σd
h −∇uD

)∥∥∥∥
2

0,e

}1/2

‖χ‖1,Ω ,
(4.25)

where the terms involving the set Eh(Γ) remain valid if uD ∈ H1(Γ). The conclusion follows directly
from (4.21), (4.23), (4.25), and the stability of the Helmholtz decomposition (cf. (4.20)). �

Finally, we bound the residual term ‖RD
j,1‖H(div4/3;Ω)′ by following similar steps to those in [4,

Lemma 5.6]. For the sake of simplicity, and similarly to Lemma 4.4, we focus on d = 2. The three
dimensional case proceeds analogously. Indeed, given ηj ∈ H(div4/3; Ω), with j ∈ {1, 2}, we know

from Lemma 3.4 that there exist ξj ∈W1,4/3(Ω) and wj ∈ H1(Ω), such that ηj = ξj + curl(wj) in Ω,
and

‖ξj‖1,4/3;Ω + ‖wj‖1,Ω ≤ CHel ‖ηj‖div4/3;Ω . (4.26)

Next, by virtue of the second equation of the Galerkin scheme (2.21) and the definition of RD
j,1 (cf.

(4.16)), we deduce that RD
j,1(ηj,h) = 0 for all ηj,h ∈ Hρ

h. Then, we set ηj,h := Πk
h(ξj) + curl(Ih(wj)),

and deduce that

RD
j,1(ηj) = RD

j,1(ηj − ηj,h) = RD
j,1

(
ξj −Πk

h(ξj)
)

+RD
j,1 (curl (wj − Ih(wj))) . (4.27)

The terms on the right-hand side of (4.27) are bounded as follows.

Lemma 4.5 Assume that φj,D ∈ H1(Γ) ∩ L4(Γ) for each j ∈ {1, 2}. Then, there exists a positive
constant C, independent of h, such that for each j ∈ {1, 2} there holds

‖RD
j,1‖H(div4/3;Ω)′ ≤ C




∑

T∈Th

Θ2
D,j,T





1/2

, (4.28)

where ΘD,j,T is defined in (4.3).
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Proof. First, employing similar arguments to the ones used in the proof of [4, Lemma 5.4], that is,
local integration by parts, Hölder and Cauchy–Schwarz inequalities, Lemma 3.1 with p = 4/3, and
the subadditivity inequality, we deduce that

∣∣RD
j,1(ξj −Πk

h(ξj))
∣∣ ≤ Ĉ1

{ ∑

e∈Eh(Γ)

h1/2
e ‖φj,D − φj,h‖20,4;e

+
∑

T∈Th

h
2−d/2
T

∥∥∥∇φj,h −Q−1
j

{
ρj,h + Rjφj,huh

}∥∥∥
2

0,T

}1/2

‖ξj‖1,4/3;Ω ,

(4.29)

with Ĉ1 > 0 independent of h. On the other hand, proceeding as in [4, Lemma 5.5], i.e., recalling that
φj,D ∈ H1(Γ) ∩ L4(Γ), using an integration by parts formula on the boundary Γ as in (4.24), applying
local integration by parts, the Cauchy–Schwarz inequality, and the approximation properties of the
Clément interpolant Ih (cf. Lemma 3.2), we arrive at

∣∣RD
j,1(curl(wj − Ih(wj)))

∣∣ ≤ Ĉ2

{ ∑

T∈Th

h2
T

∥∥∥curl
(
Q−1
j

(
ρj,h + Rjφj,huh

))∥∥∥
2

0,T

+
∑

e∈Eh(Ω)

he

∥∥∥
[[
γ∗

(
Q−1
j

(
ρj,h + Rjφj,huh

))]]∥∥∥
2

0,e

+
∑

e∈Eh(Γ)

he

∥∥∥γ∗
(
Q−1
j

(
ρj,h + Rjφj,huh

)
−∇φj,D

)∥∥∥
2

0,e

}1/2

‖wj‖1,Ω ,

(4.30)

with Ĉ2 > 0 independent of h. Finally, combining (4.29) and (4.30), and using the stability of the
Helmholtz decomposition (cf. (4.26)), we get (4.28) and conclude the proof. �

We end this section by stressing that the estimate (4.6) is a straightforward consequence of Lem-
mas 4.2 and 4.3–4.5, the definition of the global estimator Θ1 (cf. (4.1)), and the fact that the terms

h2
T

∥∥∇uh − 1
ν σ

d
h

∥∥2

0,T
and he ‖uD − uh‖20,e, which form part of ΘBF,T (cf. (4.22)), are dominated by

∥∥∇uh − 1
ν σ

d
h

∥∥2

0,T
and ‖uD − uh‖20,e, respectively.

4.2 Efficiency of the a posteriori error estimator

We now aim to establish the lower bound in (4.4). For this purpose, we will make extensive use
of the original system of equations given by (2.6), which is recovered from the augmented-mixed
continuous formulation (2.7) by choosing suitable test functions and integrating by parts backwardly
the corresponding equations.

The following theorem is the main result of this section

Theorem 4.6 Suppose that the data uD, φD and φr satisfy (4.5). Then, there exist a positive constant
Ceff , independent of h, such that

Ceff Θ1 ≤ ‖(σ,u)− (σh,uh)‖+
2∑

j=1

‖(ρj , φj)− (ρj,h, φj,h)‖+ h.o.t. , (4.31)

where h.o.t. stands for one or several terms of higher order.
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Throughout this section we assume, without loss of generality, that uD,φr,φD,K
−1uh, and Q−1

j ρj,h,
j ∈ 1, 2, are all piecewise polynomials. Otherwise, if uD,φr,φD,K, and Qj are sufficiently smooth,
one proceeds similarly to [10, Section 6.2], so that higher order terms given by the errors arising from
suitable polynomial approximation of these functions appear in (4.31), which explains the eventual
h.o.t. in this inequality.

We begin the derivation of the efficiency estimates with the following result.

Lemma 4.7 There exist positive constants C1, C2, C3, independent of h, such that for each T ∈ Th
there hold

∥∥f(φh) + div(σh)−K−1uh − F |uh|uh
∥∥

0,T

≤ C1

{
‖σ − σh‖div,T + ‖u− uh‖0,T + ‖|u|u− |uh|uh‖0,T + ‖φ− φh‖0,4;T

}
,

∥∥∥∥∇uh −
1

ν
σd
h

∥∥∥∥
0,T

≤ C2

{
‖u− uh‖1,T + ‖σ − σh‖0,T

}
,

and
‖div(ρj,h)‖0,4/3;T ≤ C3 ‖ρj − ρj,h‖div4/3;T j ∈ {1, 2} .

Proof. It suffices to recall that f(φ) = −div(σ)+K−1u+F |u|u in Ω, ∇u =
1

ν
σd in Ω, and div(ρj) = 0

in Ω (cf. (2.6)). Further details are omitted. �

Next, we provide the upper bound for the residual terms involving the Dirichlet datum uD.

Lemma 4.8 There exists a positive constant C3, independent of h, such that
∑

e∈Eh(Γ)

‖uD − uh‖20,e ≤ C3 ‖u− uh‖21,Ω .

Proof. It suffices to observe that
∑

e∈Eh(Γ)

‖uD − uh‖20,e =
∑

e∈Eh(Γ)

‖u− uh‖20,e = ‖u− uh‖20,Γ ,

and then apply the trace inequality. �

In order to derive the upper bounds for the remaining terms defining the global a posteriori error
estimator Θ1 (cf. (4.1)), we use results from [5], inverse inequalities, and the localization technique
based on element-bubble and edge-bubble functions. To this end, we now introduce further notations
and preliminary results. Given T ∈ Th and e ∈ Eh,T , we let ψT and ψe be the usual element-bubble
and edge-bubble functions, respectively (see [33] for details). In particular, ψT ∈ P3(T ), suppψT ⊆ T ,
ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T . Similarly, ψe|T ∈ P2(T ), suppψe ⊆ ωe := ∪{T ′ ∈ Th : e ∈ Eh,T ′},
ψe = 0 on ∂T \ e and 0 ≤ ψT ≤ 1 in ωe. We also recall from [32] that, given k ∈ N ∪ {0}, there
exists an extension operator L : C(e)→ C(ωe) that satisfies L(p) ∈ Pk(T ) and L(p)|e = p ∀ p ∈ Pk(e).
Additional properties of ψT , ψe, and L are collected in the following lemma (though not all them will
be employed in the rest of the paper).

Lemma 4.9 Given k ∈ N ∪ {0}, there exist positive constants c1, c2, c3 and c4, depending only on k
and the shape regularity of the triangulations (minimum angle condition), such that

‖ψT q‖20,T ≤ ‖q‖20,T ≤ c1 ‖ψ1/2
T q‖20,T ∀ q ∈ Pk(T ) ∀T ∈ Th , (4.32)
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‖ψeL(p)‖20,e ≤ ‖p‖20,e ≤ c2 ‖ψ1/2
e p‖20,e ∀ p ∈ Pk(e) ∀ e ∈ Eh ,

and
c3 h

1/2
e ‖p‖0,e ≤ ‖ψ1/2

e L(p)‖0,T ≤ c4 h
1/2
e ‖p‖0,e ∀ p ∈ Pk(e) ∀ e ∈ Eh .

Proof. See [32, Lemma 4.1] (see also [33, Lemma 3.3]). �

In addition, in what follows we will make use of suitable inverse inequalities. In fact, given k ∈
N ∪ {0}, there exist positive constants c1, c2, independent of h, such that (cf. [18, Lemma 1.138]):

‖v‖1,4/3;T ≤ c1 h
−1+d/4
T ‖v‖0;T ∀ v ∈ Pk(T ) ∀T ∈ Th , (4.33)

and
‖v‖0,4;e ≤ c2 h

(1−d)/4
e ‖v‖0;e ∀ v ∈ Pk(e) ∀ e ∈ Eh . (4.34)

Finally, we recall a discrete trace inequality, which establishes the existence of a positive constant C,
depending only on the shape regularity of the triangulations, such that for each T ∈ Th and e ∈ Eh,T ,
there holds

‖v‖0,e ≤ C
{
h−1/2
e ‖v‖0,Te + h1/2

e |v|1,Te
}
∀ v ∈ H1(Te) . (4.35)

For the proof of inequality (4.35) we refer to [1, Theorem 3.10].

The corresponding bounds for the remaining terms defining ΘBF,T (cf. (4.2)) are stated in the
following lemma.

Lemma 4.10 There exist positive constants C4, C5, independent of h, such that

hT

∥∥∥∥curl

(
1

ν
σd
h

)∥∥∥∥
0,T

≤ C4 ‖σ − σh‖0,T ∀T ∈ Th , (4.36)

and

h1/2
e

∥∥∥∥
[[
γ∗

(
1

ν
σd
h

)]]∥∥∥∥
0,e

≤ C5 ‖σ − σh‖0,ωe ∀ e ∈ Eh(Ω) . (4.37)

Furthermore, assuming uD ∈ H1(Γ), there exists a positive constant C6, independent of h, such that

h1/2
e

∥∥∥∥γ∗
(

1

ν
σd
h −∇uD

)∥∥∥∥
0,e

≤ C6 ‖σ − σh‖0,ωe ∀ e ∈ Eh(Γ) . (4.38)

Proof. First, noting that curl
(

1
νσ

d
)

= curl(∇u) = 0, we find that (4.36)–(4.37) follows from a slight
adaptation of [26, Lemma 4.11], whereas for the proof of (4.38) we refer the reader to [26, Lemma
4.15]. �

We now provide the upper bounds for the terms defining ΘD,j,T (cf. (4.3)). Indeed, under the
assumption that Q1 and Q2 are piecewise polynomial tensors, our strategy consists of mimicking the
proofs of Lemmas 5.10, 5.11 and 5.12 in [4], which are not applicable as such here, but need to be
modified as detailed in the proofs of the following three lemmas.

Lemma 4.11 There exists a positive constant C7, independent of h, such that for each T ∈ Th and
each j ∈ {1, 2}, there holds

h
1−d/4
T

∥∥∥∇φj,h −Q−1
j

(
ρj,h + Rjφj,h uh

)∥∥∥
0,T

≤ C7

{
h

1−d/4
T

(
‖ρj − ρj,h‖0,T + ‖φj u− φj,h uh‖0,T

)
+ ‖φj − φj,h‖0,4;T

}
.

(4.39)
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Proof. Given T ∈ Th and j ∈ {1, 2}, we define ξj,T := ∇φj,h −Q−1
j

(
ρj,h + Rjφj,huh

)
in T . Then, ap-

plying (4.32) to ‖ξj,T ‖0,T , using the identity ∇φj = Q−1
j

(
ρj + Rjφju

)
in Ω (cf. (2.6)), and integrating

by parts, we find that

‖ξj,T ‖20,T ≤ c1‖ψ1/2
T ξj,T ‖20,T

= c1

∫

T
ψT ξj,T ·Q−1

j

(
(ρj,h − ρj) + Rj (φj,h uh − φj u)

)
+ c1

∫

T
(φj,h − φj) div

(
ψT ξj,T

)
.

In this way, applying Cauchy–Schwarz and Hölder’s inequalities, we obtain

‖ξj,T ‖20,T ≤ C
{
‖ψT ξj,T ‖0,T

(
‖ρj − ρj,h‖0,T + ‖φj u− φj,h uh‖0,T

)

+ ‖ψT ξj,T ‖1,4/3;T ‖φj − φj,h‖0,4;T

}
,

and combining (4.33) with (4.32) to bound ‖ψT ξj,T ‖1,4/3;T by h
−1+d/4
T ‖ξj,T ‖0,T , we deduce

‖ξj,T ‖0,T ≤ C
{
‖ρj − ρj,h‖0,T + ‖φj u− φj,h uh‖0,T + h

−1+d/4
T ‖φj − φj,h‖0,4;T

}
, (4.40)

which yields (4.39) with a positive constant C independent of h. �

Lemma 4.12 Suppose that φj,D, j ∈ {1, 2}, are piecewise polynomial functions. Then, there exists a
positive constant C8, independent of h, such that

h
1/4
e ‖φj,D − φj,h‖0,4;e

≤ C8

{
h

1−d/4
T

(
‖ρj − ρj,h‖0,T + ‖φju− φj,huh‖0,T

)
+ ‖φj − φj,h‖0,4;T

} (4.41)

for all e ∈ Eh,T (Γ).

Proof. We proceed as in [4, Lemma 5.11]. In fact, given e ∈ Eh(Γ) an edge or face of an element,
depending on whether d = 2 or d = 3, respectively, it follows from (4.34) that

‖φj,D − φj,h‖0,4;e ≤ C h(1−d)/4
e ‖φj,D − φj,h‖0,e , (4.42)

which, along with (4.35), yields

‖φj,D − φj,h‖0,4;e ≤ C
{
h(−1−d)/4
e ‖φj − φj,h‖0,T + h(3−d)/4

e |φj − φj,h|1,T
}
. (4.43)

Next, in order to estimate the right-hand side of (4.43), we use first the Cauchy-Schwarz inequality
and the fact that |T | ∼= hdT , to deduce that there exists a positive constant c > 0, independent of h,
such that

‖φj − φj,h‖0,T ≤ c h
d/4
T ‖φj − φj,h‖0,4;T . (4.44)

In turn, using the identity ∇φj = Q−1(ρj + Rjφj u) in Ω (cf. (2.6)) and the boundedness of Q−1,
which follows from (2.3), and performing some algebraic manipulations, we obtain

|φj − φj,h|1,T =
∥∥Q−1(ρj − ρj,h) + RjQ

−1(φj u− φj,h uh) + Q−1(ρj,h + Rjφj,h uh)−∇φj,h
∥∥

0,T

≤ C
(∥∥ρj − ρj,h‖0,T +

∥∥φj u− φj,h uh
∥∥

0,T

)
+
∥∥∇φj,h −Q−1

(
ρj,h + Rjφj,h uh

)∥∥
0,T

,
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which, together with (4.40), implies

|φj − φj,h|1,T ≤ C
{
‖ρj − ρj,h‖0,T + ‖φj u− φj,h uh‖0,T + h

−1+d/4
T ‖φj − φj,h‖0,4;T

}
. (4.45)

Finally, it is easy to see that (4.41) follows from estimates (4.43), (4.44), and (4.45), and the fact that
he ∼= hT . �

Lemma 4.13 There exist positive constant C9, C10, independent of h, such that

hT

∥∥∥curl
(
Q−1
j

(
ρj,h + Rjφj,h uh

))∥∥∥
0,T
≤ C9

{
‖ρj − ρj,h‖0,T + ‖φj u− φj,h uh‖0,T

}
(4.46)

for all T ∈ Th, and

h1/2
e

∥∥∥
[[
γ∗

(
Q−1
j

(
ρj,h + Rjφj,h uh

))]]∥∥∥
0,e
≤ C10

{
‖ρj − ρj,h‖0,ωe + ‖φj u− φj,h uh‖0,ωe

}
(4.47)

for all e ∈ Eh(Ω). Additionally, if φj,D, j ∈ {1, 2}, is a piecewise polynomial function, there exists a
positive constant C11, independent of h, such that

h1/2
e

∥∥∥γ∗
(
Q−1
j

(
ρj,h + Rjφj,huh

)
−∇φj,D

)∥∥∥
0,e
≤ C11

{
‖ρj − ρj,h‖0,Te + ‖φju− φj,huh‖0,Te

}
(4.48)

for all e ∈ Eh(Γ), where Te is the element to which e belongs.

Proof. For the two-dimensional case, the derivation of the first two inequalities proceeds as in [15,
Lemma 3.11] by applying Lemmas 6.1 and 6.2 in [5]. Indeed, from these results we know that there
exists a positive constant C, independent of h, such for each piecewise polynomial function ηh in Th,
and for each η ∈ L2(Ω) satisfying curl(η) = 0 in Ω, there hold

hT ‖curl(ηh)‖0,T ≤ C ‖η − ηh‖0,T and h1/2
e ‖[[γ∗(ηh)]]‖0,e ≤ C ‖η − ηh‖0,ωe .

Thus, taking η := Q−1
j

(
ρj + Rjφju

)
= ∇φj and ηh := Q−1

j

(
ρj,h + Rjφj,huh

)
, we obtain (4.46) and

(4.47). In turn, these same arguments combined with [23, Lemma 21] allow us to deduce the inequality
(4.48). Further details are omitted. On the other hand, the proof for the three-dimensional case follows
from a slight modification of those of Lemmas 4.9, 4.10, and 4.13 in [22]. �

In order to complete the global efficiency given by (4.31) (cf. Theorem 4.6), we now need to estimate
the terms ‖|u|u−|uh|uh‖20,T and ‖φju−φj,huh‖20,T appearing in the upper bounds provided by Lemmas
4.7 and 4.11–4.13. To this end, we first make use of the Hölder inequality to obtain

‖|u|u− |uh|uh‖20,T ≤ 2
(
‖u‖20,4;T + ‖uh‖20,4;T

)
‖u− uh‖20,4;T ,

from which, applying Cauchy-Schwarz’s inequality and simple algebraic estimates, we find that

∑

T∈Th

‖|u|u− |uh|uh‖20,T ≤ 2

{ ∑

T∈Th

(
‖u‖20,4;T + ‖uh‖20,4;T

)2
}1/2{ ∑

T∈Th

‖u− uh‖40,4;T

}1/2

≤ 2
√

2
(
‖u‖40,4;Ω + ‖uh‖40,4;Ω

)1/2
‖u− uh‖20,4;Ω ≤ 2

√
2
(
‖u‖20,4;Ω + ‖uh‖20,4;Ω

)
‖u− uh‖20,4;Ω .

In this way, employing the continuous injection i4 : H1(Ω)→ L4(Ω), and the a priori bounds of ‖u‖1,Ω
and ‖uh‖1,Ω (cf. (2.18), (2.22)), we deduce from the foregoing inequality that there exists a positive
constant C, depending only on data, and hence independent of h, such that

∑

T∈Th

‖|u|u− |uh|uh‖20,T ≤ C ‖u− uh‖21,Ω . (4.49)
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Similarly, adding and subtracting φj uh (it also works with φj,h u), and applying Hölder’s inequality,
we deduce that

‖φju− φj,huh‖20,T ≤ 2
(
‖φj‖20,4;T + ‖uh‖20,4,T

) (
‖u− uh‖20,4;T + ‖φj − φj,h‖20,4;T

)
,

so that proceeding analogously to the first part of the derivation of (4.49), and then using the con-
tinuous injection i4 : H1(Ω) → L4(Ω), and the a priori bounds of ‖φj‖0,4;Ω and ‖uh‖1,Ω (cf. (2.19),

(2.22)), we are able to show that there exists a positive constant C̃, depending only on data, and
hence independent of h, such that

∑

T∈Th

‖φj u− φj,h uh‖20,T ≤ C̃
{
‖u− uh‖21,Ω + ‖φj − φj,h‖20,4;Ω

}
. (4.50)

Consequently, it is not difficult to see that (4.31) follows from the definition of Θ1 (cf. (4.1)), Lemmas
4.7–4.13, and the estimates (4.49) and (4.50).

5 A second a posteriori error estimator

In this section we introduce and analyze another a posteriori error estimator for our augmented
fully-mixed finite element scheme (2.21), which is not based on the Helmholtz decomposition for
τ ∈ H(div; Ω). More precisely, this second estimator arises simply from a different way of bounding
‖RBF

1 ‖H0(div;Ω)′ (cf. (4.14)) in the preliminary estimate for the total error given by (4.18). Then, with
the same notations and discrete spaces from Sections 2.3 and 3, we now introduce for each T ∈ Th the
local error indicator

Θ̃2
BF,T :=

∥∥f(φh) + div(σh)−K−1uh − F |uh|uh
∥∥2

0,T

+
∥∥∥∇uh −

1

ν
σh

∥∥∥
2

0,T
+

∑

e∈Eh,T (Γ)

‖uD − uh‖20,e ,

and define the following global residual error estimator

Θ2 :=




∑

T∈Th

(
Θ̃2

BF,T +
2∑

j=1

Θ2
D,j,T

)
+ ‖uD − uh‖21/2,Γ





1/2

+




∑

T∈Th

2∑

j=1

‖div(ρj,h)‖4/30,4/3;T





3/4

(5.1)

where ΘD,j,T is defined in (4.3).

The reliability and efficiency of the a posteriori error estimator Θ2 are stated next.

Theorem 5.1 Assume that the data uD, φD and φr satisfy (4.5). Then, there exist positive constants
C̃rel, C̃eff , independent of h, such that

C̃eff Θ2 + h.o.t. ≤ ‖(σ,u)− (σh,uh)‖+

2∑

j=1

‖(ρj , φj)− (ρj,h, φj,h)‖ ≤ C̃rel Θ2 . (5.2)

Proof. As announced, the proof of reliability reduces basically to derive another upper bound for
‖RBF

1 ‖H0(div;Ω)′ . Indeed, applying the Cauchy–Schwarz and trace inequalities in (4.19), we readily
deduce that

‖RBF
1 ‖H0(div;Ω)′ ≤ C

{∥∥f(φh) + div(σh)−K−1uh − F|uh|uh
∥∥

0,Ω

+
∥∥∥∇uh −

1

ν
σd
h

∥∥∥
0,Ω

+ ‖uD − uh‖1/2,Γ
}
,

(5.3)
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where C is a positive constant independent of h. In this way, replacing (5.3) back into (4.18), we
obtain the upper bound in (5.2) concluding the required estimate. On the other hand, for the efficiency
estimate we simply observe, thanks to the trace theorem in H1(Ω), that there exists a positive constant
c, depending on Γ and Ω, such that

‖uD − uh‖21/2,Γ ≤ c ‖u− uh‖21,Ω .

The rest of the arguments are contained in the proof of Theorem 4.6, and hence we omit further
details. �

At this point we remark that the eventual use of Θ2 (cf. (5.1)) in an adaptive algorithm solving
(2.21) would be discouraged by the non-local character of the expression ‖uD − uh‖21/2,Γ. In order to
circumvent this situation, we now replace this term by a suitable upper bound, which yields a reliable
and fully local a posteriori error estimator.

Theorem 5.2 Assume that the data uD, φD and φr satisfy (4.5), and let

Θ̂2 :=




∑

T∈Th

(
Θ̂2

BF,T +

2∑

j=1

Θ2
D,j,T

)


1/2

+

2∑

j=1




∑

T∈Th

‖div(ρj,h)‖4/30,4/3;T





3/4

, (5.4)

where
Θ̂2

BF,T :=
∥∥f(φh) + div(σh)−K−1uh − F |uh|uh

∥∥2

0,T

+
∥∥∥∇uh −

1

ν
σh

∥∥∥
2

0,T
+

∑

e∈Eh,T (Γ)

‖uD − uh‖21,e .
(5.5)

Then, there exists a positive constant Ĉrel, independent of h, such that

‖(σ,u)− (σh,uh)‖+
2∑

j=1

‖(ρj , φj)− (ρj,h, φj,h)‖ ≤ Ĉrel Θ̂2 . (5.6)

Proof. It reduces to bound ‖uD−uh‖1/2,Γ. In fact, since H1(Γ) is continuously embedded in H1/2(Γ),
there exists a positive constant C, depending on Γ, such that

‖uD − uh‖21/2,Γ ≤ C ‖uD − uh‖21,Γ = C
∑

e∈Eh(Γ)

‖uD − uh‖21,e ,

which, together with the upper bound of (5.2), implies (5.6) and finishes the proof. �

6 Numerical results

This section serves to illustrate the performance and accuracy of the proposed augmented fully-mixed
finite element scheme (2.21) along with the reliability and efficiency properties of the a posteriori error
estimators Θ1 (cf. (4.1)) and Θ̂2 (cf. (5.4)), in 2D and 3D domains. Regarding Θ̂2, it was established
in Section 5 that it is reliable, but efficient only up to all its terms, except the last one in (5.5), which
is associated with the boundary Γ. Indeed, while the numerical results to be displayed below suggest
that Θ̂2 could actually verify both properties, the eventual efficiency is just a conjecture by now. All
simulations were implemented using the FEniCS library [2]. A Newton–Raphson method with a fixed
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tolerance tol = 1E-06 was used for the resolution of the nonlinear problem (2.21). In what follows, we
refer to the corresponding sets of finite element subspaces generated by k = 0 and k = 1, as simply
RT0 −P1 −RT0 − P0 −RT0 − P0 and RT1 −P2 −RT1 − P1 −RT1 − P1, respectively.

Next, we denote by N the total number of degrees of freedom. The global error and the effectivity
indexes associated to the global estimators Θ1 and Θ̂2 are denoted, respectively, by

e(~t) := e(σ) + e(u) +
2∑

j=1

(
e(ρj) + e(φj)

)
, eff(Θ1) :=

e(~t)

Θ1
, and eff(Θ̂2) :=

e(~t)

Θ̂2

,

where
e(σ) := ‖σ − σh‖div;Ω, e(u) := ‖u− uh‖1,Ω,

e(ρj) := ‖ρj − ρj,h‖div4/3;Ω, e(φj) := ‖φj − φj,h‖0,4;Ω, j ∈ {1, 2}.

We emphasize that other variables of physical interest such as the velocity gradient and heat vector
can be computed using the postproccessing formulae detailed in [8, Section 5]. However, for sake of
simplicity, we only present results for the error of the pressure (cf. (2.5)), namely

e(p) := ‖p− ph‖0,Ω, with ph := −1

d
tr(σh) .

Moreover, using the fact that N−1/d ∼= h, the respective experimental rates of convergence are
computed as

r(�) := − d log (e(�)/e′(�))
log (N/N ′)

for each � ∈
{
σ,u, p,ρ1,ρ2, φ1, φ2,~t

}
,

where N and N ′ denote the total degrees of freedom associated to two consecutive triangulations with
errors e(�) and e′(�), respectively.

The examples to be considered in this section are described next. In all of them, for sake of
simplicity, we take ν = 1, % = 1, R1 = 1, R2 = 1, φ

r
= 0, g = (0,−1)t when d = 2 and g = (0, 0,−1)t

when d = 3, and similarly to [8, Section 6], we choose the parameters κ1, κ2 as in (2.14), that is,
κ1 = ν and κ2 = ν/2. In turn, in the first three examples we consider F = 10 and the tensors K, Q1,
and Q2 are taken as the identity matrix I, which satisfy (2.3).

Example 1 is used to show the accuracy of the method and the behaviour of the effectivity indexes
of the a posteriori error estimators Θ1 and Θ̂2, whereas Examples 2–3 and 4–5 are utilized to illustrate
the associated adaptive algorithms, with and without manufactured solution, respectively, in both 2D
and 3D domains. The corresponding adaptivity procedure, taken from [33], is described as follows:

(1) Start with a coarse mesh Th of Ω.

(2) Solve the Newton iterative method associated with (2.21) on the current mesh.

(3) Compute the local indicator Θ1,T (respectively Θ̂2,T ) for each T ∈ Th, where

Θ1,T :=

{
Θ2

BF,T +
2∑

j=1

Θ2
D,j,T

}1/2

+
2∑

j=1

‖div(ρj,h)‖0,4/3;T , (cf. (4.2), (4.3))

Θ̂2,T :=

{
Θ̂2

BF,T +

2∑

j=1

Θ2
D,j,T

}1/2

+

2∑

j=1

‖div(ρj,h)‖0,4/3;T . (cf. (5.5), (4.3))
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(4) Check the stopping criterion and decide whether to finish or go to the next step.

(5) Use Plaza and Carey’s algorithm [30] to refine each T ′ ∈ Th satisfying

Θ1,T ′ ≥ Cper max
{

Θ1,T : T ∈ Th
}

for some Cper ∈ (0, 1) . (6.1)

(6) Define the resulting mesh as the current mesh, and go to step (2).

In particular, in Examples 2–5 below we take Cper = 0.5. Certainly, if the refinement is with respect

to the local indicator Θ̂2,T , we simply replace Θ1,T ′ and Θ1,T by Θ̂2,T ′ and Θ̂2,T , respectively, in the
criterion (6.1).

Example 1: Accuracy assessment with a smooth solution in a square domain.

In this first example, we concentrate on the accuracy of the mixed method as well as the properties
of the a posteriori error estimators through the effectivity indexes eff(Θ1) and eff(Θ̂2), under a quasi-
uniform refinement strategy. We consider the square domain Ω := (0, 1)2, and adjust the data in (2.6)
so that the exact solution is given by the smooth functions

u(x1, x2) :=

(
sin(πx1) cos(πx2)

− cos(πx1) sin(πx2)

)
, p(x1, x2) := sin(x1 − 0.5) ,

φ1(x1, x2) := 0.5 + 0.5 cos(x1x2) , and φ2(x1, x2) := 0.1 + 0.3 exp(x1x2) .

The errors and associated rates of convergence are reported in Tables 6.1 and 6.2, which are in
accordance with the theoretical bounds established in [8, Theorem 5.6 and Lemma 5.7]. In addition,
the global a posteriori error indicators Θ1, Θ̂2, and their respective effectivity indexes are also displayed
there, from where we highlight that the latter remain always bounded.

Example 2: Adaptivity in a 2D L-shaped domain.

The second example is aimed at testing the features of adaptive mesh refinement after both a posteriori
error estimators Θ1 and Θ̂2 (cf. (4.1), (5.4)). We consider an L-shaped domain Ω := (−1, 1)2 \ (0, 1)2.
The manufactured solution is given by

u(x1, x2) :=

(
−π cos(πx2) sin(πx1)

π cos(πx1) sin(πx2)

)
, p(x1, x2) :=

10(1− x1)

(x1 − 0.09)2 + (x2 − 0.09)2
− p0 ,

φ1(x1, x2) :=
1

x2 + 1.055
, and φ2(x1, x2) :=

2

x2 + 1.07
,

where p0 ∈ R is chosen so that
∫

Ω p = 0. Note that the pressure, temperature and concentration fields
exhibit high gradients near the origin and the lines x2 = −1.055 and x2 = −1.07, respectively. Figure
6.1 summarizes the convergence history of the method when applied to quasi-uniform and adaptive
(via Θ1 and Θ̂2) refinements of the domain, which yield sub-optimal and optimal rates of convergence,
respectively. Further corresponding details can be observed in Tables 6.3 - 6.4 and Tables 6.5 - 6.6,
where the errors, rates of convergence, efficiency indexes, and Newton iterations are displayed for
both refinements. We stress that the adaptive algorithm improves the efficiency of the method by
delivering quality solutions at a lower computational cost, in particular to the point that it is possible
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to get a better one (in terms of e(~t)) with approximately only the 10% of the degrees of freedom of
the last quasi-uniform mesh for the mixed scheme with both k = 0 and k = 1. Furthermore, the
initial mesh and approximate solutions builded using the adaptive RT1−P2−RT1−P1−RT1−P1

scheme (via Θ1) with 663,663 degree of freedom are shown in Figure 6.2. We observe there that the
pressure and temperature exhibit high gradients in the contraction region and at the bottom of the
domain, respectively. In turn, examples of some adapted meshes generated using Θ1 and Θ̂2, with
k = 1, are collected in Figure 6.3. We notice a clear clustering of elements near the corner region of
the contraction and the bottom of the L-shape domain as we expected.

Example 3: Adaptivity in a 3D L-shape domain.

Here we replicate the Example 2 in a three-dimensional setting by considering the 3D L-shape domain
Ω := (0, 2)× (0, 1)× (0, 2) \ (0, 1)3, and the manufactured exact solution

u(x1, x2, x3) :=




sin(πx1) cos(πx2) cos(πx3)

−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)


 , φ1(x1, x2, x3) := 0.5 + 0.5 cos(x1x2x3) ,

p(x1, x2, x3) :=
1

(x1 − 1.07)2 + (x3 − 1.07)2
− p0 , and φ2(x1, x2, x3) := 0.1 + 0.3 exp(x1x2x3) .

Tables 6.7 and 6.8 along with Figure 6.4 confirm a disturbed convergence under quasi-uniform re-
finement, whereas optimal convergence rates are obtained when adaptive refinements guided by the a
posteriori error estimators Θ1 and Θ̂2, with k = 0, are used. In addition, it is also observed in Figure
6.4 that the results for Θ̂2 are similar to those obtained for Θ1, reason why the corresponding table
of numerical results is omitted. In turn, the initial mesh and some approximated solutions after seven
refinement steps (via Θ1) are collected in Figure 6.5. In particular, we see there that the pressure
presents high values and hence, most likely, high gradients as well near the contraction region of the
3D L-shape domain, as we expected. The latter is complemented with Figure 6.6, where snapshots of
three meshes via Θ1 show a clustering of elements in the same region.

Example 4: Flow through a 2D porous media with channel network.

Inspired by [8, Example 3, Section 6], we now focus on a flow through a porous medium with a channel
network considering strong jump discontinuities of the parameters F and K accross the two regions.
We consider the square domain Ω := (−1, 1)2 with an internal channel network denoted as Ωc (see
the first plot of Figure 6.7 below), and boundary Γ, whose left, right, upper and lower parts are given
by Γleft = {−1} × (−1, 1), Γright = {1} × (−1, 1), Γtop = (−1, 1)× {1}, and Γbottom = (−1, 1)× {−1},
respectively. We consider the coupling of the Brinkman–Forchheimer and double-diffusion equations
(2.6) in the whole domain Ω with Q1 = 0.5I, Q2 = 0.125I, but with different values of the parameters
F and K = α I for the interior and the exterior of the channel, namely

F =

{
10 in Ωc

1 in Ω \ Ωc
and α =

{
1 in Ωc

0.001 in Ω \ Ωc
. (6.2)

This choice corresponds to increased inertial effect (F = 10) in the channel and a high permeability
(α = 1), compared to reduced inertial effect (F = 1) in the porous media and low permeability
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(α = 0.001). In addition, the boundaries conditions are

u = (0.2, 0)t on Γleft , σn = 0 on Γ\Γleft ,

φ1 = 0.3 on Γleft , φ1 = 0 on Γright , ρ1 · n = 0 on Γbottom ∪ Γtop ,

φ2 = 0.2 on Γleft , φ1 = 0 on Γright , ρ1 · n = 0 on Γbottom ∪ Γtop .

In particular, the first row of boundary equations corresponds to inflow on the left boundary and zero
stress outflow on the rest of the boundary. In Figure 6.7, for the sake of simplicity, we only display
the computed magnitude of the velocity and a velocity gradient component, which were built using
the RT0 −P1 −RT0 − P0 −RT0 − P0 scheme on a mesh with 83, 034 triangle elements obtained via
Θ1. Similarly to [8, Example 3, Section 6], faster flow through the channel network, with a significant
velocity gradient across the interface between the porous medium and the channel, are observed. These
results are in agreement with those obtained in [8] but now taking into account that the mesh employed
was obtained through an adaptive refinement process guided by the a posteriori error indicator Θ1.
In turn, snapshots of some adapted meshes generated using Θ1 and Θ̂2, are depicted in Figure 6.8.
Notice that the meshes obtained via the indicator Θ1 are slightly more refined in the interior of the
domain than the meshes obtained via the indicator Θ̂2. This fact is justified by the terms that capture
the jumps between triangles, which arise from the Helmoltz decomposition applied to the Brinkman–
Forchheimer equations and the consequent local integration by parts procedures. We conclude that
the estimator Θ1 is more sensible than Θ̂2 to detect the strong jump discontinuities of the model
parameters along the interface between the channel and porous media.

Example 5: Flow through a 3D porous media with channel network.

In the final example we replicate the Example 4 in a three-dimensional setting. To that end, we
consider a 3D porous media with channel network as is described in the first plot of the Figure 6.9.
The model parameters F and K = α I are taken as in (6.2) but now considering α = 0.0001 in Ω \Ωc.
In addition, the boundaries conditions are

u = (0.2, 0, 0)t on Γleft, u = 0 on Γbottom ∪ Γtop, σn = 0 on Γback ∪ Γfront ∪ Γright,

φ1 = 0.3 on Γleft, φ1 = 0 on Γright, ρ1 · n = 0 on Γbottom ∪ Γtop ∪ Γback ∪ Γfront,

φ2 = 0.2 on Γleft, φ1 = 0 on Γright, ρ1 · n = 0 on Γbottom ∪ Γtop ∪ Γback ∪ Γfront.

In Figure 6.9 we display the computed magnitude of the velocity and concentration field builded using
the RT0 −P1 −RT0 − P0 −RT0 − P0 scheme via the indicator Θ1. We observe faster flow through
the channel network as in its 2D counterpart. In addition, the concentration is higher on the left of
the boundary and goes decaying to the right of the domain as we expected. Finally, snapshots of the
initial mesh and two meshes via the a posteriori error estimator Θ1 are shown in Figure 6.10, where
again, as in Example 4, a suitable refinement around the interface that couples the porous medium
with the channel network as well as the region near the inflow boundary, are obtained.
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[7] S. Caucao, G.N. Gatica, and R. Oyarzúa, A posteriori error analysis of an augmented
fully mixed formulation for the nonisothermal Oldroyd-Stokes problem. Numer. Methods Partial
Differential Equations 35 (2019), no. 1, 295–324.
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[11] S. Caucao, R. Oyarzúa, and S. Villa-Fuentes, A posteriori error analysis of a momentum
and thermal energy conservative mixed-FEM for the Boussinesq equations. Preprint 2020-29, Cen-

28



N e(σ) r(σ) e(u) r(u) e(p) r(p) e(ρ1) r(ρ1) e(ρ2) r(ρ2)

1725 9.74e+02 – 1.64e+01 – 4.93e+01 – 9.81e+02 – 1.00e+03 –
2247 7.67e+02 1.81 1.28e+01 1.86 4.06e+01 1.47 6.99e+02 2.56 7.07e+02 2.64
2679 4.80e+02 5.34 8.37e+00 4.85 2.63e+01 4.92 6.55e+02 0.73 6.61e+02 0.78
4317 3.10e+02 1.83 6.17e+00 1.28 1.97e+01 1.22 4.13e+02 1.93 4.09e+02 2.01
8487 2.18e+02 1.05 4.74e+00 0.78 1.42e+01 0.96 2.49e+02 1.50 2.46e+02 1.50

12675 1.57e+02 1.64 4.13e+00 0.68 1.04e+01 1.58 2.02e+02 1.03 2.04e+02 0.93
21243 1.14e+02 1.23 3.66e+00 0.47 7.92e+00 1.04 1.54e+02 1.06 1.60e+02 0.94
41571 8.08e+01 1.03 3.10e+00 0.50 5.74e+00 0.96 1.15e+02 0.88 1.17e+02 0.94
77343 5.76e+01 1.09 2.17e+00 1.14 4.01e+00 1.16 8.48e+01 0.97 8.75e+01 0.92

155535 4.04e+01 1.02 1.59e+00 0.89 2.84e+00 0.99 6.09e+01 0.95 6.22e+01 0.98
289359 2.90e+01 1.07 1.09e+00 1.22 2.00e+00 1.13 4.55e+01 0.94 4.70e+01 0.90
574851 2.04e+01 1.02 8.18e-01 0.84 1.42e+00 0.99 3.30e+01 0.93 3.37e+01 0.98

e(φ1) r(φ1) e(φ2) r(φ2) e(~t) r(~t) Θ1 eff(Θ1) iter

1.07e+01 – 1.23e+01 – 3.00e+03 – 2.66e+03 1.122 6
4.87e+00 5.99 5.96e+00 5.49 2.20e+03 2.35 1.93e+03 1.135 6
4.54e+00 0.79 5.53e+00 0.85 1.81e+03 2.18 1.58e+03 1.147 6
2.09e+00 3.26 2.68e+00 3.03 1.14e+03 1.94 1.01e+03 1.131 6
1.09e+00 1.93 1.48e+00 1.77 7.20e+02 1.37 6.37e+02 1.129 6
8.70e-01 1.12 1.24e+00 0.87 5.69e+02 1.17 5.03e+02 1.132 6
6.66e-01 1.03 1.01e+00 0.81 4.33e+02 1.05 3.81e+02 1.137 6
4.68e-01 1.05 6.93e-01 1.12 3.16e+02 0.94 2.78e+02 1.138 6
3.43e-01 1.00 5.20e-01 0.92 2.33e+02 0.99 2.05e+02 1.138 6
2.42e-01 1.00 3.65e-01 1.01 1.66e+02 0.98 1.46e+02 1.136 6
1.82e-01 0.91 2.78e-01 0.88 1.23e+02 0.96 1.08e+02 1.134 6
1.30e-01 0.98 1.95e-01 1.04 8.83e+01 0.97 7.82e+01 1.129 6

Table 6.5: Example 2: RT0 −P1 −RT0 − P0 −RT0 − P0 scheme with adaptive refinement via Θ1.
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Figure 6.1: Example 2: Log-log plots of e(~t) vs N for quasi-uniform/adaptive schemes via Θ1 and
Θ̂2 for k = 0 and k = 1 (left and right plots, respectively).
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N e(σ) r(σ) e(u) r(u) e(p) r(p) e(ρ1) r(ρ1) e(ρ2) r(ρ2)

5583 6.47e+02 – 6.69e+00 – 2.30e+01 – 6.17e+02 – 5.75e+02 –
7227 2.52e+02 7.32 2.63e+00 7.24 8.91e+00 7.36 3.78e+02 3.79 3.42e+02 4.04
8439 1.58e+02 6.02 1.75e+00 5.27 6.09e+00 4.91 2.88e+02 3.49 2.54e+02 3.82

12519 8.95e+01 2.87 1.08e+00 2.43 3.45e+00 2.89 1.38e+02 3.73 1.15e+02 4.00
16851 4.26e+01 4.99 6.43e-01 3.51 1.95e+00 3.83 9.08e+01 2.82 7.49e+01 2.91
23775 3.75e+01 0.75 6.04e-01 0.36 1.76e+00 0.59 4.94e+01 3.54 4.10e+01 3.50
31515 2.09e+01 4.15 4.67e-01 1.82 1.14e+00 3.07 4.09e+01 1.34 3.42e+01 1.29
54339 1.31e+01 1.72 4.07e-01 0.51 7.59e-01 1.50 2.03e+01 2.57 1.84e+01 2.27
79119 8.65e+00 2.20 3.47e-01 0.85 5.35e-01 1.86 1.42e+01 1.89 1.26e+01 2.01

122007 5.24e+00 2.32 2.65e-01 1.25 3.27e-01 2.28 9.76e+00 1.75 8.68e+00 1.74
199647 3.36e+00 1.80 1.63e-01 1.97 2.16e-01 1.68 5.62e+00 2.24 5.08e+00 2.17
298251 2.11e+00 2.30 9.99e-02 2.43 1.29e-01 2.56 4.07e+00 1.61 3.57e+00 1.75
462903 1.36e+00 2.01 7.22e-02 1.48 8.60e-02 1.85 2.58e+00 2.07 2.28e+00 2.05
744255 8.56e-01 1.95 4.10e-02 2.39 5.42e-02 1.94 1.58e+00 2.07 1.40e+00 2.04

e(φ1) r(φ1) e(φ2) r(φ2) e(~t) r(~t) Θ̂2 eff(Θ̂2) iter

2.66e+00 – 2.98e+00 – 1.85e+03 – 1.61e+03 1.144 6
1.47e+00 4.58 1.72e+00 4.23 9.77e+02 4.95 8.74e+02 1.117 6
8.90e-01 6.51 1.06e+00 6.29 7.04e+02 4.23 6.36e+02 1.106 6
3.91e-01 4.17 4.59e-01 4.24 3.45e+02 3.61 3.11e+02 1.108 6
2.68e-01 2.54 3.18e-01 2.48 2.10e+02 3.36 1.93e+02 1.088 6
1.41e-01 3.73 1.67e-01 3.72 1.29e+02 2.83 1.17e+02 1.098 6
1.08e-01 1.87 1.34e-01 1.60 9.66e+01 2.04 8.80e+01 1.097 6
6.56e-02 1.84 9.74e-02 1.16 5.24e+01 2.25 4.79e+01 1.093 6
4.20e-02 2.38 5.90e-02 2.66 3.60e+01 2.00 3.28e+01 1.095 6
2.96e-02 1.62 4.17e-02 1.60 2.40e+01 1.87 2.20e+01 1.091 6
1.76e-02 2.10 2.54e-02 2.01 1.43e+01 2.12 1.31e+01 1.085 6
1.18e-02 2.00 1.66e-02 2.13 9.88e+00 1.83 9.07e+00 1.089 6
7.63e-03 1.98 1.09e-02 1.91 6.31e+00 2.04 5.84e+00 1.080 6
4.80e-03 1.95 6.74e-03 2.03 3.89e+00 2.04 3.61e+00 1.077 6

Table 6.6: Example 2: RT1 −P2 −RT1 − P1 −RT1 − P1 scheme with adaptive refinement via Θ̂2.

tro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción, Concepción,
Chile, (2020).

[12] P. Clément, Approximation by finite element functions using local regularisation. RAIRO
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N e(σ) r(σ) e(u) r(u) e(p) r(p) e(ρ1) r(ρ1) e(ρ2) r(ρ2)

14679 2.38e+02 – 4.96e+00 – 1.22e+01 – 8.04e-01 – 8.84e-01 –
40048 2.35e+02 0.03 3.87e+00 0.74 9.85e+00 0.64 5.69e-01 1.03 6.41e-01 0.96
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Table 6.7: Example 3: RT0 −P1 −RT0 − P0 −RT0 − P0 scheme with quasi-uniform refinement.
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[17] C. Doḿınguez, G. N. Gatica, and S. Meddahi, A posteriori error analysis of a fully-mixed
finite element method for a two-dimensional fluid-solid interaction problem. J. Comput. Math. 33
(2015), no. 6, 606–641.

[18] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical
Sciences, 159. Springer-Verlag, New York, 2004.

31



N e(σ) r(σ) e(u) r(u) e(p) r(p) e(ρ1) r(ρ1) e(ρ2) r(ρ2)
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Figure 6.3: Example 2: Three snapshots of adapted meshes according to the indicators Θ1 and Θ̂2

for k = 1 (top and bottom plots, respectively).
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Figure 6.4: Example 3: Log-log plot of e(~t) vs N for quasi-uniform/adaptive schemes via Θ1 and Θ̂2

for k = 0.
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Figure 6.5: Example 3: Initial mesh, computed velocity streamlines, and pressure field.

Figure 6.6: Example 3: Three snapshots of adapted meshes according to the indicator Θ1 for k = 0.
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Figure 6.7: Example 4: Initial mesh, computed magnitude of the velocity, and velocity gradient
component.

Figure 6.8: Example 4: Three snapshots of adapted meshes according to the indicators Θ1 and Θ̂2

for k = 0 (top and bottom plots, respectively).
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Figure 6.9: Example 5: Domain configuration, computed magnitude of the velocity, and concentra-
tion field.

Figure 6.10: Example 5: Initial mesh and two snapshots of adapted meshes according to the indicator
Θ1 for k = 0.
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