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Abstract

This article establishes a family of Nitsche-type finite element schemes to numerically approximate the solution of a
linear elasticity problem with a jump condition on an interface. We detail the analysis of the existence and uniqueness
of solution of the discrete problem, and the a priori error estimation for a mesh-dependent norm. An a posteriori error
estimator is also introduced, which proves to be efficient and reliable. We show some numerical tests that confirm
our findings and illustrate the application of adaptive refinement techniques to improve the numerical solution for
modeling subduction earthquakes.
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1. Introduction

The Nitsche method [28] has become popular as a technique for weakly imposing essential boundary conditions
[9], primarily Dirichlet conditions [26], on numerical solutions of the finite element method. Although its use involves
incorporating some additional terms into a discrete variational formulation, its main advantages lie in the fact that
the formulations obtained are based on primal schemes, avoiding mixed formulations with Lagrange multipliers, and
in several applications to unfitted mesh problems. While this method uses as an advantage the addition of penalty
terms to discrete variational formulations seeking to preserve some properties of bilinear forms such as symmetry,
some recent work [IT], [7] shows that it is possible to obtain better results by adding terms that break the symmetry
of the bilinear form.

A direct extension of this method is its application to various interface problems, where the Nitsche method
framework can be applied to impose continuity or jump conditions on an interface [6] 17 25], with applications to
fluid-structure couplings [I2], porous media [I5] and non-linear coupling conditions [I8]. The articles [14} 25] explore
different applications of Nitsche method for imposing interface conditions on linear elliptic equations, showing this
method as an alternative to using a Lagrange multiplier, allowing two subdomains to be mortared through a weak
imposition of interface conditions. This variant better handles cases of non-matching [31] or unfitted meshes [24} 25] by
using primal formulations that preserve the ellipticity of the original variational formulations in a new mesh-dependent
norm, representing an algorithmic advantage in the numerical solution of these approximations.

One of the main motivations for using interface conditions in the elasticity equation is the analysis of subduction
earthquakes. In this geological process, one lithospheric plate sinks, being recycled into the Earth’s mantle at the
convergence boundary of another plate. The denser plate subducts beneath the other and sinks into the mantle. A
simple model of this phenomenon is derived from the linear elasticity equation applied to a continuous medium €2
composed by two continuous media € and (25 sharing an interface I'r. A momentum balance gives the coupling
conditions between both equations, given by the continuity of normal stresses, the continuity of normal displacements,
and a discontinuity jump of the tangential displacement on I' (see Figure . Some previous way to obtain numerical
approximations for this problem were given by [3, 27, [30], using a mortaring method with a Lagrange multiplier, a
split-node technique and a mixed variational formulation with with weakly imposed symmetry, respectively.
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Figure 1: Domain €2, divided in two subdomains ©; and Q2 with an interface I'p.

The main novelty of this article lies in obtaining a family of primal discrete formulations, dependent on adjustable
parameters, which allows to impose the jump condition on the interface by discretizing the displacements u in each sub-
domain with H' conformal finite elements for Dirichlet and mixed boundary conditions without adding any Lagrange
multiplier when we use matching meshes, ensuring both computational efficiency and numerical precision.

The article is ordered as follows. Section [2| presents our model problem and some important notation. Section
introduces a new discrete variational formulation for our problem adding a penalty term to impose the discontinuity
jump condition on an interface, based on continuous Lagrangian finite elements, and an a priori error estimate is
established. Section[dintroduces a residual a posteriori error estimator for the solutions of this variational formulation,
with detailed proof of its reliability and efficiency. Section [5] presents some numerical experiments that validate the
results of sections[3| and (] including adaptive refinement strategies. Finally, some conclusions are reported in Section

(6]

2. Model problem

Consider n € {2,3} and a non-empty bounded domain 2 C R™. The Lebesgue measure of €2 is denoted by ||,
which extends to lesser dimension spaces. The norm and seminorms for Sobolev spaces W™P () are denoted by
|l - llm,p. and | - | p.0, respectively. For p = 2, the norm, seminorms, inner product and duality pairing of the space
Wm2(Q) = H™(Q) are denoted by || - |lm.q, | |lm., (s *)m.0 and (-, -} q, respectively. Also, C"™ () and C*°(£2) denote
the space of functions with m continuous derivatives and all continuous derivatives, respectively. For €2 and Q9 two
open subsets of R™, we denote 27 € {25 when there exists a compact set K such that Q; C K C Q.

The spaces H™(Q2), W™P(Q), H™(Q), W™P(Q), C™() and C*(Q) are defined by H™(Q) = [H™(Q)]"*",
wWmr(Q) = [Wwer@)re, H™(Q) = [H™(Q)]", w™?(Q) = [W™P(Q)", C™(Q) = [C™()]" and C=(Q) =
[C>(2)]™. The notation for norms, seminorms and inner products will be extended from W™?(Q2) or H™(Q2). Given
A, B € R*"*", a;; denotes the entry in the i—th row and j—th column of matrix A, AT denotes the transpose matrix
of A, tr(A) denotes the trace of A and A : B denotes the inner product of R™*™ given by

n n

A:B= tr(ABT) = Z Zaijbija

i=1 j=1

symA = %(A + AT) and skew A = %(A — AT). We denote I € R™*™ as the identity matrix. Analogously, given
a,b € R", a; denotes the j—th component of vector a and a - b denotes the inner product of R™.

Consider {2 is a polyhedral domain with a boundary 9, such that 9Q = TpUT' n, |Tp| # 0 and [TpNT x| = 0. Let
two disjoint open sets 1,2 C Q such that Q; UQy = Q, [T'p NoQ,| # 0 for j € {1,2}, and let I'p = 90y N 9N, such
that TN p = (. We denote by n is the outer normal vector on 02, and by n; and n, the outer normal vectors to 0§
and 0%, respectively. Let p;, A\; € R the Lamé coefficients of the material composing ;, j € {1,2}. Let f € L*(Q),
uo € HY?(T'p), and g € H~Y?(I'y). We consider the following model problem: Find u; : Q; = R, j e {1,2}, such
that

—div(o(u) = inQ 1)
Uu; =up oOn 8QjﬂFD (2)
o(uj)nj=g ondQ;NTy, (3)

where o (u;) = 2ue(u;) + Aj tr(e(u;))I, and e(u;) = sym(Vu;). We also have some interface conditions on I'p given
by
o(ui)n; +o(uz)ny =0 (4)

Uy — Uy = 8 (5)



where s € H'/?(I'p). We define the spaces
Vi i={v; € H(Q;) |v; =0 on TpNaQ;} forje {1,2}
V.= V1 X ‘/2
(*,)1/2,r, denotes the duality product between H~Y*(I'g) and HY?(T' ) with respect to the inner product of L*(I').
For u € V', we denote u = (uq, ug) with uy € V4 and us € Va.
Definition 1. Let a € [0,1] and u € V. On T'p, we denote
[u] = w1 — uq
[o(w)] = o(ui)ns + o(uz)n,
{o(u)}, = ao(ui)ns — (1 - a)o(uz)n,
{o(w)} ={o(u)}y),

The interface conditions and can be rewritten as [o(u)] = 0 and [u] = s, respectively.

3. A Nitsche method formulation

Consider Q C R™ as a bounded polygonal domain such that I'r is also polygonal. Let {7, }r~0 be a shape-regular
family of triangulations of O composed of triangles (if n = 2) or tetrahedron (if n = 3), with h := max{hs | T € T}
and hp := diam(T") be the diameter of T' € T;,. We define &, as the set of all edges (faces) of a given triangulation 7y,
thus for j € {1,2} we define

Tnj :={T €T | T € Q;},
gh,F = {E €& | EC FF}
For T € Ty, let £(T) be the set of edges of T'. Furthermore, we define
gh,D = {E €&, | E C FD}7
5h,N = {Eegh | EQPN}v
Eh; ={F €& | ECQ;}forje{l,2},
Sh,F = {E €&, | EC FF}

It is clear that &, = E,1 UER2 UER D UELNUEL p. For T € Ty, E € &, and j € {1,2} we define
wr = J{T" € To | TNT" # 0},
wg = T € Tw | ENT' #0},

wrj i=wr NQ; and wg ; == we NQ;.

Definition 2. Fork € N and j € {1,2}, we denote th the continuous Lagrange finite element vector space with degree
k on STj, that is, o
Vii={v" e C() | (VT € Tay) o"|r € P(T)"}NV;

where Py (T) is the space of polynomials of total degree at most k defined on T. Then, we define V.= VP x V. For
u € V', we denote by u" = (ul, ub) with ut € V{* and ul € V.

In that follows, we consider the case up = 0. For some constants # € R and v € R™, we define the following
variational formulation
Find u" € V" such that

(Yol e V) ap(u, 0") = L, (v") (6)
where for all u,v € V and u",v" € V"
a(u,v) := (o(u1),e(v1))o,0, + (0(u2),€(v2))o,0, — {o(w)}y, [V])1/2r, —0{a(v)},, [u])1/2rs

1
an(u” ") = a0+ 3 (WL [0 Do
Ecén r
L(v) :== (f,v1)o,0, + (f,v2)0,0, + <9a’01>1/2,era(21 + (g, ’U2>1/2,eras22 - 9<{U(’U)}a7 3>1/2,FF

1
Ly(v") := L(v") + v Z h*(& [v"Do.rs
Ecén F B

The choice of the parameter 6 allows to recover three remarkable schemes for this problem, inspired by the weak
imposition of Dirichlet boundary conditions by adding Nitsche-type terms to the discrete variational formulations [16].
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e The case 6 = 1 corresponds to a formulation inspired by the original formulation stated by Nitsche [2§], based
on a symmetric bilinear form. It can also be deduced from augmented Lagrangian formulations as in [I3] Section
5.2.2].

e In the case § = 0, the simplest formulation is obtained [22] Section 37.1], although it is incomplete due to the
absence of the term added to the bilinear form to induce symmetry in the case 6 = 1.

e The case § = —1 corresponds to a formulation with an anti-symmetric bilinear form [23], where coercivity is
ensured for any positive value of the parameter v. The case v = 0 has been explored [I1], also eliminating the
Nitsche-type penalty in the formulation, obtaining an optimal error estimate in a mesh-dependent norm and a
suboptimal error estimate in L? norm.

The parameter « can also be used to improve the stability of the scheme. While choosing the value o = 1/2
we recover the usual definition of the average operator on the interface I', choosing a = 0 or a = 1 is a common
practice in the useful master-slave formulations when 1 > po or pg > py |24, Section 3.2]. In practice, often it is

M2

M1+ 2
One important property of the formulation @ is its consistency.

used o = as in [24, Section 3.3], which justifies the use of &« = 1/2 when p1 = po are close.

Lemma 3. The exact solution of 7 satisfies the variational equations
(Vo e V") a(u,v") = L(v")
(Vo' e V") ap(u,v") = Ly(v")

Proof. 1t is a straightforward consequence of integration by parts and the interface conditions and . We omit
the details. O

In that follows, we consider the following mesh-dependent norm for V.
Definition 4. We define the mesh-dependent norm || - ||, for V* such that
1
h h 2 h|2 h2 hY)12
(Vo € V) ollf = vl R g, + 050, + D G (7)
Eecén r
This auxiliary results are necessary to obtain good properties of this mesh-dependent norm.

Lemma 5. There exists a constant C > 0, independent of h, such that for all T € T, and E € &, such that E C 0T
and for allv e HY(T)

loll§ & < Clhg 0I5 7 + helvl? 7). (®)
Proof. See [1, Theorem 3.10]. O

Lemma 6. Let m,l € NU{0} such that 0 < m <. There exists a positive constant C' independent on h such that
for all Ty € T;, for j € {1,2}, for all E € £(T}) and allv € V"

ot i7, < Chp ol 9)
—-1/2
[} llo.e < Chy! 20" o, (10)
Proof. See |21l Lemmas 12.1 and 12.8]. O

Lemma 7. There exists a positive constant C; independent on o and h such that for all v € V"

2

Y hel{e@}l5e < Cry_(2u; +nX)? )l g, (11)

Ecénr Jj=1
Proof. Let E € &, p. There exist T1 € Tp1 and T € Tp 2 such that wg = 17 UT5. Then, applying ,
I{o (@)} oz < llo@)]o,e + llo(@})llo,z

< i P (le @ lor + lo@)llo.r,)

< Crhy 2 (2p1 + M) |vl oz, + (2 + Aon)[vh

07T2)
for a positive constant C independent on o and h. The final result is obtained by some algebraic manipulations. [

The following results allow us to apply the Lax-Milgram lemma to determine the existence and uniqueness of
solution of @



Lemma 8. Ly is linear and continuous in Vh, and ayp, is bilinear and continuous in Vj,.

Proof. First, the bilinearity of a; and linearity of Lj are trivial.
Second, applying Lemma [7] Cauchy-Schwarz, Friedrichs-Poincaré, Trace and triangle inequalities, we have for all
h h
vt eV

5 1/2 1/2
1
1Ln (™) <C1Y (I llo.0, + lgll-1/2.rnn00,) [0} e, + 101 | Y belle@)]IE . >, thSHg,E
=1 Ecén r EES;LYF E
1/2 1/2
1 1
| X St X sl
Ecénr Eeén B
) ) 1/2 : 1/2
<C1 Y (IFfllog, + gl -1/2rpn00,)l0] 110, +101Cs [ Y (2u; +nXj)*[0l]i o, > h*||3||3,E
j=1 j=1 E€&n, F
1/2 1/2
1 1
T I DI [ 5 [ I B SR P
Ecén r Ecénr B

The continuity of Ly, is obtained by few algebraic manipulations. Analogously, we have for all u”, v" € V"

1/2 1/2
2
1
lan(u”, 0") <C3 Y " (2p; +nX) [l 1o, [l o, + | Y] helllo@] e > F"thﬂ||%,E
j=1 Ecén,r Ecén r B
1/2 1/2
1
+101| > helle@]IE: > hfll[[uh]]llg,fs
Bt r Eegnp ¥
1/2 1/2
| Y i > el s
Ecéy r he Ecén,r he 7
) ) 1/2 , 1/2
<C3 Y (25 +nXj)|ul 10,0, + Co | Y (205 + 1))l f o, > 7o llv
=1 =1 ECA
) 1/2 1/2
1
+101Ca | D 2u + nX)? o) 1F g, > —ITu"1II5.
; E
j=1 E€En r
1/2 1/2
1 1
+v| D~ e > —lsl3
h hg
EE(‘,‘MF Eegh,F
The continuity of aj, is obtained by few algebraic manipulations. O

Lemma 9. For all § # —1, there exists a constant o > 0 such that ay, is coercive in V" for all v > ~o. If = —1,
ay, is coercive in V" for all v > 0.

Proof. First, applying Korn inequality, we have for all v" € V*

2

lan (0", 0")| =C1 > (2p; + nAj) w3 o,
j=1
1/2

— (1) {o @)}, " Drjors +7 | D éll[[vhl]llﬁ,fs

E€&n r
In the case 8 = —1, we have
) 1/2
an(0",0")] 2 € 3oy + AR, +7 [ 3 IR
j=1 E€En

> min{C1 (21 + nA1), C1(2u2 + nXa), V0" |13



proving the coercivity of ay for all ¥ > 0 when § = —1.

Crl1+6)
Otherwise, for e > 0 and v > vy = M max{2p1 + nAy, 2us + nho}, where Cy is the constant from Lemma
C
1
[7 and , applying Lemma [7}
1/2
2
1
Jan (0", 2] 200 Sy + Aol B g, — (L4 0) (o @)oo [0 har,) +7 | S0 0"
i=1 Ecén r E
2
>0y S + ), — S helle @R |+ - e [ S Lt
=01 Hj T NA;) V5110, E|O\V )s,ll0,E Y € h v lllo,E
j=1 Eegh,p EGS}LF E
Crl1+ 90 1
>3~ (a6 + ) - L 1?1, + - 140 | 3 T
j=1 E€&n, Fr
Y+

Choosing ¢ = > 0, we have v > |1 + 0]e > 79. Then, for all j € {1,2}, we have

21+ 0|

|1+ 6] a0 Y =
C1(2p + Ajn) = Cr . (25 + Ajn)? = C1(2p5 + Njm) (1 — T+os) = C1(2p5 + Ajn) PRSP
y—l40le=1-20
2
Taking
. [C1(2pu1 + M) Cr1(2p2 + Aan) 1 }
Cs = (7 — 7o) min , =
2= (=) { 7+ % 7+ % 2
we obtain

lan (v, v)| = Ca|][;

O

Theorem 10. If a;, is coercive, then @ has an unique solution.
Proof. 1t is a direct consequence of Lemmas [§ and [0} and Lax-Milgram lemma [20, Lemma 2.2]. O
The existence and uniqueness of solution of @ is conditioned to v > 9 = CIHC:W max{2p1 + nAy, 2uz + nha}

for 6 # —1. For the case # = —1, the same conclusion is valid for all v > 0.
In order to determine an a priori error estimate for this family of schemes, we cite some best approximation results
that will be adapted for the mesh-dependent norm.

Definition 11. We denote by PJ’? cHY Q) — th the orthogonal projection with respect to the L*(Q;)-inner product.
We also denote P"(v) = (P} (v1), PH(vs)).

Definition 12. We denote by I]h : HT+1(QJ-) — th the Lagrange interpolation operator. We also denote IT'(v) =
(Z1 (v1), 5 (v2)).
The following Lemmas present some useful approximation results.

Lemma 13. Letk € N, r € [L,k+1], j € {1,2} andw; € H™"(Q;). Then, there exist constants Cj > 0, independent
of h, such that

hlu; — P} (uy)l1q, + llu; — Pp(w))llog, < Cih" |0,

h h
hluj — I} (uj) o, + llu; — I (ug) o0, < Cih" Hulig,

Proof. See [20] Corollary 109 and Proposition 1.134]. O

2
Lemma 14. Ifv e H" (1) x H"(Qg) for r € [1,k 4+ 1], then |Jv — Z(v)|n < ChTZ|vj|T+1,Q].

j=1
Proof. From we have |v; — 71 (vj)|1,0, < Cjh"|vj|r11,0,. Now, for each E € &, p we have
I[v =Z()]llo.& < llvr = Zi(vi)llo.& + [[v2 = Z2(v2)ll0,

Let T1 g € Th,1 and To g € Tp 2 such that wg = T1 g UTs g. Then, applying and local interpolation properties
[20, Theorem 1.113], we have

o1 — Ty (v1) o, < Calhy?|lvr — Tu(i)|lor + hi o1 = Ti(v1)|1.7)



r+1/2
< Cihy " vilri11 g

Later,

o i —Tiw)llor <Ci Y. b P wilar .
EES)%F Eégh,F

Analogously, we have
37 v —L@)llor <Cs Y. b P losliiam .

EGE}LF Eegh,F
In conclusion,
1/2
1
S ol -T@EE | <Gl Y [orbiim + ool
Eegh,F 2 Eegh,F
The final result is obtained after few algebraic manipulations. O

Finally, we present our a priori error estimate.

2
Theorem 15. Given k € N and r > 0, if u; € H' () for j € {1,2}, then ||[u — u"||; < C’hmin{k’r}2|vﬂr+1,ﬂj

j=1
Proof. Let " = T(u) — u" and ¢" = u — Z(u). From Lemma [3| we have
an(u —ul eM) = ay(¢" + e e) = 0.
From Lemmas [§] and [J] there exist positive constants «, C; independent on h such that
allet|i < an(e", ") = —an(€", e") < C1[1€" |nlle"|n
Then,
Ml < SLieh | < Coh” 1o,
"l < ZHIEMIn < Coh™Y Juglrs,
Jj=1
Finally,
2
[ —u"|[n < [|€"|n + I€"n < CR™Y |vjlrin.0,
j=1
O
Remark 16. For the antisymmetric scheme, i.e. 8 = —1, the case v = 0 requires a special discussion. The expression

[0 == |v1]} q, + [va2liq, is a norm in V, since [Tp N (8 \Tr)| # 0 for all j € {1,2}, thus the results of Lemmas
and [13 are derived directly by replacing the mesh-dependent norm || - ||, with the new norm.

4. A posteriori error estimate

Let E € &, and Th,T» € Ty, such that E = 9Ty N 9T,. For each v € L2(§2)7 such that v; = v|r, € C(T}) for
J € {1,2}, we define the jump of v across E as

[v] g :==vilp — v2|E-

Analogously, for each o € L?(Q2) such that o; = o|r, € [C(T})]"*? for j € {1,2}, if ny,ny € R? are the outward
normal vectors to T7 and T5, respectively, we define the normal jump of o across F as

[[U]]E = Ulnl‘E—‘rUg’ng‘E.

For T € T), and E € &, let ¢r and ¢g be the element and edge bubble functions and P : C(E) — C(T') be the
continuation operator (see [32 Section 3.1]). The element and edge bubble functions verify some important estimates.

Lemma 17. Given k € N, there ezists a constant C > 0, depending only on k and the shape-regularity of Ty, such
that for all T € Ty, all E edge of T, all g € Py, (T'), and all r € Py, (E) we have

1/2
lgli2 7 < Cllva!2ql3 7

1/2
72 & < Cllvy*rl3 &

1o *P(r) |2 7 < Chil|r|2 5.

Proof. See [32, Lemma 3.3]. O
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For T € Ty, E € &, and k € N, we define the local orthogonal projectors Py : L*(T) — Py (T) and Py : L*(E) —
P). (E) with respect to the inner products in L*(T) and L*(E), respectively. In that follows, for k € N, we consider
I :=max{k — 2,0} and m := max {k — 1,0}. For j € {1,2} and T € T;, we define the local error estimates n; 1 as

5
2 . 2
njr = E N1,k
k=1
where

7732',T,1 = h7||f +div U(“’?)”%,Ta

77]2',T,2 = Z hel| [[o-(u;-‘)]]E

2

0,E>

Ee&(T)NEn 4

77g2',T,3 = Z hEH”(“?)"‘Q”%,E’
Ec&(T)NEN

77g2',T,4 = Z 532hE||[[U(uh)]]||(2),E»
EES(T)HS;L,F

1
7732',T,5 = Z hf”[[uh]] - S”%,E7

Ee&(T)NEn. F

with 61 =1 — a and § = a. For T € T}, we define the local high order terms ©1 given by

Or =hi|lf - PrPllsr+ Y.  hellg— Pue@lie
Ec&E(T)NER,N

Finally, we define the a posteriori error estimates n; and 7y, and the global high order term © by the expressions

n? = Z nr+ Z 3 0% = Z o7

TETh 1 TETh,2 TETh

For j € {1,2}, we denote by jjh (L7 (Q) — th the Clément interpolation operator defined in [I9]. We also denote
T (v) = (JP(v1), TP (v2)) for each v € V. This operator satisfies the following result.

Lemma 18. LetT € Ty, E € E(T). There exists a constant C > 0, independent of h, such that for allv € Hl(wTﬂQj)
lv = T ()llo,r < Chrllvlhwr,,
lo — T @) 0.2 < Chi*|[v]l1.s,
17} @)l < Cllolliwr,;-
Proof. See [19] Theorem 1]. O

4.1. Reliability of the a posteriori estimator

In this subsection, we present an upper bound for the total error. First, we present some auxiliary lemmas.
Lemma 19. Let v" € V. Then,

1/2 1/2

2
1
a(u —u",v") <~ Z Z 77]2',T,5 Z EH[[U}LN%E

Jj=1T€T; Eeén,r

Proof. Since our scheme is consistent, we obtain by Holder inequality

a(w— ") = L") — Ly, 0" £y 30 S (), [0 o p)
Ecén,r

=7 3 (- sl Do)

Eeén
1/2 1/2

<o | X el -sls) (3 ol

Ecéy r Eeén, F

6.5



Lemma 20. There ezists a constant C > 0 such that for allv € V.
a(u —u",v) < Cnllv|
Proof. We have

a(u —u",v) = Z[(f, v;)o,0, + (9, V)1 2rxn00, — (@(Wl), e(v))oq,] + {o@w)},, [v])1/2r,

j=1

Integrating by parts on each T € Tj, we have

a(u—u"v) <Y | > (FHdive(u)),v)en, + (g —o@n;, v)iarvnee, — >, (o@)],v)i0e

j=1 |T€Th,; Ec&(T)NE,;
Z <{U(Uh)}a - U(U?)nhvlh/z,m - Z <{U(Uh)}a + U(Ug)nzvv2>1/27rF
Ecéy r Eeén Fr

Then, by Holder inequality,

a(u—ulv) <Y | > m,m(

J=1 |T€Th,;

1 1
lox )+ 3 o (mnvjno,E) FY s (mnvjno,E)
Ee€& h EcE h

(T)NEn. (T)NEn, N E

+ Y C=a)lle@oslvilos+a Y Ilo@]loslvzlo.s

E€&nr E€én r
Taking v" = J"(v) and w = v — v", we use Lemma and Friedrichs-Poincaré and Holder inequalities. Then,
2
afu—u w) <Cr Y 1Y miralvilher + Y. mimellvilies + Y, mimsllvilies
j=1 |TeT; E€&(T)NEn, E€&(T)NER, N
1/2 h 1/2 h
+C1 Y (= o @lloslvlly wprm +C Y ahy lo@)Tloslvallopea
Eecén r Ecén,r
9 2, 1/2
Z |Uj|%,ﬂj Z Z Wra +Mre+Mors+ 0T
j=1 J=1T€T;

Analogously, applying Lemmas and Friedrichs-Poincaré inequality, we have

) 1/2 1/2 ) 2 1/2
1
a(u — uh7”h) < Csy Z Z 7732‘,T,5 Z hfll[[vh]]H%E < Cuy Z Z 77j2‘,T,5 Z |'Uj|%,ﬂj
j=1 T€7; EGS},,,F j=1 T€73‘ j=1
Finally,
a(u —u",v) = a(u — v, w) + a(u — u",v") < max{Cs, Cyy}In||v|n
O
We add the following saturation assumption
2
> hpl{o(w—u}, 55 < CrY_(2p +nh) lu; —ulff o, (12)

Ecén r j=1

where C7 > 0 is the same constant that appears in Lemma Similar assumptions are also used in [I0, 33]. Using
this inequality, we can prove the reliability of our a posteriori error estimate.

Theorem 21. There exists a positive constant C' independent on h > 0 such that
[ — (|5 < Cn
Proof. Taking e" = u — u”, applying Lemmas and the assumption , we have

alle" i < an(e",e") = a(e”,e") = (0 + 1){{o(e")},, [e"D1/2rs

1/2 1/2
1
< Cinlleln+10+11{ > r\\ﬂehﬂllﬁ,E > hel{o(e
Eeén B Eeén r
9 2/, 1/2
< Cinlle™||n+Cr |0+ 1] Z Z 7]]2‘,T,5 Z (25 +nX;)?u; — “? %,Qj
J=1T€eT; j=1

< (Cr+Ca 0 +1])nlle"|n
proving the theorem. O
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4.2. Efficiency of the a posteriori estimator

In this subsection, we present a lower bound for each term of our local a posteriori error estimate 7 following the
same proof structure as in [32]. The consistency of our formulation will be conveniently exploited throughout the
following results. Since the terms in 7; 7 and 72 7 are similar, we only present detailed proofs for the terms in 7y 7.

Lemma 22. Let k € N, [ := max{k — 2,0}. There exists a constant C' > 0, independent on h, such that for all
je{l,2} and T € Ty, ;

Miry < C(luy =t 7+ + W2\ f = Pr(HIE )
Proof. We only present the proof for j = 1 because the proof for j = 2 is analogous. Since div o (u?) € P, (T'), we have

iy = hplf +dive(@)|§r <87 (If = Pe(HIEr + 1 Pr(f +dive(ul)E 1) ,

where, by Lemma
1Par(f + divo )l < Cr [ wrPa(f + divotul)) Pur(f +divo(ul)ds
<G [ wrPa(f + divotud) - @ivio(el) — ouw)ds
Integrating by parts, we obtain
[ P (s + divotd) - (ivio(wh) - o(u)ds = [ (@) = o) GrPa(f + divalul) d
< lo(ud) — o wn)llor [$rPr(F +div o (wh) sz,

where |lo(ul) — o (u1)|or < Colus — ul|; 7 and, applying an inverse inequality (see [20, Lemma 1.138])

[r P (f + dive(u}))ir < Cshyp' |YrPur(f + dive (ul))|or
< Cship | Por(f + divo(ul)l|or.

Then, we have

I1PLr(f + dive(u)§ r < Cahp | Pur(f + dive (ul))|lorlur — uwllir,

thus
|1PLr(f + divo(ul))llor < Cihz'lur — ullyr,

concluding our estimate. O

Lemma 23. Let k € N and | := max{k — 2,0}. There exists a constant C' > 0, independent on h, such that for all
F, e 5}171 and E5 € 5h72

o <C Y lw w01 — Pr(Hlsr |

TgwEl

he,llo(ui)] g,

(2),E2 <C Z |U2_ugﬁ,T‘f’hzTHf—Pl,T(f)H%,T

TgwE2

hi,ll[o(u3)]g,

Proof. We only show the proof of the first estimate; the deduction of the second inequality follows the same steps.
Applying Lemma (17} since [or(u1)] g, = 0, we have

o (wi)] g, 15,5, < C1 : Ve [o ()], - [o ()] g de = C ; Ve, P(lo(ul)]p,) - [o(ul) = o(ui)] g, do.
1 1
Applying the divergence theorem, and the fact that g, = 0 on dwg,, we obtain

"D - [o(uh) — o(uy)]dz = ivau’f —o(uy)) - O"u'f x
Elelp([[U(ul)]]) [o(u}) —o(u)]de = ) /Td (o(u)) — o(w1)) - ¥, P([o(ur)])d

TCwEg,

+ ) Ve, P(lo())]): (o(u}) - o(u1))de,

TCuwg, ¥ 1
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where div(o(ul) — o(u;)) = div(o(u?)) + f. Then, using Lemma we arrive at

> /diV(U(U?)*U(ul))'i/fEl (lo(u))dz < Y |l div(e(ul))

P(lo(u)Dlor

TCwg, T TCwp,
< Y Jdivie (o ()])
TCwg,
< o @llos, 32 divio(wl)) + flor,
TQUJEI
and
> [ Ve Pead)]): (o)) - otu))dr < Y o) - ow)lorkin (o)) r
TCwg, 1 TCwEg,
<Cy Y b wilrln, P(lo @)D r
TCwg,
<o Y hi\u?—umnwa (o ()] lo.r
TCwEg, T
<Cy ), h —uy (@)D o,
TCwg,
< O o )l Y him’f—um,T.
TCwg,
Thus,

o (u)]IIE, 5, < Cl/ Ve [o(u)] - [o(u})]dz = 01/ Ve, P([o(ul)]) - [o(ur) — o (u)]da
E; Eq

. 1
< Cohif Mooz ( > ldiv (o (u’f>)+f|o,T+hT|u?—u1|1,T),

TCwEg,

concluding that

. 1
o w)los, < Cohig? | 37 Il divio(wh) + flox + 5—ful — wilir

TgwEI
hg, ||[[°'(u}11)]]||(2)E1 <C Z 77%,T,1 + [ul — U1|%,T
TgwEl
The final estimate is obtained using Lemma [22] O

Lemma 24. Let k € N, | := max{k — 2,0}, and m := max{k — 1,0}. There exists a constant C > 0, independent
on h, such that for all E1 € &, n such that By C 0T, for Th € Th,1, and for all Ey € &, N such that Ey C 015, for
T5 € T2, we have
hilo(ui)n —gl3 g, < Clur — i} 7 + 07\ f = Pr(Fllo.z + hellg = Poei (9118, 2,):
hi,llo(uy)ne — g3 5, < Cllus — us 2 7 + W2\ f = Por(H.r + hellg — Pos(9)6,5,)-
Proof. First, we have

hello(i)n —gli§ g < he(lg = Pu.p @IE 5 + | Pr.e: (o(ui)n — g)|§ 5)

Since o(u1)n = g in E, we have
1P, (o (ui)n = )17 < Cl/ Ve Po.p,(0(u})n —g) - P g, (0(ul)n — g) dS

<C | YpPpnp(o(ul)n—g)-(o(ul) —o(u))n ds
orT
since ¢y =0 in 9T \ E. Then, applying divergence theorem, since f = —divo(uy) in T, we have

Ve Po.p, (0(ul)n —g) - (o(u}) — o(ur))n dS =/ YEP (o (ul)n — Pk, (9)) - div(o(uy) — o(uy)) dS
orT T
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5/wwmdﬁm—m@wmmwﬂ%am»w
T
=L¢@Maw®n—am&@»wf+&waw®wﬁ

+ [ VwePoubin - Por(e)) - (o(al) - olu) dS
T
where, repeating the same arguments as in the proof of Lemma 23] we have

/T’wEP(G(ulf)n — Py (9)) - (f + div(o(u})) dS < Cohif||div o)) + £llo,r]| P,s: (o (ul)n — )05

/ V(WeP(o(uf)n — Pg)) - (o(ul) — o(ur)) dS < Cshy'*|ur — ul|y 7| P, (o (ul)n — g) 0.5
T

Then, we have
1P,y (o (uf)n = g)[If 5 < Calhr||div o (ul) + FI§ 7 + hyp'lur — uiff 1)
|| Py (0 (ui)n = 9)|13 5 < Ca(f 7y + Fllo 7+ [un — uiff )
The theorem is concluding by using Lemma [22] and some algebraic manipulations. O

Lemma 25. Let k € N and | := max{k — 2,0}. There exists a constant C > 0, independent on h, such that for all
Ec&,rpandTy € Ty, Tn € Ty such that E = 011 N 015

hillo(w")]lse < C (i — w7+ luz — w3} g, + 03, |1 = Py (A5 0 + P31 f — Pur(F)I3r) -
Proof. The proof is similar to Lemma [24] thus we omit the details. O

Finally, we deduce the efficiency of our a posteriori error estimator by a direct application of the previous lemmas.

Theorem 26. There ezists a constant C > 0, independent on h, such that
n < C(Hu—uhHh—i—@).

Proof. Since [u] = s, we have

1 1
> Ellﬂuh]]—SIIS,E= > Ellﬂu—uhﬂllﬁ,ESHu—uhlli

Ecénr Eeén, F

From Lemmas and [25] we obtain for all j € {1, 2}.
Z 77]2',T,1 <Gy Z (Juy — U?ﬁT + byl f — Pl,T(f)||(2),T)

TETh,; T€ETh,;
Z 77g2‘,T,2 <y Z (‘ug - U?ﬁT + h2T||f - Pl,T(f)H%,T)
TE€Th,; TETh,;

Yo mrs<C Y |l -uwlr +0EIF - PeDe+ Y. helg - Par(@lir

T€7—h,d T€7—h,j EGS(T)QE}LN
|0TAT i |0
2 h2 2 2
Z njra < Cy Z (Juj — uilip +hpllf — Pl,T(f)Ho,T)
TETh,; TETh,;
|dT AT p|#0
The final result is deduced after some algebraic manipulations. We omit the details. O
Remark 27. For the antisymmetric scheme, i.e. 8 = —1, our a posteriori error estimator for the v = 0 case can be

rewritten ignoring the n; 15 terms. Furthermore, the reliability and efficiency results from Theorems and can
be deduce without the Assumption . In this case, the new definitions for the a posteriori error estimators are

4
2 2 2 2 2 2 2
= an,T,k: n = Z n.r nT =
k=1 T€7-h,,j

Then, the proofs of Lemmas[I9 and[20 can be reformulated, obtaining those new results
(Vo € V) a(u —u,0") =0
(Vo eV) alu—u" v)<Chlv|y.

In this context, the results from Theorems and are the same as before, but using the || - ||y norm instead of || - || 1.
Since the proofs are similar to our previous results, we omit the details for the sake of brevity.
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5. Numerical experiments

In this section, we report some numerical experiments in 2D to corroborate our a priori and a posteriori error
estimates. Our examples were implemented in FEniCS [4] using the Multiphenics library [8], which provides tools
for formulating multiphysics problems in conformal meshes, helping to define variables restricted to subdomains or
boundaries through block structures. The linear system obtained by @ was solved using MUMPS [5], a direct solver
suitable for large linear systems with sparse matrices. The numerical results presented below were obtained by an Intel
Core i17-10750H @ 2.60 GHz computer running Ubuntu 24.04.5 LTS inside a Windows Subsystem for Linux (WSL2)
with 24 GB of RAM.

Given w € V and u” € V", the solutions to system f and @7 respectively, we denote by e%yh = ||us —
ul|} o, + lluz — ub|lf o, and €} := ||lu — u"|;. Given an unknown ¢ and two approximations ¢, and ¢;, for two
consecutive meshes of sizes h and h, respectively, the experimental order of convergence (e.o.c.) of the error of ¢ in a
log [l — ¢n|| —log [l¢ — ¢4

specific || - || norm is defined by eoc = =
logh —logh

. Also, we denote by dof the number of degrees of

freedom and define the effectivity index by

pi=—
en

For our last two experiments, we use a classical adaptive refinement procedure of solving @ on a sequence of
adapted meshes obtained using our a posteriori error estimation within a prescribed tolerance. To this end, the
adaptive refinement process starts with a uniform mesh, and, in each stage, we create a new mesh that is better
adapted to the solution of the problem. The adaptive refinement is done by computing the a posteriori local error
estimations np for all T' € Tj, refining the elements 7" such that

nr > dmax{nz | T € Ta},

where § € (0,1) is a prescribed parameter. We will give more details of the parameters, domains, meshes, polynomial
degree k, and tolerances used in the description of each example.

5.1. Tests with analytic solution in 2D

In this example, we consider the domain ) := (—1,1)? divided in the subdomains ; := (—1,0) x (—1,1) and
0y := (0,1) x (—=1,1) with an interface given by I'r = {0} x (=1,1). We set I'p = {-1,1} x (-1,1) and T'y =
(=1,1) x {=1,1} (see Figure .

I'n I'n

()] Q

I'n r‘\v
Figure 2: Domain 2, divided into two subdomains 27 and 22, and boundary conditions.

We choose the Lamé parameters p := 4, A := 1, and the functions s, f, up and g such that the solution of f
is given by u = (u1,u2), where

(2, y) = ( 2sin(7mx) cos(3my) ) () = ( sin(wz) cos(3my) >

3 cos(mzx) sin(3my) 6 cos(mz) sin(3my)

In this test, we solved @ for k € {1,2,3}, a =1/2, v =20, and 6 € {—1,0,1}. We summarize the a priori and a
posteriori error estimations for the uniform refinement associated with this example in Table [I] and Figure [3] only on
the case § = 1 because the error estimates eq j, and e, for the chosen values of § are very similar. Since the regularity
of u; and wsy, we have, using Theorem that the convergence order of e, is O(h*). Also it is expected to recover
a O(h**+1) convergence order for eg, by the Aubin-Nitsche trick (see [20, Section 2.3.4]) and some regularity results.
According to the theory, our experimental error orders follow the expected rates for both e 5, and ey.
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104) ] 10%F
103,
10%F
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Error
Error

100
1071

102k

1073F

102 10
h
Figure 3: History of convergence.
k| h dof €0,k e.0.c en €.0.C n e.0.c P
1] 1/4 60 4.972F 4 00 — 4.498F 4 01 — 3.186E 4 03 — 70.831
1/8 180 2.570FE +00 0.952 | 3.401F +01 0.403 | 1.744E + 03 0.869 | 51.292
1/16 612 6.592F — 01 1.963 | 1.815FE +01 0.906 | 9.288F + 02 0.909 | 51.164

1/32 2244 1.641E — 01 2.006 | 9.174E +00 0.985 | 4.722E +02 0.976 | 51.476
1/64 8580 4.099F — 02 2.001 | 4.595E 400 0.997 | 2.369FE + 02 0.995 | 51.564
1/128 | 33540 1.025E - 02 2.000 | 2.298E+00 1.000 | 1.18E+02 0.999 | 51.586
1/256 | 132612 | 2.562F —03 2.000 | 1.149E 4+ 00 1.000 | 5.926E +01 1.000 | 51.592
2 |1/4 180 3.270EF 4+ 00 — 4.004F + 01 — 3.556F 4 03 - 88.818
1/8 612 4.0561F —01 3.013 | 1.087E+01 1.882 | 1.008£+03 1.819 | 92.763
1/16 2244 5.827TE —02 2.797 | 2978E 400 1.867 | 2.632E 402 1.937 | 88.369
1/32 8580 7.747TE —-03 2911 | 7.674E —01 1.956 | 6.592FE 401 1.997 | 85.893
1/64 33540 | 9.881E —04 2971 | 1.935E —01 1.988 | 1.644FE 401 2.003 | 84.965
1/128 | 132612 | 1.243E —04 2.991 | 4.848E — 02 1.997 | 4.103E +00 2.002 | 84.642
1/256 | 527364 | 1.557TE —05 2.997 | 1.213E —02 1.999 | 1.025E +00 2.001 | 84.523
3|1/4 364 4.770FE — 01 — 9.471E 4 00 — 1.473E + 03 — 155.496
1/8 1300 7.031E —-02 2762 | 2.526E£4+00 1.907 | 3.460E 402 2.090 | 136.963
1/16 4900 4.506F — 03 3.964 | 3.302E — 01 2.936 | 4.622E +01 2.904 | 139.977
1/32 19012 | 2.796E — 04 4.010 | 4.141E —02 2.995 | 5.847TE +00 2.983 | 141.198
1/64 74884 1.739E - 05 4.007 | 5.170E — 03 3.002 | 7.316E — 01 2.998 | 141.522
1/128 | 297220 | 1.084F —06 4.003 | 6.456FE — 04 3.001 | 9.140E — 02 3.001 | 141.590
1/256 | 1184260 | 6.784F — 08 3.998 | 8.065FE — 05 3.001 | 1.142E — 02 3.001 | 141.600

Table 1: A priori and a posteriori error estimates with effectivity indexes, example with an analytic solution in 2D.

5.2. Adaptive refinement for a solution with singularities

In this example, we compute a numerical solution, using piecewise linear elements (i.e., k = 1), of the elasticity
equation subject to the interface conditions f that models a mode II crack deformation (see [29]). This deforma-
tion model involves self-similar sliding of the sides of the cracked rock, which is analogous to the movement of tectonic
plates during a subduction earthquake. The theoretical solution presents two singularity points located at the ends
of a fracture zone of length 2a given by a subset of I'p. The domain for this example is shown in Figure [2] and the

fracture zone is the segment with endpoints (0, —a) and (0, a). Taking the parameters v = and o0 € R, the

2(p+ A)

jump s can be written as t = st, where t = (0,1)7 and

0 if |y| > a,

(vye[-1,1)) s(y) = 2(,(1”)@ if Jy| < a,

1

Assuming f =0, if (r,0), (r1,61) and ra,63) are the polar coordinates of (z,y), (z,y + a) and (z,y — a) with respect
1
to the polar axis {y < 0}, and defining R := /717y and w = 5(01 + 62), the analytical solution of f is given by

g
2p

((1 —2v)(Rcosw —rcosf) + rsind (% cos (0 —w) — 1))
uly) = —% (2(1 —v)(Rsinw — rcosf) + %sin@sin - w)> 7 (1)
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2 2

r a*r
T in 6 cos (3w) —cos(f —w) — 1 — —= sinfsin (3w)
cw=——c| BT R L S
= cos(f —w) —1— ﬁ " sin 0sin (3w) = sin(f — w) — s sin 6 cos (3w)

Although u € L*(f), it is evident that o () has two non-removable singularities located in (0, —a) and (0, a) because
R = 0 in those points, which means that o (u) ¢ L.2(2). Then, the assumptions of Theorem [15] are not satisfied, and
we cannot expect the numerical solution to follow any convergence order. Note that, in Cartesian coordinates, the
expression for w on I'r is given by

r —(1-2v)y i a
o) Qﬂ( 1_V\/fl,2) £yl <
1(0,y) = a( (1-2v) (Sgn(y Wy —a? = y) ) if [y[ > a
2p

K (1—21/)y i
o)~ <2(1um if [y <a
2(0,9) = g<(1—2u( gn(y)V/y? —a? - y)) if [y > a

2p

In this test, we set the parameters of @ as 0 = —1, a = 1/2, and v = 1. We consider Lamé parameters p = A = 1
(with v = 1/4), 0 = 1, a = 0.25, and the boundary conditions up and g such that the theoretical solution is given
by . Figures 4] and |5| show the initial mesh and some adapted meshes for § = 0.75 and a posteriori error history,
respectively. We note that 7 follows a convergence order similar to the theoretical order for ej(u), but ep(u) is not
computable due to u; ¢ H' () for j € {1,2}.

1.0 1.0 1.0

0.5 0.5 0.5

0.0 0.0 0.0

—0.5 —0.5 —0.5

-1.0 -1.0 -1.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0

Figure 4: Original (left) and adapted meshes for stages 5 (center) and 15 (right).

10t

100 S

Error

10-'

1072

107 107 107 108
Figure 5: History of convergence, adaptive refinement with singularities.

Figures |§| and |Z| show plots of the absolute error on tangential and normal components of u; and us on I'p,
respectively, where a decrease in the error near the singularities located in (0, —a) and (0, a) is evident thanks to the

adaptive refinement. Figure [§[shows isovalues of |u| and the mean normal stress o, = 3 tr(o(w)) with similar results

to Figure 5 in [30] and Figure 8.7.B in [29], respectively.
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Figure 6: Absolute error on tangential component of u; (left) and ua (right) on I'p.

x10~2
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£ 0.2
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Figure 7: Absolute error on normal component of u; (left) and ug (right) on I'p.
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Figure 8: Isovalues of |u| (left) and oy, (right) on € for stage 39 (dof = 360, 542).
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5.8. Adaptive refinement for a solution with an unknown analytic solution and curved interface simulating a subduction

earthquake

This final example simulates the effects of a subduction earthquake prescribing a coseismic slip s between the
tectonic plates, based on the experiment in Section 4 of [30].
The domain is given by Q = [—400, 700] x [—500, 0], representing a domain of size 1100km x 500km. The tectonic
fault is the interface I' r that divides €2 into the subdomains €27 and €25, on the left-hand and right-hand side respectively,

representing two tectonic plates. The geometry of I'r is given by an circular arc, centered at (a,b) = (—40, —157.5)

and connecting the points (0,0) and (90, —60), and a segment tangent to the arc connecting the points (90, —60) and
(420, —500). We set I'p = {—400, 700} x (—500,0) and I'y = (—400,700) x {—500, 0} (see Figure [9).

I'p

'y

0

I'p

Qs

I'p

'y

Figure 9: Domain Q2 with a tectonic fault and boundary conditions.
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We choose the Lamé parameters p := 33,65GPa, A := 30,11GPa, f = 0, applying homogenous Dirichlet boundary
condition on I'p and a free surface Neumann condition on I'y, given by g = 0. The prescribed coseismic slip is given
by s = st[m], where s is a scalar function and ¢ is the unit tangent vector on I'r, both given by

Aexp | — <M>2 +B if y € [-95, —5]
(V(z,y) €Tr) s(z,y) = 15 ’ ’
, otherwise
YZh _TTAaN iy e [—60,0]
(Vay) €Tr) tay) =4 pa' o\
5 —5> , otherwise

where r is the radius of the circular arc and A, B € R are positive constants such that s is continuous and the maximum
of s is equal to 1. We compute a numerical solution using piecewise linear elements using adaptive refinement with
0 = 0.5 until we obtain a mesh with more than 500000 triangles, verifying this criterion in stage 18. Figures ,
and [12] show the initial mesh and a zoom of two adapted meshes, respectively. The refinement is concentrated on I'p,
with the densest refinement near the point (90, —60), corresponding to the intersection between the segment and the
circle arc. Figure [I3]shows the a posteriori error history, where we recover again our convergence order.

Depth [km]

Depth [km)]

=100 K——%—~| ~ 7 5

Depth [km)]
[
|
T
|
|
[

—400 |

=500

—400 —200 0 200

Length [km]

400

Figure 10: Initial mesh. 593 triangles, dof = 702.
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Figure 11: Zoom to an adapted mesh, stage 5. 3749 triangles, dof = 4044.

Vi iy ‘3‘ N

V‘} SN,
S\ NANSAN
—— ;é} # SASAA

Figure 12: Zoom to an adapted mesh, stage 10. 35502 triangles, dof = 36372.
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1011
1010.
5
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_e_ 7]
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dof

Figure 13: History of convergence, adaptive refinement for a subduction earthquake simulation.

Figure [14] illustrates a comparison between the numerical solution obtained after 21 stages of adaptive refinement
(505020 triangles, 508458 degrees of freedom) of the initial mesh and the one obtained on a highly refined mesh
(2867938 degrees of freedom, 2861152 triangles), which better approximates the geometry of I'p. Figureshows that
adaptive refinement can generate meshes that allow obtaining highly accurate numerical solutions for w with fewer
degrees of freedom.
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Figure 14: Zoom of isovalues of uy for the final adapted mesh (left) and the highly refined mesh (right).

6. Conclusions

This article presented a family of conformal schemes for numerically solving the linear elasticity equation with a
displacement jump condition on an interface using a Nitsche-type penalty term. An optimal prior error estimate was
obtained for a mesh-dependent norm, along with a residual a posteriori error estimator that is efficient and reliable
with respect to the error norm. Our numerical experiments recovered the theoretical convergence orders and showed
that the posterior error estimator can be used to develop adapted meshes for realistic applied problems.

A direct extension of our result is the derivation of a scheme that uses independent meshes for each subdomain,
such as non-matching or unfitted meshes, where the meshes may not coincide at the interface. In such a case,
the incorporation of a Lagrange multiplier can be avoided by following a scheme similar to [31] based on an (n — 1)—
dimensional mesh for the interface. Another future application is the analysis of optimal control problems for coseismic
slip analysis [30]. Since this family of schemes requires less storage memory compared to other mixed methods [3], it
is possible to reduce the optimality conditions to a coupled linear system as in [2].
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