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Abstract

This article establishes a family of Nitsche-type finite element schemes to numerically approximate the solution of a
linear elasticity problem with a jump condition on an interface. We detail the analysis of the existence and uniqueness
of solution of the discrete problem, and the a priori error estimation for a mesh-dependent norm. An a posteriori error
estimator is also introduced, which proves to be efficient and reliable. We show some numerical tests that confirm
our findings and illustrate the application of adaptive refinement techniques to improve the numerical solution for
modeling subduction earthquakes.
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1. Introduction

The Nitsche method [28] has become popular as a technique for weakly imposing essential boundary conditions
[9], primarily Dirichlet conditions [26], on numerical solutions of the finite element method. Although its use involves
incorporating some additional terms into a discrete variational formulation, its main advantages lie in the fact that
the formulations obtained are based on primal schemes, avoiding mixed formulations with Lagrange multipliers, and
in several applications to unfitted mesh problems. While this method uses as an advantage the addition of penalty
terms to discrete variational formulations seeking to preserve some properties of bilinear forms such as symmetry,
some recent work [11, 7] shows that it is possible to obtain better results by adding terms that break the symmetry
of the bilinear form.

A direct extension of this method is its application to various interface problems, where the Nitsche method
framework can be applied to impose continuity or jump conditions on an interface [6, 17, 25], with applications to
fluid-structure couplings [12], porous media [15] and non-linear coupling conditions [18]. The articles [14, 25] explore
different applications of Nitsche method for imposing interface conditions on linear elliptic equations, showing this
method as an alternative to using a Lagrange multiplier, allowing two subdomains to be mortared through a weak
imposition of interface conditions. This variant better handles cases of non-matching [31] or unfitted meshes [24, 25] by
using primal formulations that preserve the ellipticity of the original variational formulations in a new mesh-dependent
norm, representing an algorithmic advantage in the numerical solution of these approximations.

One of the main motivations for using interface conditions in the elasticity equation is the analysis of subduction
earthquakes. In this geological process, one lithospheric plate sinks, being recycled into the Earth’s mantle at the
convergence boundary of another plate. The denser plate subducts beneath the other and sinks into the mantle. A
simple model of this phenomenon is derived from the linear elasticity equation applied to a continuous medium Ω
composed by two continuous media Ω1 and Ω2 sharing an interface ΓF . A momentum balance gives the coupling
conditions between both equations, given by the continuity of normal stresses, the continuity of normal displacements,
and a discontinuity jump of the tangential displacement on ΓF (see Figure 1). Some previous way to obtain numerical
approximations for this problem were given by [3, 27, 30], using a mortaring method with a Lagrange multiplier, a
split-node technique and a mixed variational formulation with with weakly imposed symmetry, respectively.
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Figure 1: Domain Ω, divided in two subdomains Ω1 and Ω2 with an interface ΓF .

The main novelty of this article lies in obtaining a family of primal discrete formulations, dependent on adjustable
parameters, which allows to impose the jump condition on the interface by discretizing the displacements u in each sub-
domain with H1 conformal finite elements for Dirichlet and mixed boundary conditions without adding any Lagrange
multiplier when we use matching meshes, ensuring both computational efficiency and numerical precision.

The article is ordered as follows. Section 2 presents our model problem and some important notation. Section 3
introduces a new discrete variational formulation for our problem adding a penalty term to impose the discontinuity
jump condition on an interface, based on continuous Lagrangian finite elements, and an a priori error estimate is
established. Section 4 introduces a residual a posteriori error estimator for the solutions of this variational formulation,
with detailed proof of its reliability and efficiency. Section 5 presents some numerical experiments that validate the
results of sections 3 and 4, including adaptive refinement strategies. Finally, some conclusions are reported in Section
6.

2. Model problem

Consider n ∈ {2, 3} and a non-empty bounded domain Ω ⊆ Rn. The Lebesgue measure of Ω is denoted by |Ω|,
which extends to lesser dimension spaces. The norm and seminorms for Sobolev spaces Wm,p(Ω) are denoted by
∥ · ∥m,p,Ω and | · |m,p,Ω, respectively. For p = 2, the norm, seminorms, inner product and duality pairing of the space
Wm,2(Ω) = Hm(Ω) are denoted by ∥ ·∥m,Ω, | · |m,Ω, (·, ·)m,Ω and ⟨·, ·⟩m,Ω, respectively. Also, Cm(Ω) and C∞(Ω) denote
the space of functions with m continuous derivatives and all continuous derivatives, respectively. For Ω1 and Ω2 two
open subsets of Rn, we denote Ω1 ⋐ Ω2 when there exists a compact set K such that Ω1 ⊆ K ⊆ Ω2.

The spaces Hm(Ω), Wm,p(Ω), Hm(Ω), Wm,p(Ω), Cm(Ω) and C∞(Ω) are defined by Hm(Ω) = [Hm(Ω)]n×n,
Wm,p(Ω) = [Wm,p(Ω)]n×n, Hm(Ω) = [Hm(Ω)]n, wm,p(Ω) = [Wm,p(Ω)]n, Cm(Ω) = [Cm(Ω)]n and C∞(Ω) =
[C∞(Ω)]n. The notation for norms, seminorms and inner products will be extended from Wm,p(Ω) or Hm(Ω). Given
A,B ∈ Rn×n, aij denotes the entry in the i−th row and j−th column of matrix A, AT denotes the transpose matrix
of A, tr(A) denotes the trace of A and A : B denotes the inner product of Rn×n given by

A : B = tr(ABT ) =

n∑
i=1

n∑
j=1

aijbij ,

symA =
1

2
(A + AT ) and skewA =

1

2
(A − AT ). We denote I ∈ Rn×n as the identity matrix. Analogously, given

a, b ∈ Rn, aj denotes the j−th component of vector a and a · b denotes the inner product of Rn.
Consider Ω is a polyhedral domain with a boundary ∂Ω, such that ∂Ω = ΓD∪ΓN , |ΓD| ̸= 0 and |ΓD∩ΓN | = 0. Let

two disjoint open sets Ω1,Ω2 ⊆ Ω such that Ω1 ∪ Ω2 = Ω, |ΓD ∩ ∂Ωj | ̸= 0 for j ∈ {1, 2}, and let ΓF = ∂Ω1 ∩ ∂Ω2 such
that ΓF ∩ΓD = ∅. We denote by n is the outer normal vector on ∂Ω, and by n1 and n2 the outer normal vectors to ∂Ω1

and ∂Ω2, respectively. Let µj , λj ∈ R+ the Lamé coefficients of the material composing Ωj , j ∈ {1, 2}. Let f ∈ L2(Ω),
u0 ∈ H1/2(ΓD), and g ∈ H−1/2(ΓN ). We consider the following model problem: Find uj : Ωj → Rn, j ∈ {1, 2}, such
that

− div(σ(uj)) = f in Ωj (1)
uj = uD on ∂Ωj ∩ ΓD (2)

σ(uj)nj = g on ∂Ωj ∩ ΓN , (3)

where σ(uj) = 2µjε(uj)+λj tr(ε(uj))I, and ε(uj) = sym(∇uj). We also have some interface conditions on ΓF given
by

σ(u1)n1 + σ(u2)n2 = 0 (4)
u1 − u2 = s (5)
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where s ∈ H1/2(ΓF ). We define the spaces

Vj := {vj ∈ H1(Ωj) | vj = 0 on ΓD ∩ ∂Ωj} for j ∈ {1, 2}
V := V1 × V2

⟨·, ·⟩1/2,ΓF
denotes the duality product between H−1/2(ΓF ) and H1/2(ΓF ) with respect to the inner product of L2(ΓF ).

For u ∈ V , we denote u = (u1,u2) with u1 ∈ V1 and u2 ∈ V2.

Definition 1. Let α ∈ [0, 1] and u ∈ V . On ΓF , we denote

JuK = u1 − u2

Jσ(u)K = σ(u1)n1 + σ(u2)n2

{σ(u)}α = ασ(u1)n1 − (1− α)σ(u2)n2

{σ(u)} = {σ(u)}1/2
The interface conditions (4) and (5) can be rewritten as Jσ(u)K = 0 and JuK = s, respectively.

3. A Nitsche method formulation

Consider Ω ⊆ Rn as a bounded polygonal domain such that ΓF is also polygonal. Let {Th}h>0 be a shape-regular
family of triangulations of Ω composed of triangles (if n = 2) or tetrahedron (if n = 3), with h := max{hT | T ∈ Th}
and hT := diam(T ) be the diameter of T ∈ Th. We define Eh as the set of all edges (faces) of a given triangulation Th,
thus for j ∈ {1, 2} we define

Th,j := {T ∈ Th | T ⊆ Ωj},
Eh,F := {E ∈ Eh | E ⊆ ΓF }.

For T ∈ Th, let E(T ) be the set of edges of T . Furthermore, we define

Eh,D := {E ∈ Eh | E ⊆ ΓD},
Eh,N := {E ∈ Eh | E ⊆ ΓN},
Eh,j := {E ∈ Eh | E ⊆ Ωj} for j ∈ {1, 2},
Eh,F := {E ∈ Eh | E ⊆ ΓF }.

It is clear that Eh = Eh,1 ∪ Eh,2 ∪ Eh,D ∪ Eh,N ∪ Eh,F . For T ∈ Th, E ∈ Eh and j ∈ {1, 2} we define

ωT :=
⋃

{T ′ ∈ Th | T ∩ T ′ ̸= ∅},

ωE :=
⋃

{T ′ ∈ Th | E ∩ T̄ ′ ̸= ∅},

ωT,j := ωT ∩ Ωj and ωE,j := ωE ∩ Ωj .

Definition 2. For k ∈ N and j ∈ {1, 2}, we denote V h
j the continuous Lagrange finite element vector space with degree

k on Ωj, that is,
V h
j := {vh ∈ C(Ωj) | (∀T ∈ Th,j) vh|T ∈ Pk(T )

n} ∩ Vj
where Pk(T ) is the space of polynomials of total degree at most k defined on T . Then, we define V h := V h

1 × V h
2 . For

uh ∈ V h, we denote by uh = (uh
1 ,u

h
2 ) with uh

1 ∈ V h
1 and uh

2 ∈ V h
2 .

In that follows, we consider the case uD = 0. For some constants θ ∈ R and γ ∈ R+, we define the following
variational formulation

Find uh ∈ V h such that

(∀vh ∈ V h) ah(u
h,vh) = Lh(v

h) (6)

where for all u,v ∈ V and uh,vh ∈ V h

a(u,v) := (σ(u1), ε(v1))0,Ω1 + (σ(u2), ε(v2))0,Ω2 − ⟨{σ(u)}α, JvK⟩1/2,ΓF
− θ⟨{σ(v)}α, JuK⟩1/2,ΓF

ah(u
h,vh) := a(uh,vh) + γ

∑
E∈Eh,F

1

hE
(JuhK, JvhK)0,ΓF

L(v) := (f ,v1)0,Ω1
+ (f ,v2)0,Ω2

+ ⟨g,v1⟩1/2,ΓN∩∂Ω1
+ ⟨g,v2⟩1/2,ΓN∩∂Ω2

− θ⟨{σ(v)}α, s⟩1/2,ΓF

Lh(v
h) := L(vh) + γ

∑
E∈Eh,F

1

hE
(s, JvhK)0,ΓF

The choice of the parameter θ allows to recover three remarkable schemes for this problem, inspired by the weak
imposition of Dirichlet boundary conditions by adding Nitsche-type terms to the discrete variational formulations [16].



4

• The case θ = 1 corresponds to a formulation inspired by the original formulation stated by Nitsche [28], based
on a symmetric bilinear form. It can also be deduced from augmented Lagrangian formulations as in [13, Section
5.2.2].

• In the case θ = 0, the simplest formulation is obtained [22, Section 37.1], although it is incomplete due to the
absence of the term added to the bilinear form to induce symmetry in the case θ = 1.

• The case θ = −1 corresponds to a formulation with an anti-symmetric bilinear form [23], where coercivity is
ensured for any positive value of the parameter γ. The case γ = 0 has been explored [11], also eliminating the
Nitsche-type penalty in the formulation, obtaining an optimal error estimate in a mesh-dependent norm and a
suboptimal error estimate in L2 norm.

The parameter α can also be used to improve the stability of the scheme. While choosing the value α = 1/2
we recover the usual definition of the average operator on the interface ΓF , choosing α = 0 or α = 1 is a common
practice in the useful master-slave formulations when µ1 ≫ µ2 or µ2 ≫ µ1 [24, Section 3.2]. In practice, often it is
used α =

µ2

µ1 + µ2
as in [24, Section 3.3], which justifies the use of α = 1/2 when µ1 ≈ µ2 are close.

One important property of the formulation (6) is its consistency.

Lemma 3. The exact solution of (1)–(5) satisfies the variational equations

(∀vh ∈ V h) a(u,vh) = L(vh)

(∀vh ∈ V h) ah(u,v
h) = Lh(v

h)

Proof. It is a straightforward consequence of integration by parts and the interface conditions (4) and (5). We omit
the details.

In that follows, we consider the following mesh-dependent norm for V h.

Definition 4. We define the mesh-dependent norm ∥ · ∥h for V h such that

(∀vh ∈ V h) ∥v∥2h := |vh
1 |21,Ω1

+ |vh
2 |21,Ω2

+
∑

E∈Eh,F

1

hE
∥JvhK∥20,ΓF

(7)

This auxiliary results are necessary to obtain good properties of this mesh-dependent norm.

Lemma 5. There exists a constant C > 0, independent of h, such that for all T ∈ Th and E ∈ Eh such that E ⊆ ∂T
and for all v ∈ H1(T )

∥v∥20,E ≤ C(h−1
E ∥v∥20,T + hE |v|21,T ). (8)

Proof. See [1, Theorem 3.10].

Lemma 6. Let m, l ∈ N ∪ {0} such that 0 ≤ m ≤ l. There exists a positive constant C independent on h such that
for all Tj ∈ Tj, for j ∈ {1, 2}, for all E ∈ E(Tj) and all v ∈ V h

|vh
j |l,Tj

≤ Chm−l
Tj

|vh
j |m,Tj

(9)

∥vh
j ∥0,E ≤ Ch

−1/2
Tj

∥vh
j ∥0,Tj (10)

Proof. See [21, Lemmas 12.1 and 12.8].

Lemma 7. There exists a positive constant CI independent on α and h such that for all vh ∈ V h

∑
E∈Eh,F

hE∥{σ(vh)}α∥20,E ≤ CI

2∑
j=1

(2µj + nλj)
2|vh

j |21,Ωj
(11)

Proof. Let E ∈ Eh,F . There exist T1 ∈ Th,1 and T2 ∈ Th,2 such that ωE = T1 ∪ T2. Then, applying (10),

∥{σ(vh)}∥0,E ≤ ∥σ(vh
1 )∥0,E + ∥σ(vh

2 )∥0,E
≤ C1h

−1/2
E (∥σ(vh

1 )∥0,T1
+ ∥σ(vh

2 )∥0,T2
)

≤ C1h
−1/2
E ((2µ1 + λ1n)|vh

1 |0,T1
+ (2µ2 + λ2n)|vh

2 |0,T2
)

for a positive constant C1 independent on α and h. The final result is obtained by some algebraic manipulations.

The following results allow us to apply the Lax-Milgram lemma to determine the existence and uniqueness of
solution of (6)
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Lemma 8. Lh is linear and continuous in V h, and ah is bilinear and continuous in Vh.

Proof. First, the bilinearity of ah and linearity of Lh are trivial.
Second, applying Lemma 7, Cauchy-Schwarz, Friedrichs-Poincaré, Trace and triangle inequalities, we have for all

vh ∈ V h

|Lh(v
h)| ≤C1

2∑
j=1

(∥f∥0,Ωj
+ ∥g∥−1/2,ΓN∩∂Ωj

)|vh
j |1,Ωj

+ |θ|

 ∑
E∈Eh,F

hE∥Jσ(vh)K∥20,E

1/2 ∑
E∈Eh,F

1

hE
∥s∥20,E

1/2

+ γ

 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2 ∑
E∈Eh,F

1

hE
∥s∥20,E

1/2

≤C1

2∑
j=1

(∥f∥0,Ωj + ∥g∥−1/2,ΓD∩∂Ωj
)|vh

j |1,Ωj + |θ|C2

 2∑
j=1

(2µj + nλj)
2|vh

j |21,Ωj

1/2 ∑
E∈Eh,F

1

hE
∥s∥20,E

1/2

+ γ

 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2 ∑
E∈Eh,F

1

hE
∥s∥20,E

1/2

The continuity of Lh is obtained by few algebraic manipulations. Analogously, we have for all uh,vh ∈ V h

|ah(uh,vh)| ≤C3

2∑
j=1

(2µj + nλj)|uh
j |1,Ωj

|vh
j |1,Ωj

+

 ∑
E∈Eh,F

hE∥Jσ(uh)K∥20,E

1/2 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2

+ |θ|

 ∑
E∈Eh,F

hE∥Jσ(vh)K∥20,E

1/2 ∑
E∈Eh,F

1

hE
∥JuhK∥20,E

1/2

+ γ

 ∑
E∈Eh,F

1

hE
∥JuhK∥20,E

1/2 ∑
E∈Eh,F

1

hE
∥JvK∥20,E

1/2

≤C3

2∑
j=1

(2µj + nλj)|uh
j |1,Ωj

|vh
j |1,Ωj

+ C4

 2∑
j=1

(2µj + nλj)
2|uh

j |21,Ωj

1/2 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2

+ |θ|C4

 2∑
j=1

(2µj + nλj)
2|vh

j |21,Ωj

1/2 ∑
E∈Eh,F

1

hE
∥JuhK∥20,E

1/2

+ γ

 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2 ∑
E∈Eh,F

1

hE
∥s∥20,E

1/2

The continuity of ah is obtained by few algebraic manipulations.

Lemma 9. For all θ ̸= −1, there exists a constant γ0 > 0 such that ah is coercive in V h for all γ > γ0. If θ = −1,
ah is coercive in V h for all γ > 0.

Proof. First, applying Korn inequality, we have for all vh ∈ V h

|ah(vh,vh)| ≥C1

2∑
j=1

(2µj + nλj)|vh
j |21,Ωj

− (1 + θ)⟨{σ(vh))}α, JvhK⟩1/2,ΓF
+ γ

 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2

In the case θ = −1, we have

|ah(vh,vh)| ≥ C1

2∑
j=1

(2µj + nλj)|vh
j |21,Ωj

+ γ

 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2

≥ min{C1(2µ1 + nλ1), C1(2µ2 + nλ2), γ}∥vh∥2h
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proving the coercivity of ah for all γ > 0 when θ = −1.

Otherwise, for ε > 0 and γ > γ0 =
CI |1 + θ|2

C1
max{2µ1 + nλ1, 2µ2 + nλ2}, where CI is the constant from Lemma

7 and , applying Lemma 7,

|ah(vh,vh)| ≥C1

2∑
j=1

(2µj + nλj)|vh
j |21,Ωj

− (1 + θ)
(
⟨{σ(vh)}α, JvhK⟩1/2,ΓF

)
+ γ

 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2

≥C1

2∑
j=1

(2µj + nλj)|vh
j |21,Ωj

− |1 + θ|
ε

 ∑
E∈Eh,F

hE∥{σ(vh)}α∥20,E

+ (γ − |1 + θ|ε)

 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E


≥

2∑
j=1

(
C1(2µj + nλj)−

CI |1 + θ|
ε

(2µj + nλj)
2

)
|vh

j |21,Ωj
+ (γ − |1 + θ|ε)

 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E


Choosing ε =

γ + γ0
2|1 + θ| > 0, we have γ > |1 + θ|ε > γ0. Then, for all j ∈ {1, 2}, we have

C1(2µj + λjn)− CI
|1 + θ|
ε

(2µj + λjn)
2 ≥ C1(2µj + λjn)

(
1− γ0

|1 + θ|ε

)
= C1(2µj + λjn)

(
γ − γ0
γ + γ0

)
γ − |1 + θ|ε = γ − γ0

2

Taking

C2 = (γ − γ0)min

{
C1(2µ1 + λ1n)

γ + γ0
,
C1(2µ2 + λ2n)

γ + γ0
,
1

2

}
we obtain

|ah(v, v)| ≥ C2∥v∥2h

Theorem 10. If ah is coercive, then (6) has an unique solution.

Proof. It is a direct consequence of Lemmas 8 and 9, and Lax-Milgram lemma [20, Lemma 2.2].

The existence and uniqueness of solution of (6) is conditioned to γ > γ0 =
CI |1 + θ|2

C1
max{2µ1 + nλ1, 2µ2 + nλ2}

for θ ̸= −1. For the case θ = −1, the same conclusion is valid for all γ > 0.
In order to determine an a priori error estimate for this family of schemes, we cite some best approximation results

that will be adapted for the mesh-dependent norm.

Definition 11. We denote by Ph
j : H1(Ωj) → V h

j the orthogonal projection with respect to the L2(Ωj)-inner product.
We also denote Ph(v) = (Ph

1 (v1),Ph
2 (v2)).

Definition 12. We denote by Ih
j : Hr+1(Ωj) → V h

j the Lagrange interpolation operator. We also denote Ih(v) =

(Ih
1 (v1), Ih

2 (v2)).

The following Lemmas present some useful approximation results.

Lemma 13. Let k ∈ N, r ∈ [1, k+1] , j ∈ {1, 2} and uj ∈ Hr+1(Ωj). Then, there exist constants Cj > 0, independent
of h, such that

h|uj − Ph
j (uj)|1,Ωj

+ ∥uj − Ph
j (uj)∥0,Ωj

≤ Cjh
r+1|uj |r+1,Ωj

h|uj − Ih
j (uj)|1,Ωj + ∥uj − Ih

j (uj)∥0,Ωj ≤ Cjh
r+1|uj |r+1,Ωj

Proof. See [20, Corollary 109 and Proposition 1.134].

Lemma 14. If v ∈ Hr(Ω1)×Hr(Ω2) for r ∈ [1, k + 1], then ∥v − I(v)∥h ≤ Chr
2∑

j=1

|vj |r+1,Ωj

Proof. From 13, we have |vj − I1(vj)|1,Ωj
≤ Cjh

r|vj |r+1,Ωj
. Now, for each E ∈ Eh,F we have

∥Jv − I(v)K∥0,E ≤ ∥v1 − I1(v1)∥0,E + ∥v2 − I2(v2)∥0,E
Let T1,E ∈ Th,1 and T2,E ∈ Th,2 such that ωE = T1,E ∪ T2,E . Then, applying (8) and local interpolation properties
[20, Theorem 1.113], we have

∥v1 − I1(v1)∥0,E ≤ C3(h
−1/2
E ∥v1 − I1(v1)∥0,T + h

1/2
E |v1 − I1(v1)|1,T )
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≤ C4h
r+1/2
E |v1|r+1,T1,E

Later, ∑
E∈Eh,F

∥v1 − I1(v1)∥0,E ≤ C4

∑
E∈Eh,F

h
r+1/2
E |v1|r+1,T1,E

Analogously, we have ∑
E∈Eh,F

∥v2 − I2(v2)∥0,E ≤ C5

∑
E∈Eh,F

h
r+1/2
E |v2|r+1,T2,E

In conclusion,  ∑
E∈Eh,F

1

hE
∥Jv − I(v)K∥20,E

1/2

≤ C6h
r
∑

E∈Eh,F

|v1|r+1,T1,E
+ |v2|r+1,T2,E

The final result is obtained after few algebraic manipulations.

Finally, we present our a priori error estimate.

Theorem 15. Given k ∈ N and r > 0, if uj ∈ Hr+1(Ωj) for j ∈ {1, 2}, then ∥u− uh∥h ≤ Chmin{k,r}
2∑

j=1

|vj |r+1,Ωj

Proof. Let eh = I(u)− uh and ξh = u− I(u). From Lemma 3, we have

ah(u− uh, eh) = ah(ξ
h + eh, eh) = 0.

From Lemmas 8 and 9, there exist positive constants α,C1 independent on h such that

α∥eh∥2h ≤ ah(e
h, eh) = −ah(ξh, eh) ≤ C1∥ξh∥h∥eh∥h

Then,

∥eh∥h ≤ C1

α
∥ξh∥h ≤ C2h

r
2∑

j=1

|vj |r+1,Ωj

Finally,

∥u− uh∥h ≤ ∥ξh∥h + ∥eh∥h ≤ Chr
2∑

j=1

|vj |r+1,Ωj

Remark 16. For the antisymmetric scheme, i.e. θ = −1, the case γ = 0 requires a special discussion. The expression
∥v∥2V := |v1|21,Ω1

+ |v2|21,Ω2
is a norm in V , since |ΓD ∩ (∂Ωj \ ΓF )| ̸= 0 for all j ∈ {1, 2}, thus the results of Lemmas

8, 9, and 15 are derived directly by replacing the mesh-dependent norm ∥ · ∥h with the new norm.

4. A posteriori error estimate

Let E ∈ Eh,Ω and T1, T2 ∈ Th such that E = ∂T1 ∩ ∂T2. For each v ∈ L2(Ω), such that vj = v|Tj
∈ C(Tj) for

j ∈ {1, 2}, we define the jump of v across E as

JvKE := v1|E − v2|E .

Analogously, for each σ ∈ L2(Ω) such that σj = σ|Tj ∈ [C(Tj)]
d×d for j ∈ {1, 2}, if n1,n2 ∈ Rd are the outward

normal vectors to T1 and T2, respectively, we define the normal jump of σ across E as

JσKE := σ1n1|E + σ2n2|E .

For T ∈ Th and E ∈ Eh, let ψT and ψE be the element and edge bubble functions and P : C(E) → C(T ) be the
continuation operator (see [32, Section 3.1]). The element and edge bubble functions verify some important estimates.

Lemma 17. Given k ∈ N, there exists a constant C > 0, depending only on k and the shape-regularity of Th, such
that for all T ∈ Th, all E edge of T , all q ∈ Pk (T ), and all r ∈ Pk (E) we have

∥q∥20,T ≤ C∥ψ1/2
T q∥20,T

∥r∥20,E ≤ C∥ψ1/2
E r∥20,E

∥ψ1/2
E P(r)∥20,T ≤ ChE∥r∥20,E .

Proof. See [32, Lemma 3.3].
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For T ∈ Th, E ∈ Eh and k ∈ N, we define the local orthogonal projectors PT : L2(T ) → Pk (T ) and PE : L2(E) →
Pk (E) with respect to the inner products in L2(T ) and L2(E), respectively. In that follows, for k ∈ N, we consider
l := max {k − 2, 0} and m := max {k − 1, 0}. For j ∈ {1, 2} and T ∈ Tj , we define the local error estimates ηj,T as

η2j,T :=

5∑
k=1

η2j,T,k

where

η2j,T,1 := h2T ∥f + divσ(uh
j )∥20,T ,

η2j,T,2 :=
∑

E∈E(T )∩Eh,j

hE∥Jσ(uh
j )KE∥

2
0,E ,

η2j,T,3 :=
∑

E∈E(T )∩EN

hE∥σ(uh
j )n− g∥20,E ,

η2j,T,4 :=
∑

E∈E(T )∩Eh,F

δ2jhE∥Jσ(uh)K∥20,E ,

η2j,T,5 :=
∑

E∈E(T )∩Eh,F

1

hE
∥JuhK − s∥20,E ,

with δ1 = 1− α and δ2 = α. For T ∈ Th, we define the local high order terms ΘT given by

ΘT := h2T ∥f − Pl,T (f)∥20,T +
∑

E∈E(T )∩Eh,N

hE∥g − Pm,E(g)∥20,E

Finally, we define the a posteriori error estimates η1 and η2, and the global high order term Θ by the expressions

η2 :=
∑

T∈Th,1

η21,T +
∑

T∈Th,2

η22,T Θ2 :=
∑
T∈Th

Θ2
T .

For j ∈ {1, 2}, we denote by J h
j : L2 (Ωj) → V h

j the Clément interpolation operator defined in [19]. We also denote
J h(v) = (J h

1 (v1),J h
2 (v2)) for each v ∈ V . This operator satisfies the following result.

Lemma 18. Let T ∈ Th, E ∈ E(T ). There exists a constant C > 0, independent of h, such that for all v ∈ H1(ωT∩Ωj)

∥v − J h
j (v)∥0,T ≤ ChT ∥v∥1,ωT,j

,

∥v − J h
j (v)∥0,E ≤ Ch

1/2
E ∥v∥1,ωE,j

,

∥J h
j (v)∥1,T ≤ C∥v∥1,ωT,j

.

Proof. See [19, Theorem 1].

4.1. Reliability of the a posteriori estimator
In this subsection, we present an upper bound for the total error. First, we present some auxiliary lemmas.

Lemma 19. Let vh ∈ V h. Then,

a(u− uh,vh) ≤ γ

 2∑
j=1

∑
T∈Tj

η2j,T,5

1/2 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2

Proof. Since our scheme is consistent, we obtain by Holder inequality

a(u− uh,vh) = L(vh)− Lh(u
h,vh) + γ

∑
E∈Eh,F

1

hE
(JuhK, JvhK)0,E)

= γ
∑

E∈Eh,F

1

hE
(JuhK − s, JvhK)0,E)

≤ γ

 ∑
E∈Eh,F

1

hE
∥JuhK − s∥20,E

1/2 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2
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Lemma 20. There exists a constant C > 0 such that for all v ∈ V .

a(u− uh,v) ≤ Cη∥v∥h
Proof. We have

a(u− uh,v) =

2∑
j=1

[(f ,vj)0,Ωj
+ ⟨g,vj⟩1/2,ΓN∩∂Ωj

− (σ(uh
j ), ε(vj))0,Ωj

] + ⟨{σ(uh)}α, JvK⟩1/2,ΓF

Integrating by parts on each T ∈ Th, we have

a(u− uh,v) ≤
2∑

j=1

 ∑
T∈Th,j

(f + divσ(uh
j ),vj)0,Ωj

+ ⟨g − σ(uh
j )nj ,vj⟩1/2,ΓN∩∂Ωj

−
∑

E∈E(T )∩Eh,j

⟨Jσ(uh
j )KE ,vj⟩1/2,E


+

∑
E∈Eh,F

⟨{σ(uh)}α − σ(uh
1 )n1,v1⟩1/2,ΓF

−
∑

E∈Eh,F

⟨{σ(uh)}α + σ(uh
2 )n2,v2⟩1/2,ΓF

Then, by Holder inequality,

a(u− uh,v) ≤
2∑

j=1

 ∑
T∈Th,j

ηj,T,1

(
1

hT
∥vj∥0,T

)
+

∑
E∈E(T )∩Eh,j

ηj,T,2

(
1

h
1/2
E

∥vj∥0,E
)

+
∑

E∈E(T )∩Eh,N

ηj,T,3

(
1

h
1/2
E

∥vj∥0,E
)

+
∑

E∈Eh,F

(1− α)∥Jσ(uh)K∥0,E∥v1∥0,E + α
∑

E∈Eh,F

∥Jσ(uh)K∥0,E∥v2∥0,E

Taking vh = J h(v) and w = v − vh, we use Lemma 18, and Friedrichs-Poincaré and Holder inequalities. Then,

a(u− uh,w) ≤C1

2∑
j=1

∑
T∈Tj

ηj,T,1∥vj∥1,ωT
+

∑
E∈E(T )∩Eh,j

ηj,T,2∥vj∥1,ωE
+

∑
E∈E(T )∩Eh,N

ηj,T,3∥vj∥1,ωE


+ C1

∑
E∈Eh,F

(1− α)h
1/2
E ∥Jσ(uh)K∥0,E∥v1∥1,ωE∩Ω1

+ C1

∑
E∈Eh,F

αh
1/2
E ∥Jσ(uh)K∥0,E∥v2∥1,ωE∩Ω2

≤C2

 2∑
j=1

|vj |21,Ωj

1/2 2∑
j=1

∑
T∈Tj

η2j,T,1 + η2j,T,2 + η2j,T,3 + η2j,T,4

1/2

Analogously, applying Lemmas 18, 19, and Friedrichs-Poincaré inequality, we have

a(u− uh,vh) ≤ C3γ

 2∑
j=1

∑
T∈Tj

η2j,T,5

1/2 ∑
E∈Eh,F

1

hE
∥JvhK∥20,E

1/2

≤ C4γ

 2∑
j=1

∑
T∈Tj

η2j,T,5

1/2 2∑
j=1

|vj |21,Ωj

1/2

Finally,
a(u− uh,v) = a(u− uh,w) + a(u− uh,vh) ≤ max{C2, C4γ}η∥v∥h

We add the following saturation assumption∑
E∈Eh,F

hE∥{σ(u− uh)}α∥20,E ≤ CI

2∑
j=1

(2µj + nλj)
2|uj − uh

j |21,Ωj
(12)

where CI > 0 is the same constant that appears in Lemma 7. Similar assumptions are also used in [10, 33]. Using
this inequality, we can prove the reliability of our a posteriori error estimate.

Theorem 21. There exists a positive constant C independent on h > 0 such that

∥u− uh∥h ≤ Cη

Proof. Taking eh = u− uh, applying Lemmas 19, 20 and the assumption (12), we have

α∥eh∥2h ≤ ah(e
h, eh) = a(eh, eh)− (θ + 1)⟨{σ(eh)}α, JehK⟩1/2,ΓF

≤ C1η∥eh∥h + |θ + 1|

 ∑
E∈Eh,F

1

hE
∥JehK∥20,E

1/2 ∑
E∈Eh,F

hE∥{σ(eh)}α∥20,E

1/2

≤ C1η∥eh∥h + CI |θ + 1|

 2∑
j=1

∑
T∈Tj

η2j,T,5

1/2 2∑
j=1

(2µj + nλj)
2|uj − uh

j |21,Ωj

1/2

≤ (C1 + C2 |θ + 1|) η∥eh∥h
proving the theorem.
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4.2. Efficiency of the a posteriori estimator
In this subsection, we present a lower bound for each term of our local a posteriori error estimate η following the

same proof structure as in [32]. The consistency of our formulation will be conveniently exploited throughout the
following results. Since the terms in η1,T and η2,T are similar, we only present detailed proofs for the terms in η1,T .

Lemma 22. Let k ∈ N, l := max{k − 2, 0}. There exists a constant C > 0, independent on h, such that for all
j ∈ {1, 2} and T ∈ Th,j

η2j,T,1 ≤ C
(
|uj − uh

j |21,T + h2T ∥f − Pl,T (f)∥20,T
)

Proof. We only present the proof for j = 1 because the proof for j = 2 is analogous. Since divσ(uh
1 ) ∈ Pl (T ), we have

η21,T,1 = h2T ∥f + divσ(uh
1 )∥20,T ≤ h2T

(
∥f − Pl,T (f)∥20,T + ∥Pl,T (f + divσ(uh

1 ))∥20,T
)
,

where, by Lemma 17,

∥Pl,T (f + divσ(uh
1 ))∥20,T ≤ C1

∫
T

ψTPl,T (f + divσ(uh
1 )) · Pl,T (f + divσ(uh

1 ))dx

≤ C1

∫
T

ψTPl,T (f + divσ(uh
1 )) · (div(σ(uh

1 )− σ(u1))dx.

Integrating by parts, we obtain∫
T

ψTPl,T (f + divσ(uh
1 )) · (div(σ(uh

1 )− σ(u1))dx =

∫
T

(σ(uh
1 )− σ(u1)) · ∇

(
ψTPl,T (f + divσ(uh

1 ))
)
dx

≤ ∥σ(uh
1 )− σ(u1)∥0,T |ψTPl,T (f + divσ(uh

1 ))|1,T ,

where ∥σ(uh
1 )− σ(u1)∥0,T ≤ C2|u1 − uh

1 |1,T and, applying an inverse inequality (see [20, Lemma 1.138])

|ψTPl,T (f + divσ(uh
1 ))|1,T ≤ C3h

−1
T ∥ψTPl,T (f + divσ(uh

1 ))∥0,T
≤ C3h

−1
T ∥Pl,T (f + divσ(uh

1 ))∥0,T .

Then, we have

∥Pl,T (f + divσ(uh
1 ))∥20,T ≤ C4h

−1
T ∥Pl,T (f + divσ(uh

1 ))∥0,T |u1 − uh
1 |1,T ,

thus

∥Pl,T (f + divσ(uh
1 ))∥0,T ≤ C4h

−1
T |u1 − uh

1 |1,T ,

concluding our estimate.

Lemma 23. Let k ∈ N and l := max{k − 2, 0}. There exists a constant C > 0, independent on h, such that for all
E1 ∈ Eh,1 and E2 ∈ Eh,2

hE1∥Jσ(uh
1 )KE1

∥20,E1
≤ C

 ∑
T⊆ωE1

|u1 − uh
1 |21,T + h2T ∥f − Pl,T (f)∥20,T

 ,

hE2∥Jσ(uh
2 )KE2

∥20,E2
≤ C

 ∑
T⊆ωE2

|u2 − uh
2 |21,T + h2T ∥f − Pl,T (f)∥20,T

 .

Proof. We only show the proof of the first estimate; the deduction of the second inequality follows the same steps.
Applying Lemma 17, since Jσ(u1)KE1

= 0, we have

∥Jσ(uh
1 )KE1

∥20,E1
≤ C1

∫
E1

ψE1
Jσ(uh

1 )KE1
· Jσ(uh

1 )KE1
dx = C1

∫
E1

ψE1
P(Jσ(uh

1 )KE1
) · Jσ(uh

1 )− σ(u1)KE1
dx.

Applying the divergence theorem, and the fact that ψE1
= 0 on ∂ωE1

, we obtain∫
E1

ψE1
P(Jσ(uh

1 )K) · Jσ(uh
1 )− σ(u1)Kdx =

∑
T⊆ωE1

∫
T

div(σ(uh
1 )− σ(u1)) · ψE1

P(Jσ(uh
1 )K)dx

+
∑

T⊆ωE1

∫
E1

∇(ψE1
P(Jσ(uh

1 )K)) : (σ(u
h
1 )− σ(u1))dx,
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where div(σ(uh
1 )− σ(u1)) = div(σ(uh

1 )) + f . Then, using Lemma 17, we arrive at∑
T⊆ωE1

∫
T

div(σ(uh
1 )− σ(u1)) · ψE1

P(Jσ(uh
1 )K)dx ≤

∑
T⊆ωE1

∥ div(σ(uh
1 )) + f∥0,T ∥ψE1

P(Jσ(uh
1 )K)∥0,T

≤
∑

T⊆ωE1

∥ div(σ(uh
1 )) + f∥0,T ∥P(Jσ(uh

1 )K)∥0,T

≤ C2h
1/2
E1

∥Jσ(uh
1 )K∥0,E1

∑
T⊆ωE1

∥ div(σ(uh
1 )) + f∥0,T ,

and ∑
T⊆ωE1

∫
E1

∇(ψE1P(Jσ(uh
1 )K)) : (σ(u

h
1 )− σ(u1))dx ≤

∑
T⊆ωE1

∥σ(uh
1 )− σ(u1)∥0,T |ψE1P(Jσ(uh

1 )K)|1,T

≤ C3

∑
T⊆ωE1

|uh
1 − u1|1,T |ψE1

P(Jσ(uh
1 )K)|1,T

≤ C4

∑
T⊆ωE1

1

hT
|uh

1 − u1|1,T ∥ψE1
P(Jσ(uh

1 )K)∥0,T

≤ C4

∑
T⊆ωE1

1

hT
|uh

1 − u1|1,T ∥P(Jσ(uh
1 )K)∥0,T

≤ C5h
1/2
E1

∥Jσ(uh
1 )K∥0,E1

∑
T⊆ωE1

1

hT
|uh

1 − u1|1,T .

Thus,

∥Jσ(uh
1 )K∥20,E1

≤ C1

∫
E1

ψE1
Jσ(uh

1 )K · Jσ(uh
1 )Kdx = C1

∫
E1

ψE1
P(Jσ(uh

1 )K) · Jσ(uh
1 )− σ(u1)Kdx

≤ C6h
1/2
E1

∥Jσ(uh
1 )K∥0,E1

 ∑
T⊆ωE1

∥ div
(
σ
(
uh
1

))
+ f∥0,T +

1

hT
|uh

1 − u1|1,T

 ,

concluding that

∥Jσ(uh
1 )K∥0,E1

≤ C6h
1/2
E1

 ∑
T⊆ωE1

∥ div(σ(uh
1 )) + f∥0,T +

1

hT
|uh

1 − u1|1,T


hE1

∥Jσ(uh
1 )K∥20,E1

≤ C

 ∑
T⊆ωE1

η21,T,1 + |uh
1 − u1|21,T

 .

The final estimate is obtained using Lemma 22.

Lemma 24. Let k ∈ N, l := max{k − 2, 0}, and m := max{k − 1, 0}. There exists a constant C > 0, independent
on h, such that for all E1 ∈ Eh,N such that E1 ⊆ ∂T1, for T1 ∈ Th,1, and for all E2 ∈ Eh,N such that E2 ⊆ ∂T2, for
T2 ∈ Th,2, we have

hE1
∥σ(uh

1 )n1 − g∥20,E1
≤ C(|u1 − uh

1 |21,T + h2T ∥f − Pl,T (f)∥20,T + hE1
∥g − Pm,E1

(g)∥20,E1
),

hE2∥σ(uh
2 )n2 − g∥20,E2

≤ C(|u2 − uh
2 |21,T + h2T ∥f − Pl,T (f)∥20,T + hE2

∥g − Pm,E2
(g)∥20,E2

).

Proof. First, we have

hE∥σ(uh
1 )n− g∥20,E ≤ hE(∥g − Pm,E1

(g)∥20,E + ∥Pm,E1
(σ(uh

1 )n− g)∥20,E)

Since σ(u1)n = g in E, we have

∥Pm,E1(σ(u
h
1 )n− g)∥20,E ≤ C1

∫
E

ψEPm,E1(σ(u
h
1 )n− g) · Pm,E1(σ(u

h
1 )n− g) dS

≤ C1

∫
∂T

ψEPm,E1
(σ(uh

1 )n− g) · (σ(uh
1 )− σ(u1))n dS

since ψE = 0 in ∂T \ E. Then, applying divergence theorem, since f = − divσ(u1) in T , we have∫
∂T

ψEPm,E1(σ(u
h
1 )n− g) · (σ(uh

1 )− σ(u1))n dS =

∫
T

ψEP(σ(uh
1 )n− Pm,E1

(g)) · div(σ(uh
1 )− σ(u1)) dS
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+

∫
T

∇(ψEP(σ(uh
1 )n− Pm,E1

(g))) · (σ(uh
1 )− σ(u1)) dS

=

∫
T

ψEP(σ(uh
1 )n− Pm,E1

(g)) · (f + div(σ(uh
1 )) dS

+

∫
T

∇(ψEP(σ(uh
1 )n− Pm,E1(g))) · (σ(uh

1 )− σ(u1)) dS

where, repeating the same arguments as in the proof of Lemma 23, we have∫
T

ψEP(σ(uh
1 )n− Pm,E1

(g)) · (f + div(σ(uh
1 )) dS ≤ C2h

1/2
T ∥ divσ(uh

1 ) + f∥0,T ∥Pm,E1
(σ(uh

1 )n− g)∥0,E∫
T

∇(ψEP(σ(uh
1 )n− Pg)) · (σ(uh

1 )− σ(u1)) dS ≤ C3h
−1/2
T |u1 − uh1 |1,T ∥Pm,E1

(σ(uh
1 )n− g)∥0,E

Then, we have

∥Pm,E1(σ(u
h
1 )n− g)∥20,E ≤ C4(hT ∥ divσ(uh

1 ) + f∥20,T + h−1
T |u1 − uh1 |21,T )

hE∥Pm,E1
(σ(uh

1 )n− g)∥20,E ≤ C4(η
2
1,T,1 + f∥20,T + |u1 − uh1 |21,T )

The theorem is concluding by using Lemma 22 and some algebraic manipulations.

Lemma 25. Let k ∈ N and l := max{k − 2, 0}. There exists a constant C > 0, independent on h, such that for all
E ∈ Eh,F and T1 ∈ Th,1, T2 ∈ Th,2 such that E = ∂T1 ∩ ∂T2

hE∥Jσ(uh)K∥20,E ≤ C
(
|u1 − uh

1 |21,T + |u2 − uh
2 |21,T2

+ h2T1
∥f − Pl,T1

(f)∥20,T + h2T2
∥f − Pl,T2

(f)∥20,T
)
.

Proof. The proof is similar to Lemma 24, thus we omit the details.

Finally, we deduce the efficiency of our a posteriori error estimator by a direct application of the previous lemmas.

Theorem 26. There exists a constant C > 0, independent on h, such that

η ≤ C
(
∥u− uh∥h +Θ

)
.

Proof. Since JuK = s, we have∑
E∈Eh,F

1

hE
∥JuhK − s∥20,E =

∑
E∈Eh,F

1

hE
∥Ju− uhK∥20,E ≤ ∥u− uh∥2h

From Lemmas 22, 23, 24, and 25, we obtain for all j ∈ {1, 2}.∑
T∈Th,j

η2j,T,1 ≤ C1

∑
T∈Th,j

(
|uj − uh

j |21,T + h2T ∥f − Pl,T (f)∥20,T
)

∑
T∈Th,j

η2j,T,2 ≤ C2

∑
T∈Th,j

(
|uj − uh

j |21,T + h2T ∥f − Pl,T (f)∥20,T
)

∑
T∈Th,j

η2j,T,3 ≤ C3

∑
T∈Th,j

|∂T∩ΓN |̸=0

|uj − uh
j |21,T + h2T ∥f − Pl,T (f)∥20,T +

∑
E∈E(T )∩Eh,N

hE∥g − Pm,T (g)∥20,T


∑

T∈Th,j

η2j,T,4 ≤ C4

∑
T∈Th,j

|∂T∩ΓF |̸=0

(
|uj − uh

j |21,T + h2T ∥f − Pl,T (f)∥20,T
)

The final result is deduced after some algebraic manipulations. We omit the details.

Remark 27. For the antisymmetric scheme, i.e. θ = −1, our a posteriori error estimator for the γ = 0 case can be
rewritten ignoring the ηj,T,5 terms. Furthermore, the reliability and efficiency results from Theorems 21 and 26 can
be deduce without the Assumption (12). In this case, the new definitions for the a posteriori error estimators are

η2j,T :=

4∑
k=1

η2j,T,k η2j :=
∑

T∈Th,j

η2j,T η2 := η21 + η22

Then, the proofs of Lemmas 19 and 20 can be reformulated, obtaining those new results

(∀vh ∈ V h) a(u− uh,vh) = 0

(∀v ∈ V ) a(u− uh,v) ≤ Cη∥v∥V .

In this context, the results from Theorems 21 and 26 are the same as before, but using the ∥ · ∥V norm instead of ∥ · ∥h.
Since the proofs are similar to our previous results, we omit the details for the sake of brevity.
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5. Numerical experiments

In this section, we report some numerical experiments in 2D to corroborate our a priori and a posteriori error
estimates. Our examples were implemented in FEniCS [4] using the Multiphenics library [8], which provides tools
for formulating multiphysics problems in conformal meshes, helping to define variables restricted to subdomains or
boundaries through block structures. The linear system obtained by (6) was solved using MUMPS [5], a direct solver
suitable for large linear systems with sparse matrices. The numerical results presented below were obtained by an Intel
Core i7-10750H @ 2.60 GHz computer running Ubuntu 24.04.5 LTS inside a Windows Subsystem for Linux (WSL2)
with 24 GB of RAM.

Given u ∈ V and uh ∈ V h, the solutions to system (1)–(5) and (6), respectively, we denote by e20,h := ∥u1 −
uh
1∥20,Ω1

+ ∥u2 − uh
2∥20,Ω2

and e2h := ∥u − uh∥h. Given an unknown φ and two approximations φh and φh̃ for two
consecutive meshes of sizes h and h̃, respectively, the experimental order of convergence (e.o.c.) of the error of φ in a

specific ∥ · ∥ norm is defined by eoc =
log ∥φ− φh∥ − log ∥φ− φh̃∥

log h− log h̃
. Also, we denote by dof the number of degrees of

freedom and define the effectivity index by
ρ :=

η

eh
.

For our last two experiments, we use a classical adaptive refinement procedure of solving (6) on a sequence of
adapted meshes obtained using our a posteriori error estimation within a prescribed tolerance. To this end, the
adaptive refinement process starts with a uniform mesh, and, in each stage, we create a new mesh that is better
adapted to the solution of the problem. The adaptive refinement is done by computing the a posteriori local error
estimations ηT for all T ∈ Th, refining the elements T such that

ηT ≥ δmax{ηT̃ | T̃ ∈ Th},

where δ ∈ (0, 1) is a prescribed parameter. We will give more details of the parameters, domains, meshes, polynomial
degree k, and tolerances used in the description of each example.

5.1. Tests with analytic solution in 2D
In this example, we consider the domain Ω := (−1, 1)2 divided in the subdomains Ω1 := (−1, 0) × (−1, 1) and

Ω2 := (0, 1) × (−1, 1) with an interface given by ΓF = {0} × (−1, 1). We set ΓD = {−1, 1} × (−1, 1) and ΓN =
(−1, 1)× {−1, 1} (see Figure 2).

Ω1 Ω2

ΓD ΓD

ΓN ΓN

ΓF

ΓN ΓN

Figure 2: Domain Ω, divided into two subdomains Ω1 and Ω2, and boundary conditions.

We choose the Lamé parameters µ := 4, λ := 1, and the functions s, f , uD and g such that the solution of (1)–(5)
is given by u = (u1,u2), where

u1(x, y) =

(
2 sin(πx) cos(3πy)
3 cos(πx) sin(3πy)

)
, u2(x, y) =

(
sin(πx) cos(3πy)
6 cos(πx) sin(3πy)

)
In this test, we solved (6) for k ∈ {1, 2, 3}, α = 1/2, γ = 20, and θ ∈ {−1, 0, 1}. We summarize the a priori and a
posteriori error estimations for the uniform refinement associated with this example in Table 1 and Figure 3 only on
the case θ = 1 because the error estimates e0,h and eh for the chosen values of θ are very similar. Since the regularity
of u1 and u2, we have, using Theorem 15, that the convergence order of eh is O(hk). Also it is expected to recover
a O(hk+1) convergence order for e0,h by the Aubin–Nitsche trick (see [20, Section 2.3.4]) and some regularity results.
According to the theory, our experimental error orders follow the expected rates for both e0,h and eh.
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Figure 3: History of convergence.

k h dof e0,h e.o.c eh e.o.c η e.o.c ρ
1 1/4 60 4.972E + 00 − 4.498E + 01 − 3.186E + 03 − 70.831

1/8 180 2.570E + 00 0.952 3.401E + 01 0.403 1.744E + 03 0.869 51.292
1/16 612 6.592E − 01 1.963 1.815E + 01 0.906 9.288E + 02 0.909 51.164
1/32 2244 1.641E − 01 2.006 9.174E + 00 0.985 4.722E + 02 0.976 51.476
1/64 8580 4.099E − 02 2.001 4.595E + 00 0.997 2.369E + 02 0.995 51.564
1/128 33540 1.025E − 02 2.000 2.298E + 00 1.000 1.185E + 02 0.999 51.586
1/256 132612 2.562E − 03 2.000 1.149E + 00 1.000 5.926E + 01 1.000 51.592

2 1/4 180 3.270E + 00 − 4.004E + 01 − 3.556E + 03 − 88.818
1/8 612 4.051E − 01 3.013 1.087E + 01 1.882 1.008E + 03 1.819 92.763
1/16 2244 5.827E − 02 2.797 2.978E + 00 1.867 2.632E + 02 1.937 88.369
1/32 8580 7.747E − 03 2.911 7.674E − 01 1.956 6.592E + 01 1.997 85.893
1/64 33540 9.881E − 04 2.971 1.935E − 01 1.988 1.644E + 01 2.003 84.965
1/128 132612 1.243E − 04 2.991 4.848E − 02 1.997 4.103E + 00 2.002 84.642
1/256 527364 1.557E − 05 2.997 1.213E − 02 1.999 1.025E + 00 2.001 84.523

3 1/4 364 4.770E − 01 − 9.471E + 00 − 1.473E + 03 − 155.496
1/8 1300 7.031E − 02 2.762 2.526E + 00 1.907 3.460E + 02 2.090 136.963
1/16 4900 4.506E − 03 3.964 3.302E − 01 2.936 4.622E + 01 2.904 139.977
1/32 19012 2.796E − 04 4.010 4.141E − 02 2.995 5.847E + 00 2.983 141.198
1/64 74884 1.739E − 05 4.007 5.170E − 03 3.002 7.316E − 01 2.998 141.522
1/128 297220 1.084E − 06 4.003 6.456E − 04 3.001 9.140E − 02 3.001 141.590
1/256 1184260 6.784E − 08 3.998 8.065E − 05 3.001 1.142E − 02 3.001 141.600

Table 1: A priori and a posteriori error estimates with effectivity indexes, example with an analytic solution in 2D.

5.2. Adaptive refinement for a solution with singularities
In this example, we compute a numerical solution, using piecewise linear elements (i.e., k = 1), of the elasticity

equation subject to the interface conditions (4)–(5) that models a mode II crack deformation (see [29]). This deforma-
tion model involves self-similar sliding of the sides of the cracked rock, which is analogous to the movement of tectonic
plates during a subduction earthquake. The theoretical solution presents two singularity points located at the ends
of a fracture zone of length 2a given by a subset of ΓF . The domain for this example is shown in Figure 2, and the

fracture zone is the segment with endpoints (0,−a) and (0, a). Taking the parameters ν =
λ

2(µ+ λ)
and σ ∈ R+, the

jump s can be written as t = st, where t = (0, 1)T and

(∀y ∈ [−1, 1]) s(y) :=

 0 if |y| > a,

2σ

(
1− ν

µ

)√
a2 − y2 if |y| ≤ a,

Assuming f = 0, if (r, θ), (r1, θ1) and r2, θ2) are the polar coordinates of (x, y), (x, y + a) and (x, y − a) with respect

to the polar axis {y < 0}, and defining R :=
√
r1r2 and ω =

1

2
(θ1 + θ2), the analytical solution of (1)–(5) is given by

u(x, y) =


σ

2µ

(
(1− 2ν)(R cosω − r cos θ) + r sin θ

( r
R

cos (θ − ω)− 1
))

− σ

2µ

(
2(1− ν)(R sinω − r cos θ) +

r2

R
sin θ sin (θ − ω)

)
 , (13)
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σ(u) = −σ

 a2r

R3
sin θ cos (3ω)

r

R
cos(θ − ω)− 1− a2r

R3
sin θ sin (3ω)

r

R
cos(θ − ω)− 1− a2r

R3
sin θ sin (3ω)

2r

R
sin(θ − ω)− a2r

R3
sin θ cos (3ω)

 . (14)

Although u ∈ L2(Ω), it is evident that σ(u) has two non-removable singularities located in (0,−a) and (0, a) because
R = 0 in those points, which means that σ(u) /∈ L2(Ω). Then, the assumptions of Theorem 15 are not satisfied, and
we cannot expect the numerical solution to follow any convergence order. Note that, in Cartesian coordinates, the
expression for u on ΓF is given by

u1(0, y) =


σ

2µ

( −(1− 2ν)y

2(1− ν)
√
a2 − y2

)
if |y| ≤ a

σ

2µ

(
(1− 2ν)

(
sgn(y)

√
y2 − a2 − y

)
0

)
if |y| > a

u2(0, y) =


σ

2µ

( −(1− 2ν)y

−2(1− ν)
√
a2 − y2

)
if |y| ≤ a

σ

2µ

(
(1− 2ν)

(
sgn(y)

√
y2 − a2 − y

)
0

)
if |y| > a

In this test, we set the parameters of (6) as θ = −1, α = 1/2, and γ = 1. We consider Lamé parameters µ = λ = 1
(with ν = 1/4), σ = 1, a = 0.25, and the boundary conditions uD and g such that the theoretical solution is given
by (13). Figures 4 and 5 show the initial mesh and some adapted meshes for δ = 0.75 and a posteriori error history,
respectively. We note that η follows a convergence order similar to the theoretical order for eh(u), but eh(u) is not
computable due to uj /∈ H1(Ωj) for j ∈ {1, 2}.
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Figure 4: Original (left) and adapted meshes for stages 5 (center) and 15 (right).
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Figure 5: History of convergence, adaptive refinement with singularities.

Figures 6 and 7 show plots of the absolute error on tangential and normal components of u1 and u2 on ΓF ,
respectively, where a decrease in the error near the singularities located in (0,−a) and (0, a) is evident thanks to the

adaptive refinement. Figure 8 shows isovalues of |u| and the mean normal stress σn =
1

2
tr(σ(u)) with similar results

to Figure 5 in [30] and Figure 8.7.B in [29], respectively.
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Figure 6: Absolute error on tangential component of u1 (left) and u2 (right) on ΓF .
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Figure 7: Absolute error on normal component of u1 (left) and u2 (right) on ΓF .

−1.0 −0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

−1.0 −0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

−1.8

−1.2

−0.6

0.0

0.6

1.2

1.8

Figure 8: Isovalues of |u| (left) and σn (right) on Ω for stage 39 (dof = 360, 542).

5.3. Adaptive refinement for a solution with an unknown analytic solution and curved interface simulating a subduction
earthquake

This final example simulates the effects of a subduction earthquake prescribing a coseismic slip s between the
tectonic plates, based on the experiment in Section 4 of [30].

The domain is given by Ω = [−400, 700]× [−500, 0], representing a domain of size 1100km× 500km. The tectonic
fault is the interface ΓF that divides Ω into the subdomains Ω1 and Ω2, on the left-hand and right-hand side respectively,
representing two tectonic plates. The geometry of ΓF is given by an circular arc, centered at (a, b) = (−40,−157.5)
and connecting the points (0, 0) and (90,−60), and a segment tangent to the arc connecting the points (90,−60) and
(420,−500). We set ΓD = {−400, 700} × (−500, 0) and ΓN = (−400, 700)× {−500, 0} (see Figure 9).

ΓF

Ω1 Ω2

ΓN

ΓN

ΓDΓD

Figure 9: Domain Ω with a tectonic fault and boundary conditions.
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We choose the Lamé parameters µ := 33, 65GPa, λ := 30, 11GPa, f = 0, applying homogenous Dirichlet boundary
condition on ΓD and a free surface Neumann condition on ΓN , given by g = 0. The prescribed coseismic slip is given
by s = st[m], where s is a scalar function and t is the unit tangent vector on ΓF , both given by

(∀(x, y) ∈ ΓF ) s(x, y) =

 A exp

(
−
(
y + 50

15

)2
)

+B, if y ∈ [−95,−5]

0, otherwise

(∀(x, y) ∈ ΓF ) t(x, y) =


(
y − b

r
,−x− a

r

)
, if y ∈ [−60, 0](

3

5
,−4

5

)
, otherwise

where r is the radius of the circular arc and A,B ∈ R are positive constants such that s is continuous and the maximum
of s is equal to 1. We compute a numerical solution using piecewise linear elements using adaptive refinement with
δ = 0.5 until we obtain a mesh with more than 500000 triangles, verifying this criterion in stage 18. Figures 10, 11 ,
and 12 show the initial mesh and a zoom of two adapted meshes, respectively. The refinement is concentrated on ΓF ,
with the densest refinement near the point (90,−60), corresponding to the intersection between the segment and the
circle arc. Figure 13 shows the a posteriori error history, where we recover again our convergence order.

−400 −200 0 200 400 600
Length [km]

−500

−400

−300

−200

−100

0

D
ep

th
[k

m
]

Figure 10: Initial mesh. 593 triangles, dof = 702.
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Figure 11: Zoom to an adapted mesh, stage 5. 3749 triangles, dof = 4044.
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Figure 12: Zoom to an adapted mesh, stage 10. 35502 triangles, dof = 36372.
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Figure 13: History of convergence, adaptive refinement for a subduction earthquake simulation.

Figure 14 illustrates a comparison between the numerical solution obtained after 21 stages of adaptive refinement
(505020 triangles, 508458 degrees of freedom) of the initial mesh and the one obtained on a highly refined mesh
(2867938 degrees of freedom, 2861152 triangles), which better approximates the geometry of ΓF . Figure 14 shows that
adaptive refinement can generate meshes that allow obtaining highly accurate numerical solutions for u with fewer
degrees of freedom.
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Figure 14: Zoom of isovalues of uh for the final adapted mesh (left) and the highly refined mesh (right).

6. Conclusions

This article presented a family of conformal schemes for numerically solving the linear elasticity equation with a
displacement jump condition on an interface using a Nitsche-type penalty term. An optimal prior error estimate was
obtained for a mesh-dependent norm, along with a residual a posteriori error estimator that is efficient and reliable
with respect to the error norm. Our numerical experiments recovered the theoretical convergence orders and showed
that the posterior error estimator can be used to develop adapted meshes for realistic applied problems.

A direct extension of our result is the derivation of a scheme that uses independent meshes for each subdomain,
such as non-matching or unfitted meshes, where the meshes may not coincide at the interface. In such a case,
the incorporation of a Lagrange multiplier can be avoided by following a scheme similar to [31] based on an (n− 1)–
dimensional mesh for the interface. Another future application is the analysis of optimal control problems for coseismic
slip analysis [30]. Since this family of schemes requires less storage memory compared to other mixed methods [3], it
is possible to reduce the optimality conditions to a coupled linear system as in [2].
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