
UNIVERSIDAD DE CONCEPCIÓN

Centro de Investigación en
Ingenieŕıa Matemática (CI2MA)

The complexity of a particular shift associated to a Turing
machine

Anahi Gajardo

PREPRINT 2009-04

SERIE DE PRE-PUBLICACIONES

The complexity of a particular shift associated

to a Turing machine

A. Gajardo

Departamento de Ingenieŕıa Matemática, Universidad de Concepción,

Casilla 160-C, Concepción, Chile

Abstract

A subshift is associated to each Turing machine, and its properties are studied. The
subshift consists in the set of sequences of symbols that the machine reads, together
with the states it takes during each evolution, considering every initial configuration.
We focus on machines whose associated subshift is recognized by a deterministic
pushdown automaton in real-time. It is proved that all of these machines have
restrictions on their movements. Moreover, these machines are characterized as ma-
chines that cannot make ”zigzag” movements of arbitrary length. We also prove
that synchronicity is related to restrictions on the machine movements.

Key words: Turing Machine, Formal Language, Symbolic System

1 Introduction

In previous papers, we introduced the notion of t-shift ST associated to a
Turing machine T . The t-shift consists in the set of all the infinite sequences
of pairs (state, read symbol) that the machine reaches during its evolution.
The language of finite words L(ST) of ST has been also studied, and some
relationship has been found between the geometry of the underlying lattice
and the complexity of L(ST) [4]. In this paper, we want to go further and
establish that if the complexity of L(ST) is low, then the movements of the
machine are strongly restricted. We will also study the geometry of the set of
cells that the machine can reach.

The notion of support is defined for every machine T and word u ∈ L(ST). It
represents the set of cells that the machine T can reach when it has already

Email address: anahi@ing-mat.udec.cl (A. Gajardo).
1 This work has been supported by CONICYT FONDECYT #1061036.

Preprint submitted to Elsevier Science March 31, 2009

done some steps, which are characterized by u. In general, to study the support
of a machine T is easier than to study its complete dynamics. Understanding
the support helps us to understand the machine behavior. Frequently, it is not
the whole underlying lattice but a smaller set.

In order to evaluate the complexity of L(ST), we look for a suitable automaton
that recognizes it. For any machine T , we can define a deterministic automaton
in which each node represents the state of the cells that the machine has
already visited, together with the machine position and internal state. At each
iteration, the automaton passes from one node to another by integrating the
information about the last visited cell and the machine actions. This defines
in general an infinite automaton. But if the support of the machine is small,
we do not need to register the state of every visited cell since some of them
will never be visited again. Then the automaton may be smaller.

The notion of synchronized word also has relevance in this context. In litera-
ture, this notion is defined in the context of finite automata and in the theory
of transitive subshifts of AZ. Both definitions are not equivalent and they do
not correspond to identical concepts. We will take the second context. When
a subshift has a synchronized word s, the followers of s are independent from
the predecessors of s and they can be combined in an arbitrary way. In some
sense, when a synchronized word appears, we can forget all the symbols that
were observed before. Synchronized words may be related with the complexity
of the language L(ST).

In this paper, we explore the relationships between these three concepts: lan-
guage complexity, existence of synchronized words, and support.

2 Basic definitions and properties

Definition 1 A Turing Machine over Z is a 4-tuple (C,Q, δ) where:

• C is a finite set, representing the state of the environment at each lattice
point, and called color set,

• Q is a finite set, representing the internal state of the machine, called state
set,

• δ = (δC , δQ, δD) is the transition function, where δi : C × Q → i, for each
i = C, Q or D, and D = {−1, 1} are the movement possibilities.

The elements of Z are called cells. A configuration of the system is given by
an assignment of symbols to each cell, c : Z→ C, called coloration; a position
g ∈ Z; and a state q ∈ Q, i.e., the phase space is X = CZ × Z×Q.

2

The global transition function T : X → X is defined by T ((c, g, q)) = (c′, g′, q′),
where

• q′ = δQ(c(g), q),
• g′ = g + δD(c(g), q),
• c′(g) = δS(c(g), q) and c′(u) = c(u) for all u 6= g.

Definition 2 Given a Turing machine M = (C,Q, δ) and its associated dy-
namical system (X, T), let π : X → C ×Q be defined by π(c, g, q) = (c(g), q)
and let ψ : X → (C ×Q)N be defined by ψ(x) = (π(T n(x)))n∈N. The t-shift of
(X, T) is ST = ψ(X).

The set ψ(X) represents all the possible sequences of pairs (symbol, state)
that the machine can produce when considering all the possible initial con-
figurations. Given an infinite sequence y =

(

α1α2···
q1q2···

)

∈ ST , we can deduce
the machine itinerary. In fact, if we suppose that the initial position is 0, its
position at iteration j must be:

I(y)j =
j−1
∑

i=1

δD(αi, qi) (∀2 ≤ j) , I(y)1 = 0

and the set of visited cells is given by

V (y) = {I(y)j|1 ≤ j}

The initial symbol of the visited cells can be deduced from y and it is given
by the following formula

cy(g) = αi where i = min{j|I(y)j = g} (∀g ∈ V (y))

The partial function cy is a kind of pre-image of y by ψ in the following sense:
if c is an extension of cy to Z

k, then ψ(c, 0, q1) = y. This means that the
sequence ψ(x) contains information about the visited cells and discards the
symbols of the other cells. Moreover, it is invariant under translations.

Remark 1 I(y), V (y) and cy can be defined also if y is a finite word. In this
context, the following properties hold for every u, v ∈ (C ×Q)∗:

(1) I(uv)j = I(u)j, if j ≤ |u|+ 1.
(2) I(uv)j = I(u)|u|+1 + I(v)j−|u|, if j ≥ |u|+ 1.

3

2.1 Support

Given a language L ⊆ A∗ and a monoid morphism f : (A∗, ·) → (Zd,+), we
define the support of L by the set:

S = {f(u)| u ∈ L}.

Given a word w, the future support of L on w is:

−→
S (w) = {f(u)| wu ∈ L},

and the past support is:

←−
S (w) = {−f(u)| uw ∈ L},

Let us remark that
−→
S (e) =

←−
S (e) = S

In the context of t-shifts, we are interested in the monoid morphism f(u) =
I(u)|u|+1. In this case, the support of language L(ST) is called the support of T .
It represents the set of cells that the machine can reach if it starts at position
0. If w ∈ L(ST), then

−→
S (w) represents the set of cells that can be reached

after producing the word w, and
←−
S (w) represents the set of cells that could

be visited before producing the word w.

The following property is easily proved for any language L.

Proposition 2 If w, v ∈ A∗, then

(1)
−→
S (wv) + f(v) ⊆

−→
S (w).

(2)
←−
S (wv)− f(w) ⊆

←−
S (v).

Proof.

(1)

−→
S (wv) + f(v) = {f(u) + f(v)| wvu ∈ L}

= {f(vu)| wvu ∈ L}

⊆
−→
S (w)

(2)

←−
S (wv)− f(w) = {−f(u)− f(w)| uwv ∈ L}

4

= {−f(uw)| uwv ∈ L}

⊆
←−
S (v)

2

Definition 3 A language L is factorial if

(∀u, v, w ∈ A∗) w ∈ L ∧ w = uv =⇒ u, v ∈ L.

Proposition 3 If L 6= φ is factorial, then

(1) 0 ∈ S.

(2)
−→
S (wv) ⊆

−→
S (v).

(3)
←−
S (wv) ⊆

←−
S (w).

Proof. L is factorial if (∀u ∈ L) v ⊑ u⇒ v ∈ L.

(1) Let w ∈ L, e ⊑ w, then e ∈ L, since f(e) = 0, 0 ∈ S.
(2)

−→
S (wv)= {f(u)| wvu ∈ L}, but wvu ∈ L⇒ vu ∈ L

⊆{f(u)| vu ∈ L}

=
−→
S (v)

(3) It is analogous.

2

2.2 Support and automata

Let us suppose that a language L is recognized by a given deterministic au-
tomaton M = (A,Ω, λ, o0, F), where Ω, the vertex set, may be infinite. We can
observe that the support depends directly on the vertices of the automaton.

Proposition 4 If u, w ∈ L are the labels of different paths from o0 to some
vertex ν ∈ Ω, then

−→
S (u) =

−→
S (w).

From this property, given a vertex ν of the automaton that recognizes L, we
can define the support of ν, S(ν), as the support of any of the words that
correspond to the label of some path from o0 to ν. In other words, S(ν) is
equal to the support of the language recognized by the automaton M which
is equal to M but with a starting vertex equal to ν at the place of o0, and
S(o0) = S.

Proposition 5 If ν ∈ Ω and {w(i)}ki=1 are the labels of circuits starting

5

at ν, then for each i we have that S(ν) + f(w(i)) ⊆ S(ν), and S(ν)+ <
{f(w(i)}ki=1 >⊆ S(ν).

Proof. If u is the label of a path from o0 to ν, then S(ν) =
−→
S (u) =

−→
S (uw(i)),

then

S(ν) + f(w(i)) =
−→
S (uw(i)) + f(w(i))

⊆
−→
S (u)

=S(ν).

< {f(w(i))}ki=1 >=

{

k
∑

i=1

aif(w(i))| (∀i) ai ∈ N ∪ {0}

}

The proof is obtained by induction on
∑

ai. 2

Now, if we deal with L(ST), for some machine T , we have additional properties.

Remark 6 Given a vertex ν ∈ Ω, it holds that:

(1) If ν has an input edge labeled by (α, q), then all the exiting edges of ν
have a label of the form (β, δQ(α, q)), with β ∈ C, because the next state
of the machine is uniquely determined by α and q and it is δQ(α, q).

(2) Since every word in L(ST) defines a unique path in GM , then ν 6= o0 has
only one exiting edge if and only if every path from o0 to ν corresponds to
an itinerary that has already visited its last cell. Otherwise, ν has exactly
|C| exiting edges.

(3) The last assertion is not valid when |C| = 1. But, in this case, ST is
of finite type, more precisely, it is a finite set composed by eventually
periodic sequences. The cycles exist in a finite quantity. The vertices of the
automaton that recognizes ST have degree 1 (except for o0). See Figure 1.

Figure 1. The automaton that recognizes the t-shift of a machine with only one
color: white. It has three states. On white arrow, it moves to the left and does not
change its state. On red arrows, it moves on the direction of the arrow, but the
arrow flips. All the vertices have out-degree one except for the initial one.

This implies that we can distinguish two set of vertices, those with degree 1
corresponding to already visited cells and those with degree |C| corresponding

6

to unvisited cells.

Proposition 7 (1) If w is the label of a circuit that passes by a vertex cor-
responding to an unvisited cell 2 , then f(w) 6= 0.

(2) If w is the label of a circuit composed only by vertices of degree 1, then
f(w) = 0.

The last proposition makes a distinction within terminal connected compo-
nents of M : those with degree |C| cells and those without them. The first
ones correspond to an unbounded propagating movement and the last ones
correspond to a bounded periodic movement. Figure 2 shows the automaton
of a given machine. We can see the intermediate connected components at the
top, and the periodic and final connected components at the bottom.

Labels u and v of different paths that go from o0 to ν have the same followers.
This implies that their future support is the same and that the configurations
that they define are identical when restricted to their future support:

−→
S (u) =

−→
S (v) = H and σf(u)(cu)|H = σf(v)(cv)|H.

This suggests a general way for defining a possibly infinite labeled graph that
recognizes ST . The vertices corresponding exactly to the partial configurations
and states: (q, σf(w)(cw)|S(w)). If f(w) ∈ V (w), there is a unique arc whose label
is the pair (q, cw(f(w))). Otherwise, there are |C| arcs with label (q, s). They
point to (δ(q, s), σf(ws)(cws)|S(ws)). Such a graph could be interesting when
S(w) 6= Z

n, when V (w) ∩ (I(w) + S(w)) 6= V (w). For example, in Figure 2,
each vertex represents the current state together with the color of the cells
that may be visited in the future and whose color is already known.

Figure 2. The machine that recognizes this automaton always changes of direction,
but it moves backwards over a black cell, and forward over a white cell. The color
is always preserved.

2 Remember that in this case f(w) = I|w|+1(w).

7

3 Deterministic Pushdown Automata

Now we study ST when it is recognized in real-time by a pushdown automaton.
We take and adapt the definition of real-time recognition of subshifts from [5].

Definition 4 A deterministic pushdown automaton (DPDA) is a tuple
M = (A,Ω,Γ,⊥, λ, o0, F), where A is the input alphabet, Ω is the states
set, Γ is the stack alphabet, ⊥ ∈ Γ, λ : A × Ω × Γ → Ω× ({e} ∪ Γ ∪ Γ2) is a
partial function called transition function, o0 ∈ Ω is the initial state, F ⊆ Ω.

The transition function λ satisfies: if λ(a, o, β) = (o′, µ), then µ has at most
one ⊥ and it has one only if β = ⊥ and in that case µ|µ| = ⊥.

A labeled graph, GM , is associated to M . Its set of vertices is Ω×(Γ\{⊥})∗⊥,
and the label of an edge ((e, ν), (f, µ)) is ‘a’ if and only if (f, ρ) = λ(a, e, ν0)
and µ = ρν[1..|ν|]. The word ν is called the stack content.

The language LM recognized by M consists of all words w in A∗ such that
there exists a path in GM with label w, starting on vertex (o0,⊥).

We say that a subshift Σ is recognized by M in real-time if L(Σ) = LM , and
we write Σ ∈ R(1).

The language of a subshift is factorial, then we can assume F = Ω if we allow
λ to be a partial function.

It is clear that the language recognized by a DPDA is context-free. Context-
free languages satisfy the Pumping Lemma. The following is the strong form
of the Pumping Lemma proved by Odgen [6].

Lemma 1 (Odgen, 68) Given a context-free language L ⊆ A∗, there exists
p ∈ N such that for all w ∈ L and all set of p or more distinguished positions
in w there exist words x, u, y, v, z ∈ A∗ which satisfy:

(1) w = xuyvz,
(2) y contains at least one of the distinguished positions,
(3) uyv contains less than p of the distinguished positions,
(4) for all i ≥ 0, xuiyviz ∈ L.

This lemma was proved by Odgen using the generating rules of the context-
free grammar that generates L. When considering the DPDA that recognizes
L, the lemma can also be proved, by regarding the evolution of the states and
stack contents. The Odgen’s Lemma can be deduced from the following.

Lemma 2 Given a DPDA M = (A,Ω,Γ,⊥, λ, o0), a path of its graph:
(o0, µ

(0)), .., (on, µ
(n)), and given I ⊂ {0, .., n} a set of distinguished posi-

8

tions of size larger than p = 2|Ω|2|Γ|2+1, we have that there exist four positions
0 ≤ l1 ≤ l2 < l3 ≤ l4 ≤ n such that

(1) (ol1 , µ
(l1)
0) = (ol2, µ

(l2)
0),

(2) (ol4 , µ
(l4)
0) = (ol3, µ

(l3)
0),

(3) for all i ∈ {l1, ..l4}, |µ
(i)| ≥ |µ(l1)|, and

(4) for all i ∈ {l2, ..l3}, |µ
(i)| ≥ |µ(l2)|.

Moreover, |I ∩ {l2, .., l3 − 1}| > 0, |I∩ and |I ∩ {l1, .., l4 − 1}| ≤ p.

Proof. Let us define ht = |µ(t)|. We recursively define a sequence of pairs of
indices (ik, jk)k such that hik = hjk

or jk = n, and with hik non decreasing in
k.

The first pair is (i0 = 0, j0 = n). Given (ik, jk), the pair (ik+1, jk+1) is choosen
such that:

(1) if |I ∩ {ik, .., ik}| ≤ 1 stop.
(2) else, if there exists t ∈ {ik + 1, .., jk − 1} such that ht = hik then

(a) ik ≤ ik+1 < jk+1 ≤ jk,
(b) (ik, jk) 6= (ik+1, jk+1),
(c) hik+1

= hik ,
(d) hjk+1

= hik or jk+1 = n, and
(e) |I ∩ {ik+1, .., jk+1}| be maximal.

(3) else
(a) ik+1 = ik + 1, and
(b) if hjk

= hik , then jk+1 = jk − 1, else jk+1 = jk.

The sequence satisfies that for every k and every t ∈ {ik, .., jk}, ht ≥ hik . Let us
define K to be the last index. It holds that 0 ≤ |I∩{iK , .., jK}| ≤ 1. Condition
2(e) assures that |I ∩ {ik+1, .., jk+1}| ≥ |I ∩ {ik, .., jk}|/2 for every k < K − 1.
Thus 3 ≥ |I ∩ {iK−2, .., jK−2}| ≥ |I|/2

K−2, so K ≥ log2(|I|) ≥ |Ω|
2|Γ|2 + 1.

Now let us look at the tuples ((oik , ν
(ik)
0), (ojk

, ν
(jk)
0)). There are at most |Ω|2|Γ|2

tuples like these. Then there are k < k′ such that (oik , ν
(ik)
0) = (oi

k′
, ν

(i
k′

)
0)

and (ojk
, ν

(jk)
0) = (oj

k′
, ν

(j
k′

)
0). We choose the largest k and k′ that satisfy the

conditions, and define l1 = ik, l2 = ik′ , l3 = jk′ and l4 = jk. They satisfy the
lemma. 2

Definition 5 We say that a machine makes a zigzag movement of width p on
configuration c if there exist four time steps t1 = 0 < t2 < t3 < t4 such that
the machine position at time 0 is 0, at time t2 is −p − 1, at time t3 is p + 1
and at time t4 is −p.

It is intuitive that from 0 to t2 the machine can stack the state of all the
visited cells, but from t2 to t3 it will need to pop this information. Then,

9

when it comes back to cell −p, it does not know its state and cannot verify
the correctness of the state sequence. Therefore, a machine that can make
a zigzag movement of arbitrary width cannot have an associated subshift in
R(1).

Theorem 1 ST ∈ R(1) if and only if there exists an integer N such that T
cannot make any zigzag movement of width greater than N .

Proof. Let us suppose that ST ∈ R(1), and let M = (A,Ω,Γ,⊥, λ, o0) be the
DPDA that recognizes it. Let p be the number given by the Lemma 2.

By contradiction, let us suppose that the machine can make a zigzag movement
of width 2p on a configuration c, and let 0 < t2 < t3 < t4 the four time steps
such that the machine position at time 0 is p, at time t2 is −p− 1, at time t3
is p+ 1, and at time t4 is −p.

Moreover, let us suppose that c is the configuration that minimizes t4, i.e.,
c produces the shorter zigzag of width 2p. Let m and n be the leftmost and
rightmost visited cells, respectively, between time 0 and t4 (m < −p < p < n).

Let t̃2 be the last time that cell −p is visited before t4, and let t̃3 be the first
time that cell p is visited between time t̃2 and t4. The minimality of t4 assures
that p is never visited before t̃3 (see Figure 3).

t~3

t4

t~2

−p p

Figure 3. The zigzag movement of width 2p and the defined steps t̃2 and t̃3. Time
goes upward.

Let w = (π(T i(c, 0, q0)))
t4
i=0 be the word that T produces on c.

10

Let P = (o0, µ
(0)), ..(on, µ

(n)) be the path in the graph of M , with label w.
We apply the Lemma 2 on this sequence with distinguished positions I =
{t̃2 + 1, .., t̃3 − 1}, this is possible because t̃3 − t̃2 − 2 ≥ 2p − 2 > p. Let
l1 ≤ l2 < l3 ≤ l4 be the indices given by the lemma.

The main point of our argument is based on the fact that at time t̃2 the cells be-
tween −p and p have already been visited. Then, the vertices
{(ot̃2

, µ(t̃2)), .., (ot̃3
, µ(t̃3))} have out-degree one. Let us remark that in the case

of a DPDA, the out-degree of a vertex depends only on the state o and the
first letter of µ.

We distinguish two cases, (a) {l1, .., l2} ⊆ I and (b) {l1, .., l2} 6⊆ I.

Case (a): (ol1, µ
(l1)
0) = (ol2, µ

(l2)
0), are both of out-degree one, then ol1+1 = ol2+1.

Moreover, from condition 3 and 4 of the lemma, the symbol µl1
0 is not popped

at l1 neither at l2. Then µl1+1
0 = µl2+1

0 , and we can apply induction to conclude

that the sequence ((ot, µ
(t)
0))t4

t=l1
is periodic of period smaller than p, then so w,

but in such case the position at time t4 cannot be −p, which is a contradiction.

Case (b): Since {l2, .., l3 − 1} ∩ I 6= φ, {l1, .., l2} 6⊆ I, and l4 − l1 < |I|/2, then
{l3 + 1, .., l4} ⊆ I.

We cannot apply the arguments of case (a) because the stack deepness may
decrease.

The conditions of Lemma 2 imply that the concatenation P̃ of paths
(ot, µ

(t))l1
t=0, (ot, µ̃

(t))l3
t=l2+1 and (ot, µ

(t))t4
t=l4+1, where µ̃(t) = µ

(t)
0..hµ

(t)
g..ht

, g =

|µ(l1)|, h = |µ(l2)| and ht = |µ(t)|, is also a path in the graph of M .

This new path has a label, say w̃, and corresponds to a machine trajectory
over some initial configuration c̃.

The out-degree of these vertices is equal to the out-degree of vertices with
equal index in P . Then, a cell is visited for the first time at index t in c̃ if and
only if it is also visited for the first time at iteration t in c.

From t̃3 to t4 the machine has moved from cell p to cell −p, passing over cell
p+1. Then vertex t̃3 has out-degree one and vertex t̃3+1 has out-degree larger
than one. Let i ∈ {0, .., l1− 1, l2, .., l2− 1, l4, ..t̃3− 1} be the smallest index for
which the machine visits p when starting with c̃.

First, we can assert that i 6∈ {l4, ..t̃3 − 1}, because in c the cell p was visited
only at iteration 0, and these vertex are in P .

In P̃ , the vertex with index i has out-degree larger than one, then in P too.
Before iteration t̃3 the machine is to the left of p when starting with c. Then,

11

if a cell x is visited for the first time at iteration i, the position of the machine
at iteration i− 1 is x+ 1. But this is not the case in P̃ , where the position of
i is maximal. We conclude that i ∈ {0, l2}.

If i = l2, its position is equal to the position of the machine at iteration l1 in
P , which is strictly to the left of p in both P and P̃ . The only possibility for
i is to be 0.

Let us look at cell −p, which is visited with index t4 in P and P̃ . It was
already visited in c at time t4, then it should be already visited in c̃ too, say
with index j ∈ {0, .., t̃3}. This implies that c̃ produces a zigzag movement of
width 2p, but it is shorter than w, which is a contradiction.

In order to prove the converse direction, let us suppose that the width of the
zigzag movement that a given machine T can make is bounded, say by N ,
then after doing a cycle longer than N , it cannot revisit the farthest cells in
the cycle, otherwise it will make a zigzag movement of width larger that N .
This implies, in particular, that the support of the machine at that time is no
longer Z. Up to this iteration, the word can be verified with a DPDA having a
stack alphabet of CN characters. The machine can make another long cycle in
the opposite direction, but in such case it will be trapped between both cycles
and its movement will eventually become periodic. On the contrary, if it makes
no more long cycles, its dynamic will be that of a sofic automaton [4], which
means that from then on its language can be recognized by finite automaton
with CN vertices. 2

Proposition 8 If ST ∈ R(1), then there exists w ∈ L(ST) such that S(w) 6=
Z.

Proof: If ST is sofic, it has already been proved in [2] that its movement from
a given configuration is either propagative or periodic. In any case, its support
will eventually be either Z−, Z+ or a finite set. This means that there is a word
with a proper support.

Let N be the widest zigzag movement that T can make. If ST is not sofic,
T can make cycles of arbitrary width (see [4]). In particular, it can make a
cycle of width N + 1. Let w be the word associated to this cycle. If we are
supposing that the machine starts at cell 0, and the cycle is to the right, then
the cycle visits cell N + 1. But cell N + 1 cannot be visited any more, then
S(w) ⊆ Z− ∪ {0, .., N} 6= Z. 2

The converse of the last proposition is not true. We found several examples of
Turing machines with a restricted support but which can make zigzag move-
ments of arbitrary length. For example, the machine with two states {→,←}
that follows the arrow if it is over a black cell and rebounds (goes backward
and changes of state) over white cells. Its support stops being Z when it finds

12

a white cell. But if it starts between two white cells, its movement will be the
repetition of zigzag movements with of width equal to the distance between
these white cells.

4 Synchronizing words

Definition 6 Given a language L ⊆ A∗, a word s ⊆ L is called synchronizing
if

(∀u, v ∈ A∗) us ∈ L ∧ sv ∈ L⇒ usv ∈ L

This concept is introduced in the context of transitive and two-sided sub-
shifts [1]. A transitive subshift Σ ⊆ AZ is called synchronized if it has a
synchronizing word. If a system is synchronized it is also coded, which is an
important concept that means that the subshift is recognized by a numerable
and strongly connected Fisher automaton.

Our systems ST are not two-sided shifts (ST ⊆ AN), and in general not tran-
sitive. Anyway, it is not difficult to characterize synchronizing words in terms
of the support.

Proposition 9 A word s ∈ L(ST) is synchronizing if and only if,

←−
S (s) ∩ (

−→
S (s) + I(s)) ⊆ V (s).

From this property, we obtain the following.

Proposition 10 If a word s ∈ L(ST) is synchronizing, then either
←−
S (s) or

−→
S (s) is smaller than Z.

We cannot assure that it is the future support which is restricted. In fact,
non-reversible machines can be found such that the past support is finite
and the future support is Z. These systems have several synchronizing words.
Examples are the machines of class U02 in [3].

Other interesting examples are the systems that admit periodic points. As the
following property establishes, periodic points define synchronizing words. But
in this case, the synchronizing word only belongs to the periodic trajectory;
its existence is more a property of the point than of the system.

Proposition 11 If T p(x) = x, then s = (π(T i(x)))p−1
i=0 satisfies

−→
S (s) =

V (s) =
←−
S (s) and it is synchronizing.

13

Let us focus now on T reversible, i.e., T one to one. If T is reversible, a two-
sided shift can be associated to T , in fact, T t is well defined for every t ∈ Z.
Thus, we define the shift ST = {(π(T t(x)))t∈Z|x ∈ C

Z × Z × Q}, and all the
other definitions work.

In a reversible system, the past support is either infinite or the machine is
over a periodic point, in which case the future support is also finite. We can
conclude with the following property.

Proposition 12 If T is reversible and s ∈ L(ST) is synchronizing, then
−→
S (s)

and
←−
S (s) are proper subsets of Z.

Again, the converse is not true, the example being a machine that rebounds
on a given color, say white. A word containing white color will have a past
support equal to the future support, both being different from Z and not
bounded. Such a word is not synchronizing.

Finally, we analyze the case of transitive two-sided subshifts. When ST is
transitive, the machine T has no periodic points [4].

Proposition 13 If T is reversible and it has no periodic points, then for each
w ∈ L(ST),

←−
S (w) and

−→
S (w) are not finite.

Proof. If
−→
S (w) is finite, then all the futures of w are periodic, but T has no

periodic points; then
−→
S (w) cannot be periodic.

If
←−
S (w) is finite, then all the pasts (which are infinite) of w are periodic points;

then
←−
S (w) cannot be finite. 2

This property, together with Property 9, imply the following.

Proposition 14 If T is reversible and has no periodic points, then s synchro-
nizing implies that

−→
S (s) 6= Z.

5 Conclusions

The notion of support of a finite word in the t-shift associated to a Turing
machine is introduced. It is the set of cells that the machine can visit after
following a given trajectory. Then it expresses the movement restrictions of
the machine.

We intended to relate this concept with the complexity of the language of the
t-shift, and with the existence of synchronizing words.

14

We proved that if the language of the t-shift is recognized by a deterministic
pushdown automaton (DPDA), then its support is proper. But the converse is
not true. We also characterized the class of machines whose t-shift is recognized
by a DPDA. They correspond to machines that cannot make zigzag movements
of arbitrary length.

Synchronicity of ST is also related with restrictions in the movement of T , but
only when the machine is reversible and has no periodic points. In this case,
the existence of a synchronizing word implies that its support is proper. But
the converse is open.

References

[1] F Blanchard and G Hansel. Coded systems. Theor. Comput. Sci., 44(1):17–49,
1986.

[2] A. Gajardo. Sofic one head machines. In B. Durand, editor, Journées Automates

Cellulaires, pages 54–64, 2008.

[3] A. Gajardo and E. Goles. Dynamics of a class of ants on a one-dimensional
lattice. Theor. Comput. Sci., 322(2):267–283, 2004.

[4] A. Gajardo and J. Mazoyer. One head machines from a symbolic approach.
Theor. Comput. Sci., 370:34–47, 2007.

[5] P. Kůrka and A. Maass. Realtime subshifts. Theoret. Comput. Sci., 237:307–325,
2000.

[6] William F. Ogden. A helpful result for proving inherent ambiguity. Mathematical

Systems Theory, 2(3):191–194, 1968.

15

Centro de Investigación en Ingenieŕıa Matemática (CI
2

MA)

PRE-PUBLICACIONES 2008 - 2009

2008-01 Rodolfo Araya, Abner Poza, Frederic Valentin: On a hierarchical estimator
driven by a stabilized method for the reactive incompressible Navier-Stokes equations

2009-01 Carlo Lovadina, David Mora, Rodolfo Rodŕıguez: Approximation of the
buckling problem for Reissner-Mindlin plates

2009-02 Gabriel N. Gatica, Luis F. Gatica, Antonio Marquez: Augmented mixed fi-
nite element methods for a curl-based formulation of the two-dimensional Stokes prob-
lem

2009-03 Gabriel N. Gatica, George C. Hsiao, Salim Meddahi: A coupled mixed finite
element method for the interaction problem between electromagnetic field and elastic
body

2009-04 Anahi Gajardo: The complexity of a particular shift associated to a Turing machine

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl

Centro de Investigación en
Ingenieŕıa Matemática (CI2MA)

Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl

