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Abstract

This paper introduces and analyses a general vector optimization problem

which encompasses those related to efficiency, weak efficiency, and two kinds of

strict efficiency, among others, in a unified framework. A corresponding approxi-

mate vector problem is also studied, and new optimality conditions for both prob-

lems are established via a nonlinear scalarizing function and subdifferentials. Gen-

eralized convexity of vector functions are characterized through generalized con-

vexity of scalar functions. The approach sheds new light and offers an alternative

to obtain several existing results in the literature.
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1 Introduction

In most real-life problems, optimization problems concern the minimization of several

criterion functions simultaneously. Very often, no single point minimizing all criteria

at once may be found, and therefore the concept of optimality must be modified.
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2 Unifying and scalarizing vector optimization problems: a theoretical approach

Usually, the notion of efficient or weakly efficient solution is considered. A point is

called efficient or Pareto-optimal, if there does not exist a different point with smaller

or equal objective function values, such that there is a decrease in at least one objective

function value; a point is called weakly efficient or weakly Pareto-optimal, if there exists

no other point with strictly smaller objective function value. Certainly, both notions

may be described in terms of the nonnegative orthant of some finite dimensional space.

However, in several circumstances the previous notions may be described by means of

a preference relation determined by a convex cone with nonempty interior. Thus, an

optimization problem is formulated according to the decision maker’s preferences.

On the other hand, it is well-known that the scalarization techniques in optimiza-

tion theory are very useful from the practical point of view. Moreover, we need to

convert vector problems into appropriate scalar ones in the sense that the latter prob-

lem must inherit properties providing a good representation of the solutions to the

vector problem.

Moreover, the approximate solutions of optimization problems are very interest-

ing since most of usual resolution methods, (for instance, the iterative and heuristic

methods), give as solution feasible points near to the theoretical solution. See [44]

and references therein for more details. Very recent, motivated by a new approximate

efficient concept, some scalarizations for vector optimization problems have been es-

tablished in [21] and [23].

For more history, detailed background information and motivations about the before

concepts we refer the reader to [28] and [32].

In this paper, we introduce a general vector optimization problem defined in vector

spaces which encompasses the classical ones: efficiency, weak efficiency and a kind of

strict efficiency. We also study an approximate vector optimization. Then we scalarize

both problems by using a well-known nonlinear function. Moreover, we show that such

a function allows us to characterize several notions of generalized quasiconvexity. As

an application, we give necessary (and in some situations also sufficient) optimality

conditions for (approximate) efficient solutions via subdifferentials of scalar functions.

The outline of the paper is as follows. In Section 2 we provide the notions and

notations to present and discuss the general optimization problem. In Section 3, we

introduce the scalarizing function and study its useful properties. Section 4 is devoted

to describe the scalarization procedure for (approximate) efficiency by establishing

complete scalarizations for both problems. In Section 5 we provide conditions regard-

ing lower semicontinuity. Section 6 deals with some characterizations of convexity or

generalized quasiconvexity of a vector function in terms of scalar functions. Finally, in
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Section 7, we present optimality conditions under convexity via approximate subdif-

ferentials in the sense of convex analysis; and when nonconvexity is assumed via the

Mordukhovich subdifferential.

2 Preliminaries and formulation of problem

Let Y be a real normed vector space and let X be a Banach space with topological

dual spaces Y ∗ and X∗ respectively.

Given a nonempty set S  Y , a nonempty set K ⊆ X and a function f : K → Y ,

we are interested in the problem

(P) find x̄ ∈ K f(x)− f(x̄) ∈ S ∀ x ∈ K, x 6= x̄.

The set of such vectors x̄ ∈ K is denoted by ES = ES(K), and each one of its elements

is called a (global) S-minimal of f on K.

As mentioned above several notions of optimality require a proper convex cone P ⊆ Y
(by proper we mean that {0} 6= P 6= Y ). In such a situation, (P) subsumes several

vector optimization problems as we shall see now.

In what follows, given any ∅ 6= A ⊆ Y , we denote by C(A), intA, clA and ∂A the

complement, the topological interior, the topological closure and the boundary of A

respectively:

• if S = P , the solutions are termed “ideal” o “strong” minima of f (on K) and

the solution set is denoted by EP ;

• (intP 6= ∅) if S = C(− intP ), the solutions are called “weakly efficient” minima

of f and the solution set is denoted by EW ;

• if S = C(−P )∪l(P ) where l(P ) = P∩(−P ), the solutions are said to be “efficient”

minima of f and the solution set is denoted by E.

• if S = C(−P )∪{0}, such solutions are named “weakly strict efficient” minima of

f and the solution set is denoted by EW1.

• if S = C(−P ), such solutions are named “strict efficient” minima of f and the

solution set is denoted by E1.

• if 0 6= D  Y is a convex cone with nonempty interior such that P \ l(P ) ⊆ intD

and S = l(D) ∪ C(−D), the solutions are called “proper efficient” minima of

Henig type of f , and the solution set is denoted by E2.
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Since l(P )∪ C(−P ) ⊆ C(− intP ) and l(D)∪ C(−D) ⊆ l(P )∪ C(−P ) we have E2 ⊆
E ⊆ EW . In this case, if EP 6= ∅ then EP = E. On the other hand: E1 ⊆ EW1 ⊆ E;

E = EW1 whenever P is pointed; EW = EP provided P is a closed halfspace (see

Lemma 2.5 in [13]); E1 = EW1 whenever f is injective.

The notion of strict efficient minimum is further developed in [15].

Motivated by the previous specializations of S, we impose the following basic as-

sumption on S.

Assumption (A): P ⊆ Y is a proper (not necessarily closed or pointed) convex

cone with nonempty interior, and S  Y is any set such that 0 ∈ ∂S, S + intP ⊆ S.

When intP 6= ∅, P is closed and 0 ∈ ∂S this assumption is related to the free-

disposal assumption (P): S  Y is closed and S + P = S, and to the strong free-

disposal assumption (PS): S  Y is closed and S + (P \ {0}) = intS, or equivalently,

S + (P \ {0}) ⊆ intS (see [4, 42]). Originally intP 6= ∅ is nor required in Assumptions

(P) and (PS)).

Obviously if 0 ∈ ∂S then (PS) =⇒ (P) =⇒ (A), but certainly the set S =

C(−P ) ∪ l(P ) satisfies S + P = S although S is not closed, whereas S = C(−P ) ∪ {0}
is not closed, and if P is not pointed, the equality S + P = S does not hold.

However, problem (P) categorizes more general optimization problems. Exactly prob-

lem (P) includes other problems given by a not necessarily pre-order relation. For

instance, if S is a cone not necessarily convex we can similarly define the above ef-

ficient concepts w.r.t S. These efficient notions have been studied by using strongly

star-shaped conic sets in [41] not for a optimization problem but for a closed set.

It is well-known that preferences which are not pre-order relations are very impor-

tant in mathematical economics see [36] and references therein.

Given ε ≥ 0 and y ∈ Y , an approximate problem associated to (P) is:

(P(εy)) find x̄ ∈ K f(x)− f(x̄) ∈ −εy + S ∀ x ∈ K, x 6= x̄,

where S is any set satisfying Assumption (A), when a proper convex cone P is pre-

scribed. We denote by ES(εy) the solution set to (P(εy)). Thus, Assumption (A)

implies that for all q ∈ intP :

0 ≤ ε1 < ε2 =⇒ ES(ε1q) ⊆ ES(ε2q);

ES = ES(0) ⊆ ES(εq) ∀ ε > 0.

Consequently,

ES ⊆
⋂
ε>0

ES(εq) ⊆ EclS ∀ q ∈ intP.
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When f is a real function we denote by E(f,K, ε) the set of ε-solutions, that is,

x̄ ∈ E(f,K, ε) if and only if f(x)− f(x̄) ≥ −ε for all x ∈ K.

A recent notion of approximate vector problem may be found in [23] (see also [21]).

We emphasize that there is no relationship between any of those notions and the one

presented here.

3 A nonlinear scalarizing function

It is well documented the scalarizing procedure is very important in vector optimiza-

tion. This approach requires a suitable scalar function which allows us to substitute

the vector problem by a scalar one, and hopefully most of the properties (like convex-

ity, lower semicontinuity) of the vector objective function are inherited in its scalar

representation. It is well known that linear scalarization functions (giving rise to the

weighting method) are employed to describe weakly efficient minima when the vector

function to be optimized is convex, or under a generalized convexity assumption as

discussed in [30, 14]; see [10] for quadratic scalarization.

A nonlinear scalarizing function that nowadays is having a great impact in the de-

velopment of a theoretical and algorithmic treatment of vector optimization problems,

is that function which (seems to be) appeared for the first time in [40, Example 2, p.

139] and rediscovered, among others, in [38, 19]. Since then several authors continue

to use that or some variant, see for instance Bonnisseau and Cornet [3, p. 139], Luc

[32], Gerth and Weidner [20], Luenberger [35] (where it is called the shortage function

in connection to economics), Hamel and Löhne [24], Hernández and Rodŕıguez-Maŕın

[25], Tammer and Zalinescu [42]. Regarding nonlinear scalarization for approximate

efficiency, we refer to [21] and [23] and references therein. A good account is given in

[7] and [8].

This nonlinear scalar function will be used in Section 4 to characterize some no-

tions of relaxed convexity for vector functions. The reader can find in [33, 1] various

characterizations of quasiconvexity by using linear scalarizations and in [32] by using

such a type of nonlinear scalar function.

¿From now on, we assume the convex (not necessarily closed or pointed) cone P

has nonempty interior. Let e ∈ intP be fixed.

Definition 3.1. Let a ∈ Y . Let ξa
.= ξe,a : Y −→ R ∪ {−∞} be defined by

ξa(y) .= inf{t ∈ R : y ∈ te+ a− P} (y ∈ Y ).

This function is a nonlinear Minkowski-type functional and has many separation
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properties (see [32], [20], [31]) and plays an important role in many areas, for instance,

mathematical finance, see [4] and [18].

We also consider the following function used in [32] to separate nonconvex sets, see

also [34] and [25].

Let ξA : Y −→ R ∪ {−∞} be defined by

ξA(y) = inf{t ∈ R : y ∈ te+A− P} for y ∈ Y.

The function ξA is continuous and satisfies the following equality

ξA(y) = inf
a∈A
{ξa(y)}. (1)

This infimum is attained when A− P is closed, that is,

ξA(y) = min
a∈A
{ξa(y)}.

From definition of ξA we immediately obtain ξA = ξA−P .

The next lemma collects some basic results on convex cones.

Lemma 3.2. Let ∅ 6= A ⊆ Y and P be as above. The following assertions hold.

(a) int cl(A+ P ) = int(A+ P ) = A+ intP , cl(A+ P ) = cl(A+ intP ),

∂(A+ P ) = ∂(A+ intP ).

(b) cl(C(A)) = C(intA).

(c) A+ intP = intA ⇐⇒ A+ intP ⊆ A ⇐⇒ C(−A) + intP ⊆ C(−A).

(d) If A+ intP ⊆ A then cl(intA) = clA = clA+P = clA+ clP = cl(A+ intP ) =

cl(A+ P ) and int(clA) = intA = int(A+ intP ). Consequently,

∂A = ∂(A+ intP ) = ∂(clA) = ∂(intA).

Proof. (a): It can be found for instance, in [5, Lemma 2.5].

(b): It is clear that cl(C(A)) ⊆ C(intA). Let x ∈ C(intA). If x 6∈ A then we conclude

x ∈ cl(C(A)). If x ∈ A and x 6∈ intA then x ∈ ∂A. By taking into account that

∂A = ∂(C(A)) we finish the proof.

(c): The second equivalence is trivial; the remaining implication is a consequence of

A ⊆ A+ P implies intA ⊆ int(A+ P ) = A+ intP ⊆ intA.

(d): The first four equalities follow from (a) and

cl(intA) ⊆ clA ⊆ cl(A) + P ⊆ clA+ clP ⊆ cl(A+ P ) = cl(A+ intP ) ⊆ cl(intA).
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From the previous equality and (a), we get

int(clA) = int(cl(A+ P )) = int(A+ P ) = A+ intP ⊆ intA ⊆ int(clA).

The last equalities are easy consequences from the previous equalities and (a).

Lemma 3.3. [25, Lemma 2.16]. Let ∅ 6= A ⊆ Y . Then,

A− P 6= Y ⇐⇒ ξA(y) > −∞ ∀ y ∈ Y.

The next result was proved in [25, Lemma 2.17]. See [15, Lemma 4.4] for the

general case (r ∈ R ∪ {−∞}).

Lemma 3.4. Let A ⊆ Y , r ∈ R and y ∈ Y . Then

(a) ξA(y) < r ⇔ y ∈ re+A− intP ;

(b) ξA(y) ≤ r ⇔ y ∈ re+ cl(A− P );

(c) ξA(y) = r ⇔ y ∈ re+ ∂(A− P ).

By using the previous lemmas, one deduces the following simple but important

result.

Proposition 3.5. Let ∅ 6= A ⊆ Y . Then

ξA(y) = inf{t ∈ R : y ∈ te+A− intP} = inf{t ∈ R : y ∈ te+A− clP}.

Lemma 3.6. Let ∅ 6= A ⊆ Y . The following conditions hold.

(a) ξA−P = ξA = ξclA. Consequently,

ξA = ξA−intP = ξA−clP = ξcl(A−P ) = ξA−P\l(P ) = ξA−P\{0}.

(b) Let ∅ 6= B ⊆ Y . Then

cl(B + P ) = clP =⇒ ξA(y) = ξA−B(y) ∀ y ∈ Y.

Proof. (a): The first equality results from the definition. Obviously ξclA(y) ≤ ξA(y) for

all y ∈ Y . Suppose that ξclA(y) < ξA(y) and choose any t ∈ R satisfying ξclA(y) < t <

ξA(y). Then, there is t0 ∈ R such that t0 < t and

y ∈ t0e+ cl(A)− P ⊆ t0e+ cl(A− P ).

Thus, by Lemma 3.4, ξA(y) ≤ t0 < t, yielding a contradiction.

The last part follows from the equalities:

cl(A−P ) = cl(A−clP )) = cl(A−cl(intP )) = cl(A−cl(P \ l(P ))) = cl(A−cl(P \{0})),
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because of clP = cl(P \ l(P )) = cl(P \ {0}) = cl(intP ).

(b): From (a) we obtain

ξA = ξA−clP = ξA−cl(B+P ) = ξcl(A−B−P ) = ξA−B−P = ξA−B.

The following lemma, being important by itself, will play a central rol in the scalar-

ization procedure to be presented later on.

Lemma 3.7. Suppose that A, B ⊆ Y , 0 ∈ ∂(B) such that B +B ⊆ B.

(a) If y, y′ ∈ Y and y − y′ ∈ −B, then ξA−B(y) ≤ ξA−B(y′);

(b) Assume that B + intP ⊆ B. If y, y′ ∈ Y and y − y′ ∈ − intB, then

ξA−B(y) < ξA−B(y′).

Proof. By definition ξA−B(y) = inf{t ∈ R : y ∈ te+A−B − P} for every y ∈ Y .

(a) Suppose that y, y′ ∈ Y and y−y′ ∈ −B. Take any t ∈ R such that y′ ∈ te+A−B−P ,

then

y ∈ −B + te+A−B − P ⊆ te+A−B − P

since B +B ⊆ B. Thus ξA−B(y) ≤ t and therefore ξA−B(y) ≤ ξA−B(y′).

(b) Suppose that y, y′ ∈ Y and y − y′ ∈ − intB. Since intB = B + intP (by Lemma

3.2) and e ∈ intP , there exists ε < 0 such that y − y′ ∈ εe−B − intP . Thus, if t ∈ R
is such that y′ ∈ te+A−B − P , then

y ∈ εe−B − intP + te+A−B − P ⊆ (ε+ t)e+A−B − intP

since B +B ⊆ B. It follows that ξA−B(y) < ε+ t and hence ξA−B(y) < ξA−B(y′).

Since

ξA(y) = ξA−intP (y) = inf
a∈A−intP

ξa(y),

one can deduce immediately the following result (see also Lemma 3.6(a)).

Lemma 3.8. The function ξa : Y −→ R is convex. Moreover, if cl(A − P ) is convex

(or equivalently A− intP is convex) if and only if ξA : Y −→ R is convex.
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4 The scalarization procedure for (approximate) effi-

ciency

In this section we proceed to scalarize the problems

(P) find x̄ ∈ K f(x)− f(x̄) ∈ S ∀ x ∈ K, x 6= x̄,

and

(P(εq)) find x̄ ∈ K f(x)− f(x̄) ∈ −εq + S ∀ x ∈ K, x 6= x̄,

where ε ≥ 0, q ∈ intP , ∅ 6= K ⊆ X and f : K → Y by introducing families of scalar

optimization problems which will describe the solution set to (P) and (P(εq)), denoted

by ES and ES(εq) respectively. This will be carried out through the scalarizing function

discussed in the previous section. Obviously ES = ES(0).

According to [32, Definition 3.1, pag. 95], given a family G of functions g : Y → R,

we say that G is a complete scalarization for (P) if for every x ∈ ES there exists g ∈ G
such that x ∈ E(g ◦ f,K), solution to (SP) corresponding to g, and E(g ◦ f,K) ⊆ ES ,

where E(g ◦ f,K) denotes the solution set to (SP):

(SP) min{(g ◦ f)(x) : x ∈ K}.

In other words, G is a complete scalarization for (P) if and only if there exists G′ ⊆ G
such that

ES =
⋃
g∈G ′

E(g ◦ f,K).

Similar representations will be established for (P(εq)).

Through this section we will impose the following basic assumption on P and S.

Assumption (A) : P ⊆ Y is a (not necessarily closed or pointed) convex cone with

nonempty interior, and Y 6= S ⊆ Y satisfies 0 ∈ ∂S and S + intP ⊆ S.

We recall that by Lemma 3.2(c) we have

S + intP = intS ⇐⇒ S + intP ⊆ S ⇐⇒ C(−S) + intP ⊆ C(−S).

Remark 4.1. Assumption (A) holds for a wide class of (not necessarily closed) sets

including those classical models:

S = P, S = C(− intP ), S = C(−P ) ∪ l(P ), S = C(−P ) ∪ {0}, S = C(−P ).

Notice that any set S satisfying 0 ∈ ∂S and S + P = S fulfills Assumption (A), but

this equality is not verified by S = C(−P ) ∪ {0} when P is not pointed.
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The next two theorems, which are new in the literature, characterize when a

point x̄ ∈ K belongs to ES (resp. ES(εq)) in terms of E(ξf(x̄)−C(−S) ◦ f,K) (resp.

E(ξq,f(x̄)−C(−S) ◦ f,K, ε)) under Assumption (A).

Theorem 4.2. Suppose that Assumption (A) holds. Let x̄ ∈ K, the following asser-

tions are equivalent:

(a) x̄ ∈ ES ;

(b) x̄ ∈ E(ξf(x̄)−C(−S) ◦ f,K) and

E(ξf(x̄)−C(−S) ◦ f,K) \ {x̄} = {x ∈ K : x 6= x̄, f(x)− f(x̄) ∈ −(cl(C(−S)) \ C(−S))}

= {x ∈ K : x 6= x̄, f(x)− f(x̄) ∈ S \ intS}.

Proof. (a) =⇒ (b): It is clear that (ξf(x̄)−C(−S) ◦ f)(x̄) = 0 since 0 ∈ ∂(C(S)). From

x̄ ∈ ES , we have f(x) − f(x̄) 6∈ −C(−S) for all x ∈ K, x 6= x̄. Then f(x) − f(x̄) 6∈
−(C(−S)+intP ) by assumption. The latter implies (ξf(x̄)−C(−S) ◦f)(x) ≥ 0 by Lemma

3.4, which turns out x̄ ∈ E(ξf(x̄)−C(−S) ◦ f,K). On the other hand, take any x ∈ K,

x 6= x̄, such that

(ξf(x̄)−C(−S) ◦ f)(x) = (ξf(x̄)−C(−S) ◦ f)(x̄) = 0.

Then f(x)− f(x̄) ∈ ∂(−C(−S)− intP ) = ∂(−C(−S)) by Lemma 3.2(d). We also have

f(x) − f(x̄) ∈ S. From both relations, we obtain f(x) − f(x̄) ∈ [∂(−C(−S))] ∩ S. By

simplifying, we get

f(x)− f(x̄) ∈ −(cl(C(−S))\C(−S))

which proves one inclusion in (b).

For the other inclusion simply observe that if x ∈ K \ {x̄} is such that f(x)− f(x̄) ∈
−(cl(C(−S)) \ C(−S)), then f(x)− f(x̄) ∈ −∂(C(−S)). Hence,

(ξf(x̄)−C(−S) ◦ f)(x) = 0.

Thus, x ∈ E(ξf(x̄)−C(−S) ◦ f,K).

The remaining equality follows from Lemma 3.2(b).

(b) =⇒ (a): Let x ∈ K, x 6= x̄. We distinguish two cases. If x is such that

f(x)− f(x̄) ∈ −(cl(C(−S)) \ C(−S)) ⊆ S,

we are done. If x is not in the set of the right hand side of (b), then x 6∈ E(ξf(x̄)−C(−S) ◦
f,K) by assumption. Thus (ξf(x̄)−C(−S) ◦f)(x) > 0 since x̄ ∈ E(ξf(x̄)−C(−S) ◦f,K) and

(ξf(x̄)−C(−S)◦f)(x̄) = 0. Whence f(x)−f(x̄) 6∈ −C(−S) (since −C(−S) ⊆ cl(−C(−S)−
P )), proving that f(x)− f(x̄) ∈ S. Hence x̄ ∈ ES .
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Before continuing, some remarks are in order.

Remark 4.3. (i) It may happen that the set of the right-hand side in (b) be empty (this

occurs for instance when P is closed and S = C(−P )): in such a situation Theorem

4.2 reduces

x̄ ∈ ES ⇐⇒ (ξq,f(x̄)−C(−S) ◦ f)(x) > 0 ∀ x ∈ K, x 6= x̄.

We will discuss related points later on.

(ii) When 0 ∈ S (some models are described in Remark 4.1), (b) of the previous

theorem admits the following formulation:

E(ξf(x̄)−C(−S) ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ S \ intS}.

Now, we establish a similar characterization for the problem (P(εq)). Notice that it

also provides another characterization for ε = 0. Theorem 4.4 not only unifies Theorems

4.5, 5.1(a) in [22] and extends them to more general situations, but also provides

sharper results.

Theorem 4.4. Suppose that Assumption (A) holds. Let us consider problem (P(εq))

with ε ≥ 0, and x̄ ∈ K. The following assertions are equivalent:

(a) x̄ ∈ ES(εq);

(b) x̄ ∈ E(ξq,f(x̄)−C(−S) ◦ f,K, ε) and

E(ξq,f(x̄)−C(−S)◦f,K, ε)\{x̄} ⊆ {x ∈ K : x 6= x̄, f(x)−f(x̄) ∈ (−εq+S)∩(εq−cl(C(−S)))}.

Proof. (a) =⇒ (b): Obviously (ξq,f(x̄)−C(−S)◦f)(x̄) = 0 since 0 ∈ ∂S. From x̄ ∈ ES(εq),

we have f(x)−f(x̄) 6∈ −εq−C(−S) for all x ∈ K, x 6= x̄. By Lemma 3.4, (ξq,f(x̄)−C(−S)◦
f)(x) ≥ −ε, which turns out (ξq,f(x̄)−C(−S) ◦ f)(x)− (ξq,f(x̄)−C(−S) ◦ f)(x̄) ≥ −ε. Thus

x̄ ∈ E(ξq,f(x̄)−C(−S) ◦ f,K, ε).
Let us prove the inclusion in (b). If x′ ∈ E(ξq,f(x̄)−C(−S) ◦ f,K, ε), x′ 6= x̄, then

(ξq,f(x̄)−C(−S) ◦ f)(x)− (ξq,f(x̄)−C(−S) ◦ f)(x′) ≥ −ε ∀ x ∈ K.

Since (ξq,f(x̄)−C(−S) ◦ f)(x̄) = 0 we have (ξq,f(x̄)−C(−S) ◦ f)(x′) ≤ ε. Therefore, f(x′) ∈
f(x̄) + εq − cl(C(−S)) by Lemma 3.2(d). On the other hand, by hypothesis, we have

f(x′)− f(x̄) ∈ −εq + S. Thus, f(x′)− f(x̄) ∈ (−εq + S) ∩ (εq − cl(C(−S)).

(b) =⇒ (a): Let x̄ ∈ E(ξq,f(x̄)−C(−S) ◦ f,K, ε). Then,

(ξq,f(x̄)−C(−S) ◦ f)(x)− (ξq,f(x̄)−C(−S) ◦ f)(x̄) ≥ −ε ∀ x ∈ K.
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Since ξq,f(x̄)−C(−S) ◦ f)(x̄) = 0 we have (ξq,f(x̄)−C(−S) ◦ f)(x) ≥ −ε for all x ∈ K.

If there exists x′ ∈ K, x′ 6= x̄, such that f(x′)−f(x̄) ∈ −εq−C(−S), then (ξq,f(x̄)−C(−S)◦
f)(x′) ≤ −ε. From the above inequality we obtain

(ξq,f(x̄)−C(−S) ◦ f)(x′) = −ε.

Thus, x′ ∈ E(ξq,f(x̄)−C(−S) ◦ f,K, ε) \ {x̄}, which implies by (b) that f(x′) − f(x̄) ∈
−εq + S, contradicting a previous relation. Hence x̄ ∈ E(εq).

The next example shows the inclusion in Theorem 4.4(b) for ε > 0 may be strict.

Example 4.5. Take K = [−5
2 , 2] and f : K → R2, f(x) = (x, x + 2) if −5

2 ≤ x < 0

and f(x) = (x, 0) if 0 ≤ x ≤ 2. Let S = C(− intR2
+), q = (1

2 ,
1
2) and ε = 2. It is clear

that 0 ∈ ES(εq), in addition,

−1,−6
5
∈ {x ∈ K : x 6= 0, f(x)− f(0) ∈ (−εq + S) ∩ (εq − cl(C(−S)))} =

{x ∈ K : x 6= 0, f(x) ∈ ((−1,−1) + S) ∩ ((1, 1)− cl(C(−S)))}.

However

−1,−6
5
6∈ E(ξq,f(0)−C(−S) ◦ f,K, ε) = E(ξq,−C(−S) ◦ f,K, 2)

since

(ξq,−C(−S) ◦ f)(−5
2

)− (ξq,−C(−S) ◦ f)(−1) � −2

and

(ξq,−C(−S) ◦ f)(−5
2

)− (ξq,−C(−S) ◦ f)(−6
5

) � −2

taking into account that (ξq,−C(−S) ◦ f)(−5
2) = −1, (ξq,−C(−S) ◦ f)(−1) = 2 and 1 <

(ξq,−C(−S) ◦ f)(−6
5) < 2.

Next theorem extends also Theorem 5.1(b) in [22], where pointedness is imposed.

A simpler equivalence than those in Theorems 4.2 and 4.4 can be obtained under

an additional assumption on S.

Theorem 4.6. Consider problem (P(εq)), ε ≥ 0, and suppose that Assumption (A)

holds. Let x̄ ∈ K. Then,

x̄ ∈ ES(εq) =⇒ x̄ ∈ E(ξq,f(x̄)−C(−S)◦f,K, ε) =⇒ x̄ ∈ ES(δq) ∀ δ > ε =⇒ x̄ ∈ EclS(εq).

Consequently if, in addition, S is closed then

x̄ ∈ ES(εq)⇐⇒ x̄ ∈ E(ξq,f(x̄)−C(−S) ◦ f,K, ε); and ES(εq) =
⋂
δ>ε

ES(δq).
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Proof. The first implication is in Theorem 4.4.

For the second we proceed as follows. If on the contrary x̄ 6∈ ES(δq), then f(x)−f(x̄) 6∈
−δq+S for some x ∈ K, x 6= x̄. Then, f(x)−f(x̄) ∈ −δq−C(−S) ⊆ −δq−cl(C(−S)+P ).

Thus, (ξq,f(x̄)−C(−S) ◦ f)(x) ≤ −δ. By assumption,

(ξq,f(x̄)−C(−S) ◦ f)(x′)− (ξq,f(x̄)−C(−S) ◦ f)(x̄) ≥ −ε ∀ x′ ∈ K.

Hence, if δ > ε then −ε ≤ (ξq,f(x̄)−C(−S) ◦ f)(x) ≤ −δ < −ε, a contradiction.

The third implication is obtained by taking the limit as δ goes to ε.

The second part of the previous theorem can be applied when P is any (not nec-

essarily closed or pointed) convex cone and S = C(− intP ); or when P is a closed

halfspace, to S = P , and when P = Q ∪ {0} with Q being open and convex satisfying

tQ ⊆ Q for all t > 0, to S = C(−P \ {0}) = C(−P ) ∪ {0}. This last particular case

extends Theorems 4.5, 5.1 and 5.2 in [22].

The examples below show that under the assumptions given in Theorem 4.6 the

implication x̄ ∈ ES(δq) ∀ δ > ε =⇒ x̄ ∈ ES(εq) may be false when S is not closed.

Example 4.7. Here consider S = C(−P ) ∪ {(0, 0)} where P = {(x, y) ∈ R2 : x >

0, y ≥ 0} ∪ {(x, y) ∈ R2 : x ≥ 0, y ≤ 0}. Let f be a function from K = R to Y = R2

defined by

f(x) =


(0,−x) if x < 0

(0, 1) if x = 0

(x, x) if 0 < x < 1

(x, 2x− 1) if x ≥ 1,

and take q = (1, 1), ε = 1. Then, it is easy to check that 1 = x̄ 6∈ ES(εq) since

f(0)− f(x̄) 6∈ −εq + S. However

(ξq,f(x̄)−C(−S) ◦ f)(x)− (ξq,f(x̄)−C(−S) ◦ f)(x̄) ≥ −ε ∀x ∈ R,

that is, x̄ ∈ E(ξq,f(x̄)−C(−S) ◦ f,K, ε), and therefore 1 = x̄ ∈ ES(δq) ∀ δ > ε = 1. Note

that ES(0) = ES = ∅.

Example 4.8. Consider S = P with P = {(x, y) ∈ R2 : x > 0, y ≥ 0} ∪ {(0, 0)}. Let

f , q and ε be as in the previous example. Then, we see that 1 = x̄ 6∈ ES(εq) since

f(0) − f(x̄) 6∈ −q + P . However, we can also check that x̄ ∈ E(ξq,f(x̄)−C(−S) ◦ f,K, ε)
and so 1 = x̄ ∈ ES(δq) ∀ δ > ε = 1. Note that ES(0) = ES = ∅.

We can easily obtain the following characterizations from Theorem 4.2 and Remark

4.3.
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Corollary 4.9. Let x̄ ∈ K. Then,

(a) x̄ ∈ EP ⇐⇒ E(ξf(x̄)−C(−P ) ◦ f,K) = {x ∈ K : f(x) − f(x̄) ∈ −(cl(C(−P )) \
C(−P ))} = {x ∈ K : f(x)− f(x̄) ∈ P \ intP};

(b) x̄ ∈ EW ⇐⇒ E(ξf(x̄) ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ −∂P};

(c) x̄ ∈ E ⇐⇒ E(ξf(x̄) ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ −(clP \ P ) ∪ l(P )};

(d) x̄ ∈ EW1 ⇐⇒ E(ξf(x̄) ◦ f,K) = {x ∈ K : f(x)− f(x̄) ∈ −(clP \ P ) ∪ {0}}.

(e) x̄ ∈ E1 ⇐⇒ E(ξf(x̄) ◦ f,K) \ {x̄} = {x ∈ K : f(x)− f(x̄) ∈ −(clP \ P )}.

When P is closed and pointed, Part (c) was earlier proved in [25, Corollary 4.9].

In order to obtain complete scalarizations for ES , we need the next theorem.

Theorem 4.10. Suppose that Assumption (A) holds.

(a) If ∅ 6= A ⊆ ES, then A ⊆ E(ξf(A)−C(−S) ◦ f,K) ⊆ E(ξf(ES)−C(−S) ◦ f,K) and

min{(ξf(A)−C(−S) ◦ f)(x) : x ∈ K} = 0.

(b) If 0 ∈ S and S + [cl(C(−S)) \ C(−S)] ⊆ S then,

x̄ ∈ ES ⇐⇒ x̄ ∈ E(ξf(x̄)−C(−S) ◦ f,K) ⊆ ES .

Proof. (a): Since for each x̄ ∈ A, f(x) ∈ f(x̄) + S for all x ∈ K \ {x̄} is equivalent to

f(x) 6∈ f(x̄)−C(−S) for all x ∈ K\{x̄}. Then, taking into account that C(−S)+intP ⊆
C(−S), we have f(x) 6∈ f(x̄)−C(−S)−intP for all x ∈ K, x 6= x̄. Therefore, by Lemma

3.4, (ξf(x̄)−C(−S) ◦f)(x) ≥ 0 for all x ∈ K. Thus, (ξf(A)−C(−S) ◦f)(x) ≥ 0 for all x ∈ K.

Since (ξf(A)−C(−S) ◦ f)(x̄) ≤ (ξf(x̄)−C(−S) ◦ f)(x̄) = 0, we get

x̄ ∈ E(ξf(A)−C(−S) ◦ f,K) and min{(ξf(A)−C(−S) ◦ f)(x) : x ∈ K} = 0.

The same reasoning also proves

min{(ξf(ES)−C(−S) ◦ f)(x) : x ∈ K} = 0.

(b): Let x̄ ∈ ES and x′ ∈ E(ξf(x̄)−C(−S) ◦ f,K) with x′ 6= x̄. By Theorem 4.2, f(x̄) −
f(x′) ∈ cl(C(−S)) \ C(−S). Hence, for every x ∈ K with x 6= x′,

f(x)− f(x′) = f(x)− f(x̄) + f(x̄)− f(x′) ∈ S + [cl(C(−S)) \ C(−S)] ⊆ S,

and so x′ ∈ ES since 0 ∈ S.

The sufficient condition is immediate.
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Remark 4.11. Taking into account Remark 4.1, we point out that Theorem 4.10(a)

applies when P is any (not necessarily closed or pointed) convex cone, to S = P ; S =

C(− intP ); C(−P )∪l(P ); C(−P )∪{0}; C(−P ); whereas (b) applies when P is any (not

necessarily pointed) closed convex cone to S = C(− intP ); C(−P )∪ l(P ); C(−P )∪{0}.
Notice that 0 ∈ S ∩ ∂S implies that cl(C(−S)) \ C(−S) 6= ∅.

Theorem 4.12. Suppose that Assumption (A) holds and consider (P(εq)), ε ≥ 0.

Assume that C(−S) + C(−S) ⊆ C(−S) and S is closed. If ∅ 6= A ⊆ K then

E(ξq,f(A)−C(−S) ◦ f,K, ε) ⊆ ES(εq).

Proof. Let x̄ ∈ E(ξq,f(A)−C(−S) ◦ f,K, ε) and x̄ 6∈ ES(εq). Then, there exists x ∈ K,

x 6= x̄, such that f(x) − f(x̄) 6∈ −εq + S or equivalently f(x) + εq − f(x̄) ∈ −C(−S).

By the closedness of S, Lemma 3.7(b) implies that

(ξq,f(A)−C(−S))(f(x)) + ε = (ξq,f(A)−C(−S))(f(x) + εq) < (ξq,f(A)−C(−S))(f(x̄)).

It follows that x̄ 6∈ E(ξq,f(A)−C(−S) ◦ f,K, ε), which cannot happen.

Remark 4.13. When P is any (not necessarily closed or pointed) convex cone, the

previous theorem can be applied to S = C(− intP ), and to S = P provided P is a

closed halfspace. In addition, it also applies when S = C(−P \ {0}) = C(−P ) ∪ {0}
where P = Q ∪ {0} is pointed with Q being open and convex set satisfying tQ ⊆ Q for

all t > 0.

Next result, whose proof follows from Theorem 4.6 and Corollary 4.9, provides some

characterizations for a point to be in ES when S = C(− intP ), S = P , S = C(−P )∪{0}
or S = C(−P ). In particular, we recover Corollary 5.5 in [22]. Moreover, we find a scalar

minimization problem providing elements in EW .

Corollary 4.14. Assume that P is a convex cone with nonempty interior. The follow-

ing assertions hold.

(a) Let ε ≥ 0. Then,

(a1) x̄ ∈ EW (εq) ⇐⇒ x̄ ∈ E(ξq,f(x̄) ◦ f,K, ε); and

EW (εq) =
⋂
δ>ε

E(δq) =
⋂
δ>ε

EW (δq).

(a2) E(ξq,f(K) ◦ f,K, ε) ⊆ EW (εq).

(b) if, in addition, P is closed, then
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(b1) x̄ ∈ E ⇐⇒ [x ∈ K, (ξf(x) ◦ f)(x̄) > 0 =⇒ (ξf(x̄) ◦ f)(x) > 0];

(b2) x̄ ∈ Ew1 ⇐⇒ (ξf(x̄) ◦ f)(x) > 0 ∀ x ∈ K such that f(x) 6= f(x̄);

(b3) x̄ ∈ E1 ⇐⇒ (ξf(x̄) ◦ f)(x) > 0 ∀ x ∈ K, x 6= x̄;

(b4) x̄ ∈ EP ⇐⇒ x̄ ∈ E(ξf(x̄)−C(−P ) ◦ f,K).

Proof. (a1) follows from Theorem 4.6 and (a2) results by particularizing S = C(− intP )

in Theorem 4.12.

(b1) is a consequence of the following equivalence:

x̄ ∈ E ⇐⇒ [x ∈ K, f(x)− f(x̄) ∈ −P =⇒ f(x̄)− f(x) ∈ −P ],

and the closedness of P , along with Lemma 3.4; (b2) results from (d) of Corollary 4.9;

(b3) is Remark 4.3(i).

In order to prove (b4), we write

x̄ ∈ EP ⇐⇒ f(x)− f(x̄) ∈ P ∀ x ∈ K ⇐⇒ f(x)− f(x̄) 6∈ −C(−P ) ∀ x ∈ K

⇐⇒ f(x) 6∈ f(x̄)− C(−P )− P = f(x̄)− C(−P )− intP, ∀ x ∈ K

since P is closed. We now use Lemma 3.4 to conclude with the desired result.

The next example shows that the closedness of P is necessary in (b1), (b2), (b3)

and (b4).

Example 4.15. Let f be a function from R to R2 defined by

f(x) =


(−1,−x− 1) if x ≤ −1

(x, 0) if x ∈ (−1, 0)

(x, x) if x ≥ 0

Let P = {(x, y) ∈ R2 : x, y > 0} ∪ {(0, 0)} and e = (1, 1). It is clear that EP = ∅ and

E = E1 = EW1 = (−∞, 0]. However (b4) is false because −1 ∈ E(ξf(−1)−C(−P ) ◦ f,K)

since (ξf(−1)−C(−P ) ◦ f)(x) = 0 if x ≤ 0 and (ξf(−1)−C(−P ) ◦ f)(x) > 0 if x > 0. In

addition, (b1), (b2) and (b3) do not hold since (ξf(0) ◦ f)(−1) = 0, (ξf(−1) ◦ f)(0) > 0

and f(0) 6= f(−1).

¿From Corollary 4.14 we deduce Corollary 4.8(a) in [15].

We are ready to state our main result of complete scalarization for (P) which is a

consequence of Theorems 4.10 and 4.12. This result encompasses our classical models

described at the introduction.

Theorem 4.16. Suppose that Assumption (A) holds. Assume that ES 6= ∅.
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(a) If 0 ∈ S and S + [cl(C(−S)) \ C(−S)] ⊆ S, then

ES =
⋃
x∈ES

E(ξf(x)−C(−S) ◦ f,K) ⊆ E(ξf(ES)−C(−S) ◦ f,K).

(b) If S is closed and C(−S) + C(−S) ⊆ C(−S), then

ES = E(ξf(ES)−C(−S) ◦ f,K) =
⋃
x∈ES

E(ξf(x)−C(−S) ◦ f,K) =
⋃
x∈K

E(ξf(x)−C(−S) ◦ f,K),

ES(εq) =
⋃
x∈K

E(ξq,f(x)−C(−S) ◦ f,K, ε) ∀ ε > 0.

Now, by particularizing the previous result to our classical models, we obtain com-

plete scalarization for EW , E, E1 and Ew1. The first part in (a) of the next result was

established in the proof of [32, Theorem 3.4, pag. 96]; whereas the second part was

proved in [22, Theorem 5.11] for P pointed.

Corollary 4.17. Let P ⊆ Y be a (not necessarily pointed) convex cone with intP 6= ∅.

(a) If EW 6= ∅, then

EW = E(ξf(EW ) ◦ f,K) =
⋃

x∈EW

E(ξf(x) ◦ f,K) =
⋃
x∈K

E(ξf(x) ◦ f,K),

EW (εq) =
⋃
x∈K

E(ξq,f(x) ◦ f,K, ε) ∀ ε > 0;

(b) If P is closed and E 6= ∅ then

E =
⋃
x∈E

E(ξf(x) ◦ f,K) ⊆ E(ξf(E) ◦ f,K);

(c) If P is closed and EW1 6= ∅ then

EW1 =
⋃

x∈EW1

E(ξf(x) ◦ f,K) ⊆ E(ξf(EW1) ◦ f,K);

(d) If P is closed and E1 6= ∅ then

E1 =
⋃
x∈E1

E(ξf(x) ◦ f,K) ⊆ E(ξf(E1) ◦ f,K);

Proof. By taking into account Remark 4.11, the corollary is a consequence of the

previous theorem. Notice the equality of (c) may be also obtained from Corollary

4.9(d) since x̄ ∈ E1 if and only if E(ξf(x̄) ◦ f,K) = {x ∈ K : f(x) = f(x̄)}. Part (d)

trivially holds by Remark 4.3(i) since x̄ ∈ E1 if and only if E(ξf(x̄) ◦ f,K) = {x̄}.
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We cannot expect an equality in Corollary 4.17 for EP even when P is closed.

Indeed, take P = R2
+, e = (1, 1) and f : R −→ R2 defined by f(x) = (−1,−x − 1) if

x ≤ −1, f(x) = (x, 0) if −1 < x < 0 and f(x) = (x, x) if x ≥ 0. We have EP = {−1}
and E(ξf(−1)−C(−P ) ◦ f,K) = ]∞, 0].

According to Corollaries 4.16 and 4.17 under certain assumptions on S or P the

existence of complete scalarizations for problem (P) or (P(εq)) is guaranteed without

any convexity assumption.

Now the following question arises: what are the conditions on f implying some kind

of convexity or continuity of ξf(x̄) ◦ f? Partial answers will be given in Sections 5 and

6.

5 Lower semicontinuity of ξa−C(−S) ◦ f

This section is devoted to establish conditions on f under which the lower semiconti-

nuity of ξq,a−C(−S) ◦ f is obtained for any a ∈ Y and q ∈ intP . To that end, we recall

the following definition.

Definition 5.1. ([32]) f : K → Y is P -lower semicontinuous (P -lsc) at x0 ∈ K if for

any open set V ⊆ Y such that f(x0) ∈ V there exists an open neighborhood U ⊆ X of

x0 such that f(U ∩K) ⊆ V + P . We shall say that f is P -lsc (on K) if it is at every

x0 ∈ K.

We point out that f = (f1, . . . , fm) is Rm+ -lsc if and only if each fi is lsc.

Concerning this definition the following proposition, whose first part is Lemma 2.4

in [11] and second one is taken from [12, Lemma 2.7] and [2] (note that proof of both

results does not requiere the closedness of P ), takes place.

Proposition 5.2. Let K ⊆ X be closed and let P be a convex cone with intP 6= ∅.
The following assertions hold:

(a) if A ⊆ Y is closed such that A+P ⊆ A and f is P -lsc then {x ∈ K : f(x)− y ∈
−A} is closed for all y ∈ Y ;

(b) f is P -lsc if and only if {x ∈ K : f(x)− y 6∈ intP} is closed for all y ∈ Y .

If a ∈ Y and e ∈ intP , by taking into account Lemma 3.4, we write

{x ∈ K : ξa−C(−S) ◦ f(x) ≤ t} = {x ∈ K : f(x)− a ∈ te− cl(C(−S)− P )}

= {x ∈ K : f(x)− a ∈ te− cl(C(−S))}

provided S + intP ⊆ S because of Lemma 3.2(d). Consequently the previous results

allow us to obtain the next lemma.
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Lemma 5.3. Let a ∈ Y , Y 6= S ⊆ Y be such that S + intP ⊆ S. If K is closed and

f : K → Y is P -lsc then ξa−C(−S) ◦ f : K → R is lsc.

6 Convexity and (semistrict) quasiconvexity of ξa−C(−S) ◦f

Motivated by Section 3, we now provide conditions on f implying the convexity, point-

wise quasiconvexity and quasiconvexity of ξq,a−C(−S)◦f for any a ∈ Y and q ∈ intP . To

that purpose, we start by recalling some notions of quasiconvexity for vector functions,

see [28] for more details.

Definition 6.1. Let ∅ 6= S ⊆ Y , ∅ 6= K ⊆ X convex, P be convex cone, and let

f : K → Y . We say that f is

(a) [13, 16] semistrictly (S)-quasiconvex at x̄ ∈ K if

x ∈ K, x 6= x̄, f(x)− f(x̄) ∈ −S =⇒ f(ξ)− f(x̄) ∈ −S ∀ ξ ∈ ]x, x̄[,

we say that f is semistrictly (S)-quasiconvex (on K) if it is at every x ∈ K;

(b) (S)-quasiconvex on K if,

x1, x2 ∈ K, f(x1), f(x2) ∈ y − S =⇒ f(ξ) ∈ y − S ∀ ξ ∈ [x1, x2],

(c) (intS 6= ∅) semistrongly (S)-quasiconvex at x̄ ∈ K if

x ∈ K, x 6= x̄, f(x)− f(x̄) ∈ −S =⇒ f(ξ)− f(x̄) ∈ − intS ∀ ξ ∈ ]x, x̄[,

we say that f is semistrongly (S)-quasiconvex (on K) if it is at every x ∈ K.

(d) P -convex if,

x1, x2 ∈ K, f(tx1 + (1− t)x2) ∈ tf(x1) + (1− t)f(x2)− P ∀ t ∈ ]0, 1[.

Remark 6.2. When S = P is a convex cone, Definition 6.1(a) (on K) is considered

in [28, Chapter 7]. Likewise, Definition 6.1(b) with S = P is the classical notion of

P -quasiconvexity discussed by Luc [32] and Ferro [9].

Remark 6.3. For scalar functions, that is, when Y = R and S = R+
.= [0,+∞[,

the semistrict (R+)-quasiconvexity (on K) and (R+)-quasiconvexity reduce to quasi-

convexity in the usual sense; however, semistrict (R+)-quasiconvexity at x̄ is known as

quasiconvexity at x̄ which means:

f(x) ≤ f(x̄) =⇒ f(ξ) ≤ f(x̄) ∀ ξ ∈ [x, x̄].

When S = R++
.= ]0,+∞[, semistrict (R++)-quasiconvexity coincides with the standar

definition of semistrict quasiconvexity well-known in mathematical programming.
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Note that (P )-quasiconvexity implies semistrict (C(− intP ))-quasiconvexity and

the converse is, in general, false. The reader can find examples and relationships be-

tween several concepts of quasiconvex vector functions in [32, 13, 16, 17].

We point out that several generalizations of the quasiconvexity notion have been

considered to give optimality conditions. For instance, in [29] is presented a weaker

notion than Definition 6.1(a) (where S = P ) to give optimality conditions in terms of

multiplier rules.

On the other hand, some existence results for problem (P) are established in [17]

under semistrict (S)-quasiconvexity: among other results, it was used to characterize

the nonemptiness and boundedness of the solution set to vector optimization problems

on the real-line. The class of vector functions that are semistrictly (S) and (C(−S))-

quasiconvex introduced in [13] and called explicitly (S)-quasiconvex was employed in

[13, 16] to obtain characterizations of the nonemptiness of the (possibly unbounded)

solution set.

We must emphasize that the semistrict quasiconvexity is associated with problem

(P) in a natural way as the following results show.

Proposition 6.4. If x ∈ ES, then f is semistrictly (C(−S))-quasiconvex and

semistrictly (−S)-quasiconvex at x;

Moreover we have the following result which extends the well-known real case,

which was stated without proof in [16, Theorem 4.1]. It establishes that semistrict

(C(−S))-quasiconvexity characterizes the local-global property which is very interesting

in numerical computing to reduce the algorithmic cost. See also the characterizations

of the local-global property presented in [29, Theorems 3.8, 3.9] and [28, Theorem 7.15]

when S = C(− intP ) or S = C(−P ) ∪ l(P ).

Proposition 6.5. Let x̄ ∈ K be a local solution of (P), x̄ ∈ ES if and only if f is

semistrictly (C(−S))-quasiconvex at x̄.

Proof. Suppose that x̄ is a local solution. Then there exists an open neighborhood U

of x̄ such that f(x)− f(x̄) ∈ S ∀x ∈ U ∩K, x 6= x̄, or equivalently,

f(x̄)− f(x) 6∈ C(−S) ∀ x ∈ U ∩K, x 6= x̄. (2)

Let x0 ∈ K, x0 6= x̄, be such that f(x0)− f(x̄) 6∈ S, that is, f(x̄)− f(x0) ∈ C(−S).

Since f is semistrictly (C(−S))-quasiconvex at x̄ we have f(x̄)− f(ξ) ∈ C(−S) for all

ξ ∈ ]x0, x̄[ which contradicts (2). Thus, f(x)− f(x̄) ∈ S for all x ∈ K, x 6= x̄.

The necessary condition follows from Proposition 6.4.

The next result assures the uniqueness of the solution set to the scalar problem.
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Proposition 6.6. Let x̄ ∈ K and let P be closed. Suppose that x̄ ∈ E(ξf(x̄) ◦ f,K)

and f is semistrongly (P )-quasiconvex at x̄. Then E(ξf(x̄) ◦ f,K) = {x̄}, i.e., x̄ ∈ E1.

Proof. It follows from Definition 6.1 and Corollary 4.14(b3).

We recall that ξa : Y −→ R is convex for any a ∈ Y (see Lemma 3.8).

In the next subsections we give characterizations of (S)-quasiconvexity and

semistrict (S)-quasiconvexity in terms of quasiconvex scalar functions. Firstly we ob-

serve that the composition of a convex increasing function g and a (P )-quasiconvex

function f , g ◦ f , in general, is not (P )-quasiconvex as is shown for instance in [32,

Remark 6.9, pag. 32]. However, the function ξA has good behavior with respect to the

composition.

6.1 Convexity of ξa−C(−S) ◦ f

The convexity of ξa−C(−S) ◦ f is obtained under the P -convexity of f .

Proposition 6.7. Let a ∈ Y , K be convex and f : K → Y be P -convex. If cl(C(−S) +

P ) (or equivalently C(−S) + intP is convex), then

ξa−C(−S) ◦ f : K → R is convex.

Proof. Since for all x1, x2 ∈ K, f(tx1 + (1− t)x2)− tf(x1)− (1− t)f(x2) ∈ −P for all

t ∈ ]0, 1[, we apply Lemma 3.7(a) with B = P to obtain

ξa−C(−S)(f(tx1 + (1− t)x2)) ≤ ξa−C(−S)(tf(x1) + (1− t)f(x2))

and then Lemma 3.8 yields the result.

Note that in the above result we can replace C(−S) by cl(C(−S)) according to

Lemma 3.6(a). In particular, taking into account Remark 4.1, the previous proposition

can be applied when

S = C(− intP ), S = C(−P ) ∪ l(P ), S = C(−P ) ∪ {0}, S = C(−P ), (3)

since in all of these instances cl(C(−S)) = clP , and therefore, ξa−C(−S) ◦ f = ξa ◦ f by

Lemma 3.6.

6.2 Semistrict quasiconvexity of ξf(x̄)−C(−S) ◦ f

Given x̄ ∈ K, the semistrict quasiconvexity of ξf(x̄)−C(−S) ◦ f at x̄ is obtained under

the semistrict (int C(−S))-quasiconvexity at x̄ of f as the following characterization

shows.
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Proposition 6.8. Suppose that Assumption (A) holds. The following assertions are

equivalent:

(a) f is semistrictly (int C(−S))-quasiconvex at x̄ ∈ K;

(b) ξf(x̄)−C(−S) ◦ f is semistrictly quasiconvex at x̄ ∈ K.

Proof. By Lemma 3.4(c) we have (ξf(x̄)−C(−S) ◦ f)(x̄) = 0 because f(x̄) ∈ f(x̄)− ∂(S).

Hence,

(ξf(x̄)−C(−S) ◦ f)(x) < (ξf(x̄)−C(−S) ◦ f)(x̄)⇐⇒ (ξf(x̄)−C(−S) ◦ f)(x) < 0

⇐⇒ f(x) ∈ f(x̄)− C(−S)− intP = f(x̄)− int C(−S).

On the other hand, by Lemma 3.4 we have

(ξf(x̄)−C(−S) ◦ f)(ξ) < 0⇐⇒ f(ξ) ∈ f(x̄)− C(−S)− intP = f(x̄)− int C(−S).

Observe that int C(−S) = intP if S is any of the sets appearing in (3) and, in all

of these cases, we have again ξf(x̄)−C(−S) ◦ f = ξf(x̄) ◦ f .

¿From now on we denote by P ∗ the (positive) polar cone of P and by extrd P ∗ its

extremal directions: here q∗ ∈ extrd P ∗ if and only if q∗ ∈ P ∗\{0} and for all q∗1, q
∗
2 ∈ P ∗

such that q∗ = q∗1 + q∗2 we actually have q∗1, q
∗
2 ∈ R++q

∗. See [1] for more details.

In view of these classical models, the following proposition arises,

Proposition 6.9. [17] Let ∅ 6= P ⊆ Y be a convex cone with nonempty interior and

f : K → Y be given with K being convex. Then, f is semistrictly (intP )-quasiconvex

under any of the following circumstances:

(a) if f is P -convex;

(b) if P is also closed and for all p∗ ∈ P ∗,

x ∈ K 7→ 〈p∗, f(x)〉 is semistrictly quasiconvex ;

(c) if P is also closed, P ∗ is polyhedral, and for all p∗ ∈ extrd P ∗,

x ∈ K 7→ 〈p∗, f(x)〉 is semistrictly quasiconvex ;

(d) if P is also closed and for all p∗ ∈ P ∗ such that ||p∗|| = 1,

x ∈ K 7→ 〈p∗, f(x)〉 is semistrictly quasiconvex .

Proof. (a), (b), (c) and (d) are, respectively, Propositions 2.6, 2.7, 2.8(a) and 2.8(b3)

in [17].
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6.3 Quasiconvexity and strong quasiconvexity of ξf(x̄)−C(−S) ◦ f

Given x̄ ∈ K, the quasiconvexity of ξf(x̄)−C(−S)◦f at x̄ is obtained under the semistrict

(cl(C(−S)))-quasiconvexity at x̄ of f .

Proposition 6.10. Suppose that Assumption (A) holds. The following assertions are

equivalent

(a) f is semistrictly (cl(C(−S))-quasiconvex at x̄ ∈ K;

(b) ξf(x̄)−cl(C(−S)) ◦ f = ξf(x̄)−C(−S) ◦ f is quasiconvex at x̄ ∈ K.

Note that Proposition 3.1 in [33] is a particular case of Proposition 6.10.

The quasiconvexity of ξq,a−C(−S)◦f on K requires the stronger notion of quasiconvexity

since (cl(C(−S)))-quasiconvexity implies semistrict (cl(C(−S)))-quasiconvexity.

Proposition 6.11. Suppose that Assumption (A) holds. The following assertions are

equivalent:

(a) f is (cl(C(−S)))-quasiconvex on K;

(b) ξa−cl(C(−S)) ◦ f = ξa−C(−S) ◦ f is quasiconvex on K for every a ∈ Y .

As usual, for the classical models we have cl(C(−S)) = clP . In such a case, if P

is closed, Proposition 6.11 was established in [32, Proposition 6.3, pag. 30]. See also

Proposition 3.2 in [33] when Y = Rn (recall that ξa−P = ξa). Thus, we are concerned

with the semistrict (clP )-quasiconvexity of f . Again, if P is closed, the author in [6]

considers instead, the term (P, P )-quasiconvexity, and various equivalent conditions

are derived in the bicriteria case, that is, when P is polyhedral in R2. One is expressed

in terms of the Jacobian matrix of the function involved [6, Theorem 3]. Moreover,

it is also proved in [6, Theorem 1] that semistrict (P )-quasiconvexity is equivalent to

(P )-quasiconvexity whenever the function is continuous and P ⊆ R2. Recall that in

general, (P )-quasiconvexity implies semistrict (P )-quasiconvexity.

A very important characterization of (P )-quasiconvexity, when P is closed and

intP 6= ∅, is given in [1]: f : K → Y is (P )-quasiconvex if and only if for every

p∗ ∈ extrd P ∗,

x ∈ K 7→ 〈p∗, f(x)〉 is quasiconvex.

A smaller class of vector functions that are (P )-quasiconvex is that called ∗ − P -

quasiconvex introduced in [30]. Such mappings are such that

x ∈ K 7→ 〈p∗, f(x)〉 is quasiconvex for every p∗ ∈ P ∗.
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This class coincides (proved in [17, 14]) with the one discussed in [43] called naturally

P -quasiconvex defined as those functions f satisfying

f([x, y]) ⊆ [f(x), f(y)]− P ∀ x, y ∈ K.

Concerning the strong quasiconvexity of ξf(x̄)−C(−S) ◦f the next proposition arises.

Proposition 6.12. Suppose that Assumption (A) holds. The following assertions are

equivalent:

(a) f is semistrongly (cl(C(−S)))-quasiconvex at x̄ ∈ K;

(b) ξf(x̄)−cl(C(−S)) ◦ f = ξf(x̄)−C(−S) ◦ f is strongly quasiconvex at x̄ ∈ K.

Proof. It follows from Lemma 3.4(a) and by noticing that int C(−S) = int(cl(C(−S))

because of Lemma 3.2.

When P is closed, the semistrongly (P )-quasiconvexity on K was discussed in [6]

under the name of (P, intP )-quasiconvexity. When P is polyhedral in R2, it was proved

the equivalence to the semistrict quasiconvexity of x 7→ 〈p∗, f(x)〉 for all p∗ ∈ extrd P ∗

(see [6, Theorem 2]).

According to Corollary 4.14(a) each weakly efficient solution of a vector problem is

always a solution of a scalar problem. Thus, by Propositions 6.11 and 6.10 we deduce

that [32, Theorem 2.15, pag. 93] established for (P )-quasiconvexity on K is also valid

under the weaker assumption of semistrict (P )-quasiconvexity at x̄.

So, as the scalar case similar results concerning continuity and differentiability can

be established.

7 Optimality conditions for (approximate) efficiency via

subdifferentials

In this section we apply some before results to derive new optimality conditions for

problem (P) and (P(εq)) by using subdifferentials and approximate subdifferentials

respectively. First under convexity on f we obtain necessary and/or sufficient optimal-

ity conditions for solutions to (P(εq)), ε ≥ 0, in terms of subdifferentials in the sense

of convex analysis. Afterwards, in the framework of Asplund spaces, we establish a

necessary optimality condition for problem (P) without any convexity assumption on

f , via the Mordukhovich subdifferentials.

We emphasize that the results and proofs are adapted from [42].
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7.1 The convex case

Given a set ∅ 6= A ⊆ Y we denote by barA the barrier cone of A which is the (effective)

domain of the support function of A denoted by σA.

For a given ε ≥ 0 and a function h : Y → R∪{+∞}, we define the ε-subdifferential

of h at ȳ ∈ dom(f) .= {x ∈ Y : f(x) < +∞} as follows

∂εh(ȳ) .= {y∗ ∈ Y ∗ : h(y) ≥ h(ȳ) + 〈y∗, y − ȳ〉 − ε ∀ y ∈ Y }.

We set ∂εh(y) = ∅ if y 6∈ dom h and ∂h(y) = ∂0h(y). It is clear that

ȳ ∈ E(h, Y, ε)⇐⇒ 0 ∈ ∂εh(ȳ).

Following the notation in [42] we denote by ϕA : Y → R ∪ {±∞} the function,

ϕA(y) .= inf{t ∈ R : y ∈ tq +A}

where q ∈ intP and A ⊆ Y satisfies Assumption (P). Furthermore, by Theorem 3.1(ii)

in [42], the above function ϕA is finite, that is, domϕA = Y and Lipschitz on Y .

We should point out that in [42] the authors make a deep study about the function

ϕA with q ∈ P \ (−P ) and P not necessarily solid. In particular, several Lipschitz con-

tinuity properties of such a scalarizing function and some applications are established.

Under the assumption S + intP ⊆ S, Lemma 3.6 and definition of ξA (where

Y 6= A), allow us to obtain the following relationships:

ξq,a−C(−S)(y) =ξq,a−cl(C(−S))(y) = ξq,− cl(C(−S))(y − a)

=ϕ− cl(C(−S))(y − a) = ϕa−cl(C(−S))(y). (4)

If, in addition cl(C(−S)) is convex, following a reasoning similar to that used in the

proof of Corollary 4.2 in [42], we obtain, given ε ≥ 0 and a ∈ Y ,

∂εξq,a−C(−S)(ȳ) = {y∗ ∈bar(a− cl(C(−S))) : 〈q, y∗〉 = 1, 〈ȳ, y∗〉 − ξq,a−C(−S)(ȳ) + ε

≥ 〈y, y∗〉 ∀ y ∈ a− cl(C(−S))}, (5)

In what follows we denote the ε normal cone (in the sense of convex analysis) of K

at x̄ ∈ K by

Nε(K; x̄) .= {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ ε ∀ x ∈ K},

and we set N(K; x̄) .= N0(K; x̄). Finally by ιK we denote the indicator function of K,

i.e., ιK(x) = 0 if x ∈ K and ιK(x) = +∞ elsewhere. We immediately obtain

∂ειK(x̄) = Nε(K; x̄).
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If ȳ = f(x̄), (5) reduces to

∂εξq,f(x̄)−cl(C(−S))(f(x̄)) = {y∗ ∈ bar(f(x̄)− cl(C(−S))) : 〈q, y∗〉 = 1,

〈f(x̄), y∗〉+ ε ≥ 〈y, y∗〉, ∀ y ∈ f(x̄)− cl(C(−S))}.

This implies that

∂εξq,f(x̄)−cl(C(−S))(f(x̄)) = {y∗ ∈ bar(− cl(C(−S))) : 〈q, y∗〉 = 1,

ε ≥ 〈y, y∗〉, ∀ y ∈ − cl(C(−S))}.

∂εξq,f(x̄)−cl(C(−S))(f(x̄)) = {y∗ ∈ Nε(− cl(C(−S)); 0) : 〈q, y∗〉 = 1}, (6)

since Nε(− cl(C(−S)); 0) ⊆ bar(− cl(C(−S))).

In case ε = 0, we get

∂ξq,f(x̄)−cl(C(−S))(f(x̄)) = {y∗ ∈ bar(− cl(C(−S))) ∩ (C(−S))∗ : 〈q, y∗〉 = 1}

= {y∗ ∈ (C(−S))∗ : 〈q, y∗〉 = 1}, (7)

since (C(−S))∗ ⊆ bar(− cl(C(−S))).

The preceding results take a more precise formulation when S is as in our stan-

dard models. Indeed, when cl(C(−S)) = clP (for instance S = C(− intP ), C(−P ) ∪
l(P ), C(−P ) ∪ {0}), C(−P )) we have from (6) and (7)

∂εξq,f(x̄)(f(x̄)) = {y∗ ∈ Nε(−P ; 0) : 〈q, y∗〉 = 1}, (8)

∂ξq,f(x̄)(f(x̄)) = {y∗ ∈ P ∗ : 〈q, y∗〉 = 1}, (9)

Notice that B .= {y∗ ∈ P ∗, 〈q, y∗〉 = 1} is a weak ∗ compact, convex base for P ∗, that

is, P ∗ = ∪t≥0tB. From (7) we also get

(C(−S))∗ =
⋃
t≥0

t∂ξq,f(x̄)−cl(C(−S))(f(x̄)).

Before establishing our optimality conditions, we need to compute the subdifferen-

tial of the composition ξq,f(x̄)−C(−S)◦f . To that end, we need the following assumptions

and notions.

Let g : Y → R ∪ {+∞}. We denote by g∗ and g∗∗ the conjugate of g and the

biconjugate of g respectively. Consider

(y∗ ◦ f)∗∗(x) = (y∗ ◦ f)(x) ∀x ∈ dom f, ∀ y∗ ∈ dom g∗; (10)

for some y∗0 ∈ dom g∗, one has y∗0 ◦ f = (y∗0 ◦ f)∗∗, (11)
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where f : X → Y is P -convex and g : Y → R ∪ {+∞} is nondecreasing proper convex

lsc.

A formula for the conjugate of g = ξq,f(x̄)−C(−S) when cl(C(−S)) is convex and

Assumption (A) holds may be found in [42, Proposition 4.1] as follows:

g∗(y∗) =

{
σf(x̄)−cl(C(−S))(y∗) if y∗ ∈ bar(− cl(C(−S))), 〈q, y∗〉 = 1,

+∞ otherwise

¿From this it is easy to check that

dom g∗ ⊆ P ∗ (12)

since − cl(C(−S))− P = − cl(C(−S)).

Proposition 7.1. Suppose that cl(C(−S)) is convex. Let q ∈ intP , x̄ ∈ dom f and let

f : X → Y be P -convex such that (10) and (11) hold for g .= ξq,f(x̄)−C(−S). Then,

(a) for every ε > 0, one has

∂ε(ξq,f(x̄)−C(−S) ◦ f)(x̄) = cl
( ⋃
η1≥0, η2≥0
η1+η2=ε

⋃
y∗∈Nη1 (−C(−S);0), 〈q,y∗〉=1

∂η2(y∗ ◦ f)(x̄)
)
.

(b)

∂(ξq,f(x̄)−C(−S) ◦ f)(x̄) =
⋂
µ>0

cl
( ⋃
y∗∈Nµ(−C(−S);0), 〈q,y∗〉=1

∂µ(y∗ ◦ f)(x̄)
)
.

Proof. (a) and (b) follow from Theorem 8.1 and Corollary 8.1 in [26] respectively along

with (6).

Conditions (10) and (11) holds trivially when f : X → Y is P -lsc and P -convex.

More precisely, the P -convexity of f implies the convexity of

x 7→ y∗ ◦ f(x) = 〈y∗, f(x)〉 ∈ R ∀ y∗ ∈ P ∗

as one can check it directly; whereas the P -lower semicontinuity of f gives the lower

semicontinuity of

x 7→ y∗ ◦ f(x) = 〈y∗, f(x)〉 ∈ R ∀ y∗ ∈ P ∗.

Hence, under our assumptions (y∗ ◦ f)∗∗ = y∗ ◦ f for all y∗ ∈ P ∗. In particular,

(y∗ ◦ f)∗∗ = y∗ ◦ f for y∗ ∈ dom g∗ taking into account (12).

We are ready to establish our first optimality conditions for ε-efficiency, ε > 0. We

can use (a) of the previous proposition to go further in writing (13).
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Theorem 7.2. Suppose that Assumption (A) holds and cl(C(−S)) is convex. Let q ∈
intP , ε > 0, K ⊆ X be convex and closed; f : X → Y be P -convex and P -lsc. If

x̄ ∈ ES(εq) then

0 ∈ cl
( ⋂
ε1≥0,ε2≥0
ε1+ε2=ε

∂ε1(ξq,f(x̄)−C(−S) ◦ f)(x̄) +Nε2(K; x̄)
)
. (13)

And if x̄ ∈ K satisfies (13) then x̄ ∈ EclS(εq).

Proof. If x̄ ∈ ES(εq) then x̄ ∈ E(ξq,f(x̄)−C(−S) ◦f,K, ε) = E(ξq,f(x̄)−C(−S) ◦f+ ιK , X, ε)

by Theorem 4.6. Taking into account Lemma 5.3 and Proposition 6.7, we obtain

0 ∈ ∂ε(ξq,f(x̄)−C(−S) ◦ f + ιK)(x̄) = cl
( ⋂
ε1≥0,ε2≥0
ε1+ε2=ε

∂ε1(ξq,f(x̄)−C(−S) ◦ f)(x̄) + ∂ε2ιK(x̄)
)

by [26, Theorem 3.2]. The result follows from the previous proposition.

We apply Theorem 4.6 to conclude the proof.

When ε = 0, a similar reasoning to the above proof along with [26, Theorem 3.1]

allows us to obtain the next stronger result.

Theorem 7.3. Suppose that Assumption (A) holds and cl(C(−S)) is convex. Let K ⊆
X be convex and closed; f : X → Y be P -convex and P -lsc. If x̄ ∈ ES then

0 ∈
⋂
µ>0

cl
(
∂µ(ξq,f(x̄)−C(−S) ◦ f)(x̄) +Nµ(K; x̄)

)
. (14)

And if x̄ ∈ K satisfies (14) then x̄ ∈ EclS.

7.2 The nonconvex case

We now proceed to establish a necessary optimality conditions for x̄ ∈ ES without

convexity assumptions on f : X → Y , when X and Y are Asplund spaces (cf [39,

Definition 1.22]): we recall that the Banach spaces with separable dual and the reflexive

Banach spaces are Asplund spaces. In this context we work with the Mordukhovich

subdifferential ∂M and the normal cone NM considered in [37], where are denoted by

∂ and N .

Given a function f : X → Y , it is said to be strictly Lipschitz at x̄ ∈ X if f is

Lipschitz on a neighbourhood U of the origin in X, such that the sequence (t−1
k (f(xk+

tku)− f(xk)))k∈N contains a convergent subsequence (in norm) whenever u ∈ U , xk →
x̄, tk ↓ 0.

It is clear that this notion reduces to local Lipschitz continuity if Y is finite dimen-

sional, see [37, Section 3.1.3] for more details.

The following lemma will be useful in the sequel.
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Lemma 7.4. Assume that X and Y Asplund spaces.

(a) ([37, Theorem 3.36]) If f1, f2 : X → R∪{+∞} are proper functions and there exists

a neighbourhood U of x̄ ∈ dom f1 ∩ dom f2, such that f1 is Lipschitz on U and f2 is

lsc on U , then

∂M (f1 + f2)(x̄) ⊆ ∂Mf1(x̄) + ∂Mf2(x̄).

(b) ([37, Corollary 3.43]) If f : X → Y is strictly Lipschitz at x̄ and ϕ : Y → R∪{+∞}
is finite and Lipschitz on a neighbourhood of f(x̄), then

∂M (ϕ ◦ f)(x̄) ⊆
⋃
{∂M (y∗ ◦ f)(x̄) : y∗ ∈ ∂Mϕ(f(x̄))}.

In what follows we establish a necessary optimality condition for problem (P) under

Assumption (A).

Theorem 7.5. Suppose that X and Y are Asplund spaces and Assumption (A) holds.

Let cl(C(−S)) be convex, f : X → Y be strictly Lipschitz and q ∈ intP . If x̄ ∈ ES then

there exists y∗ ∈ (C(−S))∗, 〈q, y∗〉 = 1 such that

0 ∈ ∂M (y∗ ◦ f)(x̄) +NM (K; x̄). (15)

Moreover, if f is strictly differentiable at x̄ then (f ′(x̄))∗y∗ ∈ −NM (K; x̄).

Proof. If x̄ ∈ ES then x̄ ∈ E(ξq,f(x̄)−C(−S) ◦ f,K) by Theorem 4.6.

One can proceed as in [42, Theorem 5.4] to check all the assumptions of the previous

lemma are satisfied. Thus, by applying it, we get

0 ∈ ∂M (y∗ ◦ f)(x̄) +NM (K; x̄)

for some y∗ ∈ ∂Mξq,f(x̄)−cl(C(−S))(f(x̄)). Due to the convexity of cl(C(−S)) by Lemma

3.8, we get

∂Mξq,f(x̄)−cl(C(−S))(f(x̄)) = ∂ξq,f(x̄)−cl(C(−S))(f(x̄)).

¿From (7) we know

∂ξq,f(x̄)−cl(C(−S))(f(x̄)) = {y∗ ∈ (C(−S))∗ : 〈q, y∗〉 = 1}.

We conclude the proof taking into account that ∂Mf(x̄) = {f ′(x̄)} if f is strictly

differentiable at x̄.

We have observed that S + intP ⊆ S ⇐⇒ C(−S) + intP ⊆ C(−S), and therefore

P ⊆ cl(C(−S)) provided 0 ∈ ∂S = ∂C(S). Thus (cl(C(−S)))∗ = (C(−S))∗ ⊆ P ∗. By

virtue of these facts, if S is closed, 0 ∈ ∂S, C(−S) is convex and satisfies the following

stronger inclusion

cl(C(−S)) + (P \ {0}) ⊆ int(cl(C(−S)))
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than that in (A), one can shows that y∗ given in Theorem 7.5 is actually in P# .=

{p∗ ∈ Y ∗ : 〈p∗, p〉 > 0 ∀ p ∈ P \ {0}}, (cf. Tammer and Zalinescu [42, Theorem 5.4]).

Finally, we once again, by considering our standard models, S =

C(− intP ), C(−P ) ∪ l(P ), C(−P ) ∪ {0}, C(−P ) more manageable formulations can be

obtained.

Remark 7.6. In [15, Corollary 4.14] a free boundary Stefan problem is discussed

taking into account the definitions introduced in [27]. Exactly, the scalarizing func-

tion ξq,f(x̄) is computed. We point out that according to previous results (see, for in-

stance, Theorem 4.6 and Corollary 4.14) we may obtain optimality conditions for the

(approximate) free boundary Stefan problem.
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