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Analysis of a velocity-pressure-pseudostress formulation

for the stationary Stokes equations∗

Gabriel N. Gatica† Antonio Márquez‡ Manuel A. Sánchez§

Abstract

We consider a non-standard mixed approach for the Stokes problem in which the velocity,
the pressure, and the pseudostress are the main unknowns. Alternatively, the pressure can
be eliminated from the original equations, thus yielding an equivalent formulation with only
two unknowns. In this paper we develop a priori and a posteriori error analyses of both
approaches. We first apply the Babuška-Brezzi theory to prove the well-posedness of the
continuous and discrete formulations. In particular, we show that Raviart-Thomas elements
of order k ≥ 0 for the pseudostresses, and piecewise polynomials of degree k for the velocities
and the pressures, ensure unique solvability and stability of the associated Galerkin schemes.
Then, we derive reliable and efficient residual-based a posteriori error estimators for both
schemes, without and with pressure unknown. Finally, we provide several numerical results
illustrating the good performance of the resulting mixed finite element methods, confirming
the theoretical properties of the estimators, and showing the behaviour of the associated
adaptive algorithms.

Key words: mixed finite element, incompressible flow, a posteriori error estimator

Mathematics Subject Classifications (1991): 65N15, 65N30, 65N50, 74B05

1 Introduction

The velocity-pressure-stress formulation for computational incompressible flows has gained con-
siderable attention in recent years due to its natural applicability to non-Newtonian flows. In-
deed, since in this case the constitutive equation is nonlinear, the stress can not be eliminated,
and hence it becomes an unavoidable unknown in the corresponding solvability analysis. Actua-
lly, the main advantage of this formulation is that it allows for a unified analysis for linear and
nonlinear flows. Another interesting feature of the velocity-pressure-stress approach is given
by the fact that it yields direct finite element approximations of other quantities of physical
interest. In particular, an accurate direct calculation of the stresses is very desirable for flow
problems involving interaction with solid structures. Nevertheless, the increase in the number
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of unknowns and the symmetry requirement for the stress tensor constitute the main drawbacks
of this formulation. Moreover, the difficulty in deriving and using finite element subspaces of
symmetric tensors in the Stokes and Lamé systems is already well known (see, e.g. [9], [5]).

In order to circumvent these disadvantages, at least partially, there are two main approaches.
A first idea, which goes back to [3], consists of imposing the symmetry of the stress in a weak
sense through the introduction of a suitable Lagrange multiplier (rotation in elasticity and vor-
ticity in fluid mechanics). However, a more appealing idea nowadays is given by the use of the
pseudostress instead of the stress in the corresponding setting of the Stokes equations. Indeed,
this procedure has become very popular lately, specially in the context of least-squares and
augmented methods, thus yielding two new approaches for incompressible flows: the velocity-
pressure-pseudostress and velocity-pseudostress formulations. In particular, the pseudostress
is introduced in [10] and [22] as an additional unknown that replaces the original symmetric
stress tensor. In this way, nonsymmetric tensor finite element subspaces can be employed and
the stress and other quantities such as velocity gradient and vorticity can be obtained easily
via a postprocessing computation. More precisely, following [12], two least-squares methods are
developed and analyzed in [10] for the numerical solution of linear, stationary incompressible
Newtonian fluid flow in two and three dimensions. One method, which applies to general boun-
dary conditions, is based on the stress-velocity formulation, whereas the other one, restricted
to pure velocity Dirichlet boundary conditions, is based on the equivalent velocity-pseudostress
approach. Further least-squares methods for the steady Stokes problem, based on formula-
tions with two or three fields among velocity, velocity gradient, pressure, vorticity, stress, and
pseudostress, can be found in [7], [8], [11], [14], [17], and the references therein.

Similarly, augmented mixed finite element methods for both pseudostress-based formula-
tions of the stationary Stokes equations are introduced and analyzed in [22]. The approach
there, which extends analogue results for linear elasticity problems (see [25], [26], [29]), relies
on the introduction of the Galerkin least-squares type terms arising from the constitutive and
equilibrium equations, and the Dirichlet boundary condition for the velocity, all of them mul-
tiplied by suitable stabilization parameters. It is shown that these parameters can be chosen
so that the resulting augmented variational formulations are defined by strongly coercive bilin-
ear forms, whence the associated Galerkin schemes become well posed for any choice of finite
element subspaces. In particular, continuous piecewise linear velocities, piecewise constant pres-
sures, and Raviart-Thomas elements of lowest order for the stresses can be employed, which
yields a number of unknowns behaving asymptotically as 5 times the number of triangles of
the triangulation. Alternatively, the above factor reduces to 4 when the augmented variational
formulation involving only the velocity and the pseudostress as unknowns, is considered. In
addition, reliable and efficient residual-based a posteriori error estimators for both augmented
mixed finite element schemes are also derived in [22]. The corresponding augmented mixed finite
element schemes for the velocity-pressure-stress formulation of the Stokes problem, in which the
vorticity is introduced as the Lagrange multiplier taking care of the weak symmetry of the stress,
are studied in [21].

On the other hand, and as expected, the velocity-pressure-pseudostress formulation has also
been applied to nonlinear Stokes problems. In fact, a new mixed finite element method for a
class of models arising in quasi-Newtonian fluids is presented in [27]. The approach is based on
the introduction of both the pseudostress and the velocity gradient as further unknowns, which
yields a twofold saddle point operator equation in Hilbert spaces as the resulting variational
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formulation. The abstract theory for this kind of operator equation (see, e.g. [23], [28]), which
constitutes a generalization of the Babuška-Brezzi theory, is then applied to prove that the
continuous and discrete formulations are well posed. The results in [27] are extended in [20] to a
setting in reflexive Banach spaces, thus allowing other nonlinear models such as the Carreau law
for viscoplastic flows. In addition, the dual-mixed approach from [27] and [20] is reformulated
in [32] by restricting the space for the velocity gradient to that of trace-free tensors. As a
consequence the pressure is eliminated and a three-field formulation with the pseudostress, the
velocity, and its gradient as unknowns, is obtained.

In spite of the numerous contributions mentioned above, it is surprising to realize, up to our
knowledge, that mixed finite element methods for the pure velocity-pseudostress formulation, i.e.
without any least-squares or augmented techniques, had not been studied until the recent work
[13]. In this article it is shown that Raviart-Thomas elements of index k ≥ 0 for the pseudostress
and piecewise discontinuous polynomials of degree k for the velocity lead to a stable Galerkin
scheme with quasi-optimal accuracy. A suitable combination of the penalty method with a
preconditioned multigrid method is then applied in [13] to solve the indefinite system resulting
from the associated Galerkin scheme. The pressure and other physical quantities (if needed) can
be computed in a postprocessing procedure without affecting the accuracy of approximation.

The purpose of the present paper is to additionaly contribute in the direction of the results
provided in [13]. More precisely, we recast the pure velocity-pseudostress formulation from [13],
incorporate the pressure unknown into the discrete analysis, which does not necessarily yield an
equivalent formulation at that level, and derive reliable and efficient residual-based a posteriori
error estimators for both Galerkin schemes. The idea of reintroducing the pressure is to allow
further flexibility in approximating this unknown. To this respect, we show that a Galerkin
scheme for the velocity-pressure-pseudostress formulation only makes sense for pressure finite
element subspaces not containing the traces of the pseudostresses subspace. In particular, this
is the case when Raviart-Thomas elements of index k ≥ 0 for the pseudostress, and piecewise
discontinuous polynomials of degree k for the velocity and the pressure, are utilized. Otherwise,
both discrete schemes coincide and hence one obviously stays with the simplest one. The rest
of this work is organized as follows. In Section 2 we describe the boundary value problem of
interest, and establish and analyze its dual-mixed variational formulations (without and with
pressure). Then, in Section 3 we introduce and analyze the associated Galerkin schemes. In par-
ticular, we show that a suitable chosen stabilization parameter is needed for the well-posedness
of the discrete system involving the pressure. Some components of the analysis in Sections 2
and 3 for the velocity-pseudostress formulation, though developed differently, coincide with the
corresponding discussion in [13]. Next, in Section 4 we develop the residual-based a posteriori
error analysis for both schemes. Finally, several numerical results illustrating the performance
of the mixed finite element methods, confirming the reliability and efficiency of the a posteriori
estimators, and showing the good behaviour of the associated adaptive algorithms, are provided
in Section 5.

We end this section with some notations to be used below. Given any Hilbert space U , U2

and U2×2 denote, respectively, the space of vectors and square matrices of order 2 with entries
in U . In addition, I is the identity matrix of R

2×2, and given τ := (τij), ζ := (ζij) ∈ R
2×2, we
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write as usual

τ t := (τji) , tr(τ ) :=

2
∑

i=1

τii , τ d := τ −
1

2
tr(τ ) I , and τ : ζ :=

2
∑

i,j=1

τij ζij .

Also, in what follows we utilize the standard terminology for Sobolev spaces and norms, employ
0 to denote a generic null vector, and use C and c, with or without subscripts, bars, tildes or
hats, to denote generic constants independent of the discretization parameters, which may take
different values at different places.

2 The problem and its dual-mixed formulations

2.1 The boundary value problem

Let Ω be a bounded and simply connected polygonal domain in R
2 with boundary Γ. Our goal

is to determine the velocity u, the pseudostress tensor σ, and the pressure p of a steady flow
occupying the region Ω, under the action of external forces. More precisely, given a volume force
f ∈ [L2(Ω)]2 and g ∈ [H1/2(Γ)]2, we seek a tensor field σ, a vector field u, and a scalar field p
such that

σ = 2µ∇u − p I in Ω , div(σ) = − f in Ω ,

div(u) = 0 in Ω , u = g on Γ ,
(2.1)

where µ is the kinematic viscosity and div stands for the usual divergence operator div acting
along each row of the tensor. As required by the incompressibility condition, we assume from
now on that the datum g satisfies the compatibility condition

∫

Γ
g · ν = 0 , (2.2)

where ν stands for the unit outward normal at Γ.

It follows from the first equation in (2.1), using that tr(∇u) = div(u) in Ω, that the incom-
pressibility condition div(u) = 0 in Ω can be stated in terms of the pseudostress tensor and the
pressure as follows

p +
1

2
tr(σ) = 0 in Ω . (2.3)

Conversely, starting from (2.3), and using the first equation in (2.1), we recover the incom-
pressibility condition div(u) = 0 in Ω. In other words, the pair of equations given by

σ = 2µ∇u − p I in Ω and div(u) = 0 in Ω , (2.4)

is equivalent to

σ = 2µ∇u − p I in Ω and p +
1

2
tr(σ) = 0 in Ω , (2.5)

and therefore, instead of (2.1), we now consider:

σ = 2µ∇u − p I in Ω , div(σ) = − f in Ω ,

p +
1

2
tr(σ) = 0 in Ω , u = g on Γ .

(2.6)
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2.2 The dual-mixed formulations

We adopt the usual procedure and test the three field equations of (2.6) with τ ∈ H(div; Ω),
v ∈ [L2(Ω)]2, and q ∈ L2(Ω), respectively. In this way, integrating by parts the expression
∫

Ω
∇u : τ and using the Dirichlet boundary condition, we arrive at the formulation: Find

(σ, p,u) in H(div; Ω) × L2(Ω) × [L2(Ω)]2 such that

1

2µ

∫

Ω
σ : τ +

1

2µ

∫

Ω
p tr(τ ) +

1

2µ

∫

Ω
q tr(σ) +

1

µ

∫

Ω
p q +

∫

Ω
u · div(τ ) = 〈τν,g〉,

∫

Ω
v · div(σ) = −

∫

Ω
f · v,

for all (τ , q,v) ∈ H(div; Ω) × L2(Ω) × [L2(Ω)]2, where

H(div; Ω) :=
{

τ ∈ [L2(Ω)]2×2 : div(τ ) ∈ [L2(Ω)]2
}

,

and 〈·, ·〉 denotes the duality pairing between [H−1/2(Γ)]2 and [H1/2(Γ)]2, with respect to the
[L2(Γ)]2-inner product. Next, noting that

σ : τ + p tr(τ ) + q tr(σ) + 2 pq = σd : τ d + 2

(

p+
1

2
tr(σ)

)(

q +
1

2
tr(τ )

)

,

the last system can be written in the more compact form: Find (σ, p,u) in H(div; Ω)×L2(Ω)×
[L2(Ω)]2 such that

1

2µ

∫

Ω
σd : τ d +

1

µ

∫

Ω

(

p+
1

2
tr(σ)

)(

q +
1

2
tr(τ )

)

+

∫

Ω
u · div(τ ) = 〈τν,g〉,

∫

Ω
v · div(σ) = −

∫

Ω
f · v,

(2.7)

for all (τ , q,v) ∈ H(div; Ω) × L2(Ω) × [L2(Ω)]2.

Lemma 2.1 The set of solutions of the homogeneous version of system (2.7) is given by

{

(c I,−c,0) : c ∈ R

}

.

Proof. Let (σ, p,u) in H(div; Ω) × L2(Ω) × [L2(Ω)]2 such that

1

2µ

∫

Ω
σd : τ d +

1

µ

∫

Ω

(

p+
1

2
tr(σ)

)(

q +
1

2
tr(τ )

)

+

∫

Ω
u · div(τ ) = 0 ,

∫

Ω
v · div(σ) = 0 ,

(2.8)

for all (τ , q,v) ∈ H(div; Ω)×L2(Ω)× [L2(Ω)]2. It is clear from the second equation of (2.8) that

div(σ) = 0, and taking τ = 0 in the first one we find that p = −
1

2
tr(σ). Next, taking τ = σ

in the first equation of (2.8), we deduce that σd = 0, which yields σ = c I and hence p = − c,
with c ∈ R. Finally, thanks to the surjectivity of the operator div : H(div; Ω) → [L2(Ω)]2, we
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conclude from the first equation of (2.8) that u = 0 in Ω. In fact, it suffices to take τ = ∇z,
where z ∈ [H1

0 (Ω)]2 is the unique solution of the problem: ∆z = u in Ω , z = 0 on Γ. �

In order to avoid the non-uniqueness given by Lemma 2.1 we consider the decomposition

H(div; Ω) = H0 ⊕ R I , (2.9)

where

H0 :=
{

τ ∈ H(div; Ω) :

∫

Ω
tr(τ ) = 0

}

,

and require from now on that σ ∈ H0. The following lemma guarantees that the corresponding
test space can also be restricted to H0, which throughout the rest of the paper is endowed with
‖ · ‖div,Ω, the norm of H(div; Ω).

Lemma 2.2 Any solution of (2.7) with σ ∈ H0 is also solution of: Find (σ, p,u, ) ∈ H0 ×
L2(Ω) × [L2(Ω)]2 such that

1

2µ

∫

Ω
σd : τ d +

1

µ

∫

Ω

(

p+
1

2
tr(σ)

)(

q +
1

2
tr(τ )

)

+

∫

Ω
u · div(τ ) = 〈τν,g〉,

∫

Ω
v · div(σ) = −

∫

Ω
f · v,

(2.10)

for all (τ , q,v) ∈ H0 × L2(Ω) × [L2(Ω)]2. Conversely, any solution of (2.10) is also a solution
of (2.7).

Proof. It is immediate that any solution of (2.7) with σ ∈ H0 is also a solution of (2.10).
Conversely, let (σ, p,u) be a solution of (2.10). Because of (2.9) it suffices to prove that (σ, p,u)
also satisfies (2.7) if tested with (I, 0,0). In fact, according to the compatibility condition
(2.2), this requires that

∫

Ω

(

p+ 1
2tr(σ)

)

vanishes which can be seen to be true by selecting
(τ , q,v) = (0, 1,0) ∈ H0 × L2(Ω) × [L2(Ω)]2 in (2.10). �

Furthermore, we now let H := H0 × L2(Ω), Q := [L2(Ω)]2, consider a constant κ > 0, and
introduce a generalized version of (2.10): Find ((σ, p),u) in H ×Q such that

a((σ, p), (τ , q)) + b(τ ,u) = 〈τν,g〉 ∀ (τ , q) ∈ H ,

b(σ,v) = −

∫

Ω
f · v ∀v ∈ Q ,

(2.11)

where a : H ×H −→ R and b : H0 ×Q −→ R are the bounded bilinear forms defined by

a((ζ, r), (τ , q)) :=
1

2µ

∫

Ω
ζd : τ d +

κ

µ

∫

Ω

(

r +
1

2
tr(ζ)

)(

q +
1

2
tr(τ )

)

(2.12)

and

b(ζ,v) :=

∫

Ω
v · div(ζ) (2.13)

for (ζ, r), (τ , q) in H and v in Q. Note that (2.10) corresponds to (2.11) with κ = 1.
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In order to show that the formulations (2.11) are independent of κ > 0, we prove next
that they are all equivalent to the simplified version arising after replacing (2.3) into (2.11)
(equivalently, taking κ = 0 in (2.11)), that is: Find (σ,u) ∈ H0 ×Q such that

a0(σ, τ ) + b(τ ,u) = 〈τν,g〉 ∀ τ ∈ H0 ,

b(σ,v) = −

∫

Ω
f · v ∀v ∈ Q ,

(2.14)

where a0 : H0 ×H0 −→ R is the bounded bilinear form defined by

a0(ζ, τ ) :=
1

2µ

∫

Ω
ζd : τ d ∀ (ζ, τ ) ∈ H0 ×H0 .

Lemma 2.3 Problems (2.11) and (2.14) are equivalent. Indeed, ((σ, p),u) ∈ H×Q is a solution
of (2.11) if and only if (σ,u) ∈ H0 ×Q is a solution of (2.14) and p = −1

2 tr(σ).

Proof. It suffices to take τ = 0 in (2.11) and then use that the traces of the tensor-valued
functions in H(div; Ω) live in L2(Ω) as the pressure test functions do. �

Another way of seeing the equivalence between (2.11) and (2.14) is the following. We observe
that eliminating the pressure unknown from (2.6), that is replacing p by − 1

2 tr(σ) in its first
equation, we are lead to the reduced problem:

1

2µ
σd = ∇u in Ω , div(σ) = − f in Ω , u = g on Γ , (2.15)

whose variational formulation is precisely (2.14). Hence, (2.11) can also be considered as the
equivalent augmented formulation arising from (2.14) after adding the equation

κ

µ

∫

Ω

(

p+
1

2
tr(σ)

)(

q +
1

2
tr(τ )

)

= 0 ∀ (τ , q) ∈ H .

Certainly, if we had to choose, we would stay with (2.14) since it is simpler than (2.11). However,
the interest in (2.11) lies in the corresponding Galerkin scheme, which, as we show below in
Section 3, provides more flexibility for choosing the pressure finite element subspace.

2.3 Analysis of the dual-mixed formulations

In this section we prove that (2.11) and (2.14) are well-posed. To this end, we first recall the
following well known estimate.

Lemma 2.4 There exists c1 > 0, depending only on Ω, such that

c1 ‖τ‖2
0,Ω ≤

∥

∥τ d
∥

∥

2

0,Ω
+ ‖div(τ )‖2

0,Ω ∀ τ ∈ H0 . (2.16)

Proof. See Lemma 3.1 in [4] or Proposition 3.1 of Chapter IV in [9]. �

Then we have the following main result.

Theorem 2.1 Problem (2.14) has a unique solution (σ,u) ∈ H0 ×Q. Moreover, there exists a
positive constant C, depending only on Ω, such that

‖(σ,u)‖H0×Q ≤ C
{

‖f‖0,Ω + ‖g‖1/2,Γ

}

.
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Proof. It suffices to prove that the bilinear forms a0 and b satisfy the hypotheses of the Babuška-
Brezzi theory. Indeed, given v in Q := [L2(Ω)]2, we proceed as in the proof of Lemma 2.1 and
let z ∈ [H1

0 (Ω)]2 be the unique weak solution of the boundary value problem:

∆z = v in Ω , z = 0 on Γ . (2.17)

Then, we let τ̄ := ∇ z, note that τ̄ ∈ H(div; Ω), and decompose τ̄ = τ̄ 0 + c0 I, with τ̄ 0 ∈ H0

and c0 ∈ R. It follows that div(τ̄ 0) = div(τ̄ ) = v, which proves that the bounded linear
operator div : H0 → [L2(Ω)]2 is surjective, as well. Equivalently, the bilinear form b satisfies
the continuous inf-sup condition, which means that there exists β > 0 such that

sup
τ∈H0

τ 6=0

∫

Ω
v · div(τ )

‖τ‖div,Ω

≥ β ‖v‖0,Ω ∀v ∈ [L2(Ω)]2 . (2.18)

Now, let V be the kernel of the operator induced by b, that is

V := {τ ∈ H0 : b(τ ,v) = 0 ∀v ∈ Q} = {τ ∈ H0 : div(τ ) = 0} .

Then, applying Lemma 2.4, we find that for each τ ∈ V there holds

a0(τ , τ ) =
1

2µ

∥

∥τ d
∥

∥

2

0,Ω
≥

c1
2µ

‖τ‖2
0,Ω =

c1
2µ

‖τ‖2
div,Ω , (2.19)

which shows that the bilinear form a0 is strongly coercive in V . Finally, a direct application of
Theorem 4.1 in Chapter I of [30] completes the proof. �

The unique solvability of (2.11) is now straightforward.

Theorem 2.2 Problem (2.11) has a unique solution ((σ, p),u) ∈ H ×Q, independent of κ, and
there holds p = −1

2 tr(σ). Moreover, there exists a constant C > 0, depending only on Ω, such
that

‖((σ, p),u)‖H×Q ≤ C
{

‖f‖0,Ω + ‖g‖1/2,Γ

}

.

Proof. It is a direct consequence of Lemma 2.3, which gives the equivalence between (2.11) and
(2.14), and Theorem 2.1, which yields the well-posedness of (2.14). �

3 The mixed finite element methods

3.1 The Galerkin schemes

We now let Hσ

0,h, Hp
h and Qh be arbitrary finite element subspaces of H0, L

2(Ω) and Q, respec-

tively, and define Hh := Hσ

0,h × Hp
h. Then, the Galerkin schemes associated with (2.11) and

(2.14) read: Find ((σh, ph),uh) ∈ Hh ×Qh such that

a((σh, ph), (τ , q)) + b(τ ,uh) = 〈τν,g〉 ∀ (τ , q) ∈ Hh ,

b(σh,v) = −

∫

Ω
f · v ∀v ∈ Qh ,

(3.1)
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and: Find (σh,uh) ∈ Hσ

0,h ×Qh such that

a0(σh, τ ) + b(τ ,uh) = 〈τν,g〉 ∀ τ ∈ Hσ

0,h ,

b(σh,v) = −

∫

Ω
f · v ∀v ∈ Qh .

(3.2)

The discrete analogue of Lemma 2.3, which gives a sufficient condition for the equivalence
between (3.1) and (3.2), is as follows.

Lemma 3.1 Assume that the pressure finite element subspace Hp
h contains the traces of the

members of the pseudostress tensor finite element subspace Hσ

0,h, that is,

tr(Hσ

0,h) ⊆ Hp
h . (3.3)

Then, problems (3.1) and (3.2) are equivalent, that is ((σh, ph),uh) ∈ Hh ×Qh is a solution of
(3.1) if and only if (σh,uh) ∈ Hσ

0,h ×Qh is a solution of (3.2) and ph = −1
2 tr(σh).

Proof. Let ((σh, ph),uh) ∈ Hh ×Qh be a solution of (3.1). It is clear from the assumption (3.3)
that ph + 1

2tr(σh) belongs to Hp
h. Then, taking ((τ , q),v) = ((0, ph + 1

2tr(σh)),0) ∈ Hh ×Qh

in (3.1), we find that
κ

µ

∫

Ω

(

ph +
1

2
tr(σh)

)2
= 0 ,

which yields ph = −1
2 tr(σh). Conversely, given (σh,uh) ∈ Hσ

0,h ×Qh a solution of (3.2), we let

ph := −1
2 tr(σh) and see that ((σh, ph),uh) ∈ Hh ×Qh becomes a solution of (3.1). �

It is clear from Lemma 3.1 that the discrete formulation (3.1) makes sense only if the con-
dition (3.3) does not hold. Otherwise, it suffices to look for the solution of (3.2).

3.2 The finite element subspaces

In order to introduce explicit finite element subspaces guaranteeing the unique solvability and
stability of (3.1) and (3.2), we now let {Th}h>0 be a regular family of triangulations of the
polygonal region Ω̄ by triangles T of diameter hT such that Ω̄ = ∪{T : T ∈ Th} and define
h := max {hT : T ∈ Th}. Given an integer ℓ ≥ 0 and a subset S of R2, we denote by Pℓ(S) the
space of polynomials of total degree at most ℓ defined on S. Then, for each integer k ≥ 0 and
for each T ∈ Th, we define the local Raviart-Thomas space of order k (see, e.g. [33], [9])

RTk(T ) = [Pk(T )]2 ⊕ Pk(T )x , (3.4)

where x :=

(

x1

x2

)

is a generic vector of R
2, and let RTk(Th) be the corresponding global

space, that is

RTk(Th) :=
{

τ ∈ H(div; Ω) : (τi1, τi2)
t ∈ RTk(T ) ∀ i ∈ {1, 2} , ∀T ∈ Th

}

. (3.5)

We also let Pk(Th) be the global space of piecewise polynomials of degree ≤ k, that is

Pk(Th) :=
{

v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th

}

. (3.6)
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Next, we let Ek
h : [H1(Ω)]2×2 −→ RTk(Th) be the usual equilibrium interpolation operator

(see, e.g. [33], [9]), which, given τ ∈ [H1(Ω)]2×2, is characterized by the following identities:

∫

e
Ek

h(τ )ν · r =

∫

e
τν · r ∀ edge e ∈ Th , ∀ r ∈ [Pk(e)]

2 , when k ≥ 0 , (3.7)

and
∫

T
Ek

h(τ ) : r =

∫

T
τ : r ∀ T ∈ Th , ∀ r ∈ [Pk−1(T )]2×2 , when k ≥ 1 . (3.8)

It is easy to show, using (3.7) and (3.8), that

div(Ek
h(τ )) = Pk

h(div(τ )) , (3.9)

where Pk
h is the orthogonal projector from [L2(Ω)]2 into [Pk(Th)]2. It is well known (see, e.g.

[18]) that for each v ∈ [Hm(Ω)]2, with 0 ≤ m ≤ k + 1, there holds

‖v − Pk
h(v)‖0,T ≤ C hm

T |v|m,T ∀T ∈ Th . (3.10)

In addition, the operator Ek
h satisfies the following approximation properties (see, e.g. [9], [33]):

‖τ − Ek
h(τ )‖0,T ≤ C hm

T |τ |m,T ∀T ∈ Th , (3.11)

for each τ ∈ [Hm(Ω)]2×2, with 1 ≤ m ≤ k + 1,

‖div(τ − Ek
h(τ ))‖0,T ≤ C hm

T |div(τ )|m,T ∀T ∈ Th , (3.12)

for each τ ∈ [H1(Ω)]2×2 such that div(τ ) ∈ [Hm(Ω)]2, with 0 ≤ m ≤ k + 1, and

‖τ ν − Ek
h(τ )ν‖0,e ≤ C h1/2

e ‖τ‖1,Te ∀ edge e ∈ Th , (3.13)

for each τ ∈ [H1(Ω)]2×2, where Te ∈ Th contains e on its boundary. In particular, note that (3.12)
follows easily from (3.9) and (3.10). Moreover, it turns out (see, e.g. Theorem 3.16 in [31]) that
Ek

h can also be defined as a bounded linear operator from the larger space [Hs(Ω)]2×2 ∩H(div; Ω)
into RTk(Th) for all s ∈ (0, 1], and that in this case there holds the following interpolation error
estimate

‖τ − Ek
h(τ )‖0,T ≤ C hs

T

{

‖τ‖s,T + ‖div(τ )‖0,T

}

∀T ∈ Th . (3.14)

We now introduce the following finite element subspaces of H0, L
2(Ω), and Q, respectively,

Hσ

0,h :=
{

τ ∈ RTk(Th) :

∫

Ω
tr(τ ) = 0

}

,

Hp
h := Pk(Th) ,

Qh := [Pk(Th)]2 .

(3.15)

Then, as a consequence of (3.10), (3.11), (3.12), (3.13), (3.14), and the usual interpolation
estimates, we find that Hσ

0,h, Hp
h, and Qh satisfy the following approximation properties:
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(APσ

0,h) For each s ∈ (0, k + 1] and for each τ ∈ [Hs(Ω)]2×2 ∩H0 with div(τ ) ∈ [Hs(Ω)]2 there
exists τ h ∈ Hσ

0,h such that

‖τ − τ h‖div,Ω ≤ C hs
{

‖τ‖s,Ω + ‖div(τ )‖s,Ω

}

.

(APp
h) For each s ∈ [0, k + 1] and for each q ∈ Hs(Ω) there exists qh ∈ Hp

h such that

‖q − qh‖0,Ω ≤ C hs ‖q‖s,Ω .

(APu

h) For each s ∈ [0, k + 1] and for each v ∈ [Hs(Ω)]2 there exists vh ∈ Qh such that

‖v − vh‖0,Ω ≤ C hs ‖v‖s,Ω .

3.3 Analysis of the Galerkin schemes

In what follows we establish the unique solvability, stability, and convergence of the Galerkin
schemes (3.1) and (3.2) with the finite element subspaces given by (3.15). Note that in this case
the condition (3.3) does not hold, and hence the Galerkin scheme (3.1) becomes meaningful. We
begin the analysis with the discrete inf-sup condition for the bilinear form b.

Lemma 3.2 Let Hσ

0,h and Qh be given by (3.15). Then, there exists β > 0, independent of h,
such that

sup
τ ∈Hσ

0,h

τ 6=0

b(τ ,v)

‖τ‖div,Ω
≥ β ‖v‖0,Ω ∀v ∈ Qh . (3.16)

Proof. Since b satisfies the continuous inf-sup condition (cf. (2.18) in the proof of Theorem 2.1),
we just need to construct a Fortin operator. To this end, we first let G be a bounded convex
polygonal domain containing Ω̄. Then, given τ ∈ H0, we let z ∈ [H1

0 (G)]2 be the unique weak
solution of the boundary value problem:

∆z =

{

div τ in Ω
0 in G\Ω

, z = 0 on ∂G . (3.17)

Thanks to the elliptic regularity result of (3.17) we have that z ∈ [H2(Ω0)]
2 and

‖z‖2,Ω ≤ ‖div(τ )‖0,Ω . (3.18)

Also, it is clear that
(

∇z
)

|Ω ∈ [H1(Ω)]2×2, div(∇z) = ∆z = div(τ ) in Ω, and

‖∇z‖1,Ω ≤ ‖z‖2,Ω ≤ ‖div(τ )‖0,Ω . (3.19)

Next, we introduce the linear operator Πk
h : H0 −→ Hσ

0,h, where Πk
h(τ ) is the H0-component of

Ek
h(∇z) determined by the decomposition (2.9), that is

Πk
h(τ ) := Ek

h(∇z) −

{

1

2 |Ω|

∫

Ω
tr(Ek

h (∇z))

}

I .

It follows, using (3.9), that

div(Πk
h(τ )) = div(Ek

h (∇z)) = Pk
h(div(∇z)) = Pk

h(div(τ )) in Ω ,
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and hence for each τ ∈ H0 and v ∈ Qh there holds

b(Πk
h(τ ),v) =

∫

Ω
v · div(Πk

h(τ )) =

∫

Ω
v · Pk

h(div(τ )) =

∫

Ω
v · div(τ ) = b(τ ,v) . (3.20)

In addition, using the stability of the decomposition (2.9), and applying (3.11) (with m = 1)
and (3.19), we find that for each τ ∈ H0 there holds

‖Πk
h(τ )‖2

div,Ω ≤ ‖Ek
h(∇z)‖2

div,Ω = ‖Ek
h(∇z)‖2

0,Ω + ‖Pk
h(div(τ ))‖2

0,Ω

≤ C
{

‖∇z− Ek
h(∇z)‖2

0,Ω + ‖∇z‖2
0,Ω + ‖div(τ )‖2

0,Ω

}

≤ C ‖div(τ )‖2
0,Ω ,

which shows that Πk
h is uniformly bounded. The above estimate and (3.20) prove that Πk

h

becomes a Fortin operator, which finishes the proof. �

We are now in a position to establish the following theorems.

Theorem 3.1 The Galerkin scheme (3.2) has a unique solution (σh,uh) ∈ Hσ

0,h × Qh, and

there exist positive constants C, C̃, independent of h, such that

‖(σh,uh)‖H0×Q ≤ C
{

‖f‖0,Ω + ‖g‖1/2,Γ

}

,

and
‖(σ,u) − (σh,uh)‖H0×Q ≤ C̃ inf

(τh,vh)∈Hσ

0,h
×Qh

‖(σ,u) − (τ h,vh)‖H0×Q . (3.21)

Proof. Since div(Hσ

0,h) ⊆ Qh, we find that the discrete kernel of b is given by

Vh :=
{

τ ∈ Hσ

0,h : b(τ ,v) = 0 ∀v ∈ Qh

}

=
{

τ ∈ Hσ

0,h : div(τ ) = 0 in Ω
}

⊆ V ,

which, thanks to (2.19), shows that a0 is strongly coercive in Vh. This fact, Lemma 3.2, and a
direct application of the classical Babuška-Brezzi theory (see, e.g. Theorem 1.1 in Chapter II of
[30]) complete the proof. �

Theorem 3.2 Let (σ,u) ∈ H0×Q and (σh,uh) ∈ Hσ

0,h×Qh be the unique solutions of the con-

tinuous and discrete formulations (2.14) and (3.2), respectively. Assume that σ ∈ [Hs(Ω)]2×2,
div(σ) ∈ [Hs(Ω)]2, and u ∈ [Hs(Ω)]2, for some s ∈ (0, k + 1]. Then there exists C > 0,
independent of h, such that

‖(σ,u) − (σh,uh)‖H0×Q ≤ C hs
{

‖σ‖s,Ω + ‖div(σ)‖s,Ω + ‖u‖s,Ω

}

.

Proof. It follows from the Cea estimate (3.21) and the approximation properties (APσ

0,h) and
(APu

h). �

We end this section with the analogues of Theorems 3.1 and 3.2 for the scheme (3.1). In this
case, the well-posedness of (3.1) depends on a suitable choice of the parameter κ that defines
the bilinear form a (cf. (2.12)).
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Theorem 3.3 Let c1 > 0 be the constant provided by Lemma 2.4 and assume that the parameter
κ lies in (0, c1). Then the Galerkin scheme (3.1) has a unique solution ((σh, ph),uh) ∈ Hh×Qh,
and there exist positive constants C, C̃, independent of h, such that

‖((σh, ph),uh)‖H×Q ≤ C
{

‖f‖0,Ω + ‖g‖1/2,Γ

}

,

and

‖((σ, p),u) − ((σh, ph),uh)‖H×Q ≤ C̃ inf
((τh,qh),vh)∈Hh×Qh

‖((σ, p),u) − ((τ h, qh),vh)‖H×Q .

(3.22)

Proof. Using again that div(Hσ

0,h) ⊆ Qh, we find that the discrete kernel of b is given in this
case by

Wh :=
{

(τ , q) ∈ Hh := Hσ

0,h ×Hp
h : b(τ ,v) = 0 ∀v ∈ Qh

}

= Vh ×Hp
h .

Note that b has to be considered here as a bilinear form acting from Hh ×Qh into R (instead of
Hσ

0,h ×Qh into R as in the formulation (3.2)). Then, according to the definition of a (cf. (2.12))
and Lemma 2.4, we deduce that for each (τ , q) ∈ Wh there holds

a((τ , q), (τ , q)) =
1

2µ
‖τ d‖2

0,Ω +
κ

µ
‖q +

1

2
tr(τ )‖2

0,Ω

≥
1

2µ
‖τ d‖2

0,Ω +
κ

2µ
‖q‖2

0,Ω −
κ

2µ
‖τ‖2

0,Ω

≥
1

2µ
(c1 − κ) ‖τ‖2

0,Ω +
κ

2µ
‖q‖2

0,Ω ,

which shows that a is strongly coercive in Wh whenever κ ∈ (0, c1). Hence, as in Theorem 3.1,
the proof is completed having in mind Lemma 3.2 (with the above mentioned modification on
the definition of the bilinear form b) and applying Theorem 1.1 in Chapter II of [30]. �

Theorem 3.4 Let ((σ, p),u) ∈ H × Q and ((σh, ph),uh) ∈ Hh ×Qh be the unique solutions
of the continuous and discrete formulations (2.11) and (3.1), respectively. Assume that σ ∈
[Hs(Ω)]2×2, div(σ) ∈ [Hs(Ω)]2, and u ∈ [Hs(Ω)]2, for some s ∈ (0, k + 1]. Then there exists
C > 0, independent of h, such that

‖((σ, p),u) − ((σh, ph),uh)‖H×Q ≤ C hs
{

‖σ‖s,Ω + ‖div(σ)‖s,Ω + ‖u‖s,Ω

}

.

Proof. It follows from the Cea estimate (3.22) and the approximation properties (APσ

0,h), (APp
h),

and (APu

h), noting that p = − 1
2 tr(σ) ∈ Hs(Ω). �

4 A posteriori error analysis

In this section we derive reliable and efficient residual based a posteriori error estimators for
(3.1) and (3.2). Actually, the analysis is performed first for (3.2) and then extended to (3.1).
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We begin by introducing several notations. We let Eh be the set of all edges of the triangula-
tion Th, and given T ∈ Th, we let E(T ) be the set of its edges. Then we write Eh = Eh(Ω)∪Eh(Γ),
where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. In what follows, he stands for
the length of the edge e. Also, for each edge e ∈ Eh we fix a unit normal vector νe := (ν1, ν2)

t,
and let se := (−ν2, ν1)

t be the corresponding fixed unit tangential vector along e. Then, given
e ∈ Eh(Ω) and τ ∈ [L2(Ω)]2×2 such that τ |T ∈ [C(T )]2×2 on each T ∈ Th, we let [τ se] be
the corresponding jump across e, that is [τ se] := (τ |T − τ |T ′)|e se, where T and T ′ are the
triangles of Th having e as a common edge. Abusing notation, when e ∈ Eh(Γ), we also write
[τ se] := τ |e se. Similar definitions hold for the tangential jumps of scalar fields v ∈ L2(Ω) such
that v|T ∈ C(T ) on each T ∈ Th. From now on, when no confusion arises, we simple write s
and ν instead of se and νe, respectively. Finally, given scalar, vector and tensor valued fields v,
ϕ := (ϕ1, ϕ2) and τ := (τij), respectively, we let

curl(v) :=

(

∂v
∂x2

− ∂v
∂x1

)

, curl(ϕ) :=

(

curl(ϕ1)
t

curl(ϕ2)
t

)

, and curl(τ ) :=

(

∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2

)

.

Then, letting (σ,u) ∈ H0×Q and (σh,uh) ∈ Hσ

0,h×Qh be the unique solutions of the continuous
and discrete formulations (2.14) and (3.2), respectively, we define for each T ∈ Th a local error
indicator θT as follows:

θ2
T := ‖f + div(σh)‖2

0,T + h2
T

∥

∥

∥
curl

{ 1

2µ
σd

h

}
∥

∥

∥

2

0,T
+ h2

T

∥

∥

∥
∇uh −

1

2µ
σd

h

∥

∥

∥

2

0,T

+
∑

e∈E(T )∩Eh(Ω)

he

∥

∥

∥

[ 1

2µ
σd

h s
]
∥

∥

∥

2

0,e
+

∑

e∈E(T )∩Eh(Γ)

he

{

∥

∥

∥

dg

ds
−

1

2µ
σd

h s
∥

∥

∥

2

0,e
+ ‖g − uh‖

2
0,e

}

.

(4.1)

Note that the above requires that
dg

ds

∣

∣

∣

e
∈ [L2(e)]2 for each e ∈ Eh(Γ). This is fixed below by

assuming that g ∈ [H1(Γ)]2. Similarly, letting ((σ, p),u) ∈ H×Q and ((σh, ph),uh) ∈ Hh×Qh

be the unique solutions of the continuous and discrete formulations (2.11) and (3.1), respectively,
we define for each T ∈ Th a local error indicator ηT as follows:

η2
T := θ2

T +
∥

∥

∥
ph +

1

2
tr(σh)

∥

∥

∥

2

0,T
+ h2

T

∥

∥

∥
curl

(

ph +
1

2
tr(σh)

)∥

∥

∥

2

0,T

+
∑

e∈E(T )

he

∥

∥

∥

[(

ph +
1

2
tr(σh)

)

s
]∥

∥

∥

2

0,e
.

(4.2)

The residual character of each term on the right hand side of (4.1) and (4.2) is quite clear. As
usual the expressions

θ :=

{

∑

T∈Th

θ2
T

}1/2

and η :=

{

∑

T∈Th

η2
T

}1/2

are employed as the global residual error estimators.

The following theorems constitute the main results of this section.
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Theorem 4.1 Let (σ,u) ∈ H0 ×Q and (σh,uh) ∈ Hσ

0,h ×Qh be the unique solutions of (2.14)

and (3.2), respectively, and assume that g ∈ [H1(Γ)]2. Then there exist positive constants Ceff

and Crel, independent of h, such that

Ceff θ + h.o.t. ≤ ‖(σ,u) − (σh,uh)‖H0×Q ≤ Crel θ , (4.3)

where h.o.t. stands for one or several terms of higher order.

Theorem 4.2 Let ((σ, p),u) ∈ H ×Q and ((σh, ph),uh) ∈ Hh ×Qh be the unique solutions of
(2.11) and (3.1), respectively, and assume that g ∈ [H1(Γ)]2. Then there exist positive constants
C̃eff and C̃rel, independent of h, such that

C̃eff η + h.o.t. ≤ ‖((σ, p),u) − ((σh, ph),uh)‖H×Q ≤ C̃rel η , (4.4)

where h.o.t. stands for one or several terms of higher order.

The efficiency of the global error estimators (lower bounds in (4.3) and (4.4)) are proved
below in Subsection 4.2, whereas the corresponding reliability (upper bounds in (4.3) and (4.4))
is derived now.

4.1 Reliability

We begin with the following preliminary estimate.

Lemma 4.1 Let (σ,u) ∈ H0 × Q and (σh,uh) ∈ Hσ

0,h × Qh be the unique solutions of (2.14)
and (3.2), respectively. Then there exists C > 0, independent of h, such that

C ‖(σ,u) − (σh,uh)‖H0×Q ≤ sup
τ∈H0\{θ}

R(τ )

‖τ‖div,Ω
+ ‖f + div(σh)‖0,Ω , (4.5)

where

R(τ ) := 〈(τ − τh)ν, g〉 −
1

2µ

∫

Ω
σd

h : (τ − τ h) −

∫

Ω
uh · div(τ − τh) ∀ τ h ∈ Hσ

0,h . (4.6)

Proof. We first recall that the continuous dependence result for the problem (2.14) (cf. Theorem
2.1) is equivalent to the global continuous inf-sup condition, which establishes the existence of
C > 0 such that

C ‖(ζ,w)‖H0×Q ≤ sup
(τ ,v)∈H0×Q\{θ}

a0(ζ, τ ) + b(τ ,w) + b(ζ,v)

‖(τ ,v)‖H0×Q
∀ (ζ,w) ∈ H0 ×Q . (4.7)

Then, applying (4.7) to the Galerkin error (ζ,w) := (σ,u) − (σh,uh), and using the second
equation of (2.14), the fact that ‖(τ ,v)‖H0×Q ≥ max {‖τ‖div,Ω, ‖v‖0,Ω}, and the Cauchy-
Schwarz inequality, we find that

C ‖(σ,u) − (σh,uh)‖H0×Q ≤ sup
(τ ,v)∈H0×Q\{θ}

a0(σ − σh, τ ) + b(τ ,u − uh) + b(σ − σh,v)

‖(τ ,v)‖H0×Q

= sup
(τ ,v)∈H0×Q\{θ}

R(τ ) −

∫

Ω
(f + div(σh))v

‖(τ ,v)‖H0×Q
≤ sup

τ∈H0\{θ}

R(τ )

‖τ‖div,Ω
+ ‖f + div(σh)‖0,Ω ,
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where R(τ ) = a0(σ − σh, τ ) + b(τ ,u − uh). But, from the first equations of (2.14) and (3.2)
we have that a0(σ − σh, τ h) + b(τ h,u − uh) = 0 ∀ τh ∈ Hσ

0,h, and hence

R(τ ) = a0(σ − σh, τ − τ h) + b(τ − τ h,u− uh) ∀ τ h ∈ Hσ

0,h ,

which, using again the first equation of (2.14) and the definitions of a0 and b, becomes (4.6),
thus completing the proof. �

We now aim to bound the supremum on the right hand side of (4.5). To this end, and in
order to choose below a suitable τ h ∈ Hσ

0,h for the definition of R(τ ) (cf. (4.6)), we now let

Ih : H1(Ω) −→ Xh be the Clément interpolation operator (cf. [19]), where

Xh :=
{

vh ∈ C(Ω̄) : vh|T ∈ P1(T ) ∀T ∈ Th

}

. (4.8)

The following lemma establishes the local approximation properties of Ih.

Lemma 4.2 There exist constants C1, C2 > 0, independent of h, such that for all v ∈ H1(Ω)
there hold

‖v − Ih(v)‖0,T ≤ C1 hT ‖v‖1,∆(T ) ∀T ∈ Th, (4.9)

and
‖v − Ih(v)‖0,e ≤ C2 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh , (4.10)

where ∆(T ) and ∆(e) are the union of all elements intersecting with T and e, respectively.

Proof. See [19]. �

Next, given τ ∈ H0, we proceed as in the proof of Lemma 3.2, and let z ∈ [H1
0 (G)]2 be

the unique weak solution of the boundary value problem (3.17), where G is a bounded convex
polygonal domain containing Ω̄. Since div(τ −∇z) = 0 in Ω, and Ω is connected, there exists

ϕ := (ϕ1, ϕ2)
t ∈ [H1(Ω)]2, with

∫

Ω
ϕ1 =

∫

Ω
ϕ2 = 0, such that

τ = curl(ϕ) + ∇z . (4.11)

This identity is known as a Helmholtz decomposition of τ . Note that the equivalence between
‖ϕ‖1,Ω and |ϕ|1,Ω (which is consequence of the generalized Poincaré inequality), together with
(4.11) and (3.19), imply that

‖ϕ‖1,Ω ≤ c |ϕ|1,Ω = c ‖curl(ϕ)‖0,Ω ≤ c
{

‖τ‖0,Ω + ‖∇z‖0,Ω

}

≤ C ‖τ‖div,Ω. (4.12)

Now, we let ϕh := (Ih(ϕ1), Ih(ϕ2))
t and define

τh := curl(ϕh) + Ek
h(∇z) + c I , (4.13)

where Ek
h is the Raviart-Thomas interpolation operator introduced before (cf. (3.7), (3.8)), and

the constant c is chosen so that τ h, which is already in RTk(Th), belongs to Hσ
h,0. Equivalently,

τ h is the H0-component of curl(ϕh) + Ek
h(∇z) ∈ RTk(Th). We refer to (4.13) as a discrete

Helmholtz descomposition of τ h.
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Then, replacing τ (cf. (4.11)) and τh (cf. (4.13)) into (4.6), observing that the expression
c I cancells out from the three terms defining R, and noting, according to (3.6) and (3.9), that

∫

Ω
uh · div(∇z − Ek

h(∇z)) =

∫

Ω
uh · (div(τ ) − Pk

h(div(τ ))) = 0 ,

we find that R can be decomposed as R(τ ) = R1(ϕ) + R2(z), where

R1(ϕ) := 〈curl(ϕ − ϕh)ν,g〉 −
1

2µ

∫

Ω
σd

h : curl(ϕ − ϕh) , (4.14)

and

R2(z) := 〈(∇z − Ek
h(∇z))ν,g〉 −

1

2µ

∫

Ω
σd

h : (∇z − Ek
h(∇z)) . (4.15)

The following two lemmas provide upper bounds for |R1(ϕ)| and |R2(z)|.

Lemma 4.3 Assume that g ∈ [H1(Γ)]2. Then there exists C > 0, independent of h, such that

|R1(ϕ)| ≤ C







∑

T∈Th

θ2
1,T







1/2

‖τ‖div,Ω (4.16)

where

θ2
1,T := h2

T

∥

∥

∥

∥

curl
{ 1

2µ
σd

h

}

∥

∥

∥

∥

2

0,T

+
∑

e∈E(T )∩Eh(Ω)

he

∥

∥

∥

∥

[ 1

2µ
σd

h s
]

∥

∥

∥

∥

2

0,e

+
∑

e∈E(T )∩Eh(Γ)

he

∥

∥

∥

∥

dg

ds
−

1

2µ
σd

h s

∥

∥

∥

∥

2

0,e

.

Proof. Using that curl(ϕ−ϕh)ν = d
ds(ϕ−ϕh) and then integrating by parts on Γ, we find that

〈curl(ϕ− ϕh)ν,g〉 = −〈ϕ− ϕh,
dg

ds
〉 = −

∑

e∈Eh(Γ)

∫

e
(ϕ− ϕh)

dg

ds
.

Next, integrating by parts on each T ∈ Th, we obtain that
∫

Ω
σd

h : curl(ϕ − ϕh) =
∑

T∈Th

{
∫

T
curl{σd

h} · (ϕ − ϕh) −

∫

∂T
σd

h s · (ϕ − ϕh)

}

=
∑

T∈Th

∫

T
curl{σd

h} · (ϕ − ϕh) −
∑

e∈Eh(Ω)

∫

e
[σd

h s] · (ϕ − ϕh) −
∑

e∈Eh(Γ)

∫

e
σd

h s · (ϕ − ϕh) .

Hence, replacing the above expressions into (4.14), we deduce that

R1(ϕ) =
∑

T∈Th

∫

T
curl

{ 1

2µ
σd

h

}

· (ϕ − ϕh) +
∑

e∈Eh(Ω)

∫

e

[ 1

2µ
σd

h s
]

· (ϕ − ϕh)

−
∑

e∈Eh(Γ)

∫

e

{dg

ds
−

1

2µ
σd

h s
}

· (ϕ − ϕh) .

Finally, applying the Cauchy-Schwarz inequality, the approximation properties provided by
Lemma 4.2 together with the fact that the number of triangles in ∆(T ) and ∆(e) are bounded,
and then the estimate (4.12), we derive the upper bound (4.16). �
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Lemma 4.4 There exists C > 0, independent of h, such that

|R2(z)| ≤ C







∑

T∈Th

θ2
2,T







1/2

‖τ‖div,Ω , (4.17)

where

θ2
2,T = h2

T

∥

∥

∥

∥

∇uh −
1

2µ
σd

h

∥

∥

∥

∥

2

0,T

+
∑

e∈E(T )∩Eh(Γ)

he ‖g − uh‖
2
0,e .

Proof. Since uh|e ∈ [Pk(e)]
2 for each edge e ∈ Eh (in particular for each edge e ∈ Eh(Γ)), and

∇uh|T ∈ [Pk−1(T )]2×2 for each T ∈ Th, the identities (3.7) and (3.8) characterizing Ek
h , yield,

respectively,
∫

e
(∇z − Ek

h(∇z))ν · uh = 0 ∀ e ∈ Eh(Γ) ,

and
∫

T
(∇z − Ek

h(∇z)) : ∇uh = 0 ∀T ∈ Th .

Hence, introducing the above expressions into the definition of R2 (cf. (4.15)), we obtain that

R2(z) :=
∑

e∈Eh(Γ)

∫

e
(∇z − Ek

h(∇z))ν · (g − uh) +
∑

T∈Th

∫

T

{

∇uh −
1

2µ
σd

h

}

: (∇z − Ek
h(∇z)) ,

from which, applying the Cauchy-Schwarz inequality, the approximation properties (3.13) and
(3.11) (with m = 1), and then the estimate (3.19), we deduce the upper bound (4.17). �

As a straightforward corollary of Lemmas 4.3 and 4.4 we deduce that

|R(τ )| ≤







∑

T∈Th

(

θ2
1,T + θ2

2,T

)







1/2

‖τ‖div,Ω ∀ τ ∈ H0 , (4.18)

which gives an upper bound for the supremum on the right hand side of (4.5). In this way, and
noting that

‖f + div(σh)‖2
0,Ω =

∑

T∈Th

‖f + div(σh)‖2
0,T ,

we conclude from Lemma 4.1 the reliability of the a posteriori error estimator θ (upper bound
in (4.3)).

In what follows we show the reliability of η. We begin with the analogue of Lemma 4.1.

Lemma 4.5 Let ((σ, p),u) ∈ H × Q and ((σh, ph),uh) ∈ Hh × Qh be the unique solutions of
(2.11) and (3.1), respectively. Then there exists C > 0, independent of h, such that

C ‖((σ, p),u) − ((σh, ph),uh)‖H×Q ≤ sup
τ∈H0\{θ}

S(τ )

‖τ‖div,Ω

+ ‖f + div(σh)‖0,Ω +

∥

∥

∥

∥

ph +
1

2
tr(σh)

∥

∥

∥

∥

0,Ω

,

(4.19)
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where

S(τ ) := R(τ ) −
κ

2µ

∫

Ω

{

(

ph +
1

2
tr(σh)

)

I
}

: (τ − τh) ∀ τh ∈ Hσ

0,h . (4.20)

Proof. It is similar to the proof of Lemma 4.1 and hence we omit further details here. �

Next, in order to estimate the supremum on the right hand side of (4.19), and thanks to
(4.18), it only remains to bound the extra-term given by

T (τ ) :=

∫

Ω

{

(

ph +
1

2
tr(σh)

)

I
}

: (τ − τh) .

To this end, we apply again the Helmholtz decompositions (4.11) and (4.13), and obtain that

T (τ ) =

∫

Ω

{(

ph +
1

2
tr(σh)

)

I
}

: curl(ϕ − ϕh) +

∫

Ω

{(

ph +
1

2
tr(σh)

)

I
}

: (∇z − Ek
h(∇z)) .

Note here that the expression c I (cf. (4.13)) cancells out from the definition of T since, as shown

by (3.1) with τ = 0 and q = 1, there holds

∫

Ω

(

ph +
1

2
tr(σh)

)

= 0.

Lemma 4.6 There exists C > 0, independent of h, such that

|T (τ )| ≤ C







∑

T∈Th

η2
1,T







1/2

‖τ‖div,Ω , (4.21)

where

η2
1,T = h2

T

∥

∥

∥

∥

curl
(

ph +
1

2
tr(σh)

)

∥

∥

∥

∥

2

0,T

+
∑

e∈E(T )

he

∥

∥

∥

∥

[(

ph +
1

2
tr(σh)

)

s
]

∥

∥

∥

∥

2

0,e

+ h2
T

∥

∥

∥

∥

ph +
1

2
tr(σh)

∥

∥

∥

∥

2

0,T

.

Proof. It follows with the same techniques employed in the proofs of Lemmas 4.3 and 4.4. �

As a consequence of (4.18), (4.20), and (4.21), we deduce that

|S(τ )| ≤







∑

T∈Th

(

θ2
1,T + θ2

2,T + η2
1,T

)







1/2

‖τ‖div,Ω ∀ τ ∈ H0 , (4.22)

which gives an upper bound for the supremum on the right hand side of (4.19). In this way, and
similarly as for θ, we conclude from Lemma 4.5 the reliability of the a posteriori error estimator

η (upper bound in (4.4)). Note that the term h2
T

∥

∥

∥

∥

ph +
1

2
tr(σh)

∥

∥

∥

∥

2

0,T

is not included in the final

estimation since it is dominated by

∥

∥

∥

∥

ph +
1

2
tr(σh)

∥

∥

∥

∥

2

0,T

(cf. (4.19)).
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4.2 Efficiency of the a posteriori error estimators

In this section we prove the efficiency of our a posteriori error estimators θ and η (lower bounds in
(4.3) and (4.4), respectively). In other words, we derive suitable upper bounds for the six terms
defining the local error indicator θ2

T (cf. (4.1)), and for the remaining three terms completing
the definition of the local error indicator η2

T (cf. (4.2)).

We first notice, using that f = −div(σ) and p+
1

2
tr(σ) = 0 in Ω, that there hold

‖f + div(σh)‖2
0,T = ‖div(σ − σh)‖2

0,T (4.23)

and
∥

∥

∥
ph +

1

2
tr(σh)

∥

∥

∥

2

0,T
≤ 2

{

‖p− ph‖
2
0,T + ‖σ − σh‖

2
0,T

}

. (4.24)

Next, in order to bound the terms involving the mesh parameters hT and he, we proceed
similarly as in [15] and [16] (see also [24]), and apply the localization technique based on bubble
functions, together with inverse inequalities. To this end, we now introduce further notations and
preliminary results. Given T ∈ Th and e ∈ E(T ), we let ψT and ψe be the usual triangle-bubble
and edge-bubble functions, respectively (see (1.5) and (1.6) in [34]), which satisfy:

i) ψT ∈ P3(T ), supp(ψT ) ⊆ T, ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)} , ψe = 0 on ∂T\e, and
0 ≤ ψe ≤ 1 in ωe.

We also recall from [35] that, given k ∈ N∪{0}, there exists a linear operator L : C(e) → C(T )
that satisfies L(p) ∈ Pk(T ) and L(p)|e = p ∀p ∈ Pk(e). A corresponding vectorial version of
L, that is the componentwise application of L, is denoted by L. Additional properties of ψT , ψe

and L are collected in the following lemma.

Lemma 4.7 Given k ∈ N∪{0}, there exist positive constants c1, c2, c3, and c4 , depending only
on k and the shape regularity of the triangulations (minimum angle condition), such that for
each T ∈ Th and e ∈ E(T ), there hold

‖ψT q‖
2
0,T ≤ ‖q‖2

0,T ≤ c1 ‖ψ
1/2
T q‖2

0,T ∀ q ∈ Pk(T ) , (4.25)

‖ψe L(p)‖2
0,T ≤ ‖p‖2

0,e ≤ c2 ‖ψ
1/2
e p‖2

0,e ∀ p ∈ Pk(e) , (4.26)

and
c3 he ‖p‖

2
0,e ≤ ‖ψ1/2

e L(p)‖2
0,T ≤ c4 he ‖p‖

2
0,e ∀ p ∈ Pk(e) . (4.27)

Proof. See Lemma 1.3 in [35]. �

The following inverse estimate will also be used.

Lemma 4.8 Let l, m ∈ N ∪ {0} such that l ≤ m. Then, there exists c > 0, depending only on
k, l, m and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c hl−m
T |q|l,T ∀ q ∈ Pk(T ). (4.28)
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Proof. See Theorem 3.2.6 in [18]. �

The following two lemmas are required for the terms involving the curl operator and the
tangential jumps across the edges of Th. Their proofs, which make use of Lemmas 4.7 and 4.8,
can be found in [6].

Lemma 4.9 Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In
addition, let ρ ∈ [L2(Ω)]2×2 be such that curl(ρ) = 0 on each T ∈ Th. Then, there exists c > 0,
independent of h, such that

‖curl(ρh)‖0,T ≤ c h−1
T ‖ρ − ρh‖0,T ∀T ∈ Th .

Proof. See Lemma 4.3 in [6]. �

Lemma 4.10 Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th,
and let ρ ∈ [L2(Ω)]2×2 be such that curl(ρ) = 0 in Ω. Then, there exists c > 0, independent of
h, such that

‖[ρh s]‖0,e ≤ c h−1/2
e ‖ρ − ρh‖0,ωe

∀ e ∈ Eh .

Proof. It is a slight modification of the proof of Lemma 4.4 in [6]. We omit the details here. �

We now apply Lemmas 4.9 and 4.10 to bound other four terms defining θ2
T and η2

T .

Lemma 4.11 There exist C1, C2 > 0, independent of h, such that

h2
T

∥

∥

∥
curl

{ 1

2µ
σd

h

}
∥

∥

∥

2

0,T
≤ C1

∥

∥σ − σh

∥

∥

2

0,T
∀T ∈ Th , (4.29)

and

he

∥

∥

∥

[ 1

2µ
σd

h s
]
∥

∥

∥

2

0,e
≤ C2

∥

∥σ − σh

∥

∥

2

0,ωe
∀ e ∈ Eh(Ω) . (4.30)

Proof. Applying Lemmas 4.9 and 4.10 to ρh :=
1

2µ
σd

h and ρ :=
1

2µ
σd = ∇u, and then using

the continuity of τ −→ τ d, we obtain (4.29) and (4.30), respectively. �

Lemma 4.12 There exist C3, C4 > 0, independent of h, such that

h2
T

∥

∥

∥
curl

(

ph +
1

2
tr(σh)

)

∥

∥

∥

2

0,T
≤ C3

{

‖p − ph‖
2
0,T + ‖σ − σh‖

2
0,T

}

∀T ∈ Th , (4.31)

and

he

∥

∥

∥

[

(

ph +
1

2
tr(σh)

)

s
]
∥

∥

∥

2

0,e
≤ C4

{

‖p− ph‖
2
0,ωe

+ ‖σ − σh‖
2
0,ωe

}

∀ e ∈ Eh . (4.32)

Proof. It suffices to apply Lemmas 4.9 and 4.10 to the tensors ρh :=
(

ph +
1

2
tr(σh)

)

I and

ρ :=
(

p+
1

2
tr(σ)

)

I = 0, and then use the triangle inequality. �

The remaining three terms are bounded next applying Lemmas 4.7 and 4.8.
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Lemma 4.13 There exist C5 > 0, independent of h, such that

h2
T

∥

∥

∥
∇uh −

1

2µ
σd

h

∥

∥

∥

2

0,T
≤ C5

{

‖u − uh‖
2
0,T + h2

T ‖σ − σh‖
2
0,T

}

∀T ∈ Th . (4.33)

Proof. It is a slight modification of the proof of Lemma 6.3 in [15] (see also Lemma 5.5 in
[24]). For sake of completeness we now provide the details. Given T ∈ Th we denote χT :=

∇uh −
1

2µ
σd

h in T . Then, applying the right hand side of (4.25), using that ∇u = 1
2µσd in Ω,

and integrating by parts, we find that

‖χT ‖
2
0,T ≤ c1 ‖ψ

1/2
T χT ‖

2
0,T = c1

∫

T
ψT χT :

(

∇uh −
1

2µ
σd

h

)

= c1

∫

T
ψT χT :

{

∇(uh − u) −
1

2µ

(

σd

h − σd

)}

= c1

{
∫

T
div
(

ψT χT

)

· (u − uh) +
1

2µ

∫

T
ψT χT :

(

σd − σd

h

)

}

.

Then, applying the Cauchy-Schwarz inequality, the inverse estimate (4.28), the left hand side of
(4.25), and the continuity of τ −→ τ d, we get

‖χT ‖
2
0,T ≤ C

{

h−1
T ‖u − uh‖0,T + ‖σ − σh‖0,T

}

‖χT ‖0,T ,

which yields

‖χT ‖0,T ≤ C
{

h−1
T ‖u − uh‖0,T + ‖σ − σh‖0,T

}

.

This inequality implies (4.33) and completes the proof. �

In order to bound the boundary terms given by he ‖g−uh‖
2
0,e, e ∈ Eh(Γ), we need to recall

a discrete trace inequality. In fact, as established by Theorem 3.10 in [1] (see also eq. (2.4) in
[2]), there exists c > 0, depending only on the shape regularity of the triangulations, such that
for each T ∈ Th and e ∈ E(T ), there holds

‖v‖2
0,e ≤ c

{

h−1
e ‖v‖2

0,T + he |v|
2
1,T

}

∀ v ∈ H1(T ) . (4.34)

Lemma 4.14 There exist C6 > 0, independent of h, such that

he ‖g − uh‖
2
0,e ≤ C6

{

‖u − uh‖
2
0,T + h2

T ‖σ − σh‖
2
0,T

}

∀ e ∈ Eh(Γ) , (4.35)

where T is the triangle of Th having e as en edge.

Proof. Applying the inequality (4.34) together with the fact that u = g on Γ and ∇u =
1

2µ
σd

in Ω, we easily obtain that

‖g − uh‖
2
0,e = ‖u− uh‖

2
0,e ≤ c

{

h−1
e ‖u− uh‖

2
0,T + he |u − uh|

2
1,T

}
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= c

{

h−1
e ‖u− uh‖

2
0,T + he

∥

∥

∥

1

2µ
σd −∇uh

∥

∥

∥

2

0,T

}

≤ C

{

h−1
e ‖u − uh‖

2
0,T + he ‖σ − σh‖

2
0,T + he

∥

∥

∥
∇uh −

1

2µ
σd

h

∥

∥

∥

2

0,T

}

,

which, using that he ≤ hT , gives

he ‖g − uh‖
2
0,e ≤ C

{

‖u − uh‖
2
0,T + h2

T ‖σ − σh‖
2
0,T + h2

T

∥

∥

∥
∇uh −

1

2µ
σd

h

∥

∥

∥

2

0,T

}

.

This estimate and the upper bound for h2
T

∥

∥

∥
∇uh − 1

2µ σd

h

∥

∥

∥

2

0,T
(cf. Lemma 4.13) yield (4.35),

which ends the proof. �

Lemma 4.15 Assume that g is piecewise polynomial. Then there exist C7 > 0, independent of
h, such that

he

∥

∥

∥

dg

ds
−

1

2µ
σd

h s
∥

∥

∥

2

0,e
≤ C7 ‖σ − σh‖

2
0,Te

∀ e ∈ Eh(Γ) , (4.36)

where Te is the triangle of Th having e as en edge.

Proof. Given e ∈ Eh(Γ) we denote χe :=
dg

ds
−

1

2µ
σd

h s on e. Then, applying (4.26), the

extension operator L : [C(e)]2 → [C(T )]2, and the fact that
dg

ds
= ∇u s, we obtain that

‖χe‖
2
0,e ≤ c2 ‖ψ

1/2
e χe‖

2
0,e = c2

∫

e
ψe χe ·

(

dg

ds
−

1

2µ
σd

h s

)

= c2

∫

∂Te

ψe L(χe) ·

{

(

∇u−
1

2µ
σd

h

)

s

}

.

(4.37)

Now, integrating by parts and using that ∇u =
1

2µ
σd in Ω, we find that

∫

∂Te

ψe L(χe) ·

{

(

∇u−
1

2µ
σd

h

)

s

}

=

∫

Te

curl(ψe L(χe)) :
( 1

2µ
σd −

1

2µ
σd

h

)

+

∫

Te

ψe L(χe) · curl
{ 1

2µ
σd

h

}

.

(4.38)

Then, applying the Cauchy-Schwarz inequality, the inverse estimate (4.28), the continuity of
τ −→ τ d, and noting, thanks to the fact that 0 ≤ ψe ≤ 1 and the right-hand side of (4.27), that

‖ψe L(χe)‖0,Te ≤ ‖ψ1/2
e L(χe)‖0,Te ≤ c h1/2

e ‖χe‖0,e ,

we deduce from (4.37) and (4.38) that

‖χe‖
2
0,e ≤ C

{

h−1
Te

‖σ − σh‖0,Te +
∥

∥

∥
curl

{ 1

2µ
σd

h

}
∥

∥

∥

0,Te

}

h1/2
e ‖χe‖0,e ,
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which, using that he ≤ hTe , yields

he ‖χe‖
2
0,e ≤ C

{

‖σ − σh‖
2
0,Te

+ h2
Te

∥

∥

∥
curl

{ 1

2µ
σd

h

}
∥

∥

∥

2

0,Te

}

.

This inequality and the upper bound for h2
Te

∥

∥

∥
curl

{ 1

2µ
σd

h

}∥

∥

∥

2

0,Te

(cf. Lemma 4.11) imply (4.36),

which completes the proof. �

If g were not piecewise polynomial but sufficiently smooth, then higher order terms given
by the errors arising from suitable polynomial approximations would appear in (4.36). This
explains the eventual expression h.o.t. in (4.3) and (4.4).

Finally, the efficiency of θ and η follows straightforwardly from estimates (4.23) and (4.24),
together with Lemmas 4.11 throughout 4.15, after summing up over T ∈ Th and using that the
number of triangles on each domain ωe is bounded by two.

5 Numerical results

In this section we present three numerical examples illustrating the performance of the mixed
finite element schemes (3.1) and (3.2), confirming the reliability and efficiency of the a posteriori
error estimators η and θ derived in Section 4, and showing the behaviour of the associated
adaptive algorithms. In all the computations we consider the specific finite element subspaces
Hσ

0,h, Hp
h, and Qh given by (3.15) with k = 0. As in [25] and [22], the zero integral mean

condition for functions of the space Hσ

0,h is implemented in (3.1) and (3.2) by introducing a real
Lagrange multiplier.

In what follows, N stands for the total number of degrees of freedom (unknowns) of (3.1)
and (3.2), which can be proved to behave asymptotically as 6 and 5 times, respectively, the
number of elements of each triangulation. Also, the individual and total errors are given by

e(σ) := ‖σ − σh‖div,Ω , e(p) := ‖p− ph‖0,Ω , e(u) := ‖u − uh‖0,Ω ,

e(σ,u) :=
{

(e(σ))2 + (e(u))2
}1/2

, and e(σ, p,u) :=
{

(e(σ))2 + (e(p))2 + (e(u))2
}1/2

,

whereas the effectivity indexes with respect to θ and η are defined, respectively, by

eff(θ) := e(σ,u)/θ and eff(η) := e(σ, p,u)/η .

Then, we define the experimental rates of convergence

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r(σ,u) :=
log(e(σ,u)/e′(σ,u))

log(h/h′)
, and r(σ, p,u) :=

log(e(σ, p,u)/e′(σ, p,u))

log(h/h′)
,

where e and e′ denote the corresponding errors at two consecutive triangulations with mesh
sizes h and h′, respectively. However, when the adaptive algorithm is applied (see details be-
low), the expression log(h/h′) appearing in the computation of the above rates is replaced by
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− 1
2 log(N/N ′), where N and N ′ denote the corresponding degrees of freedom of each triangu-

lation.

The examples to be considered in this section are described next. In all of them we take
the kinematic viscosity µ = 1. The first example is employed to illustrate the performance of
the mixed finite element schemes and to confirm the reliability and efficiency of the a posteriori
error estimators. Then, Example 2 is utilized to show the behaviour of the adaptive algorithm
associated with η, which apply the following procedure from [34]:

1) Start with a coarse mesh Th.

2) Solve the discrete problem (3.1) for the actual mesh Th.

3) Compute ηT for each triangle T ∈ Th.

4) Evaluate stopping criterion and decide to finish or go to next step.

5) Use blue-green procedure to refine each T ′ ∈ Th whose indicator ηT ′ satisfies

ηT ′ ≥
1

2
max{ηT : T ∈ Th }

6) Define resulting mesh as actual mesh Th and go to step 2.

Finally, in Example 3 we consider the standard test case given by a driven cavity.

In Example 1 we consider Ω =]0, 1[2 and choose the data f and g so that the exact solution
is given by

u(x) :=
1

8πµ

{

− log r

(

1
0

)

+
1

r
2

(

(x1 − 2)2

(x1 − 2)(x2 − 2)

)}

and p(x) =
(x1 − 2)

2πr2
− p0 ,

with r =
√

(x1 − 2)2 + (x2 − 2)2, for all x := (x1, x2) ∈ Ω, where p0 ∈ R is such that
∫

Ω p = 0
holds. At this point we recall from (2.5) and the fact that σ ∈ H0, that an admissible solution p
must satisfy

∫

Ω p = 0. Note in this example that (u, p) corresponds to the fundamental solution
located at the point (2, 2), which is outside Ω̄. Hence, f = 0, u is divergence free, and (u, p) is
regular in the whole domain Ω.

In Example 2 we consider Ω as the L-shaped domain ] − 1, 1[2 − ]0, 1[2 and choose the data
f and g so that the exact solution is given by

u(x) :=
(

(x1 − 0.1)2 + (x2 − 0.1)2
)−1/2

(

x2 − 0.1
0.1 − x1

)

and p(x) =
1

x2 − 1.1
− p0 ,

for all x := (x1, x2) ∈ Ω. We note that u is divergence free in Ω. In addition, it is clear that
u and p are singular at (0.1, 0.1) and along the line x2 = 1.1, respectively. Hence, we should
expect regions of high gradients around the origin and along the line x2 = 1.0.

In Example 3 we take Ω =]0, 1[2, f = 0 in Ω, and

g(x1, x2) :=

{

(sin(π x1), 0) if 0 < x1 < 1, x2 = 1
0 otherwise .

25



Our numerical results were obtained in a Pentium Xeon computer with dual processors,
using a MATLAB code. Since the choice of κ in (3.1) depends on the unknown constant c1 from
Lemma 2.4 we simply take κ = µ, which worked out well in the computations shown below.

In Tables 5.1 - 5.2 and Figure 5.1, we summarize the convergence history of the mixed
finite element schemes (3.1) and (3.2) as applied to Example 1, for sequences of quasi-uniform
triangulations of the domain. We observe there that the rate of convergence O(h) predicted by
Theorems 3.4 and 3.2 (when s = 1) is attained by all the unknowns. In addition, though we
do not present the corresponding results here, we remark that the same Table 5.1 (up to the
first 6 and 7 digits) is obtained with κ ∈

{

µ/2, 2µ, µ/10, 10µ, µ/100, 100µ
}

, which suggests
the robustness of (3.1) with respect to the choice of this parameter. According to this fact, the
hypothesis on κ established by Theorem 3.3, that is 0 < κ < c1, seems to be more technical
than truly necessary for practical computations. Next, we remark the good behaviour of the a
posteriori error estimators in sequences of quasi-uniform meshes. Indeed, we notice from Tables
5.1 and 5.2 that the effectivity indexes eff(η) and eff(θ) remain always in a neighborhood of
0.45 and 0.42, respectively, which illustrates the reliability and efficiency of η and θ. Finally, in
order to emphasize the good performance of our schemes, in Figures 5.2 - 5.4 we display some
components of the approximate and exact solutions for Example 1.

Next, in Tables 5.3 - 5.4 and Figure 5.5, we provide the convergence history of the uniform and
adaptive schemes (3.1) with κ = µ, as applied to Example 2. We observe here, as expected, that
the errors of the adaptive procedure decrease faster than those obtained by the quasi-uniform
one. This fact is better illustrated in Figure 5.5 where we display the total errors e(σ, p,u)
vs. the degrees of freedom N for both refinements. Actually, looking at the experimental
rates of convergence provided in the tables, we confirm that the adaptive method is able to
recover the quasi-optimal O(h) for the total error. In addition, the effectivity indexes remain
again bounded from above and below, which confirms the reliability and efficiency of η for the
associated adaptive algorithm. Some intermediate meshes obtained with the adaptive refinement
are displayed in Figure 5.6. Note that the adapted meshes concentrate the refinements around
the origin and the line x2 = 1, which says that the method is able to recognize the regions with
high gradients of the solutions. In order to illustrate the good quality of the solutions provided
by the adaptive scheme, in Figures 5.7 - 5.8 we display two components of the approximate and
exact solutions for Example 2.

Finally, in Table 5.5 we provide the convergence history of the adaptive scheme (3.1) with
κ = µ as applied to the driven cavity (Example 3). The errors and experimental rates of
convergence shown there are computed by considering the discrete solution obtained with the
finest mesh (N = 331176) as the exact solution. Then, in Figure 5.9 we display the individual
and total errors vs. the degrees of freedom N , and observe that they all behave approximately
of the same order. Two intermediate meshes obtained with the adaptive refinement and some
components of the approximate solutions are displayed in Figures 5.10 and 5.11, respectively.

We end this section by remarking that very similar numerical results to those presented
here for Examples 2 and 3 are obtained with the mixed finite element scheme (3.2) and the a
posteriori error estimator θ. Therefore, there is enough support to consider the mixed finite
element schemes (3.1) and (3.2) together with the associated adaptive algorithms, as valid and
competitive alternatives to solve the stationary Stokes equations.
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Table 5.1: Example 1, uniform scheme (3.1) with κ = µ

N h e(σ) e(p) e(u) e(σ, p,u) r(σ, p,u) eff(θ)

3137 0.06250 1.751E-03 7.542E-04 3.989E-04 1.948E-03 − 0.472
3961 0.05556 1.551E-03 6.605E-04 3.546E-04 1.723E-03 1.045 0.467
4881 0.05000 1.392E-03 5.873E-04 3.191E-04 1.544E-03 1.040 0.464
5897 0.04545 1.262E-03 5.287E-04 2.901E-04 1.399E-03 1.036 0.461
7009 0.04167 1.154E-03 4.807E-04 2.659E-04 1.278E-03 1.032 0.458
8217 0.03846 1.064E-03 4.408E-04 2.454E-04 1.177E-03 1.029 0.457
9521 0.03571 9.865E-04 4.069E-04 2.279E-04 1.091E-03 1.026 0.455

10921 0.03333 9.196E-04 3.780E-04 2.127E-04 1.017E-03 1.024 0.454
12417 0.03125 8.612E-04 3.529E-04 1.994E-04 9.518E-04 1.022 0.453
14009 0.02941 8.098E-04 3.309E-04 1.876E-04 8.947E-04 1.020 0.452
15697 0.02778 7.643E-04 3.115E-04 1.772E-04 8.441E-04 1.019 0.451
19361 0.02500 6.869E-04 2.789E-04 1.595E-04 7.584E-04 1.017 0.450
27841 0.02083 5.714E-04 2.307E-04 1.329E-04 6.304E-04 1.014 0.448
37857 0.01786 4.892E-04 1.968E-04 1.139E-04 5.395E-04 1.011 0.446
49409 0.01562 4.277E-04 1.716E-04 9.967E-05 4.715E-04 1.008 0.446
77121 0.01250 3.418E-04 1.367E-04 7.974E-05 3.767E-04 1.006 0.444

110977 0.01042 2.847E-04 1.137E-04 6.645E-05 3.136E-04 1.005 0.444
150977 0.00892 2.439E-04 9.726E-05 5.695E-05 2.687E-04 1.004 0.443
197121 0.00781 2.133E-04 8.501E-05 4.983E-05 2.350E-04 1.003 0.443
249409 0.00694 1.896E-04 7.551E-05 4.430E-05 2.088E-04 1.002 0.443
307841 0.00625 1.706E-04 6.792E-05 3.987E-05 1.879E-04 1.002 0.443
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Figure 5.1: Example 1, uniform scheme (3.1) with κ = µ
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Table 5.2: Example 1, uniform scheme (3.2)

N h e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u) eff(θ)

2625 0.06250 1.751E-03 − 3.989E-04 − 1.796E-03 − 0.435
3313 0.05556 1.551E-03 1.032 3.546E-04 1.003 1.591E-03 1.030 0.431
4081 0.05000 1.392E-03 1.027 3.191E-04 1.002 1.428E-03 1.027 0.429
4929 0.04545 1.262E-03 1.026 2.901E-04 1.002 1.295E-03 1.025 0.427
5857 0.04167 1.154E-03 1.023 2.659E-04 1.001 1.185E-03 1.022 0.425
6865 0.03846 1.064E-03 1.021 2.454E-04 1.001 1.092E-03 1.020 0.423
7953 0.03571 9.865E-04 1.019 2.279E-04 1.001 1.012E-03 1.018 0.422
9121 0.03333 9.196E-04 1.018 2.127E-04 1.001 9.439E-04 1.017 0.421

10369 0.03125 8.612E-04 1.016 1.994E-04 1.001 8.840E-04 1.015 0.420
11697 0.02941 8.098E-04 1.015 1.876E-04 1.001 8.313E-04 1.014 0.420
13105 0.02778 7.643E-04 1.014 1.772E-04 1.001 7.845E-04 1.013 0.419
16161 0.02500 6.869E-04 1.012 1.595E-04 1.000 7.052E-04 1.012 0.418
23233 0.02083 5.714E-04 1.010 1.329E-04 1.000 5.867E-04 1.009 0.417
31585 0.01786 4.892E-04 1.008 1.139E-04 1.000 5.023E-04 1.007 0.416
41217 0.01562 4.277E-04 1.006 9.967E-05 1.000 4.392E-04 1.006 0.415
64321 0.01250 3.418E-04 1.005 7.974E-05 1.000 3.510E-04 1.004 0.414
92545 0.01042 2.847E-04 1.003 6.645E-05 1.000 2.923E-04 1.003 0.414

125889 0.00892 2.439E-04 1.003 5.695E-05 1.000 2.504E-04 1.002 0.413
164353 0.00781 2.133E-04 1.002 4.983E-05 1.000 2.191E-04 1.002 0.413
207937 0.00694 1.896E-04 1.002 4.430E-05 1.000 1.947E-04 1.002 0.413
256641 0.00625 1.706E-04 1.001 3.987E-05 1.000 1.752E-04 1.001 0.413

Figure 5.2: Example 1, approximate (left) and exact σ22

for uniform scheme (3.1) with κ = µ and N = 27841
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Figure 5.3: Example 1, approximate (left) and exact p
for uniform scheme (3.1) with κ = µ and N = 27841

Figure 5.4: Example 1, approximate (left) and exact u2

for uniform scheme (3.1) with κ = µ and N = 27841
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Table 5.3: Example 2, uniform scheme (3.1) with κ = µ

N h e(σ) e(p) e(u) e(σ, p,u) r(σ, p,u) eff(η)

45 1.0000 1.358E+01 1.558E-00 5.903E-01 1.368E+01 − 0.816
245 0.5000 1.569E+01 1.368E-00 2.890E-01 1.575E+01 − 0.949
541 0.3333 1.401E+01 1.129E-00 1.942E-01 1.406E+01 0.280 0.967
993 0.2500 1.198E+01 9.174E-01 1.451E-01 1.202E+01 0.546 0.967

1457 0.2000 1.122E+01 8.247E-01 1.153E-01 1.125E+01 0.296 0.972
2161 0.1666 9.846E+00 6.603E-01 9.622E-02 9.869E+00 0.719 0.969
3057 0.1429 9.088E+00 6.122E-01 8.076E-02 9.109E+00 0.519 0.971
4037 0.1250 8.090E+00 5.325E-01 6.875E-02 8.107E+00 0.873 0.971
4897 0.1111 7.670E+00 5.258E-01 6.301E-02 7.688E+00 0.450 0.972
5889 0.1000 6.960E+00 4.809E-01 5.523E-02 6.977E+00 0.922 0.974
7433 0.0909 6.798E+00 4.381E-01 5.100E-02 6.812E+00 0.251 0.974
8881 0.0833 6.266E+00 3.923E-01 4.666E-02 6.279E+00 0.937 0.972

10557 0.0769 5.748E+00 3.583E-01 4.321E-02 5.759E+00 1.078 0.971
11981 0.0714 5.674E+00 3.587E-01 - 4.008E-02 5.685E+00 0.176 0.975
13729 0.0667 5.215E+00 3.297E-01 3.720E-02 5.226E+00 1.220 0.974
15465 0.0625 4.849E+00 2.977E-01 3.474E-02 4.858E+00 1.132 0.972
17729 0.0588 4.561E+00 2.833E-01 3.227E-02 4.569E+00 1.010 0.974
19933 0.0556 4.271E+00 2.655E-01 3.022E-02 4.280E+00 1.147 0.973
24929 0.0500 3.990E+00 2.484E-01 2.756E-02 3.998E+00 0.646 0.974
29721 0.0455 3.615E+00 2.197E-01 2.464E-02 3.622E+00 1.037 0.974
39213 0.0400 3.207E+00 1.903E-01 2.182E-02 3.212E+00 0.939 0.972
51425 0.0345 2.712E+00 1.693E-01 1.884E-02 2.717E+00 1.127 0.973
75665 0.0286 2.317E+00 1.394E-01 1.566E-02 2.321E+00 0.839 0.973

109405 0.0238 1.912E+00 1.156E-01 1.289E-02 1.916E+00 1.053 0.974
153017 0.0200 1.635E+00 9.575E-02 1.093E-02 1.638E+00 0.898 0.972
193337 0.0179 1.503E+00 8.728E-02 9.685E-03 1.506E+00 0.744 0.973
246529 0.0159 1.256E+00 7.517E-02 8.612E-03 1.258E+00 1.524 0.971

Table 5.4: Example 2, adaptive scheme (3.1) with κ = µ

N e(σ) e(p) e(u) e(σ, p,u) r(σ, p,u) eff(η)

45 1.358E+01 5.903E-01 1.558E-00 1.368E+01 − 0.816
133 1.484E+01 3.934E-01 1.734E-00 1.495E+01 − 0.936
264 1.298E+01 2.946E-01 1.306E-00 1.305E+01 0.396 0.949
431 1.112E+01 2.256E-01 1.144E-00 1.118E+01 0.631 0.942

1007 7.810E+00 1.701E-01 8.085E-01 7.853E+00 0.833 0.947
1805 5.362E+00 1.668E-01 6.791E-01 5.408E+00 1.278 0.927
3906 3.428E+00 1.131E-01 4.232E-01 3.456E+00 1.160 0.911
8326 2.394E+00 7.307E-02 2.916E-01 2.412E+00 0.950 0.908

14367 1.837E+00 5.602E-02 2.035E-01 1.849E+00 0.975 0.905
32400 1.206E+00 3.684E-02 1.338E-01 1.214E+00 1.035 0.898
55793 9.374E−01 2.722E-02 9.699E-02 9.428E−01 0.930 0.902

125406 6.200E−01 1.883E-02 6.727E-02 6.239E−01 1.019 0.893
222070 4.753E−01 1.368E-02 4.816E-02 4.779E−01 0.933 0.897
500376 3.115E−01 9.513E-03 3.332E-02 3.134E−01 1.039 0.886
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Figure 5.5: Example 2, e(σ, p,u) vs. N for uniform/adaptive schemes (3.1) with κ = µ

Figure 5.6: Example 2, adapted intermediate meshes with 1805, 8326, 14367,
and 55793 degrees of freedom for scheme (3.1) with κ = µ
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Figure 5.7: Example 2, approximate (left) and exact σ11

for adaptive scheme (3.1) with κ = µ and N = 14367
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Figure 5.8: Example 2, approximate (left) and exact u1

for adaptive scheme (3.1) with κ = µ and N = 14367
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Table 5.5: Example 3, adaptive scheme (3.1) with κ = µ

N e(σ) e(p) e(u) e(σ, p,u) r(σ, p,u)

57 8.496E-00 5.492E-00 2.039E-01 1.012E+01 −
169 6.127E-00 3.898E-00 1.338E-01 7.263E+00 0.610
370 4.294E-00 2.681E-00 7.800E-02 5.063E+00 0.921

1035 2.605E-00 1.573E-00 4.586E-02 3.043E+00 0.990
1853 1.681E-00 9.560E-01 3.127E-02 1.934E+00 1.558
4750 9.902E-01 5.306E-01 1.986E-02 1.124E+00 1.154
8949 6.824E-01 3.418E-01 1.459E-02 7.633E−01 1.221

20382 4.127E-01 1.936E-01 9.596E-03 4.559E−01 1.252
39849 2.848E-01 1.264E-01 6.642E-03 3.116E−01 1.135
84440 1.755E-01 7.511E-02 4.257E-03 1.909E−01 1.305

163886 1.060E-01 4.393E-02 2.513E-03 1.147E−01 1.536
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Figure 5.9: Example 3, adaptive scheme (3.1) with κ = µ

Figure 5.10: Example 3, adapted intermediate meshes with 8949
and 39849 degrees of freedom for scheme (3.1) with κ = µ
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and u (bottom) for adaptive scheme (3.1) with κ = µ and N = 20382

References

[1] Agmon, S., Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, New
Jersey, 1965.

[2] Arnold, D.N., An interior penalty finite element method with discontinuous elements.
SIAM Journal on Numerical Analysis, vol. 19, 4, pp. 742-760, (1982).

[3] Arnold, D.N., Brezzi, F. and Douglas, J., PEERS: A new mixed finite element
method for plane elasticity. Japan Journal of Applied Mathematics, vol. 1, pp. 347-367,
(1984).

[4] Arnold, D.N., Douglas, J. and Gupta, Ch.P., A family of higher order mixed finite
element methods for plane elasticity. Numerische Mathematik, vol. 45, pp. 1-22, (1984).

[5] Arnold, D.N. and Winther, R., Mixed finite elements for elasticity. Numerische Math-
ematik, vol. 92, 3, pp. 401-419, (2002).
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2

MA)

PRE-PUBLICACIONES 2009

2009-03 Gabriel N. Gatica, George C. Hsiao, Salim Meddahi: A coupled mixed finite
element method for the interaction problem between electromagnetic field and elastic
body

2009-04 Anahi Gajardo: The complexity of a particular shift associated to a Turing machine
2009-05 Stefan Berres, Raimund Bürger, Alice Kozakevicius: Numerical approxi-

mation of oscillatory solutions of hyperbolic-elliptic systems of conservation laws by
multiresolution schemes

2009-06 Ramiro Acevedo, Salim Meddahi: An E-based mixed-FEM and BEM coupling
for a time-dependent eddy current problem

2009-07 Rais Ahmad, Fabián Flores-Bazán, Syed S. Irfan: On completely generalized
multi-valued co-variational inequalities involving strongly accretive operators

2009-08 Gabriel N. Gatica, Ricardo Oyarzúa, Francisco J. Sayas: Analysis of fully-
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