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Relaxing the hypotheses

of Bielak–MacCamy’s BEM–FEM coupling

Gabriel N. Gatica∗ George C. Hsiao† Francisco–Javier Sayas‡

Abstract

In this paper we show that the quasi–symmetric coupling of Finite and Boundary Ele-
ments of Bielak and MacCamy can be freed of two very restricting hypotheses that appeared
in the original paper: the coupling boundary can be taken polygonal/polyhedral and cou-
pling can be done using the normal stress instead of the pseudostress. We will do this by
first considering a model problem associated to the Yukawa equation, where we prove how
compactness arguments can be avoided to show stability of Galerkin discretizations of a cou-
pled system in the style of Bielak–MacCamy’s. We also show how discretization properties
are robust in the continuation parameter that appears in the formulation. This analysis is
carried out using a new and very simplified proof of the ellipticity of the Johnson–Nédélec
BEM–FEM coupling operator. Finally, we show how to apply the techniques that we have
fully developed in the model problem to the linear elasticity system.

1 Introduction

The idea of coupling finite and boundary elements goes back to the late years of the decade
of the seventies, just some years after the first mathematically rigorous proofs of ellipticity of
some boundary integral equations of the first kind had appeared [21, 12], a fact that consider-
ably widened the area of boundary element methods, taking it one step closer to the world of
numerical partial differential equations and one step further away from the realm of numerical
integral equations. The simplest and in principle most näıf way of coupling BEM and FEM can
be found in [14, 2, 3] or [25] for example. It uses Green’s Third Identity to create a non–local
boundary condition that is coupled to an interior Neumann solver. The interior Neumann solver
uses finite elements, whereas the integral identity is discretized using a finite element space on
the artificial boundary that has been introduced to cut–off the computational domain.

This kind of methods has been used ever since (they are often referred to as non–symmetric
or one–equation coupling methods) but they appeared to have a serious drawback. From the way
their analysis was carried out, using Fredholm theory, it seemed not to be possible to prove that
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Universidad de Concepción, Casilla C–160, Concepción, Chile. E–mail: ggatica@ing-mat.udec.cl. Research
partially supported by FONDAP and BASAL projects CMM, Universidad de Chile and CI2MA

†Department of Mathematical Sciences, University of Delaware, Newark, DE 19176–2553, USA. E–mail:
hsiao@math.udel.edu
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the Galerkin schemes under study were stable when the coupling boundary was non–smooth,
which is not optimal from the point of view of the finite elements discretization. Moreover, the
methods looked not to be applicable at all for the elasticity system. Both problems reflect the
lack of compactness of a certain boundary integral operator. It has to be admitted that the
drawback was mainly theoretical and that no failure of the non–symmetric coupled schemes was
reported by users of the method in situations where the smoothness hypotheses were not met.

The paper [1] solved partially the second problem, by using as underlying transmission prob-
lem one that employed the displacement field as well as the normal pseudostress (the physical
and natural problem would require coupling in the normal stress, but nothing seemed to be
analyzable with that system). However, the coupling boundary was still required to be smooth
enough.

A way around both problems was found in [7] and [10], by using two integral identities
on the coupling boundary instead of only one. These papers gave birth to the rich family of
symmetric couplings of finite and boundary element methods, a family that has grown since
then, including coupling methods with mixed [18], [5] or non–conforming FEM [4] among other
interior solvers, such as Discontinuous Galerkin methods. A very general frame that includes
most of these methods has been presented in [6], mixing ideas of hybridizable methods with the
theoretical tools of boundary integral equations. Early surveys on different ways of coupling
BEM and FEM appear in [11] and in the introductory chapter of [9].

The theoretical panorama has recently changed with [22]. In this paper it was proved that
all Galerkin methods for Johnson–Nédélec’s coupling are stable without any recourse to Fred-
holm theory, thus allowing the interface to be polygonal/polyhedral. The same technique gives
theoretical support to the application of the method to the linear elasticity equations. In a way,
this result restores the importance of the non–symmetric BEM–FEM coupling as competitor
of the symmetric coupling. The technique employed in [22] is based on rewritting the discrete
equations as a non–standard transmission problem in free space, an idea that had already been
used in [16] to deal with BEM and BEM–FEM discretizations in the resolvent set of the Laplace
operator. It was also the origin of the method in [19], which gives a non–symmetric coupling of
BEM with mixed FEM on any Lipschitz interface.

In this paper we advance in the program of redoing the analysis of the original non–symmetric
BEM–FEM coupling schemes by eliminating the very restricting hypothesis of the smoothness
of coupling interface. We now undertake the task of revising Bielak and MacCamy’s coupling [1],
renamed as quasi–symmetric coupling in the monograph [9]. Because of the way we are going
to approach the proof, the result will also hold true for the elasticity system, with coupling on
the normal stress instead of on the pseudostress.

As a novelty, the present paper includes a new and extremely simplified proof of the main
result in [22], by showing directly ellipticity of the operator equation (Theorem 3.1 below). This
is done by exploiting the same idea that was underlying in the analysis in [22]: eliminate variables
on the interface and move them to free space by the use of potentials. This is, after all, the
gist of the original analysis of ellipticity of the single layer integral operator in [21]. Note that
an alternative proof of this ellipticity result has been recently given by Olaf Steinbach in [23],
using an operator expression of the Steklov–Poincaré operator (based on a Schur complement
of a perturbation of the Calderón projector) and a theorem on contractivity of some integral
operator of the second kind proved in [24].

As in [22], we will work with the Yukawa operator u 7→ −∆u+u in free space to avoid unim-
portant annoyances about boundary conditions, energy–free solutions and behavior at infinity.
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The modifications needed to deal with the Laplace operator are detailed in the final section of
[22]: they involve the use of weighted Sobolev spaces and a very minor additional hypothesis
on the discrete spaces (they are required to include constant functions), which is needed to deal
with energy–free solutions and to tackle constant behavior at infinity in the two dimensional
case. In this paper we will also show how to handle boundary conditions on an interior obstacle.
The Bielak–MacCamy BEM–FEM coupling depends on a parameter 0 < δ < 1. We will show
that the convergence properties are uniform in this parameter. The limiting values are precisely
the Johnson–Nédélec BEM–FEM coupling and its transpose, both including a posprocessing of
the solution to approximate another variable. An application to an exterior problem in three
dimensional elasticity will be given in a final section to show how the technique applies with
small modifications to very general situations.

The paper is organized as follows. In Section 2 we introduce the Bielak–MacCamy coupling
applied to the Yukawa transmission problem as a convex combination of two postprocessed non–
symmetric coupling methods. We also state the main result of this paper (Theorem 2.2). In
Section 3, we prove this result by first giving a simple proof of the ellipticity of the bilinear form
associated to the Johnson–Nédélec non–symmetric coupling (Theorem 3.1) in a new and very
simple way. In Section 4 we show how to prove equivalent results when the problem is exterior
to a bounded domain, that is when there are given boundary conditions on an interior obstacle.
Finally, in Section 5 we show a simple extension to an exterior problem in linear elasticity.

We end this section mentioning some background material and notation used throughout this
article. For basic results on Sobolev spaces on Lipschitz domains as well as on the elementary
properties of layer potentials, a convenient reference is [17]. The norm of the Sobolev space
H1(O) (O being an open set in Rd) will be denoted ‖ · ‖1,O. The norms of the fractional
Sobolev spaces H±1/2(Γ) (Γ being a closed Lipschitz surface) will be denoted ‖ · ‖±1/2,Γ. Note
that the spaces H±1/2(Γ) are reciprocally dual. We will employ angled brackets 〈 · , · 〉 for the
H−1/2(Γ)×H1/2(Γ) duality product. The identification of H1/2(Γ) as the dual space of H−1/2(Γ)
will be used without further warning: for instance we will identify a bounded linear functional
` : H−1/2(Γ) → R with an element of β ∈ H1/2(Γ), so that `(µ) = 〈µ, β〉 for all µ ∈ H−1/2(Γ).

2 BEM–FEM coupling

The problem we are going to consider in a first instance is a transmission problem in free space
for the Yukawa equation. The geometrical setting is the following. We assume that Ω− is a
bounded Lipschitz domain (or the finite union of Lipschitz domains), with boundary Γ and such
that the exterior domain Ω+ := Rd \ Ω− (d = 2 or 3) is connected.

The transmission problem is: find u ∈ H1(Rd \ Γ) such that

−∆u + u = f in Ω−, (2.1a)
[γu] = β0 on Γ, (2.1b)

[∂νu] = β1 on Γ, (2.1c)
−∆u + u = 0 in Ω+. (2.1d)

The interface conditions involve the following jump operators

[γu] = γ−u− γ+u, [∂νu] = ∂−ν u− ∂+
ν u,
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where γ± : H1(Ω±) → H1/2(Γ) is the trace operator and ∂±ν is the interior/exterior normal
derivative, with the normal vector pointing from Ω− to Ω+. The unsuperscripted symbol γ will
be used whenever there is no doubt on which trace we are taking, be it because the function
is only defined on one side of Γ or because the jump across the interface is zero. The basic
assumptions on the data functions are: f ∈ L2(Ω−), β0 ∈ H1/2(Γ) and β1 ∈ H−1/2(Γ).

There are two choices for representing the solution of −∆u + u = 0 in Ω+: the use of
potentials (indirect method) or the use of Green’s formula (direct method). As explained in [9],
when applied to the transmission problem at hand, they lead to mutually transposed coupled
systems and Bielak–MacCamy’s method can be understood as a convex combination of post–
processed versions of both possibilities.

2.1 Potentials and integral operators

We first introduce the single and double layer potentials

Sψ :=
∫

Γ
E( · ,y)ψ(y)dΓ(y), (2.2a)

Dϕ :=
∫

Γ
∂ν(y)E( · ,y)ϕ(y)dΓ(y), (2.2b)

where

E(x,y) :=

{
K0(|x− y|)/(2π), when d = 2,

exp(−|x− y|)/(4π|x− y|), when d = 3.

The function K0 is the Macdonald function (or modified Bessel function of the second kind) of
order zero. Both potentials can be interpreted as solutions of transmission problems. For single
layer potentials we have the equivalence

u ∈ H1(Rd \ Γ)

−∆u + u = 0 in Rd \ Γ

[γu] = 0, [∂νu] = ψ


 ⇐⇒

[
ψ ∈ H−1/2(Γ),

u = Sψ,
(2.3)

which for double layer potentials becomes

u ∈ H1(Rd \ Γ)

−∆u + u = 0 in Rd \ Γ

[γu] = −ϕ, [∂νu] = 0


 ⇐⇒

[
ϕ ∈ H1/2(Γ)

u = Dϕ.
(2.4)

To describe the traces of the layer potentials we will use two integral operators

Vψ :=
∫

Γ
E( · ,y)ψ(y)dΓ(y), (2.5a)

Kϕ :=
∫

Γ
∂ν(y)E( · ,y)ϕ(y)dΓ(y), (2.5b)

that define functions in H1/2(Γ) for arbitrary densities ψ ∈ H−1/2(Γ) and ϕ ∈ H1/2(Γ). The
traces of the layer potentials are

γ±Sψ = Vψ, γ±Dϕ = ±1
2ϕ + Kϕ. (2.6)
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Finally, we will also use the transpose Kt : H−1/2(Γ) → H−1/2(Γ), that allows us to describe
the normal derivatives of the single layer potential:

∂±ν Sψ = ∓1
2ψ + Ktψ. (2.7)

2.2 Two coupling schemes and their postprocessings

The only operator left to define the coupling procedures is A : H1(Ω−) → H1(Ω−)′, given by

(Au)(v) := a(u, v) :=
∫

Ω−

(
∇u · ∇v + u v

)
, u, v ∈ H1(Ω−).

(The superscript ′ is henceforth used to denote the dual space.) For the right–hand side we will
use `1 : H1(Ω−) → R and `2 : H−1/2(Γ) → R defined by

`1(v) :=
∫

Ω−
f v − 〈β1, γv〉, `2(µ) := 〈µ, (1

2I −K)β0〉.

Johnson–Nédélec’s coupling [14] can be described as the operator equation
[

A −γt

(1
2 I−K)γ V

] [
u

λ

]
=

[
`1

`2

]
. (2.8)

The solution of this system is related to that of (2.1) by

λ = ∂+
ν u, u = D(γu− β0)− Sλ in Ω+.

The transpose operator leads to this other formulation
[

A γt(1
2 I−K)t

−γ V

] [
u

ψ

]
=

[
`1

`3

]
, (2.9)

where `3 : H−1/2(Γ) → R is defined by

`3(ϕ) := −〈ϕ, β0〉.

In this case the exterior solution is given by a potential expression: u = Sψ in Ω+.
In the case of (2.9) (a coupling with an indirect Boundary Integral Equation) we might be

interested in obtaining the normal derivative λ := ∂+
ν u as a quantity of physical interest. This

can be done by solving the operator equation

Vλ = `2 − (1
2 I−K)γu = (1

2 I−K)(β0 − γu).

In the original Johnson–Nédélec method (2.8), we might be interested in obtaining a potential
representation of the exterior solution as a single layer potential Sψ, which can be attained by
solving another elliptic problem

Vψ = `3 + γu = γu− β0.
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Note that each of these postprocessed methods use the missing equation of the other one for the
postprocessing step. We are thus led to the systems




A −γt 0

(1
2 I−K)γ V 0

−γ 0 V







u

λ

ψ


 =




`1

`2

`3


 (2.10)

and 


A 0 γt(1
2 I−K)t

(1
2 I−K)γ V 0

−γ 0 V







u

λ

ψ


 =




`1

`2

`3


 , (2.11)

which share right–hand side, meaning of the three unknowns and the last two equations. The
systems are solved in different ways: in (2.10) we first solve the first two equations and then the
third one, whereas in (2.11) we group the first and third equations to begin with and use the
second equation as postprocessing step.

2.3 The Bielak–MacCamy coupling

A simple convex combination of (2.10) and (2.11) with parameter δ ∈ (0, 1) leads to the coupling
procedure of Bielak and MacCamy:




A −δγt (1− δ)γt(1
2 I−K)t

(1
2 I−K)γ V 0

−γ 0 V







u

λ

ψ


 =




`1

`2

`3


 . (2.12)

As a byproduct of our analysis we will obtain a direct proof that this system is well–posed.

Proposition 2.1 Any solution of (2.12) solves (2.1).

Proof. Assume that we have a solution of (2.12) and let ϕ = γu− β0. Then the third equation
proves that Sψ is a solution of the exterior Dirichlet problem with data ϕ. The function Dϕ−Sλ
solves the same problem by the second equation. Therefore the exterior normal derivatives of
both functions coincide and λ = −(1

2 I−K)tψ. Finally, the first equation shows that λ+β1 = ∂−ν u
and we have the solution of the transmission problem. ¤

Before going any further let us write the main result of this paper. We need three closed
spaces

Vh ⊂ H1(Ω−), Xh ⊂ H−1/2(Γ), Yh ⊂ H−1/2(Γ). (2.13)

From the point of view of numerics, these spaces are members of sequences of finite dimensional
subspaces. From the theoretical point of view we will only need them to be closed and we even
cover the case when Vh = H1(Ω−), Xh = Yh = H−1/2(Γ). Next we define a Galerkin scheme
for (2.12). We take a general right–hand side `1,h ∈ V ′

h, `2,h ∈ X ′
h, `3,h ∈ Y ′

h and consider the
variational problem (we write it with bilinear forms) that looks for (uh, λh, ψh) ∈ Vh ×Xh × Yh

6



such that

a(uh, vh)− δ〈λh, γvh〉+(1− δ)〈(1
2 I−K)tψh, γvh〉 = `1,h(vh), ∀vh ∈ Vh, (2.14a)

〈µh, (1
2 I−K)γuh〉+ 〈µh, Vλh〉 = `2,h(µh), ∀µh ∈ Xh, (2.14b)
−〈φh, γuh〉 +〈φh, Vψh〉 = `3,h(φh), ∀φh ∈ Yh. (2.14c)

Explicit dependence on δ as well as the limiting cases δ ∈ {0, 1} are going to be examined as
part of the analysis: we will see how the system (2.12) is elliptic for any value of δ ∈ (0, 1), that
the ellipticity degenerates in the limiting values δ = 0 and δ = 1 but, nevertheless, the Galerkin
schemes become stable for a different reason and the stability is robust in the parameter δ.

Theorem 2.2 The system (2.14) admits a unique solution for any δ ∈ [0, 1]. There exists a
constant C > 0 independent of the choice of the spaces (2.13) and of δ such that

‖uh‖1,Ω− + ‖λh‖−1/2,Γ + ‖ψh‖−1/2,Γ ≤ C
(
‖`1,h‖V ′h

+ ‖`2,h‖X′
h

+ ‖`3,h‖Y ′h

)
. (2.15)

When applied to discrete (finite dimensional) spaces, the stability estimate (2.15) is equiva-
lent to a Céa estimate for the approximation of (2.12) with the Galerkin scheme (2.14). Hence
in the natural H1(Ω−)×H−1/2(Γ)×H−1/2(Γ)–norm the discretization method is quasi–optimal.

Before proceeding to prove Theorem 2.2, it seems adequate to make some observations
concerning different aspects of the continuous and discrete problems above.

1. The solution of (2.12) gives therefore a double representation of the exterior solution. This
fact can be considered as an advantage of this formulation, that yields at the same time
a ‘physical’ quantity (λ, as opposed to ψ which is just a density) and a simple potential
representation of the exterior solution.

2. Assume now that K is compact (this happens when Γ has Liapunov regularity). After
multiplication of the second row of the operator matrix in (2.12) by 2δ and of the third
row by (1− δ)/2, we obtain that the principal part of the operator is




A −δγt 1
2(1− δ)γt

δγ 2δV 0

−1
2(1− δ)γ 0 1

2(1− δ)V


 . (2.16)

All operators in the diagonal are elliptic: ellipticity of V for the case of the three dimen-
sional Laplacian is a well–known result that can be traced back to [21] and extended with
the same techniques to our simpler operator (see [17] for a general proof). Off–diagonal
elements of (2.16) form a skew–symmetric matrix. Therefore the operator in (2.12) is the
sum of an invertible and a compact operator. Moreover, because of the ellipticity of the
principal part (up to scaling of its rows), Galerkin methods for this equation (2.14) are
asymptotically stable. (General results on discrete Fredholm theory can be found in [15,
Chapter 13] for instance.) This argument, resembling the one in [14] uses compactness of
K in a crucial step and the technique does not seem extendable to non–smooth interfaces.
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3. In the particular case δ = 1/2, switching the second and third equations and multiplying
the first one by 2, we obtain the symmetric operator




2A −γt γt(1
2 I−K)t

−γ 0 V

(1
2 I−K)γ V 0


 . (2.17)

The Galerkin method (2.14) uses the ellipticity of V to be stable (see (2.16)). Therefore,
when the equations are reordered in this way, but we keep the same discretization method,
what we obtain is not a Galerkin scheme for (2.17), but a Petrov–Galerkin scheme: the
second unknown is taken in Xh but the second equation is tested in Yh, for example.
However, the very reasonable choice Xh = Yh restores symmetry to the system. This is
the reason why this coupling scheme is called quasi–symmetric in [9] and symmetric in the
original reference [1].

4. Apart from the advantage of the double representation of the exterior solution (good for
near and far field knowledge of the solution), symmetry seems to be a desirable property for
a linear system that makes this coupling procedure attractive. Note again that symmetry
is obtained when Xh = Yh and δ = 1/2. In this case the block matrices for the Galerkin
equations (2.14) are the same ones as for a Galerkin scheme applied to (2.8) or (2.9), so
from the point of view of matrix storage (in case we are going to use iterative methods for
the linear system), this method is not more expensive than Johnson–Nédélec’s. The same
is true for any δ ∈ (0, 1) if Xh = Yh.

5. Note that when Xh = Yh there are four matrices to be stored: the large sparse matrix
for the interior finite element block corresponding to A, the smaller full matrix for the
boundary element discretization of V, a sparse rectangular matrix corresponding to γ
and a full–by–rows sparse–by–columns matrix corresponding to Kγ. If we consider the
boundary spaces Xh and γVh, the coupling blocks can be considered as reorderings of
Petrov–Galerkin boundary element discretizations of the identity operator and of K.

3 Analysis

We start by giving a surprisingly simple proof of the ellipticity of the operator associated to
the Johnson–Nédélec coupling (or to its transpose). We remark that a variant of this result
appears in [23] for the Laplace operator, using the whole machinery of integral representations
for Steklov–Poincaré operators and a contractivity result shown in [24] some years ago. The
current proof relies uniquely on a very elementary variational argument.

Consider the bilinear form b :
(
H1(Ω−)×H−1/2(Γ)

)× (
H1(Ω−)×H−1/2(Γ)

) → R given by

b
(
(u, ψ), (v, φ)

)
:= a(u, v) + 〈(1

2 I−K)tψ, γv〉 − 〈φ, γu〉+ 〈φ,Vψ〉. (3.1)

Note that this is the bilinear form associated to the operator in (2.9), while its transpose is
associated to (2.8). Note that the ellipticity of b (Theorem 3.1) is the same property for b and
for its transpose.
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Theorem 3.1 There exists C > 0 such that

b
(
(u, ψ), (u, ψ)

) ≥ C
(
‖u‖2

1,Ω− + ‖ψ‖2
−1/2,Γ

)
, ∀(u, ψ) ∈ H1(Ω−)×H−1/2(Γ).

Proof. Let u∗ := Sψ. Note that ∂−ν u∗ = (1
2 I + K)tψ, that 〈∂−ν u∗, γv〉 = a(u∗, v) for all

v ∈ H1(Ω−) and that by the variational formulation of the transmission problem in (2.3)

〈ψ, Vψ〉 =
∫

Rd

(|∇u∗|2 + |u∗|2) = ‖u∗‖2
1,Rd .

The ellipticity property follows now from the following argument:

b
(
(u, ψ), (u, ψ)

)
= a(u, u)− 〈(1

2 I + K)tψ, γu〉+ 〈ψ, Vψ〉
= ‖u‖2

1,Ω− − 〈∂−ν u∗, γu〉+ ‖u∗‖2
1,Rd

= ‖u‖2
1,Ω− − a(u∗, u) + ‖u∗‖2

1,Rd

≥ ‖u‖2
1,Ω− − ‖u‖1,Ω−‖u∗‖1,Ω− + ‖u∗‖2

1,Rd ≥ 1
2‖u‖2

1,Ω− + 1
2‖u∗‖2

1,Rd

= 1
2‖u‖2

1,Ω− + 1
2〈ψ, Vψ〉.

The result is then a consequence of the ellipticity of V in H−1/2(Γ). ¤
Note that if use (

‖u‖2
1,Ω− + 〈ψ, Vψ〉

)1/2

as equivalent norm in H1(Ω−)×H−1/2(Γ), the ellipticity constant is just 1/2.

Corollary 3.2 The operator equations (2.10) and (2.11) are well–posed. Moreover, any Galerkin
discretization of these equations (i.e., (2.14) for δ = 0 or δ = 1) is stable, with stability constant
independent of the choice of discrete spaces.

Proof. In both cases, the system can be written as a triangular system with a 2× 2 operator
equation in H1(Ω−) × H−1/2(Γ), that is elliptic because of Theorem 3.1, followed by an ellip-
tic operator equation based on inverting the operator V. It is clear that stability constants of
Galerkin discretization depend only on the inverses of the ellipticity constants of the two ‘diag-
onal’ operators as well as on the norms of the operators that are out of these diagonal positions.
¤

The bilinear form associated to problem (2.12) is defined on H1(Ω−)×H−1/2(Γ)×H−1/2(Γ)
by

dδ

(
(u, λ, ψ), (v, µ, φ)

)
:= a(u, v)− δ〈λ, γv〉+ (1− δ)〈(1

2 I−K)tψ, γv〉
+〈µ, (1

2 I−K)γu〉+ 〈µ,Vλ〉 − 〈φ, γu〉+ 〈φ,Vψ〉.
As the next result shows, a simple scaling of rows (which is different to the one that gives
ellipticity to the principal part of the operator) makes dδ elliptic.

Proposition 3.3 There exists C > 0 independent of δ ∈ (0, 1) such that

dδ

(
(u, λ, ψ), (u, δλ, (1− δ)ψ)

) ≥ C
(
‖u‖2

1,Ω− + δ‖λ‖2
−1/2,Γ + (1− δ)‖ψ‖2

−1/2,Γ

)

for all (u, λ, ψ) ∈ H1(Ω−)×H−1/2(Γ)×H−1/2(Γ).
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Proof. The key to this result is the following identity

dδ

(
(u, λ, ψ), (v, δµ, (1− δ)φ)

)
= δ b

(
(v, µ), (u, λ)

)
+ (1− δ) b

(
(u, ψ), (v, φ)

)
,

used together with Theorem 3.1. Note that in particular we have the very precise bound

dδ

(
(u, λ, ψ), (u, δλ, (1− δ)ψ)

) ≥ 1
2

(
‖u‖2

1,Ω− + δ〈λ,Vλ〉+ (1− δ)〈ψ, Vψ〉
)
.

¤

Corollary 3.4 The discrete equations (2.14) are uniquely solvable for any choice of discrete
spaces and there exists C > 0 independent of h and δ such that

‖uh‖1,Ω− + δ1/2‖λh‖−1/2,Γ + (1− δ)1/2‖ψh‖−1/2,Γ

≤ C
(
‖`1,h‖V ′h

+ δ1/2‖`2,h‖X′
h

+ (1− δ)1/2‖`3,h‖Y ′h

)
,

Proof. The unique solvability of the discrete equations is a simple consequence of Proposition
3.3, since scaling the equation leads to an elliptic system. Using the weighted norm

‖(u, λ, ψ)‖δ :=
(
‖u‖2

1,Ω− + δ‖λ‖2
−1/2,Γ + (1− δ)‖ψ‖2

−1/2,Γ

)1/2

and Proposition 3.3 we obtain

C‖(uh, λh, ψh)‖2
δ ≤ dδ

(
(uh, λh, ψh), (uh, δλh, (1− δ)ψh)

)

= `1,h(uh) + δ`2,h(λh) + (1− δ)`3,h(ψh)

≤
(
‖`1,h‖V ′h

+ δ1/2‖`2,h‖X′
h

+ (1− δ)1/2‖`3,h‖Y ′h

)
‖(uh, λh, ψh)‖δ.

¤
In principle, given a choice of spaces (a discretization level h) the Galerkin estimates provided

by Corollary 3.4 degenerate as δ → {0, 1}. Note, however, that the equations have been scaled
to apply an ellipticity argument. We finish this section by finishing the proof of Theorem 2.2,
which requires showing δ−independence of all constants involved.

Proof of Theorem 2.2. Using Corollary 3.4 we can obtain a stability estimate

‖uh‖1,Ω− + ‖λh‖−1/2,Γ + ‖ψh‖−1/2,Γ ≤
C√

δ0(1− δ0)

(
‖`1,h‖V ′h

+ ‖`2,h‖X′
h

+ ‖`3,h‖Y ′h

)
(3.2)

for all δ ∈ [δ0, 1− δ0] and for any δ0 ∈ (0, 1).
This shows that we only have to take care of neighborhoods of δ = 0 and δ = 1. The operator

in (2.14) is an affine function of δ, so it will be enough to prove bounds on the limits and extend
them to a neighborhood by perturbation (continuity) arguments.

Equations (2.14) define an operator from Vh×Xh×Yh to its dual, that can be decomposed as
Ah + δBh. Actually Ah corresponds to the Galerkin discretization of (2.11) and hence Corollary
3.2 guarantees that A−1

h is bounded independently of the choice of the spaces. Also Bh is

10



uniformly bounded and we can take a constant such that M ≥ ‖A−1
h Bh‖. Using then Neumann

series (see [15, Theorem 2.9] or any text on basic functional analysis), we next prove that

‖(Ah + δBh)−1‖ = ‖(Ih + δA−1
h Bh)−1A−1

h ‖ ≤ 2‖A−1
h ‖, ∀δ ∈ [0, 1/(2M)].

The argument for δ = 1 is exactly the same and we will not repeat the details. ¤

Theorem 2.2 shows that there is a continuous (actually it is analytic) transition between
the Johnson–Nédélec coupling (based on a direct boundary integral equation) and its transpose
(based on an indirect integral representation) and that this smooth transition is preserved by
any Galerkin discretization. Independently on its usefulness or lack thereof, this result provides
a natural, and somewhat surprising, connection between a numerical method and its transpose.
An interesting phenomenon that can be observed in the discretization of this family of problems
is that while interior situations (0 < δ < 1) are elliptic after scaling by rows, the limiting
equations can be considered as block triangular systems with elliptic diagonal operators.

4 Boundary conditions on an interior boundary

In this section we examine some extensions of the results for the model problem (2.1).

4.1 Dirichlet boundary conditions

Assume now that there is a new Lipschitz domain Ωobs, interior to Ω−, that their common
interface is denoted Σ and that Rd \Ωobs is connected. We denote Ωint := Ω− \Ωobs. A pictorial
representation of this situation is shown in Figure 1.

Ω
−

Γ
Ω

+

Ω
obs

Ω
int

Γ
Σ

Ω
+

Figure 1: On the left the original geometric configuration. On the right, the domain Ω− has
been divided into an interior obstacle and the surrounding interior domain.

We substitute (2.1a) by

γΣu = 0, −∆u + u = f in Ωint, (4.1)

where γΣ is the trace operator on the boundary Σ. We keep (2.1b), (2.1c) and (2.1d) unchanged.
The solution is looked for in H1(Ωint ∪ Ω+). Because the proof of Theorem 2.2 is based on
ellipticity principles, it never uses the fact that the discrete spaces are finite dimensional or
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that they are good approximations of the full spaces. Everything is true as long as we can use
Lax–Milgram’s lemma, so we only need the subspaces to be closed. In particular we can take
Vh equal to

H1
obs(Ω−) := {u ∈ H1(Ω−) : u ≡ 0 in Ωobs} ∼= {u ∈ H1(Ωint) : γΣu = 0}

or any finite dimensional subspace of it and let Xh and Yh as before. Working with these spaces
is equivalent to dealing with the problem in Ωint with homogeneous Dirichlet conditions on Σ.
Note that the effective interior bilinear is just

∫

Ωint

(
∇u · ∇v + u v

)
,

and in practice we are not required to do the extension by zero to the interior of the obstacle.
Taking a non–homogeneous condition in (4.1) does not make any change from the analytical
point of view, since Dirichlet conditions are essential in the primal formulation of the interior
problem and the analysis has to be carried out for the homogeneous problem.

4.2 Neumann boundary conditions

For reasons that will become apparent as we proceed through the proofs (and for which we will
attempt to give some kind of explanation), imposition of Neumann conditions on the boundary
of an interior obstacle poses a slightly more difficult problem from the theoretical point of view.

The geometric frame for this section is the same as the one in Section 4.1 (see Figure 1). We
are going to solve slightly modified problem

∂νu = 0 on Σ, (4.2a)

−∆u + c2 u = f in Ωint, (4.2b)
[γu] = β0 on Γ, (4.2c)

[∂νu] = β1 on Γ, (4.2d)

−∆u + c2 u = 0 in Ω+, (4.2e)

for some c > 0. Non–homogeneous Neumann conditions only affect the right–hand side of the
system, so they will be covered with our stability analysis. The normal vector on Σ is taken to
point towards Ωobs.

We weight the Sobolev norms with the reaction coefficient c:

‖u‖2
1,Ω,c := ‖∇u‖2

0,Ω + c2‖u‖2
0,Ω.

The fundamental solution is changed to

E(x,y) :=

{
K0(c |x− y|)/(2π), when d = 2,

exp(−c |x− y|)/(4π|x− y|), when d = 3,

and with it all potentials and integral operators are redefined. Dependence on c will be made
explicit by use of the subindex c in the operators.
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We substitute the bilinear form a in (2.14) by

ac(u, v) :=
∫

Ωint

(
∇u · ∇v + c2 u v

)
(4.3)

and now Vh ⊂ H1(Ωint). We accordingly redefine

bc

(
(u, ψ), (v, φ)

)
:= ac(u, v) + 〈(1

2 I−Kc)tψ, γv〉 − 〈φ, γu〉+ 〈φ, Vcψ〉.

It has to be understood that now γ : H1(Ωint) → H1/2(Γ).
We redefine the operator Ac : H1(Ωint) → H1(Ωint)′ by (Acu)(v) := ac(u, v). The Bielak–

MacCamy coupling corresponds to the Galerkin discretization of the equations associated to the
following operator

Dc,δ :=




Ac −δγt (1− δ)γt(1
2 I−Kc)t

(1
2 I−Kc)γ Vc 0

−γ 0 Vc


 ,

which is the analogue of (2.12). The main result of this section is just a copy of the result for
the situation in free space.

Theorem 4.1 For the given geometric setting there exists c > 0 (large enough) such that all
the conclusions of Theorem 2.2 hold in this situation. The stability constant depends on c but
not on the subspaces or on δ.

Proof. It is simple to see that once we prove that bc is elliptic for c large enough, the remainder of
the proof of Theorem 2.2 can be applied verbatim. Take now a measurable function w : Ωint → R
in the following conditions: 0 ≤ w ≤ 1 in Ωint, ∇w ∈ (L∞(Ωint))d, w ≡ 1 in a neighborhood of
Γ and ω ≡ 0 in a neighborhood of Σ. If

2
3‖∇w‖∞,Ωint < c, (4.4)

where ‖ · ‖∞,Ωint denotes the (L∞(Ωint))d norm, then [19, Lemma 19] proves that there exists
0 < C < 2 (depending on ‖∇w‖∞,Ωint/c) such that

‖w u‖1,Ωint,c ≤ C‖u‖1,Ωint,c, ∀u ∈ H1(Ωint). (4.5)

Noticing that γu = γ(w u) and that γΣ(w u) = 0, we can easily follow the steps of the proof of
Theorem 3.1 by introducing w conveniently. Namely, we still write u∗ := Scψ and show that

bc

(
(u, ψ), (u, ψ)

)
= ac(u, u)− 〈(1

2 I + Kc)tψ, γu〉+ 〈ψ, Vcψ〉
= ‖u‖2

1,Ωint,c
− 〈∂−ν u∗, γ(w u)〉 − 〈∂νu

∗, γ(w u)〉Σ + ‖u∗‖2
1,Rd,c

= ‖u‖2
1,Ωint,c

− ac(u∗, w u) + ‖u∗‖2
1,Rd,c

≥ ‖u‖2
1,Ωint,c

− C‖u∗‖1,Ωint,c ‖u‖1,Ωint,c + ‖u∗‖2
1,Rd,c

≥ (
1− C

2

)(‖u‖2
1,Ωint,c

+ 〈ψ, Vcψ〉
)
,
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where in the last but one inequality we have used (4.5). The angled bracket subindexed with Σ
denotes the duality product of the pair H±1/2(Σ).

Note that 1 − C/2 > 0 and the bilinear form bc is elliptic. If we want to use the natural
norm of H1(Ωint)×H−1/2(Γ), we introduce further dependence on c in the ellipticity constant
for bc. As already mentioned, from this ellipticity result everything else in the statement can be
easily proved using exactly the same arguments as in Section 3. ¤

If we fix c = 1 we can approach the problem from the point of view of w: we want to find w
in the conditions above with ‖∇w‖∞,Ωint < 3/2. This can be understood as a hypothesis asking
for a sufficiently wide interior annulus. It is not clear whether this hypothesis is purely technical
or if there is really some loss of ellipticity in the formulation (a minor one as we will see next)
due to the fact that the layer potentials define a solution in Ω− and we need ‘enough room’ to
reduce its influence on the interior boundary Σ.

4.3 More on Neumann conditions

In the general case, when c is smaller and (4.4) is not satisfied, we can use a compactness
argument to obtain asymptotic stability provided that we have a certain approximation property.
In this section we place ourselves in the usual frame of numerical PDEs: we have three families
of spaces (2.13) directed (partially ordered) in the parameter h that is allowed to converge
to zero. We will further assume the following approximation property: for all (u, λ, ψ) ∈
H1(Ωint)×H−1/2(Γ)×H−1/2(Γ) we have

lim
h→0

(
inf

vh∈Vh

‖u− vh‖1,Ωint + inf
µh∈Xh

‖λ− µh‖−1/2,Γ + inf
φh∈Yh

‖ψ − φh‖−1/2,Γ

)
= 0. (4.6)

We will prove asymptotic convergence for the Galerkin method associated to operator equations
with operator Dc,δ for any c > 0 (including then c = 1, which is our original model problem) and
with all constants independent of δ, although there is going to be a certain amount of dependence
on the approximation properties of the sequence of spaces. We start with well posedness of the
problem and showing an important compactness result.

Proposition 4.2 Let c, d > 0 and δ ∈ [0, 1]. Then Dc,δ − Dd,δ is compact. Moreover, Dc,δ is
invertible for all c > 0 and there exists C independent of δ such that

‖Dc,δ‖+ ‖D−1
c,δ‖ ≤ C, ∀δ ∈ [0, 1].

Proof. We start by proving that Dc,δ − Dd,δ is compact. This is clear for the term Ac − Ad,
where the discrepancy is in a lower order term. Using the definitions of the layer potentials on
Lipschitz domains of [8] (see [17]), we can also prove that Vc − Vd is compact as an operator
from H−1/2(Γ) to H1/2(Γ) and so is Kc −Kd as an operator from H1/2(Γ) to H1/2(Γ).

Given the domain Ωint we can construct the cut–off funcion w as in Section 4.2 and choose
d > 0 such that d > 2‖∇w‖∞,Ωint/3. Theorem 4.1 applied to the continuous operator proves
that Dd,δ is invertible. Then, by the Fredholm alternative, injectivity of Dc,δ is equivalent to its
invertibility.

We will however give a direct proof of invertibility by factorizing the operator

Dc,δ =




I −δγtV−1
c (1− δ)γt(1

2 I−Kc)tV−1
c

0 I 0

0 0 I







Qc 0 0

(1
2 I−Kd)γ Vc 0

−γ 0 Vc


 , (4.7)
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where
Qc := Ac + γt

(
δV−1

c (1
2 I−Kc) + (1− δ)(1

2 I−Kc)tV−1
c

)
γ.

Note that
Tc := −V−1

c (1
2 I−Kc) = −(1

2 I−Kc)tV−1
c

is the exterior Steklov–Poincaré (Dirichlet–to–Neumann) operator for −∆ + c2. This is easily
inferred from (2.3), (2.4), (2.6) and (2.7). Therefore

Qc = Ac − γtTcγ

is selfadjoint and elliptic, hence invertible. Note that Qc does not depend on δ even if δ was
present in its definition. The decomposition (4.7) can be used to find (we can give an explicit
expression of the inverse of the upper triangular matrix with identities in the diagonal):

D−1
c,δ =




Qc 0 0

(1
2 I−Kd)γ Vc 0

−γ 0 Vc




−1 


I δγtV−1
c −(1− δ)γt(1

2 I−Kc)tV−1
c

0 I 0

0 0 I


 .

The first of this two matrices is lower triangular with elliptic operators in the diagonal and
independent of δ. Note that the existence of a constant independent of δ that bounds the norms
of D−1

c,δ follows from this same factorization. ¤
The corresponding Galerkin equations look for (uh, λh, ψh) ∈ Vh ×Xh × Yh such that

(
Dc,δ(uh, λh, ψh)

)
(vh, µh, φh) = `h(vh, µh, φh), ∀(vh, µh, φh) ∈ Vh ×Xh × Yh, (4.8)

where `h ∈ (Vh ×Xh × Yh)′ is the restriction of the right–hand side of the continuous operator
equation to the discrete test spaces.

Theorem 4.3 Take c > 0 and δ ∈ [0, 1]. Assume that the approximation property (4.6) holds.
Then the Galerkin equations (4.8) are uniquely solvable for h ≤ h0 and there exists a constant
C, independent of h, such that

‖uh‖1,Ω− + ‖λh‖−1/2,Γ + ‖ψh‖−1/2,Γ ≤ C‖`h‖. (4.9)

The stability threshold h0 is allowed to depend on c and the sequence of spaces but can be taken
independent of δ. The constant C can be taken depending only on c (and on the geometry of the
problem).

Proof. Throughout the proof, c is taken as a fixed value. We take d > 0 large enough so that
Theorem 4.1 holds. Theorem 4.1 proves that Galerkin discretizations of the operator Dd,δ are
automatically stable and that the stability constant depends neither on δ nor on the particular
sequence of discrete spaces. Stability and the approximation property (4.6) prove convergence
of the Galerkin method for Dd,δ.

Since Dc,δ = Dd,δ +(Dc,δ−Dd,δ) is invertible and Dc,δ−Dd,δ is compact (Proposition 4.2), the
discrete version of the Fredholm theory (see [15, Chapter 13] for instance) proves that Galerkin
methods with property (4.6) for Dc,δ are also convergent and hence stable (4.9).
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This means that there exists h0 such that for h ≤ h0 the equations (4.8) are invertible and
that there exists C > 0 such that (4.9) holds. The stability constant C depends on the stability
constant for the Galerkin methods applied to Dd,δ (being therefore independent of δ and of
the sequence of subspaces) and on upper bounds of ‖D−1

c,δ‖, which shows that C can be taken
independent of δ.

The stability threshold h0 depends on the sequence of discrete spaces as well as on the
operator Dc,δ itself. Let us finish the proof by showing how, given the sequence of discrete
spaces satisfying (4.6), we can take h0 independent of δ ∈ [0, 1].

If we fix δ0, we have h0 = h0(δ0) that makes the system (4.8) invertible and the stability esti-
mate (4.9) holds true for h ≤ h0, with C independent of h. By a perturbation argument similar
to the one used at the end of the proof of Theorem 2.2, the same h0 and a fixed proportional
constant, say C/2, can be used for a neighborhood of δ0, say for all δ ∈ (δ0 − ε(δ0), δ0 + ε(δ0)).
Since {(δ0 − ε(δ0), δ0 + ε(δ0)) : δ0 ∈ [0, 1]} is an open covering of the compact interval [0, 1] we
can also choose

[0, 1] ⊂
n⋃

j=1

(δj − ε(δj), δj + ε(δj))

and take hst := min{h0(δj) : j = 1, . . . , n}. For h ≤ hst and all δ, the discrete systems
are invertible and the stability constant (which has been slightly modified) can be again taken
independent of δ. ¤

5 An application to linear elasticity

Let us consider the same geometric configuration as the one in Section 4. We are going to deal
with a transmission problem with a linear homogeneous isotropic medium occupying Ω+ (that
is Hooke’s law is the constitutive material equation) and a linear but possibly heterogeneous
anisotropic material in Ωint. We will write

σH(u) := 2µ ε(u) + λ(div u)I, ε(u) := 1
2∇u + 1

2(∇u)>

for the Hookean material definition of the stress tensor (I is the 3× 3 identity matrix and λ and
µ are the Lamé constants). On the other hand we will write σC(u) := C(ε(u)) for the interior
definition of the stress tensor. The operator C is required to be linear and Ωint−uniformly
positive definite on the space of symmetric matrices, so that the bilinear form

∫

Ωint

C(ε(u)) : ε(v) =
∫

Ωint

σC(u) : ε(u)

is symmetric positive semidefinite and defines a seminorm in H1(Ωint) that is equivalent to the
seminorm ( ∫

Ωint

ε(u) : ε(u)
)1/2

.

Normal stresses on Γ will be subscripted depending on the constitutive law:

t±H(u) := σ±H(u)ν, tC(u) := σC(u)ν.

Note that we will need both lateral limits for the Hookean material from inside and outside of
Γ. The symbol ν denotes the outwards normal vector field on Γ and we will use γ± for the
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traces on Γ of vector fields and γΣ for those on Σ. With these ingredients we can define the
transmission problem, whose data is a force density f ∈ (L2(Ωint))3:

γΣu = 0 on Σ, (5.1a)
div σC(u) + f = 0 in Ωint, (5.1b)

γ−u− γ+u = 0 on Γ, (5.1c)
tC(u)− t+

H(u) = 0 on Γ, (5.1d)
div σH(u) = 0 in Ω+, (5.1e)

Behavior at infinity will be that of a decaying vector field, so that we demand that u(x) ≤ C/|x|
as |x| → ∞ uniformly in all directions. It is possible to impose that at infinity the solution
behaves like a prescribed infinitesimal rigid motion m(x) := a+b×x where a,b ∈ R3 are given
vectors. From the point of view of our forthcoming formulation, this can be subtracted from
the exterior solution, thus creating a jump of the displacement field across the interface.

To describe in variational terms the behavior at infinity of decaying solutions of the Lamé
system (the one that is satisfied in Ω+) we consider the spaces (O is any open set)

W1(O) :=
{
u : O → R3 : ρu ∈ (L2(O))3, ∇u ∈ (L2(O))3×3

}

where ρ(x) := (1 + |x|2)−1/2. Note that these weighted Sobolev spaces correspond to those
denoted (W 1,−1(O))3 in [20, Chapter 2]. They are Hilbert spaces when endowed with their
natural norms.

We will then demand that

u|Ωint ∈ H1
Σ(Ωint) := {u ∈ (H1(Ωint))3 : γΣu = 0}, u|Ω+ ∈ W1(Ω+),

to include the finite energy condition, the correct behavior at infinity as well as the Dirichlet
boundary condition on Σ (this one can also be taken non–homogeneous with little modifications
of the forthcoming arguments). We will use the following notation for the energy norms

‖u‖C,Ωint :=
(∫

Ωint

σC(u) : ε(u)
)1/2

, ‖u‖H,O :=
(∫

O
σH(u) : ε(u)

)1/2
.

In the second case case we consider both O = Ωint and O = R3.
Note that because of the demands given to the operator defining the constitutive law in Ωint

and Korn’s inequality, it follows that ‖ · ‖C,Ωint and ‖ · ‖H,Ωint are both norms in H1
Σ(Ωint) and

that they are equivalent. Using the fact that the space of C∞ compactly supported vector fields
in R3 is dense in W1(R3) (this can be easily proved from arguments and results given in [20,
Chapter 2]), it follows that ‖ · ‖H,R3 is a norm in W1(R3), endowed with its natural norm. Note
that W1(R3) does not contain any non–trivial infinitesimal rigid motion.

For the exterior formulation we need the fundamental solution to the three dimensional Lamé
equation (see [13, Chapter 2])

E(x,y) :=
λ + 3µ

2µ(λ + 2µ)
1

4π|x− y| +
λ + µ

2µ(λ + 2µ)
1

|x− y|3 (x− y) (x− y)>

(x and y are understood as column vectors in the final expression). We can then define the
single and double layer potentials

Sλ :=
∫

Γ
E( · ,y)λ(y)dΓ(y), Dϕ :=

∫

Γ
tH,yE( · ,y) ϕ(y) dΓ(y)
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where tH,y has been used to denote the application of the normal stress operator using Hooke’s
law when y is considered as the space variable. Then if u ∈ W1(Ω+) satisfies div σH(u) = 0 in
Ω+, it can be written using the Betti–Somogliana identity

u = D(γ+u)− S(t+
H(u))

as well as a single layer potential u = Sψ with ψ ∈ H−1/2(Γ) := (H−1/2(Γ))3. The corresponding
boundary integral operators V, K and Kt are defined as in the case of the Yukawa equation.
The following key identity holds:

〈ψ,Vψ〉 = ‖Sψ‖2
H,R3 , ∀ψ ∈ H−1/2(Γ). (5.2)

Here we have used the angled bracket for the duality product between H−1/2(Γ) and H1/2(Γ) :=
(H1/2(Γ))3. This formula allows to prove ellipticity of V. Recall that its scalar counterpart was
at the core of the ellipticity analysis of the Johnson–Nédélec coupling (Theorem 3.1).

In this case, we can again begin with the postprocessed Johnson–Nédélec coupling and its
postprocessed transpose or think directly in terms of the Bielak–MacCamy type coupling (which
unlike in [1] we are doing in the normal stress on Γ instead of in the normal pseudostress): we
look for (u, λ, ψ) ∈ H1

Σ(Ωint)×H−1/2(Γ)×H−1/2(Γ) such that

aC(u,v)− δ〈λ, γv〉+(1− δ)〈(1
2I−K)tψ, γv〉 = `(v), ∀v ∈ H1

Σ(Ωint), (5.3a)

〈µ, (1
2I−K)γu〉+ 〈µ,Vλ〉 = 0, ∀µ ∈ H−1/2(Γ), (5.3b)

−〈φ, γu〉 +〈φ,Vψ〉 = 0, ∀φ ∈ H−1/2(Γ), (5.3c)

where
aC(u,v) :=

∫

Ωint

σC(u) : ε(u), `(v) :=
∫

Ωint

f · v.

We will also deal with a general Galerkin approximation of this problem.

Theorem 5.1 Assume that there exists Cmat < 2 such that

‖u‖H,Ωint ≤ Cmat‖u‖C,Ωint , ∀u ∈ H1
Σ(Ωint). (5.4)

In this case Galerkin methods for (5.3) are stable with constants independent of the sequence of
discrete spaces and of δ ∈ [0, 1].

Proof. As in all the preceding cases, all the proof hinges on the proof of ellipticity of the bilinear
form

b
(
(u, ψ), (v, φ)

)
:= aC(u,v) + 〈(1

2I−K)tψ, γv〉 − 〈φ,γu〉+ 〈φ,Vψ〉
in H1

Σ(Ωint)×H−1/2(Γ). However, if we define u∗ := Sψ, then

b
(
(u, ψ), (u, ψ)

)
= ‖u‖2

C,Ωint
− 〈t−H(u∗), γu〉+ ‖u∗‖2

H,R3

= ‖u‖2
C,Ωint

− aH(u∗,u) + ‖u∗‖2
H,R3

≥ ‖u‖2
C,Ωint

− Cmat‖u∗‖H,Ωint‖u‖C,Ωint + ‖u∗‖2
H,R3

≥
(
1− Cmat

2

)(
‖u‖2

H,Ωint
+ 〈ψ,Vψ〉

)
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where we have used (5.2), (5.4) and aH has been used to denote the energy bilinear form for
the Hookean material law in Ωint . Moreover, (5.2) can be used to prove that 〈ψ,Vψ〉1/2 is an
equivalent norm in H−1/2(Γ). This finishes the proof of the ellipticity of the bilinear form b.
The remainder of the proof follows step by step the proof of Theorem 2.2 (that is, Section 3). ¤

Corollary 5.2 If the interior material law is the same as the exterior one, then the results of
Theorem 5.1 hold true.

Proof. In this case, (5.4) is satisfied with Cmat = 1. ¤
If the energy inequality (5.4) is not satisfied, the proof cannot be carried out. It remains as

an open question whether the system is still elliptic (which does not appear to be the case) or a
compactness argument (in the spirit of the one used for the consideration of Neumann bound-
ary conditions) can be used to show convergence of Galerkin methods with the corresponding
approximation property for the sequence of discrete spaces.
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