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Abstract

We analyze the convergence of a numerical scheme for a class of degenerate parabolic problems
modelling reactions in porous media, and involving a nonlinear, possibly vanishing diffusion. The
scheme involves the Kirchhoff transformation of the regularized nonlinearity, as well as an Euler
implicit time stepping and triangle based finite volumes. We prove the convergence of the approach
by giving error estimates in terms of the discretization and regularization parameter.

1. Introduction

Degenerate parabolic equations appear in the mathematical modeling of numerous real life
processes. A well known example in this sense is the porous medium equation, describing the flow
of an ideal gas in a homogeneous porous medium. More complex situations are encountered in
petroleum reservoir and groundwater aquifer simulations. Compared to regular parabolic problems
and in particular to the heat equation, the diffusive term in the degenerate case depends on the
unknown solution and may vanish or blow up. Thus the parabolic character of the equation may
change into an elliptic, or even hyperbolic one. The interfaces separating the domains of regularity
- also called free boundaries - have finite speed of propagation. Generally these are not known in
advance and have to be determined together with the solution.

Typically the solutions of such problems are lacking regularity. Eventual singularities do not
smooth out in time; these may even develop in time, giving the problem a strongly nonlinear char-
acter. Consequently, the numerical approximation of such solutions require adequate algorithms
that are able to deal with both the free boundary, as well as the singularities of the solution.

This paper is motivated by a combined mixed finite element (MFE) - finite volume (FV) scheme
of a two phase flow model for the heap leaching of copper ores [5]. The convergence of such
schemes has been investigated in [6] and [18], where the MFE method is employed for the flow
component, whereas the saturation is discretized by using a FV scheme. The convergence results
there are obtained under several simplifying assumptions that rule out the degeneracy of the model.

For the convergence of numerical schemes for degenerate parabolic problems we refer to [17]
for the finite element discretization, [3], [22], [23], [26] for MFE schemes, [24] for a DG approach,
and [15] for a multipoint flux approximation method. FV schemes for porous media models are
analyzed rigorously in [1], [10], whereas a MFEM-FV approach is considered in [11]. There
convergence is obtained by compactness, and no estimates for the approximation error are given.
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Here we consider the FV discretization of the degenerate parabolic equation

∂tu−∆β(u) = r(u), in QT ≡ (0, T )× Ω. (1)

Initially we have u(0) = u0 in Ω, whereas u = 0 on ∂Ω. In the above 0 < T < ∞ is fixed, Ω is a
bounded polygonal domain in R2 with a Lipschitz continuous boundary. The function β : R → R
is non-decreasing and differentiable. Specifically, we assume the following:
(A1) β is Lipschitz and differentiable, β(0) = 0, 0 ≤ β′(u) ≤ Lβ .
(A2) u0 ∈ L2(Ω) and β(u0) ∈ H1

0 (Ω).
(A3) r : R → R is continuous in u; furthermore,

|r(u)− r(v)|2 ≤ C(u− v)(β(u)− β(v))

for any u, v ∈ R, where C > 0 does not depend on x, t, u and v. Moreover, r(0) = 0.
By degeneracy we mean a vanishing diffusion, namely β′(u) = 0 for some u. An important

example that can be written in the above form is the porous medium equation, where β(u) = um

for some m > 1 whenever u ≥ 0, while r = 0. Another example is a simple model for melting
and solidification, where β is increasing, piecewise linear, and vanishes on a certain interval, say
[0, 1]. More complex is the Richards equation, which models unsaturated flow in porous media
and involves nonzero convection.

For the ease of presentation restrict here to homogeneous Dirichlet boundary conditions; con-
sidering more general ones is straightforward. We use standard notations for function spaces,
norms and scalar products: L2(Ω), H1

0 (Ω), or its dual H−1(Ω). With X being one of the spaces
above, L2(0, T ;X) extends the square integrability to time dependent functions. We let (·, ·) stand
for the inner product on L2(Ω), or the duality pairing between H1

0 (Ω) and H−1(Ω), ‖ · ‖ for the
norm in L2(Ω), whereas ‖ · ‖k denotes the norm in Hk(Ω). Moreover, we write u or u(t) instead
of u(t, x) and use C to denote a positive constant independent of the discretization parameters or
the function itself. Saying this, we seek for the weak solution of Problem P, solving:
Problem WP. Find u ∈ H1(0, T ;H−1(Ω)) such that β(u) ∈ L2(0, T ;H1

0 (Ω)), and

(∂tu, ϕ) + (∇β(u),∇ϕ) = (r(u), ϕ), (2)

for all ϕ ∈ H1
0 (Ω) and for all t ∈ (0, T ], whereas u(0) = u0 in H−1(Ω).

Existence and uniqueness for Problem WP is proven e. g. in [2] and [19]. Notice that β(u) is
more regular than u, this being a property that we exploit below. We also employ a regularization
step in constructing the numerical scheme: with ε > 0 a given parameter, the nonlinear function β
is approximated by βε satisfying β′ ≥ ε. For simplicity we consider the global perturbation

βε(u) ≡ β(u) + εu. (3)

Other perturbations can be considered and the analysis is similar. In general, βε should be invertible
satisfying

ε ≤ β′ε(u) ≤ C, 0 ≤ β′ε(u)− β′(u) ≤ ε, and C ≤
(
β−1

ε

)′
(βε(u)) ≤ 1/ε. (4)

2. The time discretization

Due to the lacking regularity, we employ the Euler implicit scheme to discretize the regular-
ized Problem WP in time. This idea is used for constructing effective numerical algorithms; see
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e.g. [14], where compactness arguments are considered for showing the convergence in a gen-
eral setting. Further, since β(u) is more regular than u, we first approximate θ ≈ β(u), and then
u = β−1

ε (θ). With n ∈ N and τ = T/n denoting the (fixed) time step, we let tk = kτ . For
k ∈ {1, . . . , n} we define the time discrete approximation θk of β(u(tk)) as the solution of
Problem WTk. Given θk−1 ∈ H1

0 (Ω), find θk ∈ H1
0 (Ω) such that for all ϕ ∈ H1

0 (Ω)

(β−1
ε (θk)− β−1

ε (θk−1), ϕ) + τ(∇θk,∇ϕ) = τ(r(β−1
ε (θk)), ϕ). (5)

The scheme is completed by the initial data. A straightforward choice is θ0 = βε(u
0). Whenever

u0 ∈ H1
0 (Ω), this gives θ0 in the same space. However, in (A2) we have only required u0 ∈ L2(Ω).

Following the discussion in [20], Chapter 3, one can consider θ0 = β(u0) + ερµ ∗ u0, where ρµ is
a mollifier having a compact support in B(0, µ). With µ = O(ε), θ0 is bounded uniformly in H1,
whereas ‖u0 − β−1

ε (θ0)‖ vanishes as ε ↘ 0. It is worth mentioning that the convolution can be
replaced by the solution of the heat equation at a (small) time, where the initial data is u0.

Remark 2.1. Inverting βε may be tedious. Further, since function calls increase the computing
time significantly, for implementing the scheme we construct a look-up table of values for βε.
Requiring little computer memory, as well as linear interpolation for the values not included in the
table, this leads to a reduction of the computing time. Moreover, the monotonicity of βε allows a
fast searching in this table and thus the values of βε or its inverse can be obtained efficiently.

Existence and uniqueness for the time discrete problems WPk is provided by standard results for
nonlinear elliptic equations. Furthermore, assuming that the initial data is essentially bounded, the
sequence of solutions θk remain essentially bounded uniformly in k. The following estimates are
obtained in [20], Chapter 3 (see also [21]).

Lemma 2.1. Assume (A1) - (A3). With θk solving the problems WTk, for all 0 ≤ p ≤ n we have

‖θp‖2 +
n∑

k=1

{
(β−1

ε (θk)− β−1
ε (θk−1), θk − θk−1) + ‖θk − θk−1‖2 + τ‖∇θk‖2

}
≤ C. (6)

Remark 2.2. The estimate (6) immediately implies

n∑
k=1

‖β−1
ε (θk)− β−1

ε (θk−1)‖2
−1 ≤ Cτ. (7)

To prove the above we use (5) and the Poincaré inequality to obtain

|(β−1
ε (θk)− β−1

ε (θk−1), ϕ)| ≤ τ
(
‖∇θk‖+ C‖r(β−1

ε (θk))‖
)

for all ϕ ∈ H1
0 (Ω) s.t. ‖∇ϕ‖ = 1. Now (2.2) follows by (A3) and the above estimates.

We use the following notations. Given a function f : QT → R integrable in time, define

f̄k :=
1

τ

∫ kτ

(k−1)τ

f(s, ·)ds, if k ≥ 1.

Further, f̄ 0 := f(0, ·). The errors are obtained in terms of ek
u and ek

θ defined as

ek
u := ūk − β−1

ε (θk), ek
θ := β(u)

k
− θk, (8)
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where k ≥ 0. Given a sequence {fk ∈ H1
0 (Ω), k = 1, n}, the piecewise constant extension in time

f∆ is defined as f∆(t) = θk for t ∈ (tk−1, tk].
Further, G : H−1(Ω) → H1

0 (Ω) stands for the Green operator defined by

(∇Gψ,∇ϕ) = (ψ, ϕ), (9)

for all ϕ ∈ H1
0 (Ω), where ψ ∈ H−1(Ω). Therefore

‖∇Gψ‖ = ‖ψ‖−1, ‖ψ‖−1 ≤ C‖ψ‖, (10)

where the last inequality applies only if ψ ∈ L2(Ω). We have ([20], Chapter 3):

Theorem 2.1. Assume (A1) -(A3). If u and θk (k = 1, n) solve the problems given above, then

sup
k=1,n

‖ek
u‖2

−1 +
∫ T

0
(βε(u(t))− θ∆(t), u(t)− β−1

ε (θ∆(t)))dt+ ‖β(u)− θ∆‖2
L2(QT ) ≤ C {τ + ε} .

These estimates hold in a more general setting, where convection terms can also be included. Using
the results in [25], the estimates become optimal, C {τ 2 + ε2}. This holds in a simplified case, e.g.
in the absence of convection and if β is maximal monotone having the range R.

3. The finite volume discretization

Here we refer to the framework in [9] (see also [12] and [18]) and let T := {Ti, i ∈ I ⊂ N} be
a regular and acute decomposition of Ω into triangles. We assume that the diameter of any triangle
T ∈ T does not exceed h. Further, E and P stand for the set of triangle edges, respectively the
set of nodes. Since Ω is assumed polygonal, such a decomposition is possible without introducing
additional errors occurring when discretizing curved boundaries. In this case we also have E =
Eint∪Eext, where Eext = E ∩∂Ω and Eint = E\Eext. In what follows we use the following notation:

|T | - the area of T ∈ T , |`| - the length of ` ∈ E ,

Ni - the triangles adjacent to Ti ∈ T , Ei - the edges of Ti,

xi - the center of the circumcircle of Ti,

`ij - the edge between Ti and Tj (where Tj ∈ Ni),

d(xi, `ij) - the distance from xi to `ij , and dij = d(xi, `ij) + d(xj, `ij) if `ij ∈ Eint,

σij = |`ij|/dij - the ”transmissibility” through `ij

nij - the outward unit normal to `ij pointing into Tj (Tj ∈ Ni).

The assumptions on T ensure that xi ∈ int(Ti) for all i. Furthermore, if Tj ∈ Ni, then the line
through xi and xj is orthogonal to `ij . Given T we define the finite dimensional subspace of L2(Ω)

Wh := {v ∈ L2(Ω)/ v is constant on any T ∈ T }, (11)

which is spanned by the triangle indicator functions {χT / T ∈ T }. Furthermore we define

Ph : L2(Ω) → Wh, (Phw − w,wh) = 0 (12)

4



for any wh ∈ Wh. With s ∈ {0, 1}, a constant C > 0 exists such that

‖Phw − w‖ ≤ Chs‖w‖s (13)

for all w ∈ Hs(Ω). Moreover, for any w ∈ L2(Ω) and Ti ∈ T we have

w̄i := (Phw)|Ti
=

1

|Ti|

∫
Ti

w(x)dx. (14)

As in the spatially continuous case, for any u, v ∈ L2(Ω) we define the discrete inner products

(u, v)h :=
∑
Ti∈T

|Ti|ūiv̄i, (u, v)1,h :=
∑
`ij∈E

σij(ūi − ūj)(v̄i − v̄j), (15)

where the value of ū and v̄ are extended by 0 outside Ω in view of the homogeneous Dirichlet
boundary conditions. The associated discrete norms are denoted by ‖ · ‖h, respectively ‖ · ‖1,h. It
is easy to see that for all u, v ∈ L2(Ω),

(u, v)h = (u, Phv) = (Phu, v). (16)

Furthermore, in [9] the following discrete Poincaré inequality is given:

‖u‖ ≤ C‖u‖1,h, (17)

for all u ∈ Wh, where C > 0 does not depend on h or u. Using (16) and (13), one obtains

|(u, v)− (u, v)h| = |(u− Phu, v)| = |(u− Phu, v − Phv)| ≤ Chs+p‖u‖s‖v‖p, (18)

for all u ∈ Hs(Ω) and v ∈ Hp(Ω), s, p ∈ {0, 1}. Further we define the discrete H−1 norm

‖u‖−1,h = sup
wh∈Wh,‖wh‖1,h=1

|(u,wh)h|. (19)

Following [9] and [12] we write the finite volume scheme for the time discrete problem WTk.
With θh,i = θh|Ti

and given θk−1
h ∈ Wh, we seek θk ∈ Wh such that for all Ti ∈ T it holds

|Ti|(β−1
ε (θk

h,i)− β−1
ε (θk−1

h,i )) + τ
∑

`ij∈Ei

σij(θ
k
h,i − θk

h,j) = τ |Ti|r(β−1
ε (θk

h,i)). (20)

To give a weak form of the above scheme, for any wh ∈ Wh we multiply (20) by wi = wh|Ti

and sum up the resulting for all Ti ∈ T . Recalling the definitions in (15), after changing the
summation order in the second term on the left we obtain the following
Problem WDk. Given θk−1

h ∈ Wh, find θk
h ∈ Wh such that for all wh ∈ Wh

(β−1
ε (θk

h)− β−1
ε (θk−1

h ), wh)h + τ(θk
h, wh)1,h = τ(r(β−1

ε (θk
h)), wh)h. (21)

To complete the scheme, we define the initial data θ0
h = βε(Ph(β

−1
ε (θ0))) ∈ Wh.

The stability properties below are similar to the ones in the time discrete case.

Lemma 3.1. Assume (A1) - (A3), and let θk
h solving (21). For any 1 ≤ p ≤ n we have

‖β−1
ε (θp

h)‖2
h +

∑n
k=1 ‖β−1

ε (θk
h)− β−1

ε (θk−1
h )‖2

h + τ
∑n

k=1 ‖θk
h‖2

1,h ≤ C,∑n
k=1(β

−1
ε (θk

h)− β−1
ε (θk−1

h ), θk
h − θk−1

h )h +
∑n

k=1 ‖θk
h − θk−1‖2

h ≤ C.
(22)
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Proof. We start by noticing that for any wh ∈ Wh, by (A3) and (4) we get

C‖wh‖2
1,h ≤ (β−1

ε (wh), wh)1,h, and |(r(wh), wh)h| ≤ C(wh, β(wh))
1
2
h‖wh‖h ≤ C‖wh‖2

h. (23)

Next we take wh = β−1
ε (θk

h) into (21), sum the resulting up for k = 1, . . . , p and use the elementary
identity 2a(a− b) = a2 − b2 + (a− b)2 and obtain

1
2

(
‖β−1

ε (θp
h)‖2

h − ‖β−1
ε (θ0

h)‖2
h +

∑p
k=1 ‖β−1

ε (θk
h)− β−1

ε (θk−1
h )‖2

h

)
+τ

∑p
k=1(θ

k
h, β

−1
ε (θk

h))1,h = τ
∑p

k=1(r(β
−1
ε (θk

h)), β
−1
ε (θk

h))h.

Using (23), the first part of the estimates is a direct consequence of the Gronwall lemma.
By the assumptions on β and r, testing (21) with wh = θk

h − θk−1
h completes the proof. �

Remark 3.1. As in the spatially continuous case, the estimates above immediately imply

n∑
k=1

‖β−1
ε (θk

h)− β−1
ε (θk−1

h )‖2
−1,h ≤ Cτ. (24)

The fully discrete problems have unique solutions, as follows from:

Theorem 3.1. Assume (A1) - (A3), and let θk−1
h ∈ Wh be given. Then the fully discrete problem

WDk has a unique solution θk
h, at least for moderately small time steps τ .

Proof. We start with the uniqueness, which is a direct consequence of the monotonicity of β.
To see this we consider two piecewise constant functions θh, θ̄h ∈ Wh satisfying (21) for any
wh ∈ Wh. Subtracting the resulting two equalities we obtain

(β−1
ε (θh)− β−1

ε (θ̄h), wh)h + τ‖wh‖2
1,h = τ(r(β−1

ε (θh))− r(β−1
ε (θ̄h)), wh)h. (25)

With wh = θh − θ̄h, using (A3), the Cauchy inequality and the inequality of means, we obtain

τ(r(β−1
ε (θh))− r(β−1

ε (θ̄h)), θh − θ̄h)h ≤
1

2
(β−1

ε (θh)− β−1
ε (θ̄h), θh − θ̄h)h +

τ 2

2C̄
‖θh − θ̄h‖2

h.

By the discrete Poincaré inequality, uniqueness follows whenever τ ≤ C, where C > 0 is a
constant that does not depend on the parameters τ , h, or ε.

For the existence we use Lemma 1.4, p. 140 in [27], which is an abstract result for finite
dimensional Hilbert spaces. In this sense we define the continuous mapping P : Wh → Wh

Pθ = Φ =
∑
Ti∈T

αiχTi
,

where χTi
is the indicator function of the triangle Ti, while αi ∈ R are given by

αi = |Ti|(β−1
ε (θi)− β−1

ε (θk−1
h,i )) + τ

∑
`ij∈Ei

σij(θi − θj)− τ |Ti|r(β−1
ε (θi)). (26)

For any θ ∈ Wh, we use (21) to estimate the inner product (Pθ, θ)h:

(Pθ, θ)h = (β−1
ε (θ), θ)h + τ‖θ‖2

1,h − (β−1
ε (θk−1

h ), θ)h − τ(r(β−1
ε (θ)), θ)h.
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The first term on the right is bounded by

(β−1
ε (θ), θ)h ≥

1

2
(β−1

ε (θ), θ)h +
C

2
‖θ|2h,

whereas for the third term we use (4) and the Cauchy inequality to obtain

|(β−1
ε (θk−1

h ), θ)h| ≤ C‖θk−1
h ‖h‖θ‖h ≤

C ′

δ
‖θk−1

h ‖2
h + δ‖θ|2h.

Proceeding as for the apriori estimates (22), the last term yields

τ |(r(β−1
ε (θ)), θ)h| ≤

1

4
(β−1

ε (θ), θ)h + Cτ 2‖θ|2h.

Choosing δ properly, for moderately small τ the above inequalities as well as (17) imply

(Pθ, θ)h ≥
1

4
(β−1

ε (θ), θ)h +
τ

2
‖θ‖2

1,h −K,

with K = C̃‖θk−1
h ‖2

h for some fixed C̃. Now existence follows by the result mentioned above. �

For obtaining the error estimates we proceed as in the time discrete case and use the discrete
Green operator Gh : L2(Ω) → Wh defined by

(Ghψ, ϕ)1,h = (ψ, ϕ)h, (27)

for all ϕ ∈ Wh. As in the spatially continuous case, for any ψ ∈ Wh one gets

‖Ghψ‖1,h = ‖ψ‖−1,h, ‖ψ‖−1,h ≤ C‖ψ‖h. (28)

Gh is well defined as the FV approximation of the Poisson equation with homogeneous Dirichlet
boundary conditions and an L2 right hand side (see [9] and [12]). As shown in [8], [9] and [12],
for any ψ ∈ L2(Ω) one has the estimates

‖(G−Gh)Ψ‖1,h ≤ Ch‖Ψ‖. (29)

To estimate the error due to the spatial discretization we define for each time step t = kτ

ek,h
u := β−1

ε (θk)− β−1
ε (θk

h), ek,h
θ := θk − θk

h, (30)

see also (8). The errors defined above are estimated in the following lemma:

Lemma 3.2. Assume (A1) - (A3), let θk and θk
h solving (5), respectively (21). We have

sup
k=1,n

‖ek,h
u ‖2

−1 + Cτ
∑n

k=1 ‖e
k,h
θ ‖2 + Cτ

∑n
k=1(e

k,h
u , ek,h

θ ) ≤ C
(
‖e0,h

u ‖2
−1 + h2/ε

)
,

provided τ is reasonably small.

Proof. We take ϕ = Gek,h
u ∈ H1

0 in (5) and ϕ = Ghe
k,h
u ∈ Wh in (21), subtract the resulting and

use (16) to obtain

(ek,h
u − ek−1,h

u , Gek,h
u ) + τ

[
(∇θk,∇Gek,h

u )− (θk
h, Ghe

k,h
u )1,h

]
= −(β−1(θk

h)− β−1(θk−1
h ), (G−Gh)e

k,h
u )h

+τ(r(β−1(θk
h)), (G−Gh)e

k,h
u )h + τ(r(β−1(θk))− r(β−1(θk

h)), Ge
k,h
u ).

(31)
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We sum up the above for k = 1, . . . , p, denote the resulting terms by S1, . . . , S5, and proceed by
estimating them separately. By (9), for S1 we have

2S1 = 2

p∑
k=1

(∇G(ek,h
u − ek−1,h

u ),∇Gek,h
u ) = ‖ep,h

u ‖2
−1 − ‖e0,h

u ‖2
−1 +

p∑
k=1

‖ek,h
u − ek−1,h

u ‖2
−1. (32)

Using (4), (9), (16) and (27), S2 becomes

S2 = τ
∑p

k=1(θ
k, ek,h

u )− (θk
h, e

k,h
u )h = τ

∑p
k=1(e

k,h
θ , ek,h

u )

≥ τ
3

∑p
k=1(e

k,h
θ , ek,h

u ) + Cτ
∑p

k=1 ‖e
k,h
θ ‖2 + τε

3

∑p
k=1 ‖ek,h

u ‖2.
(33)

To estimate S3 we use the estimates (24) and (29), as well as (19) and (28) to obtain

|S3| ≤
∑p

k=1 ‖β−1(θk
h)− β−1(θk−1

h )‖−1,h‖(G−Gh)e
k,h
u ‖1,h

≤ δ1
∑p

k=1 ‖β−1(θk
h)− β−1(θk−1

h )‖2
−1,h + Ch2

4δ1

∑p
k=1 ‖ek,h

u ‖2

≤ ≤ C h2

ε
+ τε

12

∑p
k=1 ‖ek,h

u ‖2,

(34)

where in the above we have taken δ1 = O(h2/(τε)). Alternatively, the L2 estimates for β−1(θh)
and β−1(θk

h) imply τ
∑p

k=1 ‖ek,h
u ‖2 ≤ C. For δ1 = h/τ this yields |S3| ≤ Ch.

For S4 we use (A3) and (17), and proceed in a similar manner to get

|S4| ≤ τ
∑p

k=1 ‖r(β−1(θk
h))‖−1,h‖(G−Gh)e

k,h
u ‖1,h

≤ Cτh
∑p

k=1 ‖r(β−1(θk
h))‖h‖ek,h

u ‖ ≤ C h2

ε
+ τε

12

∑p
k=1 ‖ek,h

u ‖2.
(35)

As above, the alternative estimate is |S4| ≤ Ch. By (A3), the last term gives

|S5| ≤ τ
∑p

k=1 ‖r(β−1(θk
h))− r(β−1(θk−1

h ))‖‖Gek,h
u ‖

≤ C̃τδ2
∑p

k=1(e
k,h
θ , ek,h

u ) + τ
δ2

∑p
k=1 ‖ek,h

u ‖2
−1.

(36)

Taking δ2 = 1/(6C̃), and using (31) - (36), the discrete Gronwall lemma provides the result. �

Remark 3.2. As following from the proof, the ratio h2/ε in the estimates can be replaced by
h. Furthermore, the initial error can be made arbitrarily small. To see this, notice that e0,h

u =
β−1

ε (θ0)−Ph(β
−1
ε (θ0)). As mentioned in the beginning of Section 2, a mollifying step is involved in

constructing a θ0 that isH1, having an ε-uniformly bounded norm. By (13) this gives ‖e0,h
u ‖ ≤ Ch.

The FV scheme is convergent, as follows from Theorem 2.1 and of Lemma 3.1:

Theorem 3.2. Assuming (A1) -(A3), the FV approximation converges to the solution of Problem
WP as τ , h and ε↘ 0. The following estimates hold

sup
k=1,n

‖ūk − β−1
ε (θk

h)‖2
−1 +

∫ T

0
(βε(u(t))− θ∆,h(t), u(t)− β−1

ε (θ∆,h(t)))dt

+‖β(u)− θ∆,h‖2
L2(QT ) ≤ C

{
τ + ε+ h2

ε

}
,

where (similarly to the time discrete case) θ∆,h(t) = θk
h whenever t ∈ (tk−1, tk].
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Remark 3.3. The above estimates are sub-optimal when compared to the ones for the heat equa-
tion. As mentioned before, in a certain framework one can obtain optimal (first order) estimates
for the time discretization. To extend such a result to the FV discretization one needs higher order
estimates in (29), as suggested e.g. in [9], [4] and [7].
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