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MATHEMATICAL AND NUMERICAL ANALYSIS FOR PREDATOR-PREY

SYSTEM IN A POLLUTED ENVIRONMENT

VERONICA ANAYA, MOSTAFA BENDAHMANE, AND MAURICIO SEPULVEDA

Abstract. In this paper, we prove existence results for a Predator-prey system in a polluted
environment. The existence result is proved by the Schauder fixed-point theorem. Moreover, we
construct a combined finite volume - finite element scheme to our model, we establish existence
of discrete solutions, and shown that the scheme converges to the corresponding weak solution
for the studied model. The convergence proof is based on deriving series of a priori estimates
and using a general Lp compactness criterion. Finally we give some numerical examples.

1. Introduction

Today the most threatening problem to the society is the change in environment caused by
pollution, affecting the long term survival of species, human life style and biodiversity of the
habitat.
The rapid economic growth of some countries is also accompanied by the severe deterioration of the
environment as evidenced by the polluted air, water, soil erosion, growing number of illness such
as cancer caused by company waste, and constantly increased deforestation and desertification.
Therefore the pollution of the environment is a very serious problem in the world today. Organisms
are often exposed to a polluted environment and take up toxicant. For that reason, it is important
to study the effects of toxicant on populations to determine permanence or extinction.
In the early 1980’s Hallam and his colleagues proposed a deterministic modelling approach to the
problem of assessing the effects of a pollutant on an ecological system [13, 14, 15]. In particular,
Hallam et al. [13] studied the effect of a toxicant present in the environment on a single-species
population by assuming that its growth rate density decreases linearly with the concentration
of toxicant but the corresponding carrying capacity does not depend upon the concentration of
toxicant present in the environment. Since then, such models have been the subject of many
investigations and improvements. Freedman and Shukla [12] studied the effect of toxicant on a
single species and on a predator-prey system by taking into account the introduction of toxicant
from an external source. Shukla and Dubey [19] studied the simultaneous effect of two toxicants,
one being more toxic than the other, on a biological species.
As species do not exist alone in nature, it is more biological significance to study the persistence
and extinction of each population in systems of two or more interacting species subjected to
toxicant. Dubey [9] proposed a model to study the interaction of two biological species in a
polluted environment.

In this paper, the model we considered is based on the following two species model with toxicant
effect in a physical domain Ω ⊂ R

d (d = 2, 3) over a time span (0, T ), T > 0, with nonlocal diffusion
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terms: for i = 1, 2, 3
(1.1)










































∂tu− d1

(∫

Ω

u dx

)

∆u+ div (uK1) = F (u, v, C1), in QT := Ω × (0, T ),

∂tv − d2

(∫

Ω

v dx

)

∆v + div (vK2) = G(u, v, C2), in QT := Ω × (0, T ),

∂tCi = Hi(C1, C2, C3), in QT := Ω × (0, T ),

u(·, 0) = u0(·) ≥ 0, v(·, 0) = v0(·) ≥ 0,

Ci(·, 0) = Ci,0(·) = 0 for i = 1, 2 and C3(·, 0) = C3,0(·) > 0 in Ω.

We complete the system (1.1) with Dirichlet boundary conditions:

(1.2) u = 0 and v = 0 on ΣT := ∂Ω × (0, T ),

where ∂Ω denotes the boundary of Ω. The nonlinearities F,G,H1, H2 and H3 take the form:

F (u, v, C1) = k(u) − β1C1u− π(u)v,

G(u, v, C2) = −a v − β2C2v + eπ(u)v,

H1(C1, C2, C3) = k1C3 − g1C1 −m1C1,

H2(C1, C2, C3) = k2C3 − g2C2 −m2C2,

H3(C1, C2, C3) = −hC3.

(1.3)

In our model, u(x, t) and v(x, t) represent the density of the prey population and the predator
population at time t, respectively. The functions C1(x, t), C2(x, t) and C3(x, t) represent the
concentration of the toxicant in the organism of the prey species, the predator species and the
environment at time t, respectively. The constant −a (a > 0) be the natural exponential decay of
the predator population and e is the conversion rate from prey to predator. Then, we assume the

logistical growth rate of prey reads k(u) = ru
(

1 −
u

K

)

where r > 0 is the natural growth rate of

prey and K is the carrying capacity. The predation rate reads π(u) =
p u

1 + q u
with 1/p the time

spent by a predator to catch a prey and q/p the manipulation time, offering a saturation effect
for large densities of preys when q > 0. The constants β1 and β2 represent the decreasing rate
of the intrinsic growth rate associated with the uptake of the toxicant, respectively. The terms
kiC3(x, t), −giCi(x, t) and −miCi(x, t) (i = 1, 2) stand for the absorving rate of the toxicant
from the environment, excretion and depuration rates of the toxicant for the both organisms,
respectively. −hC3(x, t) stands for the loss rate of the toxicant due to volatilization by itself.
In this work, we assume that

(1.4) K1,K2 ∈ L∞(Ω,R3), divK1, divK2 ≥ 0,

and di : R → R is a continuous function satisfying: there exist constants Mi, C > 0 such that

(1.5) Mi ≤ di and |di(I1) − di(I2)| ≤ C |I1 − I2| for all I1, I2 ∈ R, for i = 1, 2.

The most interesting and real cases for this model are in dimension 3, but in 2-dimension it also
has a realistic interpretation.
We want to mention that in (1.1), the diffusion rates d1 > 0 and d2 > 0 are supposed to depend
on the whole of each population in the domain rather than on the local density. This means that
the diffusion of preys and predators is guided by the global state of the population in the medium.
For instance, if we want to model species having the tendency to leave crowded zones, a natural
assumption would be to assume that di is an increasing function of its argument. On the other
hand, if we are dealing with species attracted by the growing population in, one will suppose that
the nonlocal diffusion di decreases.
Note that, the parabolic (and elliptic) equations with nonlocal diffusion terms has already been
studied from a theoretical point of view by several authors. First, in 1997, M. Chipot and B. Lovat
[8] studied the existence and uniqueness of the solutions for a scalar parabolic equation with a
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nonlocal diffusion term. Existence-uniqueness and long time behavior for other class of nonlocal
nonlinear parabolic equations and systems are studied in [1, 2, 17, 7].

Before we state our main results, let us give a relevant definition of a weak solution for our
model.

Definition 1.1. A weak solution of (1.1)-(1.3) is a nonnegative function u = (u, v, C1, C2, C3)
such that u, v ∈ L2(0, T ;H1

0 (Ω))∩L∞(0, T ;L2(Ω)) and C1, C2, C3 ∈ C([0, T ], L2(Ω)), for i = 1, 2, 3

−

∫

Ω

u0(x)ϕ1(x, 0) dx−

∫∫

QT

u∂tϕ1 dx dt+

∫ T

0

d1

(∫

Ω

u dx

)∫

Ω

∇u · ∇ϕ1 dx dt

−

∫∫

QT

uK1 · ∇ϕ1 dx dt =

∫∫

QT

F (u, v, C1)ϕ1 dx dt,

−

∫

Ω

v0(x)ϕ2(x, 0) dx−

∫∫

QT

v∂tϕ2 dx dt+

∫ T

0

d2

(∫

Ω

v dx

)∫

Ω

∇v · ∇ϕ2 dx dt

−

∫∫

QT

vK2 · ∇ϕ2 dx dt =

∫∫

QT

G(u, v, C2)ϕ2 dx dt,

−

∫

Ω

Ci,0(x)ψi(x, 0) dx−

∫∫

QT

Ci∂tψi dx dt =

∫∫

QT

Hi(C1, C2, C3)ψi dx dt,

(1.6)

for all ϕ1, ϕ2, ψ1, ψ2, ψ3 ∈ C1
c (Ω × [0, T )).

Remark 1. Note that all the integrals in Definition 1.1 make sense. In particular from (1.5) we
get

∣

∣

∣

∣

∣

∫ T

0

[

d1

(∫

Ω

u dx

)∫

Ω

∇u · ∇ϕ1 dx

]

dt

∣

∣

∣

∣

∣

≤ sup
t∈[0,T ]

d1

(∫

Ω

u dx

)∫ T

0

∫

Ω

|∇u · ∇ϕ1| dx dt

≤ C ‖u‖L∞(0,T ;L2(Ω)) ‖∇u‖L2(QT ) ‖∇ϕ1‖L2(QT )

Our first main result is the following existence theorem for weak solutions.

Theorem 1.1. Assume conditions (1.4)-(1.5) hold. If u0, v0, C1,0, C2,0, C3,0 ∈ L2(Ω), then the
system (1.1)-(1.3) possesses at least one weak solution.

We prove existence of solution to the system (1.1) by applying the Schauder fixed point theorem,
deriving a priori estimates, and then passing to the limit in the approximate solutions using
compactness arguments.

The next goal is to discretize our model. There are many finite volume schemes to tackle
numerically a nonlinear convection-reaction-diffusion system. One of them is the well-known
method introduced by Gallouet [10]. In [3, 4] was used this idea by doing a convergence analysis
of the method. The inconvenient of this classical finite volume method of Gallouet is the restriction
on the admisible meshes which have to be rectangular, Delaunay triangulations or Voronoi meshes.
For this reason, an innovative idea was introduced by Eymard, Hilhorst and Vohralik [11] by using
a nonconforming finite element method to discretize the diffusion term and the other terms are
discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual
volumes are constructed around the sides of the original mesh. This is the method that we will
use, besides we do a convergence analysis and show some numerical examples for our problem.
Now, we follow [11] in order to do the discretization of the problem (1.1) - (1.3). Let Ω be an open
bounded polygonal connected subset of R

3 with boundary ∂Ω. We perform a triangulation Th of
the domain Ω, consisting of closed simplices such that Ω = ∪K∈Th

K and such that if K,L ∈ Th

and K 6= L, then K ∩L is either an empty set or a common face, edge, or vertex of K and L. We
denote by Eh the set of all sides, by E int

h the set of all interior sides, by Eext
h the set of all exterior

sides, and by EK the set of all sides of an element K ∈ Th. We define h := maxK∈Th
diam(K) and

make the following shape regularity assumption on the family of triangulations {Th}h:
There exists a positive constant κT such that

(1.7) min
K∈Th

m(K)

diam(K)d
≥ kT ∀h > 0.
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σE

QE
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σD

Figure 1. Triangles K,L ∈ Th and dual volumes D,E ∈ Dh

The inequality given before is equivalent to the existence of a constant θT > 0 such that

(1.8) max
K∈Th

diam(K)

ρK
≤ θT ∀h > 0,

where ρK is the diameter of the largest ball inscribed in K. Finally, the shape regularity assump-
tion is equivalent to the existence of a constant φT > 0 such that

min
K∈Th

φK ≥ φT ∀h > 0.

Here φT is the smallest angle of the simplex K

We will next use a dual partition Dh of Ω such that Ω = ∪D∈Dh
D. There is one dual element D

associated with each side σD ∈ Eh. We construct it by connecting the barycentres of every K ∈ Th

that contains σD through the vertices of σD. For σD ∈ Eext
h , the contour of D is completed by

the side σD itself. We refer to Figure 1, for the two-dimensional case. We denote by QD the
barycentre of the side σD. As for the primal mesh, we set Fh,F int

h ,Fext
h , and FD for the dual

mesh sides. We denote by Dint
h the set of all interior and by Dext

h the set of all boundary dual
volumes. We finally denote by N (D) the set of all adjacents volumes to the volume D,

N (D) := {E ∈ Dh; ∃σ ∈ F int
h such that σ = ∂D ∩ ∂E}.

Observe that

(1.9) m(K ∩D) =
m(K)

d+ 1

for each K ∈ Th and D ∈ Dh such that σD ∈ EK . For E ∈ N (D), we also set dD,E :=
|QE −QD| , σD,E := ∂D ∩ ∂E, and KD,E the element of Th such that σD,E ⊂ KD,E .
We suppose the partition of the time interval (0, T ) such that 0 = t0 < . . . < tn < . . . < tN = T
and define ∆tn := tn − tn−1 and ∆t := max1≤n≤N∆tn.
We define the following finite-dimensional spaces:

Xh := {ϕh ∈ L2(Ω);ϕh|K is linear ∀K ∈ Th,

ϕh is continuous at the points QD, D ∈ Dint
h }.

X0
h := {ϕh ∈ Xh;ϕh(QD) = 0 ∀D ∈ Dext

h }

The basis of Xh is spanned by the shape functions ϕD, D ∈ Dh, such that ϕD(QE) = δDE , E ∈
Dh, δ being the Kronecker delta. We equip Xh with the seminorm

‖uh‖
2
Xh

:=
∑

K∈Th

∫

K

|∇uh|
2
dx.

which becomes a norm on X0
h.

Later we shall need the following Lemma (see for e.g. Lemma 3.1 in [11]):
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Lemma 1.2. Let uh ∈ Xh such that uh =
∑

D∈Dh

uDϕD, then

∑

σD,E∈Fint
h

diam(K)d−2 |uE − uD|2 ≤ Cd,kτ
‖uh‖

2
Xh

,

∑

σD,E∈Fint
h

m(σD,E)

dD,E
|uE − uD|2 ≤ C′

d,kτ
‖uh‖

2
Xh

,

where Cd,kτ
> 0 and C′

d,kτ
> 0 are constants depending on d and kτ (recall that kτ is defined in

(1.7)).

We approximate our model in the following way: Determine vectors (un
D)D∈Dh

, (vn
D)D∈Dh

,
(Cn

i,D)D∈Dh
, for n ∈ {0, 1, . . . , N} and i = 1, 2, 3, such that for D ∈ Dint

h ,

(1.10) u0
D =

1

m(D)

∫

D

u0(x) dx, v0
D =

1

m(D)

∫

D

v0(x) dx, C0
i,D =

1

m(D)

∫

D

Ci,0(x) dx,

for D ∈ Dext
h , n ∈ {0, 1, . . . , N},

(1.11) un
D = 0, vn

D = 0,

and for D ∈ Dint
h , n ∈ {1, 2, . . . , N},

m(D)
un

D − un−1
D

∆tn
− d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

E∈Dint
h

S
n
D,Eu

n
E +

∑

E∈N (D)

Kn
1,D,Eu

n
D,E = m(D)Fn

D,

(1.12)

m(D)
vn

D − vn−1
D

∆tn
− d2

(

∑

D0∈Dh

m(D0)v
n
D0

)

∑

E∈Dint
h

S
n
D,Ev

n
E +

∑

E∈N (D)

Kn
2,D,Ev

n
D,E = m(D)Gn

D,

(1.13)

m(D)
Cn

i,D − Cn−1
i,D

∆tn
= m(D)Hn

i,D, i = 1, 2, 3.(1.14)

In the scheme given before we have:

Kn
i,D,E :=

1

∆tn

∫ tn

tn−1

∫

σD,E

Ki(x, t) · ~ηD,E dγ(x) dt i = 1, 2,

for D ∈ Dint
h , n ∈ {1, 2, . . . , N}, with ~ηD,E the unit normal vector of the side σD,E ∈ FD, outward

to D, and, for D ∈ Dh and n ∈ {1, 2, . . . , N},

Fn
D :=

1

∆tnm(D)

∫ tn

tn−1

∫

D

Fε(x, t) dx dt,

Gn
D :=

1

∆tnm(D)

∫ tn

tn−1

∫

D

Gε(x, t) dx dt,

Hn
i,D :=

1

∆tnm(D)

∫ tn

tn−1

∫

D

Hi(x, t) dx dt, i = 1, 2, 3.

We define un
D,E and vn

D,E , for D ∈ Dint
h , E ∈ N (D), and n ∈ {1, 2, . . . , N} as follows:

un
D,E :=

{

un
D if Kn

1,D,E ≥ 0

un
E if Kn

1,D,E < 0

vn
D,E :=

{

vn
D if Kn

2,D,E ≥ 0

vn
E if Kn

2,D,E < 0
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The diffusion matrix S
n
D,E writes in the following form:

S
n
D,E = −

∑

K∈Th

(∇ϕE ,∇ϕD)0,K D,E ∈ Dh, n ∈ {1, 2, . . . , N}.

Remark 2. Note that under condition (1.4), we deduce easily from Lemma 4.5 in [11] that

(1.15)
∑

D∈Dint
h

un
D,E

∑

E∈N (D)

Kn
1,D,Eu

n
D,E ≥ 0 and

∑

D∈Dint
h

vn
D,E

∑

E∈N (D)

Kn
2,D,Ev

n
D,E ≥ 0.

We will use frequently (1.15) in the prove of Theorem 1.3 below.

To simplify the notation, we will write “uh” and “vh” instead of “uh,∆t” and “vh,∆t” respectively,
“h→ 0” instead of “h,∆t→ 0”, and so forth.

For the sake of analysis, we introduce the following functions (“piecewise constant” and ”piece-
wise linear and continuous” functions): for n ∈ {1, . . . , N},

uh(x, t) = un
D and vh(x, t) = vn

D for all (x, t) ∈ D × ((n− 1)∆t, n∆t], with D ∈ Dh,

ũh(x, t) = un
h(x) and ṽh(x, t) = vn

h(x) for all (x, t) ∈ Ω × ((n− 1)∆t, n∆t].
(1.16)

Note that if the below energy estimate (3.11) is satisfied (see [11]), we get

‖wh − w̃h‖0,QT
→ 0 as h→ 0 for w = u, v.

The definition w̃h for w = u, v will be used later to obtain estimates on differences of space and
time translates. Moreover, the convergence of wh is a consequence of the convergence of w̃h for
w = u, v.

In this paper we assume that the following mild time step condition is satisfied:

(1.17) ∆tn < min(
1

2r
,
q

2ep
).

This condition will be used to prove the existence of solutions to the scheme. To simplify the
notation, let us write uh for the vector (uh, uh, C1,h, C2,h, C3,h).

Our second main result is the following theorem.

Theorem 1.3. Assume u0, v0, Ci,0 ∈ L2(Ω) for i = 1, 2, 3. Then, as h→ 0, the finite volume solu-
tion uh, , generated by (1.10)-(1.14), converges along a subsequence to a limit u = (u, v, C1, C2, C3)
that is a weak solution of (1.1).

The plan of this paper is as follows: In section 2 we prove existence of solutions (proof of Theo-
rem 1.1). In Section 3 we prove that discrete solutions converge, as the discretization parameters
tends to zero, to weak solutions (proof of Theorem 1.3). In section 4 we give some numerical
examples to our model.

2. Existence of weak solutions

Our proof is based on approximate system to which we can apply the Schauder fixed-point
theorem to prove the convergence to weak solutions of the approximations (see for e.g.the works
in [6] and [8] where this method is used). For technical reasons, we need to extend the functions
F and G so that they become defined for all u, v, Ci ∈ R for i = 1, 2. We do this by setting:

(2.1) F =







0, if u < 0, v ≥ 0,
k(u) − β1C1u, if u ≥ 0, v < 0,
0, if u < 0, v < 0.

(2.2) G =







−av − β2C2v, if u < 0, v ≥ 0,
0, if u ≥ 0, v < 0,
0, if u < 0, v < 0.
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We introduce the following system: for i = 1, 2, 3

(2.3)























∂tu− d1

(∫

Ω

u dx

)

∆u+ div (uK1) = Fε(u, v, C1), in QT ,

∂tv − d2

(∫

Ω

v dx

)

∆v + div (vK2) = Gε(u, v, C2), in QT ,

∂tCi = Hi(C1, C2, C3) in QT .

for each fixed ε > 0. Herein

(2.4) Fε(u, v, C1) =
F (u, v, C1)

1 + ε |F (u, v, C1)|
, Gε(u, v, C2) =

G(u, v, C2)

1 + ε |G(u, v, C2)|
,

For wi ∈ L2(QT ) ∩ L∞(0, T ;L2(Ω)) i = 1, 2 the mapping

ti → di

(∫

Ω

wi(·, ti) dx

)

for i = 1, 2

is clearly measurable and thus belongs to L2(0, T )∩L∞(0, T ). With wi fixed, let (u, v, C1, C2, C3)
be the solution of the system

(2.5)











































∂tu− d1

(∫

Ω

w1 dx

)

∆u+ div (uK1) = Fε(u, v, C1), in QT ,

∂tv − d2

(∫

Ω

w2 dx

)

∆v + div (vK2) = Gε(u, v, C2), in QT ,

∂tC1 = H1(C3, C1),

∂tC2 = H2(C3, C2),

∂tC3 = H3(C3).

Let Θ : (L∞(0, T ;L2(Ω))∩L2(QT ))2 → (L∞(0, T ;L2(Ω))∩L2(QT ))2 such that Θ(w1, w2) = (u, v)
solution to

(2.6)















∂tu− d1

(
∫

Ω

w1 dx

)

∆u+ div (uK1) = Fε(u, v, C1), in QT ,

∂tv − d2

(∫

Ω

w2 dx

)

∆v + div (vK2) = Gε(u, v, C2), in QT .

Observe that for i = 1, 2, 3

(2.7) ∂tCi = Hi(C1, C2, C3).

is an ODE system, then we have the following classical lemma.

Lemma 2.1. If C1,0, C2,0, C3,0 ∈ L2
+(Ω), then the system (2.7) has a unique solution (C1, C2, C3)

with C1, C2, C3 ∈ C([0, T ], L2
+(Ω)).

Then the idea is to show that the map Θ has a fixed point. First, let us show that Θ is a
continuous mapping. Let (w1,n)n, (w2,n)n be sequences in L∞(0, T ;L2(Ω))∩L2(QT ) and w1, w2 ∈
L∞(0, T ;L2(Ω)) ∩ L2(QT ) be such that (w1,n)n → w1 and (w2,n)n → w2 in L2(QT ) as n → ∞.
Define (un, vn) = Θ(w1,n, w2,n), i.e., (un, vn) is the solution of (2.5) associated with (w1,n, w2,n).
The objective is to show that (un, vn) converges to Θ(w1, w2) in (L2(QT ))2. We begin with the
following lemma:

Lemma 2.2. The solution (un, vn) to problem (2.5) satisfies

i) (un, vn) is nonnegative.
ii) The sequence (un, vn) is bounded in (L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T, L2(Ω)))2.
iii) The sequence (un, vn) is relatively compact in (L2(QT ))2

Proof.
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i) The proof is based on the choice of test functions ϕ1 = −u−n and ϕ2 = −v−n , where
u−n = max(0,−un) and v−n = max(0,−vn). We multiply the first and second equation of
(2.5) by ϕ1 and ϕ2 respectively. Then integrating over (0, t) × Ω, we obtain

1

2

∫

Ω

∣

∣u−n (x, t)
∣

∣

2
dx = −

∫ t

0

d1

(∫

Ω

w1 dx

)∫

Ω

∣

∣∇u−n
∣

∣

2
dx dt−

∫ t

0

∫

Ω

u−nK1 · ∇u
−
n dx dt

+
1

2

∫

Ω

∣

∣u−n (x, 0)
∣

∣

2
dx−

∫ t

0

∫

Ω

Fε(un, vn, C1)u
−
n dx dt

≤−

∫ t

0

(

d1

(∫

Ω

w1 dx

)

−
M1

2

)∫

Ω

∣

∣∇u−n
∣

∣

2
dx dt+ c

∫ T

0

∫

Ω

∣

∣u−n
∣

∣

2
dx dt

≤ c

∫ T

0

∫

Ω

∣

∣u−n
∣

∣

2
dx dt,

for some constant c > 0. Herein we have used the nonnegativity of u0, (1.5) and Young’s
inequality. In view of Gronwall’s inequality, it follows from this that u−n = 0 a.e. in Ω.
Reasoning along the same lines as un, we get v−n = 0 a.e. in Ω,

ii) Taking the test function ϕ1 = un. We multiply the first equation of (2.5) by ϕ1 and
integrate over Ω to obtain

1

2

d

dt

∫

Ω

|un|
2
dx+ d1

(∫

Ω

w1 dx

)∫

Ω

|∇un|
2
dx

=

∫

Ω

unK1 · ∇un dx+

∫

Ω

Fε(un, vn, C1)un dx

≤
M1

2

∫

Ω

|∇un|
2
dx+ c

∫

Ω

|un|
2
dx+ r

∫

Ω

|un|
2
dx,

for some constant c > 0. This implies

1

2

d

dt

∫

Ω

|un|
2
dx+

(

d1

(∫

Ω

w1 dx

)

−
M1

2

)∫

Ω

|∇un|
2
dx ≤ (c+ r)

∫

Ω

|un|
2
dx(2.8)

Using the nonnegativity of the second term of the left-hand side (2.8) and the Gronwall’s
inequality, we obtain

∫

Ω

|un(x, t)|2 dx ≤ c1 for all t ∈ (0, T ],

for some constant c1 > 0. Integrating (2.8) over (0, T ) and bearing in mind the previous
thing, we get:

∫

Ω

|un(x, T )|2 dx+
M1

2

∫ T

0

∫

Ω

|∇un|
2 dx dt ≤ c2,

for some constant c2 > 0, which proves

(2.9) ‖un‖L∞(0,T ;L2(Ω)) + ‖un‖L2(0,T ;H1

0
(Ω)) ≤ c3,

where c3 > 0 is a constant independent of n.
Reasoning along the same lines as un, we multiply the second equation of (2.5) by a

test function ϕ2 = vn, thus we get for vn,

(2.10) ‖vn‖L∞(0,T ;L2(Ω)) + ‖vn‖L2(0,T ;H1

0
(Ω)) ≤ c4,

where c4 > 0 is a constant independent of n.
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iii) Finally, taking a test function ϕ1 ∈ L2(0, T ;H1
0(Ω)) and we use the uniform boundedness

of (un, vn) in L2(0, T ;H1
0 (Ω)) to have

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

∂tunϕ1 dx dt

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

0

∫

Ω

Fε(u, v, C1)ϕ1 dx dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

0

d1

(∫

Ω

w1 dx

)∫

Ω

∇un · ∇ϕ1 dx dt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

unK1 · ∇ϕ1 dx dt

∣

∣

∣

∣

∣

≤
1

ε

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

ϕ1 dx dt

∣

∣

∣

∣

∣

+ sup
t∈[0,T ]

∣

∣

∣

∣

d1

(∫

Ω

w1 dx

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

∇un · ∇ϕ1 dx dt

∣

∣

∣

∣

∣

+ ‖K1‖L∞(Ω,R3) ‖un‖L2(QT ) ‖∇ϕ1‖L2(QT )

≤
1

ε
T |Ω| ‖ϕ1‖L2(QT ) + c5 ‖∇un‖L2(QT ) ‖∇ϕ1‖L2(QT )

+ c6 ‖un‖L2(QT ) ‖∇ϕ1‖L2(QT )

≤ c7 ‖ϕ1‖L2(0,T ;H1

0
(Ω)) ,

for some constants c5, c6, c7 > 0, where we have used Hölder’s inequality. This implies

‖∂tun‖L2(0,T ;H−1(Ω)) ≤ c8,

where c8 > 0 is a constant independent of n.
Reasoning along the same lines for vn we get

‖∂tvn‖L2(0,T ;H−1(Ω)) ≤ c9.

where c9 > 0 is a constant independent of n.
Then, iii) is a consequence of ii) and the uniform boundedness of (∂tun)n and (∂tvn)n in
L2(0, T ;H−1(Ω)).

�

From Lemma 2.1 and 2.2, there exist functions u, v ∈ L2(0, T ;H1
0 (Ω)) such that, up to extracting

subsequences if necessary,

un → u strongly in L2(QT ) and vn → v strongly in L2(QT ),

and from this the continuity of Θ on (L∞(0, T ;L2(Ω)) ∩ L2(QT ))2 follows.
We observe that, from Lemma 2.2, Θ is bounded in the set Wu ×Wv

Wu = {u ∈ L2(0, T ;H1
0 (Ω)) : ∂tu ∈ L2(0, T ;H−1(Ω))},

Wv = {v ∈ L2(0, T ;H1
0 (Ω)) : ∂tv ∈ L2(0, T ;H−1(Ω))}.

By the results of [18], Wκ →֒ L2(QT ) is compact with κ = u, v; therefore, Θ is compact. Moreover
it is easy to obtain the uniqueness of the solutions to (2.5). Then, by the Schauder fixed point
theorem, the operator Θ has a fixed point (uε, vε) such that Θ(uε, vε) = (uε, vε). This implies
that there exists a solution (uε, vε, C1, C2, C3) of

∫ T

0

〈∂tuεϕ1〉 dt+

∫ T

0

d1

(∫

Ω

uε dx

)∫

Ω

∇uε · ∇ϕ1 dx dt−

∫ T

0

∫

Ω

uεK1 · ∇ϕ1 dx dt

=

∫ T

0

∫

Ω

Fε(uε, vε, C1)ϕ1 dx dt,

(2.11)

∫ T

0

〈∂tvεϕ2〉 dt+

∫ T

0

d2

(∫

Ω

vε dx

)∫

Ω

∇vε · ∇ϕ2 dx dt−

∫ T

0

∫

Ω

vεK2 · ∇ϕ2 dx dt

=

∫ T

0

∫

Ω

Gε(uε, vε, C2)ϕ2 dx dt,

(2.12)
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(2.13) −

∫

Ω

Ci,0(x)ψi(x, 0) dx −

∫ T

0

∫

Ω

Ci∂tψi dx dt =

∫ T

0

∫

Ω

Hi(C1, C2, C3)ψi dx dt,

for i = 1, 2, 3, for all ϕ1, ϕ2 ∈ L2(0, T ;H1
0 (Ω)) and ψ1, ψ2, ψ3 ∈ C1

c (Ω × [0, T )).
We have shown that the problem (2.3) admits a solution (uε, vε, C1, C2, C3). The goal now is to
send the regularization parameter ε to zero in sequences of such solutions to obtain weak solutions
of the original system (1.1)-(1.3). Note that, for each fixed ε > 0, we have shown the existence of
a solution (uε, vε, C1, C2, C3) to (2.3) such that

uε ≥ 0 and vε ≥ 0 for a.e. (x, t) ∈ QT .

Lemma 2.3. There exist constants c10, c11, c12 > 0 not depending on ε such that the solution
(uε, vε) satisfies

‖uε‖L∞(0,T ;L2(Ω)) + ‖uε‖L2(0,T ;H1

0
(Ω)) ≤ c10,(2.14)

‖vε‖L∞(0,T ;L2(Ω)) + ‖vε‖L2(0,T ;H1

0
(Ω)) ≤ c11.(2.15)

‖Fε(uε, vε, C1)‖L1(QT ) + ‖Gε(uε, vε, C2)‖L1(QT ) ≤ c12.(2.16)

Proof. By the (weak) lower semicontinuity properties of norms, the estimates (2.9), and (2.10) hold
with un and vn replaced by uε and vε respectively. Moreover, the constants c3, c4 are independent
of ε (consult the proof of Lemma 2.2). Besides, from (2.14) and (2.15) we get

∫∫

QT

|Fε(uε, vε, C1)| dx dt+

∫∫

QT

|Fε(uε, vε, C1)| dx dt

≤ c13

∫∫

QT

(

|uε|
2 + |vε|

2 + |C1|
2 + |C2|

2
)

dx dt ≤ c14,

(2.17)

where c13 > 0 and c14 are constants independent of ε.
�

From Lemma 2.3 we have that uε, vε are bounded in L2(0, T ;H1
0(Ω)) and ∂tuε, ∂tvε are bounded

in L2(0, T ;H−1(Ω)) + L1(QT ). Note that L1(Ω) ⊂ H−s(Ω) for s > 0 large. Then, ∂tuε, ∂tvε are
bounded in L1(0, T ;H−s(Ω)) for s > 0 large. As H1

0 (Ω) ⊂ L2(Ω) ⊂ H−s(Ω), therefore, possible
at the cost of extracting subsequences denoted uε, vε, see e.g. [18], we can assume that there exist
u, v in L2(0, T ;H1

0 (Ω)) such that as ε goes to 0

(2.18)

{

uε → u, vε → v strongly in L2(QT ) and a.e. in QT ,

uε ⇀ u, vε ⇀ v weakly in L2(0, T ;H1
0(Ω)).

The consequence of (2.18) and Vitali’s theorem:

Fε(uε, vε, C1) → F (u, v, C1) and Gε(uε, vε, C2) → G(u, v, C2) strongly in L1(QT ).

Finally, using the following weak formulation

−

∫

Ω

u0,ε(x)ϕ1(x, 0) dx−

∫∫

QT

uε∂tϕ1 dx dt+

∫ T

0

d1

(∫

Ω

uε dx

)∫

Ω

∇uε · ∇ϕ1 dx dt

−

∫∫

QT

uεK1 · ∇ϕ1 dx dt =

∫∫

QT

Fε(uε, vε, C1)ϕ1 dx dt,

−

∫

Ω

v0,ε(x)ϕ2(x, 0) dx−

∫∫

QT

vε∂tϕ2 dx dt +

∫ T

0

d2

(∫

Ω

vε dx

)∫

Ω

∇vε · ∇ϕ2 dx dt

−

∫∫

QT

vεK2 · ∇ϕ2 dx dt =

∫∫

QT

Gε(uε, vε, C2)ϕ2 dx dt,

for all ϕ1, ϕ2, φ ∈ C1
c (Ω × [0, T )), we can let ε→ 0 and obtain a weak solution.
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3. Finite volume scheme

3.1. Existence of solutions to the combined finite volume - finite element scheme. The
existence of a solution to the scheme (1.10)-(1.14) is given in the following proposition.

Proposition 3.1. Let Dh be a discretization of QT . Then the problem (1.10)-(1.14) admits at
least one solution (un

D, v
n
D, C

n
1,D, C

n
2,D, C

n
3,D)(D,n)∈Dh×{1,...,N}.

Proof. First, we introduce the Hilbert space

Eh := X0
h(Ω) ×X0

h(Ω),

under the norm

‖Uh‖
2
X0

h
:=

∑

K∈Th

∫

K

|∇Uh|
2
dx,

where Uh = (uh, vh). Let Φh = (ϕu, ϕv) ∈ Eh and define the discrete bilinear forms

Th(Un
h ,Φh) =

∑

D∈Dh

m(D)
(

un
Dϕu + vn

Dϕv

)

,

ch(Un
h ,Φh) =

∑

D∈Dh

m(D)
(

Fn
Dϕu +Gn

Dϕv

)

,

ah(Un
h ,Φh) =

∑

D∈Dh

(

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

E∈Dint
h

S
n
D,Eu

n
Eϕu

+ d2

(

∑

D0∈Dh

m(D0)v
n
D0

)

∑

E∈Dint
h

S
n
D,Ev

n
Eϕv

)

,

and

bh(Un
h ,Φh) =

∑

D∈Dh





∑

E∈N (D)

Kn
1,D,Eu

n
D,Eϕu +

∑

E∈N (D)

Kn
2,D,Ev

n
D,Eϕv





Multiplying (1.12) and (1.13) by ϕu and ϕv, respectively, we get the equation

1

∆tn

(

Th(Un
h ,Φh) − Th(Un−1

h ,Φh)
)

−ah(Un
h ,Φh) + bh(Un

h ,Φh) − ch(Un
h ,Φh) = 0.

We define the mapping P from Eh into itself

[P(Un
h ),Φh] =

1

∆tn
(Th(Un

h ,Φh) − Th(Un−1
h ,Φh)) − ah(Un

h ,Φh) + bh(Un
h ,Φh) − ch(Un

h ,Φh),

for all Φh ∈ Eh.
Note that the continuity of the mapping P follows from the continuity of the discrete forms ah(·, ·),
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bh(·, ·), ch(·, ·) and Th(·, ·). We observe that

[P(Un
h ), Un

h ] ≥
1

∆tn

∑

D∈Dh

m(D) |un
D|2 +

1

∆tn

∑

D∈Dh

m(D) |vn
D|2 +M1 ‖u

n
h‖

2
X0

h
+M2 ‖v

n
h‖

2
X0

h

+
1

2

∑

D∈Dint
h

|un
D|2

∑

E∈N (D)

Kn
1,D,E +

1

2

∑

D∈Dint
h

|vn
D|2

∑

E∈N (D)

Kn
2,D,E

−
∑

D∈Dh

m(D)Fn
Du

n
D −

∑

D∈Dh

m(D)Gn
Dv

n
D

−
1

2∆tn

∑

D∈Dh

m(D) |un
D|2 − C(∆tn)

∑

D∈Dh

m(D)
∣

∣un−1
D

∣

∣

2

−
1

2∆tn

∑

D∈Dh

m(D) |vn
D|2 − C′(∆tn)

∑

D∈Dh

m(D)
∣

∣vn−1
D

∣

∣

2

≥
( 1

2∆tn
− r
)

∑

D∈Dh

m(D) |un
D|2 +

( 1

2∆tn
− ep/q

)

∑

D∈Dh

m(D) |vn
D|2

+M1 ‖u
n
h‖

2
X0

h
+M2 ‖v

n
h‖

2
X0

h
− C(∆tn)

∑

D∈Dh

m(D)
∣

∣un−1
D

∣

∣

2

− C′(∆tn)
∑

D∈Dh

m(D)
∣

∣vn−1
D

∣

∣

2

≥M1 ‖u
n
h‖

2
X0

h
+M2 ‖v

n
h‖

2
X0

h
− C(∆tn)

∑

D∈Dh

m(D)
∣

∣un−1
D

∣

∣

2
− C′(∆tn)

∑

D∈Dh

m(D)
∣

∣vn−1
D

∣

∣

2
.

(3.1)

Herein, we have used (1.5), (1.4), (1.15), (1.17) and Young’s inequality. Finally, for a given
un−1

h , vn−1
h we deduce from (3.1) that

(3.2) [P(Un
h ), Un

h ] > 0 for ‖Un
h ‖Eh

= r > 0,

for a sufficiently large r. This implies that (see e.g. [16] and [20])

P(Un
h ) = 0.

Then, we obtain the existence of at least one solution to the scheme (1.10)-(1.14). �

Remark 3. Note that we only proved the existence for u and v because the equations for Ci, i =
1, 2, 3 are an ODE system then the existence and convergence of the solution generated by the
scheme are trivial.

3.2. Nonnegativity. We have the following lemma.

Lemma 3.2. Let (un
D, v

n
D, C

n
1,D, C

n
2,D, C

n
3,D)D∈Dh,n∈{0,...,N} be a solution of the combined finite

volume - finite element scheme (1.10) - (1.14). Then, (un
D, v

n
D, C

n
1,D, C

n
2,D, C

n
3,D)D∈Dh,n∈{0,...,N}

is nonnegative.

Proof. Note that since (1.14) is a discrete of an ODE equation, it is easy to obtain the nonnegativity
of Cn

i,D for D ∈ Dh and n ∈ {0, . . . , N}.

Multiplying (1.12) by −∆tnu
n
D

−, we find that

−m(D)un
D

−(un
D − un−1

D ) + ∆tnd1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

E∈Dint
h

S
n
D,Eu

n
Eu

n
D

−

− ∆tn
∑

E∈N (D)

Kn
1,D,Eu

n
D,Eu

n
D

− +m(D)∆tnF
n
Du

n
D

− = 0.

(3.3)
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Observe that for 1 < N0 ≤ N

N0
∑

n=1

∆tnd1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

D∈Dh

∑

E∈Dint
h

S
n
D,Eu

n
Eu

n
D

−

=

N0
∑

n=1

∆tnd1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

D∈Dh

un
D

−
∑

E∈Dint
h

S
n
D,Eu

n
E

= −
N0
∑

n=1

∆tnd1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

(∇un
h
−,∇un

h)0,K

=

N0
∑

n=1

∆tnd1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

∣

∣∇un
h
−
∣

∣

2
dx

≥M1

N0
∑

n=1

∆tn ‖un
h‖

2
X0

h
≥ 0,

(3.4)

and

N0
∑

n=1

∆tn
∑

D∈Dh

∑

E∈N (D)

Kn
1,D,Eu

n
D,Eu

n
D

− =

N0
∑

n=1

∆tn
∑

D∈Dh

un
D

−
∑

E∈N (D)

Kn
1,D,Eu

n
D,E

=

N0
∑

n=1

∆tn
∑

σD,E∈Th

Kn
1,D,E

≥0

Kn
1,D,E

(

un
D(un

D
− − un

E
−)
)

.

(3.5)

Let us introduce a function H ,

H(s) = h(s)s−

∫ s

0

h(τ)dτ, s ∈ R.

Taking h(s) = −s− a nondecreasing function, we get

(H(un
D) −H(un

E)) ≤ (h(un
D) − h(un

E))un
D

which implies

un
D

(

un
D

− − un
E
−) ≤ −

(
∣

∣un
D

−
∣

∣

2

2
−

∣

∣un
E
−
∣

∣

2

2

)

Using the previous inequality in (3.5), we obtain

N0
∑

n=1

∆tn
∑

D∈Dh

∑

E∈N (D)

Kn
1,D,Eu

n
D,Eu

n
D

− ≤ −
N0
∑

n=1

∆tn
∑

σD,E∈Fint
h

Kn
1,D,E

≥0

Kn
1,D,E

(
∣

∣un
D

−
∣

∣

2

2
−

∣

∣un
E
−
∣

∣

2

2

)

≤ −
N0
∑

k=1

∆tn
∑

D∈Dint
h

∣

∣un
D

−
∣

∣

2

2

∑

E∈N (D)

Kn
1,D,E ≤ 0.

Besides, we have
N0
∑

n=1

∆tn
∑

D∈Dh

m(D)Fn
Du

n
D

− = 0.

Let f ∈ C2 function. By using a Taylor expansion we find

(3.6) f(b) = f(a) + f ′(a)(b − a) +
1

2
f ′′(ξ)(b − a)2,
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for some ξ between a and b. Using the Taylor expansion (3.6) on the sequence f(un
D) with

f(ρ) =

∫ ρ−

0

s ds, a = un
D and b = un−1

D . We find

un
D

−(un
D − un−1

D ) =

∣

∣

∣un−1
D

−
∣

∣

∣

2

2
−

∣

∣un
D

−
∣

∣

2

2
−

1

2
f ′′(ξ)

(

un
D − un−1

D

)2
.

We observe from the definition of f that f ′′(ρ) = 1 > 0, which implies

(3.7) un
D

−(un
D − un−1

D ) ≤

∣

∣

∣un−1
D

−
∣

∣

∣

2

2
−

∣

∣un
D

−
∣

∣

2

2
.

Now, using (3.4)-(3.7) to deduce from (3.3)

N0
∑

n=1

(

∣

∣un
D

−
∣

∣

2

2
−

∣

∣

∣un−1
D

−
∣

∣

∣

2

2

)

+M1 ‖u
n
h‖

2
X0

h
+

N0
∑

n=1

∆tn
∑

D∈Dint
h

∣

∣un
D

−
∣

∣

2

2

∑

E∈N (D)

Kn
1,D,E ≤ 0.

This implies that

(3.8)
1

2

(

∣

∣

∣uN0

D

−
∣

∣

∣

2

−
∣

∣

∣u0
D

−
∣

∣

∣

2
)

≤ 0.

Since u0
D is nonnegative, the result is un

D
− = 0 for all 1 ≤ n ≤ N and all D ∈ Dh. Along the

same lines as un
D, we obtain the nonnegativity of the discrete solution vn

D for all 1 ≤ n ≤ N and
all D ∈ Dh. �

3.3. A priori estimates. The goal now is to establish several a priori (discrete energy) estimates
for the combined finite volume - finite element scheme, which eventually will imply the desired
convergence results.

Proposition 3.3. Let (un
D, v

n
D, C

n
1,D, C

n
2,D, C

n
3,D)D∈Dh,n∈{0,...,N} be a solution of the scheme (1.10)-

(1.14). Then there exist constants C1, C2, C3 > 0, depending on Ω, T , u0, v0, such that

max
n∈{1,...,N}

∑

D∈Dh

m(D)
(

∣

∣Cn
1,D

∣

∣

2
+
∣

∣Cn
2,D

∣

∣

2
+
∣

∣Cn
3,D

∣

∣

2
)

≤ C1,(3.9)

max
n∈{1,...,N}

∑

D∈Dh

m(D)
(

|un
D|2 + |vn

D|2
)

≤ C2,(3.10)

N
∑

n=1

∆tn

(

‖un
h‖

2
X0

h
+ ‖vn

h‖
2
X0

h

)

≤ C3.(3.11)

Proof. First since (1.14) is a discrete of an ODE equation, it is easy to get (3.9).
Second, we multiply (1.12) and (1.13) by ∆tnu

n
D, ∆tnv

n
D, respectively, and add together the

outcomes. Summing the resulting equation over D and n yields

E1 + E2 + E3 = E4,
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where

E1 =

N0
∑

n=1

∑

D∈Dint
h

m(D)(un
D − un−1

D )un
D +

N0
∑

n=1

∑

D∈Dint
h

m(D)(vn
D − vn−1

D )vn
D

E2 = −
N0
∑

n=1

∆tnd1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

D∈Dint
h

un
D

∑

E∈Dint
h

S
n
D,Eu

n
E

−
N0
∑

n=1

∆tnd2

(

∑

D0∈Dh

m(D0)v
n
D0

)

∑

D∈Dint
h

vn
D

∑

E∈Dint
h

S
n
D,Ev

n
E

E3 =

N0
∑

n=1

∆tn
∑

D∈Dint
h

un
D

∑

E∈N (D)

Kn
1,D,Eu

n
D,E +

N0
∑

n=1

∆tn
∑

D∈Dint
h

vn
D

∑

E∈N (D)

Kn
2,D,Ev

n
D,E

E4 =

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D)Fn
Du

n
D +

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D)Gn
Dv

n
D,

where 1 < N0 ≤ N . From the inequality “a(a− b) ≥ 1
2 (a2 − b2)”, we obtain

E1 ≥
1

2

N0
∑

n=1

∑

D∈Dint
h

m(D)
(

|un
D|2 −

∣

∣un−1
D

∣

∣

2
)

+
1

2

N0
∑

n=1

∑

D∈Dint
h

m(D)
(

|vn
D|2 −

∣

∣vn−1
D

∣

∣

2
)

=
1

2

∑

D∈Dint
h

m(D)

(

∣

∣

∣uN0

D

∣

∣

∣

2

−
∣

∣u0
D

∣

∣

2
)

+
1

2

∑

D∈Dint
h

m(D)

(

∣

∣

∣vN0

D

∣

∣

∣

2

−
∣

∣v0
D

∣

∣

2
)

.

On the other hand, we have the following

E2 ≥M1

N0
∑

n=1

∆tn ‖un
h‖

2
X0

h
+M2

N0
∑

n=1

∆tn ‖vn
h‖

2
X0

h
,

from (1.15)

E3 ≥ 0.

and from the definition of F and G

E4 ≤ r

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D) |un
D|2 + ep/q

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D) |vn
D|2 .

Collecting the previous inequalities we obtain

1

2

∑

D∈Dint
h

m(D)

(

∣

∣

∣uN0

D

∣

∣

∣

2

−
∣

∣u0
D

∣

∣

2
)

+
1

2

∑

D∈Dint
h

m(D)

(

∣

∣

∣vN0

D

∣

∣

∣

2

−
∣

∣v0
D

∣

∣

2
)

+M1

N0
∑

n=1

∆tn ‖un
h‖

2
X0

h
+M2

N0
∑

n=1

∆tn ‖vn
h‖

2
X0

h

≤ r

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D) |un
D|2 + ep/q

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D) |vn
D|2 .

(3.12)
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This implies
∑

D∈Dint
h

m(D)
∣

∣

∣uN0

D

∣

∣

∣

2

+
∑

D∈Dint
h

m(D)
∣

∣

∣vN0

D

∣

∣

∣

2

≤ ‖u0‖
2
L2(Ω) + ‖v0‖

2
L2(Ω) + 2r

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D) |un
D|2

+ 2ep/q

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D) |vn
D|2 .

(3.13)

In view of (3.13), this implies that there exist constants C4, C5, C6 > 0 such that

∑

D∈Dint
h

m(D)
∣

∣

∣uN0

D

∣

∣

∣

2

+
∑

D∈Dint
h

m(D)
∣

∣

∣vN0

D

∣

∣

∣

2

≤ C4 + C5

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D) |un
D|2

+ C6

N0
∑

n=1

∆tn
∑

D∈Dint
h

m(D) |vn
D|2 .

(3.14)

An application of Gronwall’s inequality, we deduce from (3.14)

(3.15)
∑

D∈Dint
h

m(D)
∣

∣

∣
uN0

D

∣

∣

∣

2

+
∑

D∈Dint
h

m(D)
∣

∣

∣
vN0

D

∣

∣

∣

2

≤ C7,

for any N0 ∈ {1, . . . , N} and some constant C7 > 0. Then

max
n∈{1,...,N}

∑

D∈Dint
h

m(D) |un
D|2 + max

n∈{1,...,N}

∑

D∈Dint
h

m(D) |vn
D|2 ≤ C7.

Moreover, we obtain from (3.12) and (3.15) the existence of a constant C8 > 0 such that

N0
∑

n=1

∆tn ‖un
h‖

2
X0

h
+

N0
∑

n=1

∆tn ‖vn
h‖

2
X0

h
≤ C8.

�

3.4. Convergence of the combined finite volume - finite element scheme. In this section
we derive estimates on differences of space and time translates of the functions ũh, ṽh which imply
that the sequences ũh, ṽh are relatively compact in L2(QT ).

Lemma 3.4. There exists a positive constant C > 0 depending on Ω, T , u0, v0 such that

(3.16)

∫∫

Ω′×(0,T )

|w̃h(x+ y, t) − w̃h(x, t)|2 dx dt ≤ C |y| (|y| + 2h), w̃h = ũh, ṽh

for all y ∈ R
3 with Ω′ = {x ∈ Ω, [x, x+ y] ⊂ Ω}, and

(3.17)

∫∫

Ω×(0,T−τ)

|w̃h(x, t+ τ) − w̃h(x, t)|2 dx dt ≤ C(τ + ∆t), w̃h = ũh, ṽh

for all τ ∈ (0, T ).

Proof. To prove (3.16), we define a function χσ(x) for each σ ∈ F int
h by

χσ(x) =

{

1, if σ ∩ [x, x + y] 6= ∅,
0, if σ ∩ [x, x + y] = ∅.

A simple geometrical consideration leads to

|w̃h(x + y, t) − w̃h(x, t)| ≤
∑

σD,E∈Fint
h

|wn
E − wn

D|χσD,E
(x)
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for a.e. x ∈ Ω and for t ∈ (tn−1, tn], considering that wh is piecewise constant on Dh, the boundary
condition (1.11). The last inequality is not valid for x ∈ Ω such that the segment [x, x+y] intersects
some vertex of the dual mesh. The Cauchy-Schwarz inequality yields
(3.18)

|w̃h(x+ y, t) − w̃h(x, t)|2 ≤
∑

σD,E∈Fint
h

χσD,E
(x)diam(KD,E)

∑

σD,E∈Fint
h

|wn
E − wn

D|2

diam(KD,E)
χσD,E

(x)

for a.e. x ∈ Ω and for t ∈ (tn−1, tn]. We know that (see [21])

(3.19)
∑

σD,E∈Fint
h

χσD,E
(x)diam(KD,E) ≤ Cd,τ (|y| + h),

where Cd,τ > 0 is a constant depending on d and φT > 0 (the smallest angle of the simplex K).
Now we integrate (3.18) over QT , this gives

∫ T

0

∫

Ω

(wh(x+ y, t) − wh(x, t))2 dx dt

≤
Cd,τ

d
(|y| + h)

N
∑

n=1

∆tn
∑

σD,E∈Fint
h

(wn
E − wn

D)2

dD,E

∫

Ω

χσD,E
(x) dx

≤
Cd,τ

d

N
∑

n=1

∆tn
∑

σD,E∈Fint
h

m(σD,E)
(wn

E − wn
D)2

dD,E
|y| (|y| + h),

(3.20)

where we have used (3.19) and the following

dD,E ≤
diam(KD,E)

d
,

∫

Ω

χσD,E
(x) dx ≤ m(σD,E) |y| .

Finally using the apriori estimate (3.11) in (3.20) to deduce (3.16).
The proof of (3.17) will be omitted since it is similar to that of Lemma 5.2 in [11] (see also

Lemma 4.6 in [10] )
�

From Proposition 3.3, Lemma 3.4 and Kolmogorov’s compactness criterion (see, e.g., [23]),
there exists a subsequence of (uh, vh, C1,h, C2,h, C3,h), which converges strongly in L2(QT ) and
a.e. in QT . Moreover we have

(3.21) F (uh, vh) → F (u, v) and G(uh, vh) → G(u, v) strongly in L1(QT ) (from Vitali theorem).

Our final goal is to prove that the limit functions u, v, C1, C2, C3 constitute a weak solution of
the system (1.1). For this purpose, we introduce

Ψ :=
{

ϕ ∈ C2,1(Ω × [0, T ]), ϕ = 0 on ∂Ω × [0, T ], ϕ(., T ) = 0
}

Taking an arbitrary ϕ1 ∈ Ψ, we multiply the discrete equation (1.12) by ∆tnϕ(QD, t
n−1) for all

D ∈ Dh and n ∈ {1, . . . , N}. Summing the result over D and n yields

TT + TD + TC = TR,
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where

TT :=

N
∑

n=1

∑

D∈Dh

(un
D − un−1

D )ϕ1(QD, tn−1)m(D),

TD :=

N
∑

n=1

∆tnd1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

D∈Dh

∑

E∈Dh

un
E

∑

K∈Th

(

∇ϕE ,∇ϕD

)

0,K
ϕ1(QD, tn−1),

TC :=

N
∑

n=1

∆tn
∑

D∈Dh

∑

E∈N (D)

Kn
1,D,E u

n
D,E ϕ1(QD, tn−1),

TR :=
N
∑

n=1

∆tn
∑

D∈Dh

Fn
Dϕ1(QD, tn−1)m(D).

We have to show that each of the terms defined above converges to its continuous version as
h and ∆t tend to zero. We will not do the proof for the convergence of TT because is similar
to that in [11] , and the convergence for the term TR is easy by using Vitali. The proof for the
convergence of TC will be omitted since it is similar to that in [11]. Therefore, we will concentrate
our attention in the proof of the convergence of TD. Observe that (recall that un

h ∈ Xh)

TD :=

N
∑

n=1

∆tn d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

∇un
h(x) · ∇

(

∑

D∈Dh

ϕ1(QD, tn−1)ϕD(x)
)

dx,

Next, we will prove that

N
∑

n=1

∆tn d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

∇un
h(x) · ∇

(

∑

D∈Dh

ϕ1(QD, tn−1)ϕD(x)
)

dx

−
N
∑

n=1

∆tn d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

∇un
h(x) · ∇ϕ1(x, tn−1) dx −→ 0 as h→ 0.

(3.22)

Set

Iϕ1
(·, tn−1) :=

∑

D∈Dh

ϕ1(QD, tn−1)ϕD

and

TD1
:=

N
∑

n=1

∆tn d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

∇un
h(x) · ∇

(

Iϕ1
(x, tn−1) − ϕ1(x, tn−1)

)

dx.

Then using the Cauchy-Schwarz inequality, we estimate

|TD1
| ≤ C

N
∑

n=1

∆tn d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

‖un
h‖Xh

‖Iϕ1
(·, tn−1) − ϕ1(·, tn−1)‖Xh

≤ C(CI , θT )h

N
∑

n=1

∆tn d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

‖un
h‖Xh

(

∑

K∈Th

|ϕ1(·, tn−1)|
2
2,K

)

≤ C(CI , Cϕ1
, θT )h

N
∑

n=1

∆tn d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

‖un
h‖Xh

≤ C(CI , Cϕ1
, θT )h

(

N
∑

n=1

∆tn ‖un
h‖

2
Xh

)1/2( N
∑

n=1

∆tn

)1/2

,

where θT is given by (1.8), CI comes from the interpolation estimate. Thus (3.22) is obtained by
using (3.11).
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Our next goal is to show that

N
∑

n=1

∆tn d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

∇un
h(x) · ∇ϕ1(x, tn−1) dx

−→

∫ T

0

d1

(

∫

Ω

u dx

)

∫

Ω

∇u(x, t) · ∇ϕ1(x, t) dx dt,

(3.23)

as h,∆t→ 0.
We introduce the following integrals

TD2
:=

N
∑

n=1

∫ tn

tn−1

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

∇un
h(x) ·

(

∇ϕ1(x, tn−1) −∇ϕ1(x, t)
)

dx dt,

TD3
:=

∫ T

0

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

∇un
h(x, t) · ∇ϕ1(x, t) dx dt

−

∫ T

0

d1

(

∫

Ω

u dx

)

∫

Ω

∇u(x, t) · ∇ϕ1(x, t) dx dt,

The convergence (3.23) is a consequence of the convergence of TD2
and TD3

to zero when h,∆t→ 0.
Observe that for t ∈ (tn−1, tn], we have

|∇ϕ1(x, tn−1) −∇ϕ1(x, t)| ≤ g(∆t),

where g satisfies g(∆t) > 0 and g(∆t) → 0 as ∆t → 0. Therefore,

|TD2
| ≤ Cg(∆t)

N
∑

n=1

∆tn d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∣

∣

∣∇un
h|K

∣

∣

∣m(K)

≤ Cg(∆t)C
1/2
3 T 1/2m(Ω)1/2.

Herein, we have used the Cauchy-Schwarz inequality and the apriori estimate (3.11).

Next, we show that

(3.24) T ′
D3

:=

∫ T

0

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

(

∇un
h(x, t) −∇u(x, t)

)

· w(x, t) dx dt −→ 0

as h,∆t→ 0 for all w ∈ [C1(QT )]3. Using the Green theorem for u and w, we obtain (recall that
un

h /∈ H1
0 (Ω))

T ′
D3

:=
N
∑

n=1

∫ tn

tn−1

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

∇un
h(x) · w(x, t) dx dt

+

∫ T

0

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∫

Ω

u(x, t)∇ · w(x, t) dx dt

=

N
∑

n=1

∫ tn

tn−1

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

−un
h(x)∇ · w(x, t) dx dt

+

N
∑

n=1

∫ tn

tn−1

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

∂K

un
h(x)w(x, t) · n dγ(x) dt

+

∫ T

0

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∫

Ω

u(x, t)∇ · w(x, t) dx dt.
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Reordering the summation by sides in the second term of T ′
D3

as follows

N
∑

n=1

∫ tn

tn−1

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

∂K

un
h(x)w(x, t) · n dγ(x) dt

=

N
∑

n=1

∫ tn

tn−1

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)(

∑

σK,L∈Eint
h

∫

σK,L

(un
h|K − un

h|L)w(x, t) · nK,L dγ(x)

+
∑

σK,L∈Eext
h

∫

σK

un
h|K w(x, t) · nK dγ(x)

)

dt := T ′′
D3
,

we can estimate T ′′
D3

in the same form as in [11] for (6.13) and obtain the following

∣

∣T ′′
D3

∣

∣ ≤ Cw2h
N
∑

n=1

∫ tn

tn−1

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∣

∣

∣
∇un

h|K

∣

∣

∣
diam(K)3 dt

≤
Cw

κT
2h

N
∑

n=1

∆tnd1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∣

∣

∣∇un
h|K

∣

∣

∣m(K) dt

≤
Cw

κT
2hC

1/2
3 T 1/2m(Ω)1/2

using the fact that each ∇un
h|K is in the summation over all sides just 4-times,m(σD) ≤ diam(K)2/2

and diam(σD) ≤ diam(K) ≤ h for all σD ∈ EK , (1.7), the Cauchy-Schwarz inequality, and the
apriori estimate (3.11). Thus T ′′

D3
→ 0 as h→ 0.

To conclude that T ′
D3

→ 0 as h→ 0, it remains to show that

−
N
∑

n=1

∫ tn

tn−1

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∑

K∈Th

∫

K

un
h(x)∇ · w(x, t) dx dt

+

∫ T

0

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∫

Ω

u(x, t)∇ · w(x, t) dx dt → 0.

This is immediate, since we can rewrite it as
∫ T

0

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∫

Ω

(u(x, t) − uh(x, t))∇ · w(x, t) dx dt → 0.

which is a consequence of the strong L2(QT ) convergence of uh to u.

We next show that the density of the set [C1(QT )]3 in [L2(QT )]3 and (3.24) imply a weak
convergence of ∇uh to ∇u. In fact, let w ∈ [L2(QT )]3 be given and let wn be a sequence of
[C1(QT )]3 functions converging in [L2(QT )]3 to w. Then

∫ T

0

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∫

Ω

(∇uh −∇u) ·w dx dt

=

∫ T

0

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∫

Ω

(∇uh −∇u) ·wn dx dt

+

∫ T

0

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

∫

Ω

(∇uh −∇u) · (w − wn) dx dt

The second term of the above expression tends to zero as n→ ∞ by the Cauchy-Schwarz inequal-
ity. Therefore, the whole expression tends to zero as h → 0 for each w ∈ [L2(QT )]3, using (3.24)
for the first term.
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Finally, we conclude that TD3
→ 0 as h→ 0. We can write

TD3
:=

∫ T

0

(

d1

(

∑

D0∈Dh

m(D0)u
n
D0

)

− d1

(

∫

Ω

u dx

))

∫

Ω

∇un
h · ∇ϕ1 dx dt

−

∫ T

0

d1

(

∫

Ω

u dx

)

∫

Ω

(

∇u−∇un
h

)

· ∇ϕ1 dx dt,

The first term of the above expression tends to zero as h→ 0, using the boundedness of |∇ϕ1|, the
apriori estimate (3.11), and the Cauchy-Schwarz inequality. The second term converges to zero by
the weak convergence of ∇un

h to ∇u shown before. Altogether, combining (3.22) and (3.23) gives

(3.25) TD →

∫ T

0

d1

(

∫

Ω

u dx

)

∫

Ω

∇u · ∇ϕ1 dx dt as h,∆t→ 0

4. Numerical Results

The numerical study that is done in this work, does not try to be an exhaustive study of the
influence of the non-locality of the diffusion on the behavior of the solution, but we show by means
of examples and with a particular model of non-local diffusion that this non-locality alters sub-
stantially the behavior of the populations.

We now show some numerical experiments in two dimension. Let us consider a two-dimensional
closed rectangular habitat Ω =]0, 1[×]0, 1[. The calculations were based on the above combined
finite volume - finite element scheme. We performed a triangulation of the domain Ω using the
free software triangle, a two-dimensional quality mesh generator and delaunay triangulator. In
our triangulation, the maximum triangle area is 0.000062. For our simulations, we use a time step
∆t = 0.01, and we take the following ecological parameters:

r = 0.3, a = 0.3, β1 = 5, β2 = 2, e = 0.9, p = 0.9, q = 0.2

k1 = 0.5, g1 = 0.3, m1 = 0.35, k2 = 0.2, g2 = 0.2, m2 = 0.2, h = 0.4

for the carrying capacity parameter we take K = 2. The values of the parameters were taken from
[5] and [22]
To do the numerical results, we divided the domain [0, 1]× [0, 1] in four regions:

R1 = [0, 0.5]× [0, 0.5]; R2 = [0.5, 1]× [0, 0.5]; R3 = [0, 0.5]× [0.5, 1]; R4 = [0.5, 1]× [0.5, 1];
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Evolution in time of the toxicant

C1

C2

C3

Figure 2. The behavior of the contaminants C1, C2, and C3, for t = 0 we have
C1 = 0, C2 = 0 and C3 = 0.3.



22 VERONICA ANAYA, MOSTAFA BENDAHMANE, AND MAURICIO SEPULVEDA

In Figure 2 we can observe the evolution in time of the toxicants. The evolution of the toxicants
depends neither on the populations nor on the parameters (diffusion, convection). On the con-
trary, the behavior of preys and predators depends on the distribution of the contaminants. We
have the following initial conditions for the contaminants, for t = 0 we have C1 = 0, C2 = 0 and
C3 = 0.3. We observed that the behavior of the contaminants is exponentially decaying, for this
reason for large times, we do not have contaminant in the environment, neither in the organism
of the preys and predators. However, even having exponential decay, the initial presence of the
contaminants afects the solution in both cases. When we have constant diffusion (see cases(2) and
(3) in Figure 4 and 5) as much as we have non-local diffusion (see cases(2) and (3) in Figure 6 and 7)

Let us first precise the initial conditions. The initial distribution of predators and preys is given
in the following form: a horizontal band of preys crossing a vertical band of predators, see Figure
3
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Figure 3. Initial data

In Figure 4, we use constant difusion du = 0.001, dv = 0.001 and we can observed the predator
prey interaction for 4500 time step. In case(1),C1 = 0, C2 = 0, and C3 = 0 for all the domain Ω,
we can observe clearly the effect of the diffusion of the two populations. At first the predators
are attracted to the coincidence domain, which grows due to the diffusion, while we can see an
evasion of the prey population toward the lateral edges of the horizontal band. Simultaneously this
horizontal band grows with diffusion in the ortogonal direction. The two population interact and
grow or decay. In case(2),C1 6= 0, C2 6= 0, and C3 6= 0, as in the previous case, we can observe the
effect of the diffusion of the two populations and in this case we have a constant contaminant in
all the domain. And due to the contaminant the diffusion is a little slower. At first the predators
are attracted to the coincidence domain, which grows due to the diffusion, while we can see an
evasion of the prey population toward the lateral edges of the horizontal band. Simultaneously
this horizontal band grows with diffusion in the ortogonal direction. In case(3), we can observe
the effect of the diffusion of the two populations and the contaminant. As we said the contami-
nant is not in the whole domain, it is only in some regions. The contaminant in these regions is
distributed in the following form:
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Figure 4. Prey-predator interaction with diffusion du = 0.001 and dv = 0.001,
after 4500 time step. Case(1) without contaminant; Case(2) constant con-
taminant in all the domain; Case(3) contaminant in some regions of
Ω.

R1: C1 = 0, C2 6= 0, C3 6= 0, R2: C1 6= 0, C2 6= 0, C3 6= 0, R3: C1 = 0, C2 = 0, C3 = 0, and R4:
C1 6= 0, C2 = 0, C3 6= 0.
In R1 we have contaminant in the environment and concentration of the toxicant in the organism
of the predators. In R2, contaminant in the environment and concentration of the toxicant in the
organism of the predators and preys. In R3 we do not have any contaminant and finally in R4
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we have contaminant in the environment and concentration of the toxicant in the organism of the
preys.
At first the predators are attracted to the coincidence domain, which grows due to the diffusion,
while we can see an evasion of the most prey population toward the left lateral edge of the hori-
zontal band where there is not contaminant. Then we can observed that both populations go out
to the region with contaminant. As the time passes the toxicant in the environment disappears
and for this reason the preys can escape of the predators and go to the right side of the domain.

We use constant diffusion du = 0.001, dv = 0.001 and convection K1 = (0, 0.02),K2 = (0.02, 0),
in Figure 5, case(1), C1 = 0, C2 = 0, and C3 = 0 for all the domain Ω, we can observe clearly the
effect of the diffusion and the velocity of convection of the two populations. At first the predators
are attracted to the coincidence domain, which grows due to the diffusion, while we can see an
evasion of the prey population toward the lateral edges of the horizontal band. Then we can
observe that the displacement of the populations is given by the direction of its respective speed
of convection. The preys try to evade the predators. In case(2), C1 6= 0, C2 6= 0, and C3 6= 0, as in
the previous case we can observe clearly the effect of the diffusion and the velocity of convection
of the two populations, and some little changes because of the contaminant in all the domain. At
first the predators are attracted to the coincidence domain, which grows due to the diffusion, while
we can see an evasion of the prey population toward the lateral edges of the horizontal band. Then
we can observe that the displacement of the populations is given by the direction of its respective
speed of convection. The preys try to evade the predators. Finally, in case(3), as in the previous
cases we can observe clearly the effect of the diffusion and the velocity of convection of the two
populations. For this simulation we have the same distribution of the contaminant in the regions
R1, R2, R3 and R4 of the domain, in R1: C1 = 0, C2 6= 0, C3 6= 0, in R2: C1 6= 0, C2 6= 0, C3 6= 0,
in R3: C1 = 0, C2 = 0, C3 = 0, and in R4: C1 6= 0, C2 = 0, C3 6= 0. At first the predators
are attracted to the coincidence domain, which grows due to the diffusion, while we can see an
evasion of the prey population toward the left lateral edges of the horizontal band because of the
distribution of the toxicant. Then we can observe that the displacement of the populations is
given by the direction of its respective speed of convection and the two populations escape out of
the contaminated area. The preys try to evade the predators.

We can observed that the non-locality of the diffusion alters substantially the behavior of the
populations in the sense that there is more dispersion of the prey population and the opposite
occurs with the predator population, they localize in some region and the population decreases.
This can be observed in Case 2 of the Figure 7.
Aditionally, in Figures 6 and 7, in the third column of each case is possible to see the graphics of
the non-local diffusion which are proportional to the total population. As it is observed in both
figures 6 and 7 the non-local diffusion has in general an oscillatory behavior. Besides, while the
non-local diffusion of the preys tends to increase as the time passes, the non-local diffusion of the
predator tends to decrease reaching almost void values in some cases (See Case(2) in Figure 6
and 7) In Figure 6, we have non-local diffusion, we can observed the predator prey interaction for
4500 time step. In case(1), C1 = 0, C2 = 0, and C3 = 0 for all the domain Ω, we can observe
clearly the effect of the diffusive spatial dispersion of the two populations. At first the predators
are attracted to the coincidence domain, which grows due to the diffusion, while we can see an
evasion of the prey population toward the lateral edges of the horizontal band. Simultaneously
this horizontal band grows with diffusion in the ortogonal direction. At the final stage, we can
observed that the prey population diffuses almost over all the domain. In case(2), C1 6= 0, C2 6= 0,
and C3 6= 0, as in the previous case, we can observe the effect of the diffusive spatial dispersion
of the two populations and in this case we have a constant contaminant in all the domain. And
due to the contaminant the diffusion is a little slower. At first the predators are attracted to the
coincidence domain, which grows due to the diffusion but it grows slower than the prey popula-
tion. While we can see an evasion of the prey population toward the lateral edges of the horizontal
band. Simultaneously this horizontal band grows with diffusion in the ortogonal direction but
evadind the center of the domain which is the coincidence domain with predators. In case(3), we
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Figure 5. Prey-predator interaction with diffusion (du = 0.001, dv = 0.001), con-
vection (K1 = (0, 0.02),K2 = (0.02, 0)). Case(1) without contaminant; Case(2)
constant contaminant in all the domain; Case(3) contaminant in some regions
of Ω.

can observe the effect of the diffusive spatial dispersion of the two populations and the contam-
inant. As we said the contaminant is not in the whole domain, it is only in some regions,in R1:
C1 = 0, C2 6= 0, C3 6= 0, in R2: C1 6= 0, C2 6= 0, C3 6= 0, in R3: C1 = 0, C2 = 0, C3 = 0, and in
R4: C1 6= 0, C2 = 0, C3 6= 0. At first the predators are attracted to the coincidence domain, which
grows due to the diffusion, while we can see an evasion of the prey population toward the left
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Figure 6. Prey-predator interaction with nonlocal diffusion, after 4500 time
step. Case(1) without contaminant; Case(2) constant contaminant in all the
domain; Case(3) contaminant in some regions of Ω.

lateral edge of the horizontal band where there is not contaminant. Then we can observed that
both populations go out to the region with contaminant. As the time passes the toxicant in the
environment disappears and for this reason the preys can escape of the predators and go to the
right side of the domain. Finally, the preys diffuse almost over the whole domain. In this figure, we
also can see in the third column the graphics of the behavior of the nonlocal diffusion for each case.

In Figure 7, we have non-local diffusion and convection. In case(1), C1 = 0, C2 = 0, and C3 = 0
for all the domain Ω, we can observe clearly the effect of the diffusion and the velocity of convec-
tion of the two populations. At first the predators are attracted to the coincidence domain, which
grows due to the diffusion, while we can see an evasion of the prey population toward the lateral
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Figure 7. Prey-predator interaction with nonlocal diffusion, and convection
(K1 = (0, 0.02),K2 = (0.02, 0)). after 4500 time step. Case(1) without contami-
nant; Case(2) constant contaminant in all the domain; Case(3) contaminant in
some regions of Ω.

edges of the horizontal band, its evasion is to the left side more than the right one. Then we can
observe that the displacement of the populations is given by the direction of its respective speed
of convection. The preys try to evade the predators. In case(2), C1 6= 0, C2 6= 0, and C3 6= 0, as in
the previous case we can observe clearly the effect of the diffusion and the velocity of convection
of the two populations, and some little changes because of the contaminant in all the domain.
At first the predators are attracted to the coincidence domain, which grows due to the diffusion,
while we can see an evasion of the prey population toward the lateral edges of the horizontal band.
Then we can observe that the displacement of the populations is given by the direction of its
respective speed of convection. The preys try to evade the predators. We can observed that the
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prey populations increase and the predator population decrease and concentrate in a small region
of the domain. Finally, in case(3), as in the previous cases we can observe clearly the effect of the
diffusion and the velocity of convection of the two populations. For this simulation we have the
same distribution of the contaminant in the regions R1, R2, R3 and R4 of the domain given before,
in R1: C1 = 0, C2 6= 0, C3 6= 0, in R2: C1 6= 0, C2 6= 0, C3 6= 0, in R3: C1 = 0, C2 = 0, C3 = 0, and
in R4: C1 6= 0, C2 = 0, C3 6= 0. At first the predators are attracted to the coincidence domain,
which grows due to the diffusion, while we can see an evasion of the prey population toward the
left lateral edges of the horizontal band because of the distribution of the toxicant. Then we can
observe that the displacement of the populations is given by the direction of its respective speed of
convection and the two populations escape out of the contaminated area. The preys try to evade
the predators. In this figure, we also can see in the third column the graphics of the bahavior of
the nonlocal diffusion for each case.
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