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Abstract

Discrete networks have been used as models of gene regulation and other biological
networks. One key element in these models is the update schedule, which indicates
the order in which states have to be updated. In Aracena et al. (2009) was de-
fined equivalence classes of deterministic update schedules according to the labeled
digraph associated to the network (update digraph) and such that two schedules
in the same class yield the same dynamical behavior. In this paper we study al-
gorithmical and combinatorial aspects of update digraphs. We show a polinomial
characterization of these digraphs, which enables to characterize the corresponding
equivalence classes. We prove that the update digraphs are exactly the projections,
on the respective subgraphs, of a complete update digraph. Finally, the exact num-
ber of complete update digraphs was determined, which provides upper and lower
bounds on the number of equivalence classes.
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1 Introduction

Discrete networks (DNs) are the most simple model for genetic regulatory net-
works, as well as for other simple distributed dynamical systems. Despite their
simplicity, they provide a realistic model in which different phenomena can be
reproduced and studied, and indeed, many regulatory models published in
the biological literature fit within their framework Kauffman (1969); Thomas
(1973); Shmulevich et al. (2003).

A DN is defined by the states set of the nodes of the network, its connection
digraph, its local activation functions, and the type of update schedule used,
which may range from the parallel update, the most common Kauffman (1969);
Thomas (1991), to the sequential update, passing through all the combinations
of block-sequential updates (which are sequential over the sets of a partition,
but parallel inside of each set).

The effect in the dynamical behavior of of a discrete network against per-
turbations in the update schedule has been greatly studied, mainly from a
statistical point of view, in random Boolean networks(RBN), where the local
activation functions are probabilistically chosen Chaves et al. (2005).

Some analytical works about perturbations of update schedules have been
made in a particular class of discrete dynamical networks, called sequential
dynamical systems, where the connection digraph is symmetric or equiva-
lently an undirected graph and the update schedule is sequential. For this
class of networks, the team of Barrett, Mortveit and Reidys studied the set
of sequential update schedules preserving the whole dynamical behavior of
the network (2001) and the set of attractors in a certain class of Cellular
Automata (2005).

In Aracena et al. (2009) was defined equivalence classes of deterministic up-
date schedules in a particular kind of discrete networks (Boolean networks)
according to the labeled digraph associated to the network (update digraph).
It was proven that two update schedules in the same classe yield exactly the
same dynamical behavior.

In this paper we focus on the study of the update digraphs and the number
and size of equivalence classes of update schedules associated in a discrete
network.

The main reason for our interest in update digraphs schedules is two-fold. On
one hand, a necessary and good understanding of the objects we are dealing
with. On the other hand, a better understanding of the relationships between
the architecture of connection graph and the robustness of discrete network
dynamics through the study of the equivalence classes of determinsitic update



schedules definided by its aasociated updated digraphs.

2 Definitions

A digraph is an ordered pair of sets G = (V, A) where V = {1,...,n} is a set
of elements called vertices (or nodes) and A is a set of ordered pairs (called
arcs) of vertices of V. The vertex set of G is referred to as V(G), its arc set

as A(G).

A walk from a vertex v; to a vertex v, in a digraph G is a sequence of
vertices vy, Vg, . .., Uy, of V(G) such that Vk = 1,....m — 1, (vg, v441) € A(G)
or (Vgs1, V) € A(G). The vertices v, and v, are the initial and terminal vertex
of the walk. A walk is elementary if each vertex in the walk appears only
once with the possible exception that the first and last vertex may coincide. A
walk is closed if its initial and terminal vertices coincide. A circuit is a closed
elementary walk. A walk vy, vy..., v, is a path if (v, v1) € A(G) for all
k=1,...,m—1. A cycle is a directed circuit, that is a closed elementary
path.

A digraph G is said to be connected if there is a walk between every pair of
its vertices, and strongly connected if there is a path between every pair of
its vertices.

G = (V,A) being a digraph and i € V one of its vertices, N(i) = {j €
V| (j,i) € A} denotes the input neighborhood of i and d~ (i) = |N(7)] is the
input degree of i. More terminology about digraph can be found in (West,
1996).

Also, in the sequel, we will write [a,b]] = {a, ..., b} and [a,b]= {a,...,b—1},
for any integers a and b.

Definition 1 An update schedule of the vertices of a digraph G = (V, A),
with |V| = n, is a function s : V. — {1,...,n} such that s(V) = [1,m] for
somem < n. IfVi € V, s(i) = 1, the update schedule is said to be parallel.
In this case, we will write s = s,. If s is a permutation over the set {1,...,n},
s is said to be sequential. And in all other cases, s is said to be block
sequential.

As mentionned in Demongeot et al. (2008), the number of update schedules
associated to a given digraph of order n is equal to the number of ordered
partitions of a set of size n, that is

T, = nz_jl <Z>Tk

k=0



Let G = (V,A) be a digraph and s an update schedule. We denote

ry={ieV|s@)=r}.

Definition 2 Let G = (V, A) be a digraph and s an update schedule, we define
the labeling function labs : A — {(®, D} in the following way :

@ i s(y) = s(0)
© i s(j) <s(0).

An arc a € A such that labs(a) = @ is called a positive arc and an arc
a € A such that labs(a) = ©) is called a negative arc. Labeling every arc
a of A by labs(a), we obtain a labeled digraph (G,labs) named update di-
graph. We write N} (i) = {j € N(i) | labs(j,7) = @} and N7 (i) = {j €
N(i) | labs(j,4) = O}. Thus, we have N(i) = NF (i) U N7 (4).

V(7,1) € A, labs(j,i) = {

®
®

Fig. 1. A digraph G = (V, A) labeled by the function labs where Vi € V' = {1, ... 4},
s(i) = i.

Definition 3 A discrete network N = (G, I\ s) is defined by a finite set of
variable states x € Q = [0,m — 1], a digraph G, a global activation function

F:Q"— Q", where F(z) = (fi(x),..., fu(x)) with f; : Q™ — @ local acti-
vation functions such that j € N(i) if and only if I (xy,...,x,) € Q" a,b €
Q, a#b,

fi(.ilfl, ey L1,y Ty, - - ,I'n) §£ fi(l’l, vy i1, b, LTjgly--- ,In>.
and s an update schedule of the vertices of G. In the particular case where

Q = {0,1} the network is said to be Boolean network.

The iteration of the discrete network with an update schedule s is given by:

T—H fl(xlw"a lr?)> (1)

where l; = r if s(i) < s(j) and l; =r+ 1 if s(i) > s(j).



This is equivalent to applying a function F* : Q™ — Q™ in a parallel way, with
F*(z) = (f{(x),.... f;3(x)) defined by:

[ (@) = filgia (@), - 70 (@),

where the function g;; is defined by g; (v) = x; if s(i) < s(j) and g;,(v) =
fi(x) if s(i) > s(j). Thus, the function F* corresponds to the dynamical be-
havior of the network N. We will say that two networks Ny = (G, F, s1) and
Ny = (G, F, s3) have the same dynamics if F*' = F*2.

3 Preliminary results and motivations

Extending a result given in Aracena et al. (2009) for Boolean networks, the
following holds:

Theorem 4 Let Ny = (G, F, s1) and Ny = (G, F, s9) be two discrete networks
that differ only in the update schedule. If (G,labs,) = (G, labs,), then N1 and

Ny have the same dynamics.

Theorem 4 allows us to define equivalence classes with respect to labeled di-
graphs: if s is an update schedule of the vertices of a digraph G, we write [s]q

the set of update schedules s’ such that s £ ', that is
[sle = {s': (G,labs) = (G,laby)}.

Thus, an equivalence class, [s]g, is a set of update schedules that all yield the
same labeled digraph, and consequently, the same dynamics on networks.

In this work we study update digraphs and the equivalence classes of their
update schedules. More precisely, Section 4 deals with the characterization
of update digraphs. Sections 5 and 6 focus on the size and the number of
equivalence classes of update schedules.

4 Characterization of update digraphs

In this section, we study the relation ~g and the labelings of a given digraph
G. First, we give a characterization of the labeling functions lab : A(G) —
{®, ®} that indeed correspond to labeling functions induced by update sched-
ules. Then, we examine update schedules s which satisfy lab = lab,. The
section ends with some observations that where made to help determine the
number of [-]¢ classes. First, let us give some additional definitions.



Definition 5 A labeled digraph (G,lab) is said to be an update digraph
(UD) if there exists an update schedule s such that lab = labs, that is Va €
A(G), lab(a) = labs(a). (see example in figure 4)

Q @ Q ©

w2

a) b)

Fig. 2. a) A labeled digraph (G, lab) which is update digraph. b) A labeled digraph
(G,lab’) which is not an update digraph.

The goal of this section is to determine which labeled digraphs are update
digraphs.

Definition 6 Let (G,lab) be a labeled digraph and G' a subdigraph of G. We
define the projection of (G, lab) onto G’ by the labeled digraph (G',labgr), where
labgr(a) = lab(a), Ya € A(G').

Definition 7 Let (G, lab) be a labeled digraph and G’ be a non trivial strongly
connected subdigraph of G, the projected labeled digraph (G',lab’) is said to be
a positive strongly connected component of (G,lab) if Ya € A(G'"), labg: = D
and it is mazimal for this property. We will say that (G,lab) is reduced if it
has no positive strongly connected components.

Nothe that the fact of being (G, lab) an update digraph is independent of the
presence or absence of positive strongly connected components, because the
images of the vertices by an update schedule in a positive strongly connect
component are identical. In the sequel and without loss of generality, we will
work only with reduced labeled digraphs.

Definition 8 Let (G,lab) be a labeled digraph. We define the labeled reori-
ented digraph associated to (G,lab), and write (Gg,labgr), to refer to the
labeled digraph in which all negative arcs are inverted:

o A(GRr) ={(u,v) € A(G) | lab(u,v) = DO} U {(v,u) | (u,v) € A(G) ANlab(u,v) = (O}
. lab?(u,;)) :®@ if (v,u) € A(G) Alab(v,u) = (& and labg(u,v) = @ if
lab(u,v) = @©.

A forbidden cycle in (Gr,labg) is a cycle containing a negative arc.

Let (G,lab) be a labeled digraph. We can determine if it is reduced in time
O(|A]) with an algorithm that searches for strongly connected components of
a digraph. We also can get (Gg, labg) in time O(|A]).



Definition 9 Let (G, lab) be a labeled digraph and P a path in (Gg,labg), we
denote by I~ (P) the number of negative arcs of P. Thus, for every v € V(G)
we define L™ (v) = max{l~(P,)| P, is a path in (Gr,labg) ending in v} and

L™ (GRg,labg) = vrer‘l/_e%){L_ (v)},

the number of negative arcs of a path with the maximum number of negative
arcs in (Gg,labg).

Theorem 10 A labeled digraph (G,lab) is an update digraph if and only if
(GRr,labr) does not contain any forbidden cycle.

PROOF. (=) Let us suppose that (Gg,labg) contains a forbidden cycle
C:vy,...,u, =v; such that (vj,vj41) is a negative arc. Then any update
schedule s such that (G,lab) = (G, labs) must satisfy s(v;) > s(vj41). It must
also satisfy s(v;) < s(v;;+1) since there exists in (Gg,labg) a path from v;
to v;. Thus, we end up with a contradiction.

(<) Let L = L™ (Gg,labg). Observe first that if P : vy,..., v is a path in
G such that [7(P) = L with {(vi,, vi,), (Vig, Vig)s -+ (Vin, Vi, )} the set of
negative arcs of P where j > k = i; > 7, and s is an update schedule such

that (G, lab) = (G, labs) then
S(Uh) > S(Ui2> > S(Ui4) > S(Uifs) > > S(UizL)v
which implies max{s(v)| v € V(G)} > L + 1. Besides,

Vi=1,...,k, L™ (v;) =1 (vy,...,v;) and L™ (v1)=0.

Let s : V(G) — [[1, L + 1] with

s(v)=L—L" (v)+1, Yo e V(G).

Since obervation mentioned above, s(V(G)) = [1,L + 1], that is, s is an
update schedule of V(G). To check that s is also an update schedule satisfying
(G,lab) = (G,labs), we must show that Va = (u,v) € A(Gg), s(u) > s(v)
or L(v) > L(u). This follows from the fact that (u,v) being an arc of G, it
necessarily holds that L(v) > 1+ L(u). O

We can notice that if (G,lab) is a labeled digraph, the forbidden cycles of
(GR,labg) correspond to what we will refer to as alternating circuits of G.
That is, they coincide with walks of G, C' = vy, vy, ..., v, where vy = v, and
either (v;, v;41) € A in which case labg(vi, vir1) = @ or (viy1,v;) € A in which



case labg(viy1,v;) = (5 (or vice-versa). Among these alternating circuits, are
in particular circuits such that Vi € [0,k — 1]}, lab(v;, vit1) = © as well as
sub-graphs containing two vertices v and v, a walk from u to v negatively
labeled and another walk from u to v positively signed.

Incidently, let us notice that, as a consequence of Theorem 10, if a = (u,v) €
A(G) is an arc not belonging to any circuit, then the fact that (G, lab) is an
update digraph or not is independent of lab(a).

Algorithm 1, given below, finds an update schedule corresponding to a given
reduced labeled digraph as described in the proof of Theorem 10. It is adapted
from the famous algorithm van Leeuwen (1990), giving a topological order on
a digraph without cycles. For a given reduced labeled digraph (G, lab), algo-
rithm 1 works on the labeled reoriented digraph (Gg,labg) without forbid-
den cycles. It returns in time O(|V| + |A|) an update schedule s such that
(G,lab) = (G, labs) and

maz{s(v) |v € V} = min{max{s'(v)|v € V}| s is an update schedule of G}.

Figure 4 shows the different steps of the algorithm that returns an update
schedule associated to an arbitrary possible labeled digraph (not necessarily
reduced).

Corollary 11 The following problems can be solved in polynomial time.

(1) Determine whether a labeled digraph (G, lab) is an update digraph,

(2) Given (G,lab) a labeled digraph, find an update schedule s such that
(G,lab) = (G, laby).

Indeed, according to Theorem 10, a labeled digraph (G, lab) is an update one
if and only if, in (Gg,labr) no negative-arc belongs to a strongly connected
component. Thus, the first part of Corollary 11 holds since the strongly con-
nected components of a digraph can be identified in polynomial time. The
second part of Theorem 10 comes from the existence algorithm 1 whose run
time is also polynomial.

5 Sizes of the equivalence classes [

In this section we study the size of the equivalence classes [-]q.



Algorithm 1. update schedule associated to a labeled digraph
Input: (G = (V, A),lab) a reduced labeled digraph such that (Gg,labg) has
no forbidden cycle
begin
ValMax « table of size |V (Gg)| in which are stocked the maximal possible
values of s(v), v € V(Gg).
n— [Vl
H «— Gg;
forall v € V do
| ValMax[v] = n;
end

while Jv € V, d~(v) =0 in H do
s(v) « ValMax|v];
forall u € N(v) do
if (u,v) is a negative arc then
| ValMax[u| < min{ValMax[u], s(v) — 1;}
else
| ValMax|u| < min{ValMax[u], s(v); }
end
delete the arc (u,v) from H
end

end

Smin — min{s(v | v e V);}
forall v € V do

| s(v) «— $(v) = Smin;
end
end

Let us now consider the following question : given a digraph G and an update
schedule s, does there exist any udpdate schedule s’ # s such that (G, lab,) =
(G,laby) ? That is, what conditions need to be satisfied in order for |[s]g| > 1
to hold?

Corollary 12 Let (G,lab) be a reduced update digraph with |V (G)| = n and
L = L~ (GRg,labg). Then, Ym € [[L,n — 1], there exists an update schedule s
such that max{s(v)| v € V} =m+1 and (G,lab) = (G, lab;).

PROOF. We show the result by induction on m.
If m = L, the result was proved in Theorem 10.

If L =n—1, we are done. Otherwise, let m €]]L,n — 1]]. By induction hy-
pothesis, there exists an update schedule s such that (G,lab) = (G, labs) and



e) s(3)=3 s(4)=2

Fig. 3. a) A labeled digraph G = ({1,...,5}, A). b) (Gg,labgr). The arcs drawn in
dotted lines are negative-arcs. The others are positive-arcs. ¢) and d) the update

schedule computed by algorithm 1 after the while loop. e) The update schedule s
such that (G,lab) = (G,labs).

max{s(v)| v € V(G)} = m. Since m < n, there exists i* € [L,n—1] such that
|s71(i*)| > 1. Notice that V(u,v) € s7*(i*) x s71(i*) N A(GQ), labs(u,v) = @.
Besides, because there are not cycles in (Gg, labg), there exists w € s7!(i*)
such that {v € s71(i*)| (w,v) € A(Gg)} = 0. Hence, let us define s’ as follows:

S (v) = {s(v) +1 if s(v) > s(w) and v # w,
s(v) if s(v) < s(w) or v =w.

Hence obviously, s'(V(G)) = [[1,m+1], i.e. s’ in an update schedule of V(G),
and (G, lab) = (G, laby). O

Corollary 13 Let (G, lab) be a reduced update digraph and L = L~ (Gg, labg).
Then, |[sla| > |[V(G)| — L, where s is an update schedule such that (G, lab) =
(G, laby).

10



Corollary 14 Let (G = (V, A),labs) be an update digraph. |[s]¢| > 1 if and
only if G is not strongly connected, neither such that (Gg,labg) is linear and
negative.

PROOF. If G is not strongly connected, neither such that (Gg, labg) is linear
and negative, then [[L,|V]]]| > 1. Thus, by Theorem 12, |[s]¢| > 1, where
(G, lab) = (G, laby).

Conversely, there exists two particular cases in which |[s]¢| = 1:

(1) If G is linear digraph then L = |V|. Thus, in the case where Va € A,
labg(a) = (), only one update schedule s satisfies (G, lab) = (G, laby).
On the contrary, if 3a € A, labg(a) = @), there are 2F such update
schedules, where k is the number positive arcs of (G, lab).

(2) If G is strongly connected, then (G,lab) has only positive arcs. Thus,
(Ge,labe) is reduced to one alone vertice. According to the previous
Lemma, only one schedule satisfies (G, lab) = (G, labs): the parallel up-
date schedule, s),.

As a consequence, because (G, lab,,) is not a negative linear digraph, |[s,]q| >
1 if and only if G is not strongly connected.

6 Number of update digraphs

In the previous section, given a labeled digraph (G, lab), we were interested by
the existence of update schedules s such that (G, lab) = (G, labs). And when
there did exist such update schedules, we wanted to know how many there
were.

In the present section, given a digraph G, we would like to determine how it
can be labeled into an update digraph, that is, which are the labeling functions
lab of G such that (G,lab) is indeed an update digraph. In particular, here,
we focus on the number of equivalence classes [-]g (rather than there sizes).

Definition 15 We define the size of a labeled digraph (G, lab) by the number
of its positive arcs.

11



We define the following problem :

Input: A digraph G = (V,A) and an integer k;
DIGRAPH

UPDATE (DU) Does there exist a labeling function
problem: Question: Jab: A — {®,(®} such that (G,lab)

is an update digraph and its size
is at most k 7

Theorem 16 DIGRAPH UPDATE is NP-complete.

PROOF. We are going to prove Theorem 16 by reduction to the FAS problem
defined bellow and which is known to be NP-complete Garey and Johnson
(1979):

Input: A digraph G = (V,A) and an integer k;
FAS problem:
Question: Does there exist a feedback arc set F' of
G such that |F|<k?

where a feedback arc set (FAS) F of G is a set of arcs such that the digraph
(V, A\ F’) does not have any cycles. F'is minimal if there does not exist £’ C F
FAS of G.

The reduction function we use to map an instance of FAS to an instance of
DU is simply the identity. Next, for a given instance (G, k) we show that there
exists a labeling function lab such that (G,lab) is update digraph of size at
most k if and only if there exists a FAS F' of G such that |F| < k.

(=) Let lab be a labeling function such that (G, lab) is an update digraph of
size at most k and let /' = {a € A(G)| lab(a) = D}. Then, F is a FAS of size
|F| < k.G = (V,A\ F) cannot contain any cycle since otherwise it would be
negative cycle of (G, lab) which is not possible in an update digraph.

(<) Let F' be a minimal FAS of G such that |F| < k. Let a € F. If every
cycle of G containing a contains as well another arc of F' then F'\ {a} is a FAS
of G smaller than F. This contradicts the minimality of F. Thus, for every
a € F, there exists a cycle of GG containing a and no other arc of F. Now, let
us define the labeling function lab as follows:

Va € F, lab(a) = ® and Ya € A\ F, lab(a) = (.

Note that because there are no cycles in G’ = (V, A\ F'), there are not cycles in
(G, lab). Suppose, however, that (G, lab) is not an update digraph. In (G, lab),
there must thus be an alternating circuit (see Theorem 10 and the remarks

12



made after) containing both positive and negative arcs. In other words, there
is a forbidden cycle in (Gg, labgr). The positive arcs in this cycle belong to F'.
Let a € A(G) be such a positive arc belonging to the forbidden cycle and to
F. From the discussion above, we derive that there exists a cycle C, of G that
contains a and no other arc of I'. All the arcs of C, that are not a are thus
negative in (G, lab). Concatenating the negative arcs of the alternating circuit
and of all cycles C, (a being an arc of F' in the forbidden cycle) we obtain a
cycle in G' = (V, A(G) \ F) (see figure 3 below) which contradicts F' being a
FAS of G (as well as the fact that (G,lab) has no negative cycles). O

Fig. 4. A forbidden cycle in (Gg,labr) with, surrounding it, the negative cycles C,
mentioned in the proof of Theorem 16. Arrows in full line represent arcs, arrows in
dashed lines reprensent paths.

Corollary 17 Let (G,lab) be an update digraph. If Npas and Nypas are,
respectively, the total number of FAS and minimal FAS of G. Then,

Nyras < {[slg | s is un update schedule of V(G)} < Npas

7 Projections

Theorem 18 Let G be a digraph and G' a subdigraph of G. Then, (G',lal’)
is an update digraph if and only if there exists a labeling function lab of A(G)
such that lab' = labey.

PROOF. Obviously, if (G, lab) is an update digraph and lab' = labgr, then
(G',lal’) is also an update digraph by Theorem 10.

Conversely, if (G’,lab’) is an update digraph we will show that for all

a = (u,v) € A(G) \ A(@"), either (G’ + a,lab}) or (G’ + a,lab] ) is an update
digraph, where V(G'+a) = V(G")U{u,v}, E(G'+a) = E(G')U{a} and lab;

13



and lab, are defined by lab} (e) = lab, (e) = lab(e),Ve € A(G"), lab} (a) = ©
and lab, (a) = ©.

Let us suppose that there exists a = (u,v) € A(G) \ A(G’) such that nei-
ther (G’ + a,lab}) nor (G’ + a,lab, ) are update digraphs. Then there exist a
forbidden cycle Cy: @ =u,x2 = v,23,...,2, =u with labl (z;,z;11) = O
in the reoriented labeled digraph ((G + a)g, (labf)g). In the same way,
there exists a forbidden cycle Cy:y; =v,y2 =u,ys,...,Y, = v in the re-
oriented labeled digraph ((G + a)g, (lab, )r). Hence, la sequence of nodes
Ty = U,...,Tj,Tj41,...,Tp = U = Ya,...,Y, = v in the reoriented labeled
digraph (Gg,labg) contains a cycle including the arc (z;,2;41) (see Fig...),
that is a forbidden cycle. Thus (G, lab) is not un update digraph, which is a
contradiction.

Therefore, if A(G)\ A(G') = {a4,...,a,}, then by induction we can prove
that for all k in {1,...,r} there exists a labeling function lab* of the arcs of
G'+ay + ...+ a; such that labl, = lab' and (G’ 4 a1 + ... + a, laby) is an
update digraph. In particular, there exists a labeling function lab in G such
that (G, lab) is an update digraph and lab’ = labe. O

Gr

Fig. 5. Scheme of the forbidden cycle in (Gg,labr) mentioned in the proof of The-
orem 18.

Corollary 19 Let G be a connected digraph of n > 1 vertices. Then,

2"t < |{(G, lab) : (G,lab) is update digraph }| < T,

n—1 n
where T, = Z (k‘) T,.

k=0

PROOF. From Theorem 18 for all digraph G and subdigraph G’,
(G lal) : (G)lab) is UD}| < |{(G,lab) : (G,lab) is UD}|.

On other hand, the connected digraph of n vertices with the least number of
arcs, equal to n — 1, is an oriented tree. In this case, all labeling functions on

14



the digraph yield an update digraph. Thus, there are 2"~! update connected
digraphs with the least number of arcs. In the same way, the connected di-
graph of n nodes with the greast number of arcs, equal to n? (including the
arcs (u,u)), is the complete digraph. In this case, each labeling function on
a complete digraph define a total preorder on the vertices. Besides, it is well
known that the number of total preorders on a set of n elements is 7}, defined
as in the statement of this Theorem. Thus, 7;, is the maximum number of
update connected digraphs with n vertices. O
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