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Abstra
tDis
rete networks have been used as models of gene regulation and other biologi
alnetworks. One key element in these models is the update s
hedule, whi
h indi
atesthe order in whi
h states have to be updated. In Ara
ena et al. (2009) was de-�ned equivalen
e 
lasses of deterministi
 update s
hedules a

ording to the labeleddigraph asso
iated to the network (update digraph) and su
h that two s
hedulesin the same 
lass yield the same dynami
al behavior. In this paper we study al-gorithmi
al and 
ombinatorial aspe
ts of update digraphs. We show a polinomial
hara
terization of these digraphs, whi
h enables to 
hara
terize the 
orrespondingequivalen
e 
lasses. We prove that the update digraphs are exa
tly the proje
tions,on the respe
tive subgraphs, of a 
omplete update digraph. Finally, the exa
t num-ber of 
omplete update digraphs was determined, whi
h provides upper and lowerbounds on the number of equivalen
e 
lasses.Key words: Dis
rete network, update s
hedule, update digraph, feedba
k ar
 set.
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1 Introdu
tionDis
rete networks (DNs) are the most simple model for geneti
 regulatory net-works, as well as for other simple distributed dynami
al systems. Despite theirsimpli
ity, they provide a realisti
 model in whi
h di�erent phenomena 
an bereprodu
ed and studied, and indeed, many regulatory models published inthe biologi
al literature �t within their framework Kau�man (1969); Thomas(1973); Shmulevi
h et al. (2003).A DN is de�ned by the states set of the nodes of the network, its 
onne
tiondigraph, its lo
al a
tivation fun
tions, and the type of update s
hedule used,whi
h may range from the parallel update, the most 
ommon Kau�man (1969);Thomas (1991), to the sequential update, passing through all the 
ombinationsof blo
k-sequential updates (whi
h are sequential over the sets of a partition,but parallel inside of ea
h set).The e�e
t in the dynami
al behavior of of a dis
rete network against per-turbations in the update s
hedule has been greatly studied, mainly from astatisti
al point of view, in random Boolean networks(RBN), where the lo
ala
tivation fun
tions are probabilisti
ally 
hosen Chaves et al. (2005).Some analyti
al works about perturbations of update s
hedules have beenmade in a parti
ular 
lass of dis
rete dynami
al networks, 
alled sequentialdynami
al systems, where the 
onne
tion digraph is symmetri
 or equiva-lently an undire
ted graph and the update s
hedule is sequential. For this
lass of networks, the team of Barrett, Mortveit and Reidys studied the setof sequential update s
hedules preserving the whole dynami
al behavior ofthe network (2001) and the set of attra
tors in a 
ertain 
lass of CellularAutomata (2005).In Ara
ena et al. (2009) was de�ned equivalen
e 
lasses of deterministi
 up-date s
hedules in a parti
ular kind of dis
rete networks (Boolean networks)a

ording to the labeled digraph asso
iated to the network (update digraph).It was proven that two update s
hedules in the same 
lasse yield exa
tly thesame dynami
al behavior.In this paper we fo
us on the study of the update digraphs and the numberand size of equivalen
e 
lasses of update s
hedules asso
iated in a dis
retenetwork.The main reason for our interest in update digraphs s
hedules is two-fold. Onone hand, a ne
essary and good understanding of the obje
ts we are dealingwith. On the other hand, a better understanding of the relationships betweenthe ar
hite
ture of 
onne
tion graph and the robustness of dis
rete networkdynami
s through the study of the equivalen
e 
lasses of determinsiti
 update2



s
hedules de�nided by its aaso
iated updated digraphs.2 De�nitionsA digraph is an ordered pair of sets G = (V, A) where V = {1, . . . , n} is a setof elements 
alled verti
es (or nodes) and A is a set of ordered pairs (
alledar
s) of verti
es of V . The vertex set of G is referred to as V (G), its ar
 setas A(G).A walk from a vertex v1 to a vertex vm in a digraph G is a sequen
e ofverti
es v1, v2, . . . , vm of V (G) su
h that ∀k = 1, . . . , m− 1, (vk, vk+1) ∈ A(G)or (vk+1, vk) ∈ A(G). The verti
es v1 and vm are the initial and terminal vertexof the walk. A walk is elementary if ea
h vertex in the walk appears onlyon
e with the possible ex
eption that the �rst and last vertex may 
oin
ide. Awalk is 
losed if its initial and terminal verti
es 
oin
ide. A 
ir
uit is a 
losedelementary walk. A walk v1, v2 . . . , vm is a path if (vk, vk+1) ∈ A(G) for all
k = 1, . . . , m − 1. A 
y
le is a dire
ted 
ir
uit, that is a 
losed elementarypath.A digraph G is said to be 
onne
ted if there is a walk between every pair ofits verti
es, and strongly 
onne
ted if there is a path between every pair ofits verti
es.
G = (V, A) being a digraph and i ∈ V one of its verti
es, N(i) = {j ∈
V | (j, i) ∈ A} denotes the input neighborhood of i and d−(i) = |N(i)| is theinput degree of i. More terminology about digraph 
an be found in (West,1996).Also, in the sequel, we will write [[a, b]] = {a, . . . , b} and [[a, b[[= {a, . . . , b−1},for any integers a and b.De�nition 1 An update s
hedule of the verti
es of a digraph G = (V, A),with |V | = n, is a fun
tion s : V → {1, . . . , n} su
h that s(V ) = [[1, m]] forsome m ≤ n. If ∀i ∈ V, s(i) = 1, the update s
hedule is said to be parallel.In this 
ase, we will write s = sp. If s is a permutation over the set {1, . . . , n},
s is said to be sequential. And in all other 
ases, s is said to be blo
ksequential.As mentionned in Demongeot et al. (2008), the number of update s
hedulesasso
iated to a given digraph of order n is equal to the number of orderedpartitions of a set of size n, that is

Tn =
n−1
∑

k=0

(

n

k

)

Tk.3



Let G = (V, A) be a digraph and s an update s
hedule. We denote
s−1(r) = {i ∈ V | s(i) = r}.De�nition 2 Let G = (V, A) be a digraph and s an update s
hedule, we de�nethe labeling fun
tion labs : A→ { -©, +©} in the following way :

∀(j, i) ∈ A, labs(j, i) =







+© if s(j) ≥ s(i)-© if s(j) < s(i).An ar
 a ∈ A su
h that labs(a) = +© is 
alled a positive ar
 and an ar

a ∈ A su
h that labs(a) = -© is 
alled a negative ar
. Labeling every ar

a of A by labs(a), we obtain a labeled digraph (G, labs) named update di-graph. We write N+

s (i) = {j ∈ N(i) | labs(j, i) = +©} and N−

s (i) = {j ∈
N(i) | labs(j, i) = -©}. Thus, we have N(i) = N+

s (i) ∪N−

s (i).
2

3
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+
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−
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Fig. 1. A digraph G = (V,A) labeled by the fun
tion labs where ∀i ∈ V = {1, . . . , 4},
s(i) = i.De�nition 3 A dis
rete network N = (G, F, s) is de�ned by a �nite set ofvariable states x ∈ Q = [[0, m − 1]], a digraph G, a global a
tivation fun
tion
F : Qn → Qn, where F (x) = (f1(x), . . . , fn(x)) with fi : Qn → Q lo
al a
ti-vation fun
tions su
h that j ∈ N(i) if and only if ∃ (x1, . . . , xn) ∈ Qn, a, b ∈
Q, a 6= b,

fi(x1, . . . , xj−1, a, xj+1, . . . , xn) 6= fi(x1, . . . , xj−1, b, xj+1, . . . , xn).and s an update s
hedule of the verti
es of G. In the parti
ular 
ase where
Q = {0, 1} the network is said to be Boolean network.The iteration of the dis
rete network with an update s
hedule s is given by:

xr+1
i = fi(x

l1
1 , . . . , xln

n ), (1)where lj = r if s(i) ≤ s(j) and lj = r + 1 if s(i) > s(j).4



This is equivalent to applying a fun
tion F s : Qn → Qn in a parallel way, with
F s(x) = (f s

1 (x), . . . , f s
n(x)) de�ned by:

f s
i (x) = fi(g

s
i,1(x), . . . , gs

i,n(x)),where the fun
tion gs
i,j is de�ned by gs

i,j(x) = xj if s(i) ≤ s(j) and gs
i,j(x) =

f s
j (x) if s(i) > s(j). Thus, the fun
tion F s 
orresponds to the dynami
al be-havior of the network N . We will say that two networks N1 = (G, F, s1) and

N2 = (G, F, s2) have the same dynami
s if F s1 = F s2.3 Preliminary results and motivationsExtending a result given in Ara
ena et al. (2009) for Boolean networks, thefollowing holds:Theorem 4 Let N1 = (G, F, s1) and N2 = (G, F, s2) be two dis
rete networksthat di�er only in the update s
hedule. If (G, labs1
) = (G, labs2

), then N1 and
N2 have the same dynami
s.Theorem 4 allows us to de�ne equivalen
e 
lasses with respe
t to labeled di-graphs: if s is an update s
hedule of the verti
es of a digraph G, we write [s]Gthe set of update s
hedules s′ su
h that s

G
∼ s′, that is

[s]G = {s′ : (G, labs) = (G, labs′)}.Thus, an equivalen
e 
lass, [s]G, is a set of update s
hedules that all yield thesame labeled digraph, and 
onsequently, the same dynami
s on networks.In this work we study update digraphs and the equivalen
e 
lasses of theirupdate s
hedules. More pre
isely, Se
tion 4 deals with the 
hara
terizationof update digraphs. Se
tions 5 and 6 fo
us on the size and the number ofequivalen
e 
lasses of update s
hedules.4 Chara
terization of update digraphsIn this se
tion, we study the relation ∼G and the labelings of a given digraph
G. First, we give a 
hara
terization of the labeling fun
tions lab : A(G) →
{ +©, -©} that indeed 
orrespond to labeling fun
tions indu
ed by update s
hed-ules. Then, we examine update s
hedules s whi
h satisfy lab = labs. These
tion ends with some observations that where made to help determine thenumber of [·]G 
lasses. First, let us give some additional de�nitions.5



De�nition 5 A labeled digraph (G, lab) is said to be an update digraph(UD) if there exists an update s
hedule s su
h that lab = labs, that is ∀a ∈
A(G), lab(a) = labs(a). (see example in �gure 4)

3 2
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+

− −

3 2

1

−

− −

a) b)Fig. 2. a) A labeled digraph (G, lab) whi
h is update digraph. b) A labeled digraph
(G, lab′) whi
h is not an update digraph.The goal of this se
tion is to determine whi
h labeled digraphs are updatedigraphs.De�nition 6 Let (G, lab) be a labeled digraph and G′ a subdigraph of G. Wede�ne the proje
tion of (G, lab) onto G′ by the labeled digraph (G′, labG′), where
labG′(a) = lab(a), ∀a ∈ A(G′).De�nition 7 Let (G, lab) be a labeled digraph and G′ be a non trivial strongly
onne
ted subdigraph of G, the proje
ted labeled digraph (G′, lab′) is said to bea positive strongly 
onne
ted 
omponent of (G, lab) if ∀a ∈ A(G′), labG′ = +©and it is maximal for this property. We will say that (G, lab) is redu
ed if ithas no positive strongly 
onne
ted 
omponents.Nothe that the fa
t of being (G, lab) an update digraph is independent of thepresen
e or absen
e of positive strongly 
onne
ted 
omponents, be
ause theimages of the verti
es by an update s
hedule in a positive strongly 
onne
t
omponent are identi
al. In the sequel and without loss of generality, we willwork only with redu
ed labeled digraphs.De�nition 8 Let (G, lab) be a labeled digraph. We de�ne the labeled reori-ented digraph asso
iated to (G, lab), and write (GR, labR), to refer to thelabeled digraph in whi
h all negative ar
s are inverted:
• V (GR) = V (G).
• A(GR) = {(u, v) ∈ A(G) | lab(u, v) = +©} ∪ {(v, u) | (u, v) ∈ A(G) ∧ lab(u, v) = -©}
• labR(u, v) = -© if (v, u) ∈ A(G) ∧ lab(v, u) = -© and labR(u, v) = +© if

lab(u, v) = +©.A forbidden 
y
le in (GR, labR) is a 
y
le 
ontaining a negative ar
.Let (G, lab) be a labeled digraph. We 
an determine if it is redu
ed in time
O(|A|) with an algorithm that sear
hes for strongly 
onne
ted 
omponents ofa digraph. We also 
an get (GR, labR) in time O(|A|).6



De�nition 9 Let (G, lab) be a labeled digraph and P a path in (GR, labR), wedenote by l−(P ) the number of negative ar
s of P . Thus, for every v ∈ V (G)we de�ne L−(v) = max{l−(Pv) | Pv is a path in (GR, labR) ending in v} and
L−(GR, labR) = max

v∈V (G)
{L−(v)},the number of negative ar
s of a path with the maximum number of negativear
s in (GR, labR).Theorem 10 A labeled digraph (G, lab) is an update digraph if and only if

(GR, labR) does not 
ontain any forbidden 
y
le.PROOF. (⇒) Let us suppose that (GR, labR) 
ontains a forbidden 
y
le
C : v1, . . . , vp = v1 su
h that (vj , vj+1) is a negative ar
. Then any updates
hedule s su
h that (G, lab) = (G, labs) must satisfy s(vj) > s(vj+1). It mustalso satisfy s(vj) ≤ s(vj+1) sin
e there exists in (GR, labR) a path from vj+1to vj . Thus, we end up with a 
ontradi
tion.(⇐) Let L = L−(GR, labR). Observe �rst that if P : v1, . . . , vk is a path in
G su
h that l−(P ) = L with {(vi1 , vi2), (vi3 , vi4), . . . , (vi2L−1

, vi2L
)} the set ofnegative ar
s of P where j > k ⇒ ij > ik, and s is an update s
hedule su
hthat (G, lab) = (G, labs) then

s(vi1) > s(vi2) > s(vi4) > s(vi6) > · · · > s(vi2L
),whi
h implies max{s(v)| v ∈ V (G)} ≥ L + 1. Besides,

∀ i = 1, . . . , k, L−(vi) = l−(v1, . . . , vi) and L−(v1) = 0.Let s : V (G)→ [[1, L + 1]] with
s(v) = L− L−(v) + 1, ∀v ∈ V (G).Sin
e obervation mentioned above, s(V (G)) = [[1, L + 1]], that is, s is anupdate s
hedule of V (G). To 
he
k that s is also an update s
hedule satisfying

(G, lab) = (G, labs), we must show that ∀a = (u, v) ∈ A(GR), s(u) > s(v)or L(v) > L(u). This follows from the fa
t that (u, v) being an ar
 of GR, itne
essarily holds that L(v) ≥ 1 + L(u). 2We 
an noti
e that if (G, lab) is a labeled digraph, the forbidden 
y
les of
(GR, labR) 
orrespond to what we will refer to as alternating 
ir
uits of G.That is, they 
oin
ide with walks of G, C = v0, v1, . . . , vk, where v0 = vk andeither (vi, vi+1) ∈ A in whi
h 
ase labG(vi, vi+1) = +© or (vi+1, vi) ∈ A in whi
h7




ase labG(vi+1, vi) = -© (or vi
e-versa). Among these alternating 
ir
uits, arein parti
ular 
ir
uits su
h that ∀i ∈ [[0, k − 1]], lab(vi, vi+1) = -© as well assub-graphs 
ontaining two verti
es u and v, a walk from u to v negativelylabeled and another walk from u to v positively signed.In
idently, let us noti
e that, as a 
onsequen
e of Theorem 10, if a = (u, v) ∈
A(G) is an ar
 not belonging to any 
ir
uit, then the fa
t that (G, lab) is anupdate digraph or not is independent of lab(a).Algorithm 1, given below, �nds an update s
hedule 
orresponding to a givenredu
ed labeled digraph as des
ribed in the proof of Theorem 10. It is adaptedfrom the famous algorithm van Leeuwen (1990), giving a topologi
al order ona digraph without 
y
les. For a given redu
ed labeled digraph (G, lab), algo-rithm 1 works on the labeled reoriented digraph (GR, labR) without forbid-den 
y
les. It returns in time O(|V | + |A|) an update s
hedule s su
h that
(G, lab) = (G, labs) and
max{s(v) | v ∈ V } = min{max{s′(v) | v ∈ V } | s′ is an update s
hedule of G}.Figure 4 shows the di�erent steps of the algorithm that returns an updates
hedule asso
iated to an arbitrary possible labeled digraph (not ne
essarilyredu
ed).Corollary 11 The following problems 
an be solved in polynomial time.(1) Determine whether a labeled digraph (G, lab) is an update digraph,(2) Given (G, lab) a labeled digraph, �nd an update s
hedule s su
h that

(G, lab) = (G, labs).Indeed, a

ording to Theorem 10, a labeled digraph (G, lab) is an update oneif and only if, in (GR, labR) no negative-ar
 belongs to a strongly 
onne
ted
omponent. Thus, the �rst part of Corollary 11 holds sin
e the strongly 
on-ne
ted 
omponents of a digraph 
an be identi�ed in polynomial time. These
ond part of Theorem 10 
omes from the existen
e algorithm 1 whose runtime is also polynomial.5 Sizes of the equivalen
e 
lasses [·]GIn this se
tion we study the size of the equivalen
e 
lasses [·]G.8



Algorithm 1. update s
hedule asso
iated to a labeled digraphInput: (G = (V, A), lab) a redu
ed labeled digraph su
h that (GR, labR) hasno forbidden 
y
lebeginValMax← table of size |V (GR)| in whi
h are sto
ked the maximal possiblevalues of s(v), v ∈ V (GR).
n← |V |;
H ← GR;forall v ∈ V doValMax[v] = n;endwhile ∃v ∈ V, d−(v) = 0 in H do

s(v)← ValMax[v];forall u ∈ N(v) doif (u, v) is a negative ar
 thenValMax[u]← min{ValMax[u], s(v)− 1; }elseValMax[u]← min{ValMax[u], s(v); }enddelete the ar
 (u, v) from Hendend
smin ← min{s(v | v ∈ V ); }forall v ∈ V do

s(v)← s(v)− smin;endendLet us now 
onsider the following question : given a digraph G and an updates
hedule s, does there exist any udpdate s
hedule s′ 6= s su
h that (G, labs) =
(G, labs′) ? That is, what 
onditions need to be satis�ed in order for |[s]G| > 1to hold?Corollary 12 Let (G, lab) be a redu
ed update digraph with |V (G)| = n and
L = L−(GR, labR). Then, ∀m ∈ [[L, n − 1]], there exists an update s
hedule ssu
h that max{s(v)| v ∈ V } = m + 1 and (G, lab) = (G, labs).PROOF. We show the result by indu
tion on m.If m = L, the result was proved in Theorem 10.If L = n − 1, we are done. Otherwise, let m ∈]]L, n − 1]]. By indu
tion hy-pothesis, there exists an update s
hedule s su
h that (G, lab) = (G, labs) and9
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Fig. 3. a) A labeled digraph G = ({1, . . . , 5}, A). b) (GR, labR). The ar
s drawn indotted lines are negative-ar
s. The others are positive-ar
s. c) and d) the updates
hedule 
omputed by algorithm 1 after the while loop. e) The update s
hedule ssu
h that (G, lab) = (G, labs).
max{s(v)| v ∈ V (G)} = m. Sin
e m < n, there exists i∗ ∈ [[L, n−1]] su
h that
|s−1(i∗)| > 1. Noti
e that ∀(u, v) ∈ s−1(i∗) × s−1(i∗) ∩ A(G), labs(u, v) = +©.Besides, be
ause there are not 
y
les in (GR, labR), there exists w ∈ s−1(i∗)su
h that {v ∈ s−1(i∗)| (w, v) ∈ A(GR)} = ∅. Hen
e, let us de�ne s′ as follows:

s′(v) =







s(v) + 1 if s(v) ≥ s(w) and v 6= w,
s(v) if s(v) < s(w) or v = w.Hen
e obviously, s′(V (G)) = [[1, m+1]], i.e. s′ in an update s
hedule of V (G),and (G, lab) = (G, labs′). 2Corollary 13 Let (G, lab) be a redu
ed update digraph and L = L−(GR, labR).Then, |[s]G| ≥ |V (G)| −L, where s is an update s
hedule su
h that (G, lab) =

(G, labs). 10



Corollary 14 Let (G = (V, A), labs) be an update digraph. |[s]G| > 1 if andonly if G is not strongly 
onne
ted, neither su
h that (GR, labR) is linear andnegative.PROOF. If G is not strongly 
onne
ted, neither su
h that (GR, labR) is linearand negative, then |[[L, |V |]]| > 1. Thus, by Theorem 12, |[s]G| > 1, where
(G, lab) = (G, labs).Conversely, there exists two parti
ular 
ases in whi
h |[s]G| = 1:(1) If G is linear digraph then L = |V |. Thus, in the 
ase where ∀a ∈ A,

labG(a) = -©, only one update s
hedule s satis�es (G, lab) = (G, labs).On the 
ontrary, if ∃a ∈ A, labG(a) = +©, there are 2k su
h updates
hedules, where k is the number positive ar
s of (G, lab).(2) If G is strongly 
onne
ted, then (G, lab) has only positive ar
s. Thus,
(GC , labC) is redu
ed to one alone verti
e. A

ording to the previousLemma, only one s
hedule satis�es (G, lab) = (G, labs): the parallel up-date s
hedule, sp.

2As a 
onsequen
e, be
ause (G, labsp
) is not a negative linear digraph, |[sp]G| >

1 if and only if G is not strongly 
onne
ted.
6 Number of update digraphsIn the previous se
tion, given a labeled digraph (G, lab), we were interested bythe existen
e of update s
hedules s su
h that (G, lab) = (G, labs). And whenthere did exist su
h update s
hedules, we wanted to know how many therewere.In the present se
tion, given a digraph G, we would like to determine how it
an be labeled into an update digraph, that is, whi
h are the labeling fun
tions
lab of G su
h that (G, lab) is indeed an update digraph. In parti
ular, here,we fo
us on the number of equivalen
e 
lasses [·]G (rather than there sizes).De�nition 15 We de�ne the size of a labeled digraph (G, lab) by the numberof its positive ar
s. 11



We de�ne the following problem :DIGRAPHUPDATE (DU)problem: 





































Input: A digraph G = (V, A) and an integer k;Question: Does there exist a labeling fun
tion
lab : A→ { +©, -©} su
h that (G, lab)is an update digraph and its sizeis at most k ?Theorem 16 DIGRAPH UPDATE is NP-
omplete.PROOF. We are going to prove Theorem 16 by redu
tion to the FAS problemde�ned bellow and whi
h is known to be NP-
omplete Garey and Johnson(1979):FAS problem:











Input: A digraph G = (V, A) and an integer k;Question: Does there exist a feedba
k ar
 set F of
G su
h that |F | ≤ k ?where a feedba
k ar
 set (FAS) F of G is a set of ar
s su
h that the digraph

(V, A\F ) does not have any 
y
les. F is minimal if there does not exist F ′ ( FFAS of G.The redu
tion fun
tion we use to map an instan
e of FAS to an instan
e ofDU is simply the identity. Next, for a given instan
e (G, k) we show that thereexists a labeling fun
tion lab su
h that (G, lab) is update digraph of size atmost k if and only if there exists a FAS F of G su
h that |F | ≤ k.
(⇒) Let lab be a labeling fun
tion su
h that (G, lab) is an update digraph ofsize at most k and let F = {a ∈ A(G)| lab(a) = +©}. Then, F is a FAS of size
|F | ≤ k. G′ = (V, A \F ) 
annot 
ontain any 
y
le sin
e otherwise it would benegative 
y
le of (G, lab) whi
h is not possible in an update digraph.
(⇐) Let F be a minimal FAS of G su
h that |F | ≤ k. Let a ∈ F . If every
y
le of G 
ontaining a 
ontains as well another ar
 of F then F \{a} is a FASof G smaller than F . This 
ontradi
ts the minimality of F . Thus, for every
a ∈ F , there exists a 
y
le of G 
ontaining a and no other ar
 of F . Now, letus de�ne the labeling fun
tion lab as follows:

∀a ∈ F, lab(a) = +© and ∀a ∈ A \ F, lab(a) = -©.Note that be
ause there are no 
y
les in G′ = (V, A\F ), there are not 
y
les in
(G, lab). Suppose, however, that (G, lab) is not an update digraph. In (G, lab),there must thus be an alternating 
ir
uit (see Theorem 10 and the remarks12



made after) 
ontaining both positive and negative ar
s. In other words, thereis a forbidden 
y
le in (GR, labR). The positive ar
s in this 
y
le belong to F .Let a ∈ A(G) be su
h a positive ar
 belonging to the forbidden 
y
le and to
F . From the dis
ussion above, we derive that there exists a 
y
le Ca of G that
ontains a and no other ar
 of F . All the ar
s of Ca that are not a are thusnegative in (G, lab). Con
atenating the negative ar
s of the alternating 
ir
uitand of all 
y
les Ca (a being an ar
 of F in the forbidden 
y
le) we obtain a
y
le in G′ = (V, A(G) \ F ) (see �gure 3 below) whi
h 
ontradi
ts F being aFAS of G (as well as the fa
t that (G, lab) has no negative 
y
les). 2

−

+

+

+a

Ca

Fig. 4. A forbidden 
y
le in (GR, labR) with, surrounding it, the negative 
y
les Camentioned in the proof of Theorem 16. Arrows in full line represent ar
s, arrows indashed lines reprensent paths.Corollary 17 Let (G, lab) be an update digraph. If NFAS and NMFAS are,respe
tively, the total number of FAS and minimal FAS of G. Then,
NMFAS ≤ |{[s]G | s is un update s
hedule of V (G)}| ≤ NFAS7 Proje
tionsTheorem 18 Let G be a digraph and G′ a subdigraph of G. Then, (G′, lab′)is an update digraph if and only if there exists a labeling fun
tion lab of A(G)su
h that lab′ = labG′ .PROOF. Obviously, if (G, lab) is an update digraph and lab′ = labG′ , then

(G′, lab′) is also an update digraph by Theorem 10.Conversely, if (G′, lab′) is an update digraph we will show that for all
a = (u, v) ∈ A(G) \ A(G′), either (G′ + a, lab+

a ) or (G′ + a, lab−a ) is an updatedigraph, where V (G′ +a) = V (G′)∪{u, v}, E(G′ +a) = E(G′)∪{a} and lab+
a13



and lab−a are de�ned by lab+
a (e) = lab−a (e) = lab(e), ∀e ∈ A(G′), lab+

a (a) = +©and lab−a (a) = -©.Let us suppose that there exists a = (u, v) ∈ A(G) \ A(G′) su
h that nei-ther (G′ + a, lab+
a ) nor (G′ + a, lab−a ) are update digraphs. Then there exist aforbidden 
y
le C1 : x1 = u, x2 = v, x3, . . . , xp = u with lab+

a (xj , xj+1) = -©in the reoriented labeled digraph ((G + a)R, (lab+
a )R). In the same way,there exists a forbidden 
y
le C2 : y1 = v, y2 = u, y3, . . . , yq = v in the re-oriented labeled digraph ((G + a)R, (lab−a )R). Hen
e, la sequen
e of nodes

x2 = v, . . . , xj, xj+1, . . . , xp = u = y2, . . . , yq = v in the reoriented labeleddigraph (GR, labR) 
ontains a 
y
le in
luding the ar
 (xj , xj+1) (see Fig...),that is a forbidden 
y
le. Thus (G, lab) is not un update digraph, whi
h is a
ontradi
tion.Therefore, if A(G) \ A(G′) = {a1, . . . , ar}, then by indu
tion we 
an provethat for all k in {1, . . . , r} there exists a labeling fun
tion labk of the ar
s of
G′ + a1 + . . . + ak su
h that labk

G′ = lab′ and (G′ + a1 + . . . + ak, labk) is anupdate digraph. In parti
ular, there exists a labeling fun
tion lab in G su
hthat (G, lab) is an update digraph and lab′ = labG′ . 2

C2

xj

xj+1

RG

u v

C1

−

Fig. 5. S
heme of the forbidden 
y
le in (GR, labR) mentioned in the proof of The-orem 18.Corollary 19 Let G be a 
onne
ted digraph of n > 1 verti
es. Then,
2n−1 ≤ |{(G, lab) : (G, lab) is update digraph }| ≤ Tnwhere Tn =

n−1
∑

k=0

(

n

k

)

Tk.PROOF. From Theorem 18 for all digraph G and subdigraph G′,
|{(G′, lab′) : (G′, lab′) is UD}| ≤ |{(G, lab) : (G, lab) is UD}|.On other hand, the 
onne
ted digraph of n verti
es with the least number ofar
s, equal to n− 1, is an oriented tree. In this 
ase, all labeling fun
tions on14



the digraph yield an update digraph. Thus, there are 2n−1 update 
onne
teddigraphs with the least number of ar
s. In the same way, the 
onne
ted di-graph of n nodes with the greast number of ar
s, equal to n2 (in
luding thear
s (u, u)), is the 
omplete digraph. In this 
ase, ea
h labeling fun
tion ona 
omplete digraph de�ne a total preorder on the verti
es. Besides, it is wellknown that the number of total preorders on a set of n elements is Tn de�nedas in the statement of this Theorem. Thus, Tn is the maximum number ofupdate 
onne
ted digraphs with n verti
es. 2
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