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AbstratDisrete networks have been used as models of gene regulation and other biologialnetworks. One key element in these models is the update shedule, whih indiatesthe order in whih states have to be updated. In Araena et al. (2009) was de-�ned equivalene lasses of deterministi update shedules aording to the labeleddigraph assoiated to the network (update digraph) and suh that two shedulesin the same lass yield the same dynamial behavior. In this paper we study al-gorithmial and ombinatorial aspets of update digraphs. We show a polinomialharaterization of these digraphs, whih enables to haraterize the orrespondingequivalene lasses. We prove that the update digraphs are exatly the projetions,on the respetive subgraphs, of a omplete update digraph. Finally, the exat num-ber of omplete update digraphs was determined, whih provides upper and lowerbounds on the number of equivalene lasses.Key words: Disrete network, update shedule, update digraph, feedbak ar set.
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1 IntrodutionDisrete networks (DNs) are the most simple model for geneti regulatory net-works, as well as for other simple distributed dynamial systems. Despite theirsimpliity, they provide a realisti model in whih di�erent phenomena an bereprodued and studied, and indeed, many regulatory models published inthe biologial literature �t within their framework Kau�man (1969); Thomas(1973); Shmulevih et al. (2003).A DN is de�ned by the states set of the nodes of the network, its onnetiondigraph, its loal ativation funtions, and the type of update shedule used,whih may range from the parallel update, the most ommon Kau�man (1969);Thomas (1991), to the sequential update, passing through all the ombinationsof blok-sequential updates (whih are sequential over the sets of a partition,but parallel inside of eah set).The e�et in the dynamial behavior of of a disrete network against per-turbations in the update shedule has been greatly studied, mainly from astatistial point of view, in random Boolean networks(RBN), where the loalativation funtions are probabilistially hosen Chaves et al. (2005).Some analytial works about perturbations of update shedules have beenmade in a partiular lass of disrete dynamial networks, alled sequentialdynamial systems, where the onnetion digraph is symmetri or equiva-lently an undireted graph and the update shedule is sequential. For thislass of networks, the team of Barrett, Mortveit and Reidys studied the setof sequential update shedules preserving the whole dynamial behavior ofthe network (2001) and the set of attrators in a ertain lass of CellularAutomata (2005).In Araena et al. (2009) was de�ned equivalene lasses of deterministi up-date shedules in a partiular kind of disrete networks (Boolean networks)aording to the labeled digraph assoiated to the network (update digraph).It was proven that two update shedules in the same lasse yield exatly thesame dynamial behavior.In this paper we fous on the study of the update digraphs and the numberand size of equivalene lasses of update shedules assoiated in a disretenetwork.The main reason for our interest in update digraphs shedules is two-fold. Onone hand, a neessary and good understanding of the objets we are dealingwith. On the other hand, a better understanding of the relationships betweenthe arhiteture of onnetion graph and the robustness of disrete networkdynamis through the study of the equivalene lasses of determinsiti update2



shedules de�nided by its aasoiated updated digraphs.2 De�nitionsA digraph is an ordered pair of sets G = (V, A) where V = {1, . . . , n} is a setof elements alled verties (or nodes) and A is a set of ordered pairs (alledars) of verties of V . The vertex set of G is referred to as V (G), its ar setas A(G).A walk from a vertex v1 to a vertex vm in a digraph G is a sequene ofverties v1, v2, . . . , vm of V (G) suh that ∀k = 1, . . . , m− 1, (vk, vk+1) ∈ A(G)or (vk+1, vk) ∈ A(G). The verties v1 and vm are the initial and terminal vertexof the walk. A walk is elementary if eah vertex in the walk appears onlyone with the possible exeption that the �rst and last vertex may oinide. Awalk is losed if its initial and terminal verties oinide. A iruit is a losedelementary walk. A walk v1, v2 . . . , vm is a path if (vk, vk+1) ∈ A(G) for all
k = 1, . . . , m − 1. A yle is a direted iruit, that is a losed elementarypath.A digraph G is said to be onneted if there is a walk between every pair ofits verties, and strongly onneted if there is a path between every pair ofits verties.
G = (V, A) being a digraph and i ∈ V one of its verties, N(i) = {j ∈
V | (j, i) ∈ A} denotes the input neighborhood of i and d−(i) = |N(i)| is theinput degree of i. More terminology about digraph an be found in (West,1996).Also, in the sequel, we will write [[a, b]] = {a, . . . , b} and [[a, b[[= {a, . . . , b−1},for any integers a and b.De�nition 1 An update shedule of the verties of a digraph G = (V, A),with |V | = n, is a funtion s : V → {1, . . . , n} suh that s(V ) = [[1, m]] forsome m ≤ n. If ∀i ∈ V, s(i) = 1, the update shedule is said to be parallel.In this ase, we will write s = sp. If s is a permutation over the set {1, . . . , n},
s is said to be sequential. And in all other ases, s is said to be bloksequential.As mentionned in Demongeot et al. (2008), the number of update shedulesassoiated to a given digraph of order n is equal to the number of orderedpartitions of a set of size n, that is

Tn =
n−1
∑

k=0

(

n

k

)

Tk.3



Let G = (V, A) be a digraph and s an update shedule. We denote
s−1(r) = {i ∈ V | s(i) = r}.De�nition 2 Let G = (V, A) be a digraph and s an update shedule, we de�nethe labeling funtion labs : A→ { -©, +©} in the following way :

∀(j, i) ∈ A, labs(j, i) =







+© if s(j) ≥ s(i)-© if s(j) < s(i).An ar a ∈ A suh that labs(a) = +© is alled a positive ar and an ar
a ∈ A suh that labs(a) = -© is alled a negative ar. Labeling every ar
a of A by labs(a), we obtain a labeled digraph (G, labs) named update di-graph. We write N+

s (i) = {j ∈ N(i) | labs(j, i) = +©} and N−

s (i) = {j ∈
N(i) | labs(j, i) = -©}. Thus, we have N(i) = N+

s (i) ∪N−

s (i).
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Fig. 1. A digraph G = (V,A) labeled by the funtion labs where ∀i ∈ V = {1, . . . , 4},
s(i) = i.De�nition 3 A disrete network N = (G, F, s) is de�ned by a �nite set ofvariable states x ∈ Q = [[0, m − 1]], a digraph G, a global ativation funtion
F : Qn → Qn, where F (x) = (f1(x), . . . , fn(x)) with fi : Qn → Q loal ati-vation funtions suh that j ∈ N(i) if and only if ∃ (x1, . . . , xn) ∈ Qn, a, b ∈
Q, a 6= b,

fi(x1, . . . , xj−1, a, xj+1, . . . , xn) 6= fi(x1, . . . , xj−1, b, xj+1, . . . , xn).and s an update shedule of the verties of G. In the partiular ase where
Q = {0, 1} the network is said to be Boolean network.The iteration of the disrete network with an update shedule s is given by:

xr+1
i = fi(x

l1
1 , . . . , xln

n ), (1)where lj = r if s(i) ≤ s(j) and lj = r + 1 if s(i) > s(j).4



This is equivalent to applying a funtion F s : Qn → Qn in a parallel way, with
F s(x) = (f s

1 (x), . . . , f s
n(x)) de�ned by:

f s
i (x) = fi(g

s
i,1(x), . . . , gs

i,n(x)),where the funtion gs
i,j is de�ned by gs

i,j(x) = xj if s(i) ≤ s(j) and gs
i,j(x) =

f s
j (x) if s(i) > s(j). Thus, the funtion F s orresponds to the dynamial be-havior of the network N . We will say that two networks N1 = (G, F, s1) and

N2 = (G, F, s2) have the same dynamis if F s1 = F s2.3 Preliminary results and motivationsExtending a result given in Araena et al. (2009) for Boolean networks, thefollowing holds:Theorem 4 Let N1 = (G, F, s1) and N2 = (G, F, s2) be two disrete networksthat di�er only in the update shedule. If (G, labs1
) = (G, labs2

), then N1 and
N2 have the same dynamis.Theorem 4 allows us to de�ne equivalene lasses with respet to labeled di-graphs: if s is an update shedule of the verties of a digraph G, we write [s]Gthe set of update shedules s′ suh that s

G
∼ s′, that is

[s]G = {s′ : (G, labs) = (G, labs′)}.Thus, an equivalene lass, [s]G, is a set of update shedules that all yield thesame labeled digraph, and onsequently, the same dynamis on networks.In this work we study update digraphs and the equivalene lasses of theirupdate shedules. More preisely, Setion 4 deals with the haraterizationof update digraphs. Setions 5 and 6 fous on the size and the number ofequivalene lasses of update shedules.4 Charaterization of update digraphsIn this setion, we study the relation ∼G and the labelings of a given digraph
G. First, we give a haraterization of the labeling funtions lab : A(G) →
{ +©, -©} that indeed orrespond to labeling funtions indued by update shed-ules. Then, we examine update shedules s whih satisfy lab = labs. Thesetion ends with some observations that where made to help determine thenumber of [·]G lasses. First, let us give some additional de�nitions.5



De�nition 5 A labeled digraph (G, lab) is said to be an update digraph(UD) if there exists an update shedule s suh that lab = labs, that is ∀a ∈
A(G), lab(a) = labs(a). (see example in �gure 4)
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a) b)Fig. 2. a) A labeled digraph (G, lab) whih is update digraph. b) A labeled digraph
(G, lab′) whih is not an update digraph.The goal of this setion is to determine whih labeled digraphs are updatedigraphs.De�nition 6 Let (G, lab) be a labeled digraph and G′ a subdigraph of G. Wede�ne the projetion of (G, lab) onto G′ by the labeled digraph (G′, labG′), where
labG′(a) = lab(a), ∀a ∈ A(G′).De�nition 7 Let (G, lab) be a labeled digraph and G′ be a non trivial stronglyonneted subdigraph of G, the projeted labeled digraph (G′, lab′) is said to bea positive strongly onneted omponent of (G, lab) if ∀a ∈ A(G′), labG′ = +©and it is maximal for this property. We will say that (G, lab) is redued if ithas no positive strongly onneted omponents.Nothe that the fat of being (G, lab) an update digraph is independent of thepresene or absene of positive strongly onneted omponents, beause theimages of the verties by an update shedule in a positive strongly onnetomponent are idential. In the sequel and without loss of generality, we willwork only with redued labeled digraphs.De�nition 8 Let (G, lab) be a labeled digraph. We de�ne the labeled reori-ented digraph assoiated to (G, lab), and write (GR, labR), to refer to thelabeled digraph in whih all negative ars are inverted:
• V (GR) = V (G).
• A(GR) = {(u, v) ∈ A(G) | lab(u, v) = +©} ∪ {(v, u) | (u, v) ∈ A(G) ∧ lab(u, v) = -©}
• labR(u, v) = -© if (v, u) ∈ A(G) ∧ lab(v, u) = -© and labR(u, v) = +© if

lab(u, v) = +©.A forbidden yle in (GR, labR) is a yle ontaining a negative ar.Let (G, lab) be a labeled digraph. We an determine if it is redued in time
O(|A|) with an algorithm that searhes for strongly onneted omponents ofa digraph. We also an get (GR, labR) in time O(|A|).6



De�nition 9 Let (G, lab) be a labeled digraph and P a path in (GR, labR), wedenote by l−(P ) the number of negative ars of P . Thus, for every v ∈ V (G)we de�ne L−(v) = max{l−(Pv) | Pv is a path in (GR, labR) ending in v} and
L−(GR, labR) = max

v∈V (G)
{L−(v)},the number of negative ars of a path with the maximum number of negativears in (GR, labR).Theorem 10 A labeled digraph (G, lab) is an update digraph if and only if

(GR, labR) does not ontain any forbidden yle.PROOF. (⇒) Let us suppose that (GR, labR) ontains a forbidden yle
C : v1, . . . , vp = v1 suh that (vj , vj+1) is a negative ar. Then any updateshedule s suh that (G, lab) = (G, labs) must satisfy s(vj) > s(vj+1). It mustalso satisfy s(vj) ≤ s(vj+1) sine there exists in (GR, labR) a path from vj+1to vj . Thus, we end up with a ontradition.(⇐) Let L = L−(GR, labR). Observe �rst that if P : v1, . . . , vk is a path in
G suh that l−(P ) = L with {(vi1 , vi2), (vi3 , vi4), . . . , (vi2L−1

, vi2L
)} the set ofnegative ars of P where j > k ⇒ ij > ik, and s is an update shedule suhthat (G, lab) = (G, labs) then

s(vi1) > s(vi2) > s(vi4) > s(vi6) > · · · > s(vi2L
),whih implies max{s(v)| v ∈ V (G)} ≥ L + 1. Besides,

∀ i = 1, . . . , k, L−(vi) = l−(v1, . . . , vi) and L−(v1) = 0.Let s : V (G)→ [[1, L + 1]] with
s(v) = L− L−(v) + 1, ∀v ∈ V (G).Sine obervation mentioned above, s(V (G)) = [[1, L + 1]], that is, s is anupdate shedule of V (G). To hek that s is also an update shedule satisfying

(G, lab) = (G, labs), we must show that ∀a = (u, v) ∈ A(GR), s(u) > s(v)or L(v) > L(u). This follows from the fat that (u, v) being an ar of GR, itneessarily holds that L(v) ≥ 1 + L(u). 2We an notie that if (G, lab) is a labeled digraph, the forbidden yles of
(GR, labR) orrespond to what we will refer to as alternating iruits of G.That is, they oinide with walks of G, C = v0, v1, . . . , vk, where v0 = vk andeither (vi, vi+1) ∈ A in whih ase labG(vi, vi+1) = +© or (vi+1, vi) ∈ A in whih7



ase labG(vi+1, vi) = -© (or vie-versa). Among these alternating iruits, arein partiular iruits suh that ∀i ∈ [[0, k − 1]], lab(vi, vi+1) = -© as well assub-graphs ontaining two verties u and v, a walk from u to v negativelylabeled and another walk from u to v positively signed.Inidently, let us notie that, as a onsequene of Theorem 10, if a = (u, v) ∈
A(G) is an ar not belonging to any iruit, then the fat that (G, lab) is anupdate digraph or not is independent of lab(a).Algorithm 1, given below, �nds an update shedule orresponding to a givenredued labeled digraph as desribed in the proof of Theorem 10. It is adaptedfrom the famous algorithm van Leeuwen (1990), giving a topologial order ona digraph without yles. For a given redued labeled digraph (G, lab), algo-rithm 1 works on the labeled reoriented digraph (GR, labR) without forbid-den yles. It returns in time O(|V | + |A|) an update shedule s suh that
(G, lab) = (G, labs) and
max{s(v) | v ∈ V } = min{max{s′(v) | v ∈ V } | s′ is an update shedule of G}.Figure 4 shows the di�erent steps of the algorithm that returns an updateshedule assoiated to an arbitrary possible labeled digraph (not neessarilyredued).Corollary 11 The following problems an be solved in polynomial time.(1) Determine whether a labeled digraph (G, lab) is an update digraph,(2) Given (G, lab) a labeled digraph, �nd an update shedule s suh that

(G, lab) = (G, labs).Indeed, aording to Theorem 10, a labeled digraph (G, lab) is an update oneif and only if, in (GR, labR) no negative-ar belongs to a strongly onnetedomponent. Thus, the �rst part of Corollary 11 holds sine the strongly on-neted omponents of a digraph an be identi�ed in polynomial time. Theseond part of Theorem 10 omes from the existene algorithm 1 whose runtime is also polynomial.5 Sizes of the equivalene lasses [·]GIn this setion we study the size of the equivalene lasses [·]G.8



Algorithm 1. update shedule assoiated to a labeled digraphInput: (G = (V, A), lab) a redued labeled digraph suh that (GR, labR) hasno forbidden ylebeginValMax← table of size |V (GR)| in whih are stoked the maximal possiblevalues of s(v), v ∈ V (GR).
n← |V |;
H ← GR;forall v ∈ V doValMax[v] = n;endwhile ∃v ∈ V, d−(v) = 0 in H do

s(v)← ValMax[v];forall u ∈ N(v) doif (u, v) is a negative ar thenValMax[u]← min{ValMax[u], s(v)− 1; }elseValMax[u]← min{ValMax[u], s(v); }enddelete the ar (u, v) from Hendend
smin ← min{s(v | v ∈ V ); }forall v ∈ V do

s(v)← s(v)− smin;endendLet us now onsider the following question : given a digraph G and an updateshedule s, does there exist any udpdate shedule s′ 6= s suh that (G, labs) =
(G, labs′) ? That is, what onditions need to be satis�ed in order for |[s]G| > 1to hold?Corollary 12 Let (G, lab) be a redued update digraph with |V (G)| = n and
L = L−(GR, labR). Then, ∀m ∈ [[L, n − 1]], there exists an update shedule ssuh that max{s(v)| v ∈ V } = m + 1 and (G, lab) = (G, labs).PROOF. We show the result by indution on m.If m = L, the result was proved in Theorem 10.If L = n − 1, we are done. Otherwise, let m ∈]]L, n − 1]]. By indution hy-pothesis, there exists an update shedule s suh that (G, lab) = (G, labs) and9
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Fig. 3. a) A labeled digraph G = ({1, . . . , 5}, A). b) (GR, labR). The ars drawn indotted lines are negative-ars. The others are positive-ars. c) and d) the updateshedule omputed by algorithm 1 after the while loop. e) The update shedule ssuh that (G, lab) = (G, labs).
max{s(v)| v ∈ V (G)} = m. Sine m < n, there exists i∗ ∈ [[L, n−1]] suh that
|s−1(i∗)| > 1. Notie that ∀(u, v) ∈ s−1(i∗) × s−1(i∗) ∩ A(G), labs(u, v) = +©.Besides, beause there are not yles in (GR, labR), there exists w ∈ s−1(i∗)suh that {v ∈ s−1(i∗)| (w, v) ∈ A(GR)} = ∅. Hene, let us de�ne s′ as follows:

s′(v) =







s(v) + 1 if s(v) ≥ s(w) and v 6= w,
s(v) if s(v) < s(w) or v = w.Hene obviously, s′(V (G)) = [[1, m+1]], i.e. s′ in an update shedule of V (G),and (G, lab) = (G, labs′). 2Corollary 13 Let (G, lab) be a redued update digraph and L = L−(GR, labR).Then, |[s]G| ≥ |V (G)| −L, where s is an update shedule suh that (G, lab) =

(G, labs). 10



Corollary 14 Let (G = (V, A), labs) be an update digraph. |[s]G| > 1 if andonly if G is not strongly onneted, neither suh that (GR, labR) is linear andnegative.PROOF. If G is not strongly onneted, neither suh that (GR, labR) is linearand negative, then |[[L, |V |]]| > 1. Thus, by Theorem 12, |[s]G| > 1, where
(G, lab) = (G, labs).Conversely, there exists two partiular ases in whih |[s]G| = 1:(1) If G is linear digraph then L = |V |. Thus, in the ase where ∀a ∈ A,

labG(a) = -©, only one update shedule s satis�es (G, lab) = (G, labs).On the ontrary, if ∃a ∈ A, labG(a) = +©, there are 2k suh updateshedules, where k is the number positive ars of (G, lab).(2) If G is strongly onneted, then (G, lab) has only positive ars. Thus,
(GC , labC) is redued to one alone vertie. Aording to the previousLemma, only one shedule satis�es (G, lab) = (G, labs): the parallel up-date shedule, sp.

2As a onsequene, beause (G, labsp
) is not a negative linear digraph, |[sp]G| >

1 if and only if G is not strongly onneted.
6 Number of update digraphsIn the previous setion, given a labeled digraph (G, lab), we were interested bythe existene of update shedules s suh that (G, lab) = (G, labs). And whenthere did exist suh update shedules, we wanted to know how many therewere.In the present setion, given a digraph G, we would like to determine how itan be labeled into an update digraph, that is, whih are the labeling funtions
lab of G suh that (G, lab) is indeed an update digraph. In partiular, here,we fous on the number of equivalene lasses [·]G (rather than there sizes).De�nition 15 We de�ne the size of a labeled digraph (G, lab) by the numberof its positive ars. 11



We de�ne the following problem :DIGRAPHUPDATE (DU)problem: 





































Input: A digraph G = (V, A) and an integer k;Question: Does there exist a labeling funtion
lab : A→ { +©, -©} suh that (G, lab)is an update digraph and its sizeis at most k ?Theorem 16 DIGRAPH UPDATE is NP-omplete.PROOF. We are going to prove Theorem 16 by redution to the FAS problemde�ned bellow and whih is known to be NP-omplete Garey and Johnson(1979):FAS problem:











Input: A digraph G = (V, A) and an integer k;Question: Does there exist a feedbak ar set F of
G suh that |F | ≤ k ?where a feedbak ar set (FAS) F of G is a set of ars suh that the digraph

(V, A\F ) does not have any yles. F is minimal if there does not exist F ′ ( FFAS of G.The redution funtion we use to map an instane of FAS to an instane ofDU is simply the identity. Next, for a given instane (G, k) we show that thereexists a labeling funtion lab suh that (G, lab) is update digraph of size atmost k if and only if there exists a FAS F of G suh that |F | ≤ k.
(⇒) Let lab be a labeling funtion suh that (G, lab) is an update digraph ofsize at most k and let F = {a ∈ A(G)| lab(a) = +©}. Then, F is a FAS of size
|F | ≤ k. G′ = (V, A \F ) annot ontain any yle sine otherwise it would benegative yle of (G, lab) whih is not possible in an update digraph.
(⇐) Let F be a minimal FAS of G suh that |F | ≤ k. Let a ∈ F . If everyyle of G ontaining a ontains as well another ar of F then F \{a} is a FASof G smaller than F . This ontradits the minimality of F . Thus, for every
a ∈ F , there exists a yle of G ontaining a and no other ar of F . Now, letus de�ne the labeling funtion lab as follows:

∀a ∈ F, lab(a) = +© and ∀a ∈ A \ F, lab(a) = -©.Note that beause there are no yles in G′ = (V, A\F ), there are not yles in
(G, lab). Suppose, however, that (G, lab) is not an update digraph. In (G, lab),there must thus be an alternating iruit (see Theorem 10 and the remarks12



made after) ontaining both positive and negative ars. In other words, thereis a forbidden yle in (GR, labR). The positive ars in this yle belong to F .Let a ∈ A(G) be suh a positive ar belonging to the forbidden yle and to
F . From the disussion above, we derive that there exists a yle Ca of G thatontains a and no other ar of F . All the ars of Ca that are not a are thusnegative in (G, lab). Conatenating the negative ars of the alternating iruitand of all yles Ca (a being an ar of F in the forbidden yle) we obtain ayle in G′ = (V, A(G) \ F ) (see �gure 3 below) whih ontradits F being aFAS of G (as well as the fat that (G, lab) has no negative yles). 2
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Fig. 4. A forbidden yle in (GR, labR) with, surrounding it, the negative yles Camentioned in the proof of Theorem 16. Arrows in full line represent ars, arrows indashed lines reprensent paths.Corollary 17 Let (G, lab) be an update digraph. If NFAS and NMFAS are,respetively, the total number of FAS and minimal FAS of G. Then,
NMFAS ≤ |{[s]G | s is un update shedule of V (G)}| ≤ NFAS7 ProjetionsTheorem 18 Let G be a digraph and G′ a subdigraph of G. Then, (G′, lab′)is an update digraph if and only if there exists a labeling funtion lab of A(G)suh that lab′ = labG′ .PROOF. Obviously, if (G, lab) is an update digraph and lab′ = labG′ , then

(G′, lab′) is also an update digraph by Theorem 10.Conversely, if (G′, lab′) is an update digraph we will show that for all
a = (u, v) ∈ A(G) \ A(G′), either (G′ + a, lab+

a ) or (G′ + a, lab−a ) is an updatedigraph, where V (G′ +a) = V (G′)∪{u, v}, E(G′ +a) = E(G′)∪{a} and lab+
a13



and lab−a are de�ned by lab+
a (e) = lab−a (e) = lab(e), ∀e ∈ A(G′), lab+

a (a) = +©and lab−a (a) = -©.Let us suppose that there exists a = (u, v) ∈ A(G) \ A(G′) suh that nei-ther (G′ + a, lab+
a ) nor (G′ + a, lab−a ) are update digraphs. Then there exist aforbidden yle C1 : x1 = u, x2 = v, x3, . . . , xp = u with lab+

a (xj , xj+1) = -©in the reoriented labeled digraph ((G + a)R, (lab+
a )R). In the same way,there exists a forbidden yle C2 : y1 = v, y2 = u, y3, . . . , yq = v in the re-oriented labeled digraph ((G + a)R, (lab−a )R). Hene, la sequene of nodes

x2 = v, . . . , xj, xj+1, . . . , xp = u = y2, . . . , yq = v in the reoriented labeleddigraph (GR, labR) ontains a yle inluding the ar (xj , xj+1) (see Fig...),that is a forbidden yle. Thus (G, lab) is not un update digraph, whih is aontradition.Therefore, if A(G) \ A(G′) = {a1, . . . , ar}, then by indution we an provethat for all k in {1, . . . , r} there exists a labeling funtion labk of the ars of
G′ + a1 + . . . + ak suh that labk

G′ = lab′ and (G′ + a1 + . . . + ak, labk) is anupdate digraph. In partiular, there exists a labeling funtion lab in G suhthat (G, lab) is an update digraph and lab′ = labG′ . 2

C2

xj

xj+1

RG

u v

C1

−

Fig. 5. Sheme of the forbidden yle in (GR, labR) mentioned in the proof of The-orem 18.Corollary 19 Let G be a onneted digraph of n > 1 verties. Then,
2n−1 ≤ |{(G, lab) : (G, lab) is update digraph }| ≤ Tnwhere Tn =

n−1
∑

k=0

(

n

k

)

Tk.PROOF. From Theorem 18 for all digraph G and subdigraph G′,
|{(G′, lab′) : (G′, lab′) is UD}| ≤ |{(G, lab) : (G, lab) is UD}|.On other hand, the onneted digraph of n verties with the least number ofars, equal to n− 1, is an oriented tree. In this ase, all labeling funtions on14



the digraph yield an update digraph. Thus, there are 2n−1 update onneteddigraphs with the least number of ars. In the same way, the onneted di-graph of n nodes with the greast number of ars, equal to n2 (inluding thears (u, u)), is the omplete digraph. In this ase, eah labeling funtion ona omplete digraph de�ne a total preorder on the verties. Besides, it is wellknown that the number of total preorders on a set of n elements is Tn de�nedas in the statement of this Theorem. Thus, Tn is the maximum number ofupdate onneted digraphs with n verties. 2
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ble: An hp finite element adaptive scheme to solve the Laplace model for fluid-solid
vibrations

2009-21 Carlos D. Acosta, Raimund Bürger, Carlos E. Mejia: Monotone difference
schemes stabilized by discrete mollification for strongly degenerate parabolic equations

2009-22 Gabriel N. Gatica, Salim Meddahi: Finite element analysis of a time harmonic
Maxwell problem with an impedance boundary condition

2009-23 Veronica Anaya, Mostafa Bendahmane, Mauricio Sepúlveda: Mathematical
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