UNIVERSIDAD DE CONCEPCION

CENTRO DE INVESTIGACION EN
INGENIERIA MATEMATICA (CT°MA)

A

Centro de Investigacion en Ingenieria Matematica

Numerical solution of transient eddy current problems with
input current intensities as boundary data

ALFREDO BERMUDEZ, BIBIANA LOPEZ-RODRIGUEZ,
RODOLFO RODRIGUEZ, PILAR SALGADO

PREPRINT 2010-16

SERIE DE PRE-PUBLICACIONES







Numerical solution of transient eddy current problemswith input
current intensities as boundary data

ALFREDO BERMUDEZt

Departamento de Mateftica Aplicada, Universidade de Santiago de CompostelaD&5
Santiago de Compostela, Spain.

BIBIANA LOPEZRODRIGUEZ}, RODOLFO RODRIGUEZ§

Departamento de Ingeniir Matenética, Universidad de Concepm, Casilla 160-C,
Concepadn, Chile.

AND

PILAR SALGADOT

Departamento de Matetica Aplicada, Escola Policnica Superior, Universidade de
Santiago de Compostela, 27002, Lugo, Spain.

[Received on 27 July 2010]

The aim of this paper is to analyze a numerical method to solve transieptcaedent problems with
input current intensities as data, formulated in terms of the magnetic fieldaoreded domain including
conductors and dielectrics. To this end, we introduce a time-dependsk fermulation and prove
its well-posedness. Under appropriate hypotheses on the input turtensities, we show that the
weak solution has additional regularity and satisfies strong forms of thetieqs. We propose a finite
element method for space discretization based edelc edge elements on tetrahedral mesh, for which
we prove well-posedness and error estimates. Furthermore, weuo&aeh implicit Euler scheme for
time discretization and prove error estimates for the fully discrete protlemeover, a magnetic scalar
potential is introduced to deal with the curl-free condition in the dielectric doniéhis approach leads
to an important saving in computational effort. Finally, the method is applistlie two problems: a
test with a known analytical solution and an application to electromagnetigrfigrm

Keywords Eddy current problems, time-dependent electromagnetic problems, current intensities,
finite elements.

1. Introduction

The objective of this work is to analyze a time-dependenyeddrent problem defined in a 3D bounded
domain including conducting and dielectric materials wh@ncurrent source is given in terms of cur-
rent intensities. This model arises in applications whbaeegroblem is written in a bounded domain
and it is necessary to link the electromagnetic fields withgburces provided by an external circuit,
voltage drops and/or current intensities (see, for ingaBossavit (2000)). In particular, we are inter-
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ested in imposing the current intensities entering somewcting regions by using non-local boundary
conditions. In this framework, we refer the reader to AloRsmliiguez & Valli (2008), where the au-
thors give a systematic approach to eddy-current probleivsrdby voltage or current intensity in the
harmonic regime. Numerical analysis of different finitenedant methods to solve this kind of models
can be found in Bergdezet al. (2005b); Alonso Rodguezet al. (2009); in both cases, the proposed
numerical method has been applied to simulate metallurfjicaaces by means of harmonic eddy cur-
rent models subjected to boundary conditions proposed ss&8adt (2000). However, if the exciting
source is non-sinusoidal or if the materials have a norelibehavior, a genuine transient eddy current
problem must be solved. This is why the present paper pretendxtend the analysis of the model
studied in Berridezet al. (2005b) for the harmonic regime to the general transienasin.

In the literature, we can find several papers devoted to tmeenigal analysis of the 3D time-
dependent eddy current model, both in bounded and unboutmedins by using FEM and BEM-FEM
methods Acevedo & Meddahi (2010); Aceveelal. (2009); Kang Kim (2009); Kangt al. (2006); Ma
(2008); Meddahi & Selgas (2008); Zhergal. (2006). However, in all these works, the current source
is given as a volume current in a conducting region and théiqatlons differ in the primary unknown
of each formulation. Moreover, the models proposed in bedrdbmains only deal with homogeneous
essential and/or natural boundary conditions. Thus, tatiteor's knowledge, the transient linear eddy
current problem by imposing the current intensities hasbeein analyzed before, and this is the main
objective of the present paper.

By following Bermidezet al. (2005b), we propose a formulation based on the magnetic ifield
the conductor regions and a scalar magnetic potential irdiglectric ones. The scalar potential is
defined from the curl-free condition of the magnetic fieldhe tir and can be multivalued in order to
consider general topologies. Notice that the introductibthis potential has two main advantages: it
leads to an important saving from a computational point efwand allows us to impose directly the
current intensities in terms of the jumps of the scalar pgenFrom a mathematical point of view,
we will obtain a parabolic problem and prove its well posexinky using a suitable lifting from the
boundary conditions. If the intensities are smooth enoughprove additional regularity properties
for the magnetic field; these properties are used to prowehbaveak solution satisfies in some sense
the strong eddy current model posed initially. We proposaitefelement method combined with an
implicit Euler time discretization to numerically solveetproblem. Concerning the space discretization,
the magnetic field is approximated by the lowest ordédiec edge finite elements and the magnetic
potential by standard piecewise linear continuous elesaditite current intensities are imposed as jumps
of the multivalued magnetic potential on some prescribegduatrfaces. We obtain convergence results
for the main physical quantities, namely the magnetic field the current density.

The outline of the paper is as follows: In Section 2 we intr@lthe transient eddy current model
and state the geometrical framework for our analysis. Irii&®8 we obtain a weak formulation of the
problem. We prove that it is well-posed as well as a regylaeisult. In Section 4 we introduce a semi-
discretization based on finite elements and prove erromagtis. In Section 5 we propose an implicit
Euler scheme for time discretization and obtain error et for the fully discretized problem. In
Section 6, we report some numerical results; first, we pteberresults obtained for an example with
known analytical solution, which confirms the order of cagemce predicted by the theory and allows
us to assess the performance of the method; secondly, wéasinan application of electromagnetic
forming, where the transient simulation in the time domaimandatory.

Throughout the paper, we use standard notation for funspaces, norms, and duality pairings.
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2. Time-dependent eddy current problem with input current intensities as boundary data

Three dimensional eddy current problems describe lowdaqy electromagnetic phenomena. In this
case, displacement currents may be neglected (see (Bo&&90, Chapter 8)) so Maxwell’s equations
become

curlH=J in(0,T)xR3, (2.1)
OpuH+curlE=0 in(0,T) xRS, (2.2)
div(uH) =0 in(0,T) xR3, (2.3)
J=0E in(0,T)xR3 (2.4)

whereE(t,X) is the electric fieldH (t, X) is the magnetic field)(t, X) the current densityy the magnetic
permeability ana the electric conductivity. Here and thereafter, we usefacklletters to denote vector
fields and variables as well as vector-valued operators.

We are interested in solving these equationg fer{0, T] in a simply connected three-dimensional
bounded domaif2, which consists of two part€?. and Q,, occupied by conductors and dielectrics,
respectively. The electric conductivity vanishes inQ,. The mathematical framework we are going
to analyze covers transient eddy current problems posedffenetit geometrical settings. In Figure 1
we sketch a particular case including several connectegonants of the conducting domain with
different topological properties.

The domainQ is assumed to have a Lipschitz-continuous connected boy@da, which splits
into two parts:0Q =TI U T, with I, :=dQ.NJQ andl := dQ,NJQ being the outer boundaries of
the conducting and dielectric domains, respectively. Weotl| := 0Q_.N0Q,,, the interface between
dielectrics and conductors. We also denotelilze outer unit normal vector 1@Q.

As shown in Figure 1, the connected components of the comdudbmain are of two types: “in-
ductors” which go through the boundary @f, and “workpieces” which have their closure included in
Q. We denote?, ..., Q! the former and2)**,..., QM the latter.

FiG. 1. Sketch of the domain and zoom arouhd
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We assume that the outer boundary of each indudlﬁ@m 0Q (n=1,...,N), has two connected
components, both with non-zero measure: the current eserffi, where the inductor is connected to
a transient electric current source, and the current EXit,Finally, we denotd;:=r'*u---ur,N and
Io:=rtu---urN. Further, we assume thgn I, = 0.

We consider thap: and o are time-independent, and that there exist consfanfs 0 andg such
that

0

< o, a.exeQ,
0<

H<H(X) <
0<0(X)<0, aexecQ, c=0inQ.
We have to complete the model with an initial conditidi0) = Hy and suitable boundary con-

ditions. For the latter, we consider the following ones whigcere proposed in Bossavit (2000) and
analyzed in Berradezet al. (2005b) in the harmonic regime:

/curIH(t)-n:In(t), n=1,...,N, te[oT], (2.5)

I’I’]

J
Exn=0 on[0,T|xI (2.6)
Exn=0 on[0,T]xT, (2.7)
HH-n=0 on[0,T] x0Q, (2.8)

where the only data are the current intensitiethrough each surfadg", which are assumed to satisfy
lhe HY(0,T),n=1,...,N.

Conditions (2.5) account for the input current intensitie®ugh eacH;”. Conditions (2.6), (2.7)
and (2.8) have been proposed in Bossavit (2000) in a more@eyedting. They will appear as natural
boundary conditions of our weak formulation of the probleérhe former implies the assumption that
the electric current is normal to the current entrance aitdsexfaces, whereas the latter means that the
magnetic field is tangential to the boundary. (See Befezet al. (2005a) for further discussions on
these boundary conditions and Bérmezet al. (2005b) for its application on the modeling of an electric
furnace.)

3. Variational formulation, existence and uniqueness

Our first goal is to give a variational formulation in termstbé magnetic field to solve the transient
eddy current problem. To do this, we follow the argumentsnfi®erntidezet al. (2005b), which we
include for the sake of completeness.

By testing (2.2) with a smooth functidd such that

aurlG=0 inQ, and / curlG-n=0, n=1,...,N, (3.1)
/-n
J
we have i
/uatH-G+/ curlE-G=0. (3.2)
Q Q
Moreover, by formal calculations, boundary condition j2r8plies that the tangential component

of the electric fielcE is a gradient. Indeed, after integratipgiH - n on any surfac&contained i0 Q,
by using (2.2) and Stokes Theorem, we obtain

O:/uﬁtH-n:—/curlE-n:—/ E-t:—/ nx (Exn)-t,
S S S S
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with t being a unit vector tangent @S. Therefore, sinc@Q is simply connected, we can assert that
there exists a sufficiently smooth functigndefined inQ up to a constant, such thdt,, is a surface
potential of the tangential component®f namely,E x n= —[V x nondQ. On the other hand, (2.6)
and (2.7) imply tha¥ must be constant on each connected componetawid/_. Furthermore, in our
model case, we will assume that the potential is the sameeowltblel.. HenceV can be chosen to be
null on /.. Then, we can transform the second term of (3.2) by usingr@&éermulas as follows:

/curIE-G:/ E-curIG—/ Exn-G:/ E-curlG, (3.3)
Q Q 2Q Q

the latter equality because

—/ Exn-G:/ DVxn-G:/ DV~curIG:/ VeurlG-n=0,
o0 JoQ Q aQ

where, in the last equality, we have used ¥at 0 on[l_, V is constant on eadlj” and (3.1).
Now, by substituting (3.3) in (3.2), we obtain

/ udtH-G—i—/ E-curlG=0.
Q JQ

Moreover, because of the first equation in (3.1), the secotedjial above reduces to the conducting
domainQ_, where (2.1) and (2.4) lead B = L curlH. Thus, we obtain

o
' 1
/ uatH-GJr/ —curlH-curlG=0.
JQ .QCG

Let
Z ={GeH(curl;Q) : curlG=01inQ}.

ForallGe 2, curlG-nc HY/2(3Q) andcurl G-n=0on[,. Then(cur|G-n, 1>,—Jn is well defined.

Indeed, let{ be any smooth function defined &hQ such that{ = 1 on I'Jn and{ =0 on[_ (such
functions exist becausgN /. = 0). Then(curlG-n,1) - := (curlG-n, ), is well defined and its
J

value does not depend on the particular extengiorilere and thereaftef;, ), denotes the duality
pairing in H/2(Q) x HY2(9Q). Let

YV =4GeZ :{aurlG-n,)rn=0,n=1....N¢,
J

which is a closed subspace &f .
We are led to the following problem: Firtd such that

/r.ncurIH(t)-n:In(t), n=1,....N, (3.4)

/' udtH(t)-G—i—/ LewrH)-arlG=0 vGe7, (3.5)
JQ Jo. O

H(0) = Ho. (3.6)
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3.1 Introducing a magnetic potential

In what follows we show how problem (3.4)—(3.6) can be reemitby replacing the magnetic field in
the dielectric domaif2, by a (scalar) magnetic potential.

We assume there exiktconnected “cut” surfaces, C Q,, n=1,---,L, such thatdZ, C 0Q,
andf)D = Q_\ UL_1 Zn is pseudo-Lipschitz and simply connected (see, for ingtaAmroucheet al.
(1998)). We also assume thgin Xy, = 0 for n # m(see Figure 1). For each inductmg, n=1...,N,
there exists one cut surfagg such that, necessarilgz, N9 Q, # 0 (see Figure 1). The remaining cut
surfaceszn.1,..., 2L, are assumed to be contained in the interiof2gf(see Figure 1, again).

For each cut surfacE,, we assume there exists a surf&e- Q", with S, C dQ", and such that
its boundarwy is a simple closed curve. We assume tdhtersects once and only onzg and it does
not intersecty,, m+# n. Moreover, fom=1,...,N, we chose, = I'J”.

We denote the two faces of eagh by ¥, and % and fix a unit normah, on %, as the “outer”
normal toQ, \ %, alongZ,;|. We choose an orientation for eaghby taking its initial and end points on
2, andZ;, respectively. We denote ity the unit vector tangent tg, according with this orientation.

Each functior’ € Hl(ﬁD) has in general different traces on each facpand we denote by

[W]s, = W5 — W5

the jump of¥ throughs, alongn,. The gradient of in 2'(Q,) can be extended to?(Q,) and will
be denoted byrad ¥. B
Let © be the linear subspace oftH2,) defined by

0= {‘I’ e HY(Q,): [W]s, = constantn= 1,...,L}.

Then, fory e Hl(f)D), we have thagrad¥ e H(curl; Q) if and only if ¥ € O, in which case
curl(g/raj 47) = 0 (see (Amrouchet al, 1998, Lemma 3.11)).

We use the following notation: give@, € L2(Q.)% andG, € L?(Q,)3, (G.|G,) denotes the field
G c L?(Q)3 defined byG|o_:=G.andG|, =G,

Let us denote by the linear space given by

Y = {(G,@) e H(curl; Q) x (/R) : (G|grad¥) e H(curI;Q)}.

Then(G,¥) € % ifand only if (G|grad¥) € 2.

When a magnetic potentié! € H1(Q,) is used, boundary condition (3.4) can be imposed by fixing

its jumps on the cut surfaces. Indeed(G,@) € % is smooth enough for the following integrals to
make sense, we have that

(curIG~n,1>,-n:/ curIG~n:/ Gto= [ grad¥ -ty = [¥];, 3.7)
J Y Yh

n
fy

where we have used Stokes Theorem and the fac@han = grad ¥ x non’; > yp.
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Therefore, problem (3.4)—(3.6) reduces to fiiil 5) 1[0, T] — % such that
[®@M)]s, =In(t), n=1,...,N, (3.8)
/ uﬁtH(t)-GJr/ ua[g?&jé(t)-gTaTd@+/ L eurH®) -arlG=0 v(6,9)c2°, (3.9)
QC QD QC o

(H(0)|grad ®(0)) = Ho, (3.10)

where
PO = {(G,@) e : [¥];, =0, n:l,...,N}.

3.2 Existence and uniqueness of the solution

In this section we will prove the existence and uniquenesth@fsolution to the transient eddy cur-
rent problem (3.4)—(3.6). With this aim, we introduce ancadde functional framework for functions
defined on a bounded time intervil, T] and with values in a separable Hilbert spate We use
the notationz([0, T]; X) for the Banach space consisting of all continuous functibng0, T] — X.
More generally, for ank € N, €%([0,T];X) denotes the subspace 6P([0, T]; X) of all functions f
with (strong)((j;—t;c derivatives ing°([0,T]; X) for all 1 < j < k. We will use indistinctly the notations

ﬁ = ¢, f to express the derivative with respect to the variabl&e also consider the space%(O,T;X)

of classes of function$ : [0, T] — X that are Bchner-measurable and such that

T 1/2
[ fllzorx) = </0 ||f(t)||>2(dt> < oo,

Furthermore, we will use the space
HY(0,T;X) = {f €L%(0,T;X) : & f € L?(0,T;X)}.

Analogously, we define 0, T;X) for all k € N.

On the other hand, we denote b} the closure of# in L?(Q)2 and by the dual space of
with respect to the pivot spac# with measureu(x) dx (which is topologically equivalent to4(Q)3
with the standard Lebesgue measure). Hencek fer.77, we have

<|=,G>W,:/ UF-G  VGe7.
JQ

Thus, problem (3.4)—(3.6) can be rewritten as follows:
Problem 3.1 FindH € L?(0,T;. 2 )NHY(0,T;7’) such that

<curIH(t)-n,1>rJn:In(t), n=1,....N, (3.11)
(H(1),G) 4y +a(H(),G) =0 VGe¥, (3.12)
H(0) = Ho. (3.13)

The bilinear forma is defined over?” x 2" by

a(K,G) ::/ %curl K -curl G,

Qe
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It is continuous and satisfies the followingf@ling’s inequality: for each > 0 there existsr > 0 such
that

a(G,G)+)\HG||EZ(Q>3 2 a”GHa(curI;Q) VGe 2. (3-14)
For the initial data we assume that

Hoe 2 and <curIHo-n,1>rJn:In(0)7 n=1,...,N. (3.15)

The reason for this assumption will be made clear below.

The next step is to write an equivalent form of Problem 3.1eramenable for the analysis. The
first goal is to buildH € HY(0,T;.2") satisfying (3.11). With this aim we will use the unique saus
Wh € HY(QP), n=1,...,N, of the following problems:

—Aw, =0 inQ7,
In(0)
I'n
0de: I on 1,5 (3.16)
n 0 on 00N,
wh=0 onfr".

Straightforward computations allow us to show thwﬁHHl(Qg) < ClIn(0)].
LetQ € L%(Q)3 be defined by
Own inQf, n=1...,N,
Q= 0 inQ,,
0 inQY, n=N+1...,M.

Since di[wy) =01in Q7 andOwn-n=00nNJQ7, Q € H(div, ) and dvQ = 0 in Q. Then, since
dQ is connected, there exists a vector poterttigle H1(Q)® such that

curlHo=Q (3.17)

and divHo =0 (see (Girault & Raviart, 1986, Theorem 1.3.4)). Moreoesra consequence of the open
mapping theorem, we obtain

N 1/2
Holl(@)s < ClIQlIL2(0) <C<Z ||n(0)|2> : (3.18)
n=1

here and thereaft€ denotes a generic constant not necessarily the same at@adhemce.
Similarly, letv, : [0, T] — Hl(QQ) be the unique solution of

—Ava(t) =0 in QD

In(t) n
OVp —-on I'J ,
an (t):{ [N (3.19)
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Then, as above|,vn(t)||H1(Qg) < CJI4(1)]. (Recall that we have assumids HY(0,T).)

We repeat the procedure above and deRfig € L?(Q)3 by P(t) := Ovy(t) in Q7, n=1,...,N,
extended by zero to the whot2. Once moreP(t) € H(div, Q) with divP(t) = 0. Then, there exists a
vector potentiaF (t) € H1(Q)3 such that

curl F(t) = P(t), (3.20)
divF(t) =0 and

N 1/2
IF(®)llh2(0)3 < ClIP®)[|L2(q)e <C (Z Ilé(t)2> : (3.21)
n=1

FunctionF is Bochner-integrable (i.e., itis®&hner-measurable and the real-valued fundtle(t)|| »- :
[0,T] — R has a finite Lebesgue integral). Indeed, using the Cauchy+&tz inequality we obtain

T N T 1/2
/IIF(S)II,%ds<C<Z/ I,’1(s)|2ds> < oo,
0 n=1/0

sincel, € HY(0,T),n=1,...,N. Therefore, if we define
=R t
) ::Ho+/ F(s)ds, (3.22)
0
then it follows that (seeferisek, 1990, Remark 131(b))) a.e.[lhT] and in the distributional sense

AH(t) =F(t).
On the other hand, from (3.21) we have

[N1aRmE-a= [Foza<cy [ opd<e
0 27 o 2 Zo . '

Straightforward computations wel@T |H(t) (t)]|%- dt < e too, so that we conclude thete H1(0,T; 2);
furthermore, from (3.17), (3.20) and€risek, 1990, Theorem 111 & 127) we have that

curIH Q+/ P(s

Consequently, fon = N,

/I;”CUHH /Qn //P )-nds= ,—nawn /rn/tavn
0)+/0 () ds=In(t)

Now, if we writeH = H +H, then Problem 3.1 is equivalent to findibige L2(0, T; %) NH(0,T; #")
such that

(GH(t),G) ., +a(H(t),G) = (f(t),G) ., VGEY, (3.23)
H(0) = Ho— Ho, (3.24)
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wheref : [0,T] — ¥ is defined by
R -1 .
(F(t), G}y, ::-/ udtH(t)-G—/ ZcurlA(Y)-curlG VG 7. (3.25)
Q QC

Notice that from (3.18) and (3.21)

N N N
)15 < C{ leln(0)|2+ lelé(t)ler Zlfo ||.Q(S)|2d8} (3.26)

and hence € L2(0,T; 7).

Regarding the initial condition, sinc#, is the closure o in L2(Q)3, we have that B(0,T;7) N

HL(0,T;#") — €9([0,T]; # ) (see (Dautray & Lions, 1992, Chapter XVIII)) and consequeHo —
Ho has to belong ta%, . This is fulfilled in our case since, because of assumptiotbj3Hqo — Ho €
vV C %j/

Now, we are in a position to prove the following result:

THEOREM 3.2 Givenl, € HY(0,T),n=1,...,N, andHy satisfying (3.15), Problem 3.1 has a unique
solutionH. Furthermore, there exis&> 0 such that

H

N
wooriz@p) +IHIIG T <C { [HollZzg)s + Zl ol oo } '
n—=

Proof. LetHp andH(t) be defined as above. SinkK0) € 5%, a(-,-) is a continuous bilinear form
satisfying the @rding inequality (3.14), anél € L?(0,T; 7”) (cf. (3.26)), byNappIying Lions Theorem
(see Dautray & Lions (1992)) problem (3.23)—(3.24) has ajumisolutionH and there exist€ > 0
such that

maX A0z 0+ | IFO) By < { Mo~ Aol e +1 7,00 -

Therefore, Problem 3.1 has a unique solutbna- H-+H and

T N N T
2 2 2 2 12
tgé"%(HH( )||L2(Q)3+/0 H(t)|H(cur|;Q)dt<C{||H0||L2(Q)3+nzl||n(o)| +nZl‘/0 1n(s)] ds}.
Thus we conclude the theorem. O

3.3 Additional regularity

Our next goal is to show that the solution of Problem 3.1 8aisomehow equations (2.1)—(2.8). First,
we will show an additional regularity result for this kind @folution problems.
We consider two real, separable Hilbert spaXeendH. Moreover, we suppose thAtis dense in
H, so that, by identifyindd with its dualH’, we haveX — H — X', both inclusions being dense.
Givenup € H andg € L?(0,T;X’) we consider the following problem: Find < L?(0,T;X) N
H(0,T;X’) such that

(Gu(t),V)xrx +c(u(t),v) = (g(t), Vixxx  WWEX, (3.27)
u(0) = o, (3.28)
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wherec: X x X — R is bilinear, bounded and elliptic. We know that problem 73-Z3.28) has a unique
solution (see Dautray & Lions (1992)). Moreover, we havefthiewing additional regularity result.

LEMMA 3.1 If up € X, g € HY(0,T;X’) andu is the solution of problem (3.27)—(3.28), thenc
L®(0,T;X) anddu € L?(0,T;H).

Proof. The proof follows the line of that of Theorem 5 from (Evans9&9 Chapter 7) by using
a Galerkin approximation method (see Dautray & Lions (1992t {Xm}men be a family of finite
dimensional vector spaces satisfying

Xm C X, dimXpy, < oo, Xm — X asm— oo;

the convergence above must be understood in the followingesehere exists a dense subspacef
X, such that, for alv € %, we can find a sequend®m}men, Vm € Xm such thaty, — vin X asm— oo,

Therefore, forg € X let {Uom}men, Uom € Xm be such thatign — Ug in X asm — oo. Let {w;}jen
be such thafw; }}"; in a basis 0Xn.

m
Consider the following problem: Fingh(t) := z &j(t)w; satisfying
=1

(GtUm(t), wj)n +c(Um(t),wj) = (9(t), Wj)xrxx, 1<j<m, (3.29)
Um(0) = uom. (3.30)

We know that there exists a subsequencéuaf} nen, that we also denotfum}men, such that
Unm — uweakly in L(0,T;X),  dum— duweakly in L2(0,T;X').
For fixedm > 1, we multiply (3.29) b)éj’(t) and sum fromj = 1 tom, to obtain
(O] + 5 <0lUm(D), n(1)) = S (9(0), Un(t))xx — (AG0) Um(®)cx.

Integrating ovet and using Cauchy-Schwartz inequality yield

't T t
[} 1an(S) b Tun©) < lum(@)15 + sup a0+ [ It + [ Iun(s)fds).

Using Gronwall's inequality, we obtain
2 2 2 T 2
Jun©) < C{ Iuoml§ + sup a0+ [ a0t }.
o<t<T 0

Therefore

)

[ a0+ sup (015 <€ {uonl + sup 190015+ 1@z oricy |

0 o<t<T o<t<T T

and passing to the limit as — o, we deduce thai € L®(0,T;X) anddu € L?(0,T;H). O
The previous lemma is also valid for any bilinear form thdis§@s a Girding inequality like (3.14).
In fact, if we writeu = welt, A > 0, thenw satisfies

(QW(E),V)xrex +CW(L),V) = (e Mg(t), ixrex WEX,
w(0) = Uo,
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wherec¢(w(t),v) := c(w(t),v) + A (w(t), V) is bilinear, bounded and elliptic.
In what follows we will also use the closure ¢ in L?(Q)2, which we denote#,-. We have the
following characterization of this space.

LEMMA 3.2
Ay ={GeL?(Q)*: curlG=0inQ,}.

Proof. Given that{G € L2(Q)3 : curlG = 0in Q_} is a closed subspace of(Q)3, it is enough to
prove thatZ" is densely included in this subspace.~ _
Let G € L2(Q)3 such thatturl G = 0 in Q. Let G € H(curl; Q) such thatG = G in Q,. Hence,

(G- é)\gc € L2(Q.)3. Then, there exist§®y Jken C 2(Q.)3 such that| @y — (G — G)||L2 s =0
ask — oo. If we denote by&)k the extension by zero apy to Q, then¢k+G e Z forall k E N and

I(@k+G) — G| 2( )z — O ask — o, O
In what follows, we will apply Lemma 3.1 to our problem. Withig end, we will assume more
regularity on the input currents intensities, namélys H?(0,T), n=1,...,N. In such a case we can

modify the definition (3.22) oH so thatgH € L2(0,T;.%¢ ). Indeed, Ie'un [0,T] — HY(QD) be the
unique solution of

~Aup(t)=0 inQ.,
I (t
dun(t) _ |r;-(n|) on "
J
on 0 on aQ"nr,
Un(t)=0 onr".

Proceeding as was done for problem (3.16), we obtain|ftit) ||H1(Qg) < ClIF ()]

LetR(t) € L?(Q)* be defined byR(t) := Oun(t) in Q7, n=1,...,N, extended by zero to the whole
Q. HenceR(t) € H(div, Q) with divR(t) = 0 and there exists a vector potenti&(t) € H(Q)® such
that

curlK(t) = R(t), (3.31)
divK(t) =0 and
1/2
IK®)[h1()2 < CIRM) [IL2(0) <Z I (t) ) : (3.32)
Now, if instead ofH as defined in (3.22) we use
~ ~ t S
H(t) = Ho+tF(0)+/ (/ K(r)dr) ds (3.33)
o \Jo
thenH € H(0,T;.2") and, from (3.17), (3.20) and (3.31), we have that

curl A1) =Q+t|=(0)+/0t (/OSR(r)dr> ds (3.34)
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Hence,/ curlH(t)-n=1I,(t),n=1,....N.
rn

To apply Lemma 3.1 to our problem we take [0,T] — 7’ defined as in (3.25) withi given by
(3.33). Forl, € H?(0,T),n=1,...,N, we have thaf ¢ H}(0,T;7”). Infact,éf : [0,T] — #" is given
by

(0 f(1),G)yr vy —f/Quanﬁ(t)Gf/Q %dt(curllfl(t))curlG.

Since,dH (t) = K(t) (cf. (3.33)) andd;(curl H(t)) = P(0) + J§ K(s)ds (cf. (3.34)), thanks to (3.21)
and (3.32) we have

1o f (t) V’\C{X' |2+Z||" |2+z/||" st}

and, consequently, ¢ H(0,T; ), which allows us to use Lemma 3.1 to conclude the followirsyite

THEOREM 3.3 Givenl, € H?(0,T), n=1,...,N, andH, satisfying (3.15), the unique solutid# of
Problem 3.1 satisfid € L®(0,T;.# »-) anddH € L2(0, T; ).

Proof. LetH be the solution of Problem 3.1. Lt be defined by (3.33). Ldd == H —H. Thenﬁ
satisfies (3.23)—(3.24) witli given by (3.25). From the assumptions Hi and the definition oH,
we have thaHo — Ho € #. Moreover, as was shown abovee H(0,T; 7). Hence, we can apply
Lemma 3.1 to conclude that € L®(0,T; %) anddH € L2(0,T;.# ). Thus the theorem follows from
the fact thaH € H(0,T; 2°), which was also shown above. O

Let 27 be the dual space of” with respect to the pivot spac#’,- with measureu(x)dx. In
order to prove that the solution of Problem 3.1 satisfies éops(2.1)—(2.8) we introduce the following
mixed formulation:

Find (H,V) € L?(0,T; 2)NHY0,T; 2”) x L2(0,T;RN) such that

(@H(1),8) 57, » +a(H(1),6) +b(G V(1)) =0 VGe 2, (3.35)
% = (Wi,...,\W) € RN, (3.36)
H(0) = Ho, (3.37)

whereb: 2 x RN — R is the bilinear form defined by
b(G,W) ZWn (curlG-n 1)

Next we prove that (3.35)—(3.37) is actually equivalent toldfem 3.1.

LEMMA 3.3 Givenl, € H?(0,T), n=1,...,N, andHy satisfying (3.15), letH be the solution of
Problem 3.1. Then there existsc L?(0,T;RN) such that(H,V) is the unique solution of (3.35)—
(3.37).

Proof. LetH be the solution of Problem 3.1. Fhyc H?(0,T),n=1,...,N, because of Theorem 3.3
AH € L?(0,T;#,) C L?(0,T; Z'). Hence, we can defirte: [0,T] — 2" by

(), G) 21x 2 i= —(&4H (1), G) y o —aH(1),G), Ge 2
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and we have that € L?(0,T;.2”). On the other hand it was proved in Bdrdezet al. (2005b) (see the
proof of Theorem 7) thab satisfies the followingnf-supcondition

sup _DCW)

2T S BW| WV EeRN.
GeZ ||GHH(curI;Q)

Consequently, for eadhe [0, T], there exists a uniqué(t) € RN such thab(G,V (t)) = (h(t),G) 5., 4
VG € 2 (see (Girault & Raviart, 1986, Lemma 4.1)). Furthermoregcsih € L%(0,T;2”), V ¢
L2(0,T;RN), and (3.35) holds true. Moreover, (3.36) and (3.37) follalvsctly from (3.11) and (3.13).
Hence,(H,V) is a solution of (3.35)—(3.37). There only remains to préwa this problem has at most
one solution. With this aim consideFl,V) a solution of (3.35)-(3.37) with data = 0,n=1,...,N,
andHo = 0. For eactt € [0, T] we takeG = H(t) andW = V (t) as test functions in (3.35) and (3.36),
respectively. Subtracting the resulting equations weinbta

(OH (), H(1) 57 +a(H (), H(1) =0.

Sincea(H (t),H(t)) = 0, (&H(t),H(1)) 7, » = 2 &|IH(1)[|%- andH (0) = 0, it follows thatH (t) = 0.
Finally we also hav§'(t) = 0 because of thmf-supcondition forb and (3.35). O

Now we are in a position to prove that the solution of (3.38)37), and consequently of Prob-
lem 3.1, satisfies equations (2.1)—(2.8).

THEOREM3.4 Letl, € H?(0,T),n=1,....N, andHy satisfying (3.15) angiHg € Ho(div’; Q) (i.e.,
div(uHo) = 0in Q). Let (H,V) be the solution of (3.35)—(3.37). L&(t) := curlH(t) andE(t) :=
(%J(t)) }Q . Then the following properties hold true:

C

div(uH(t))=0 inQ, (3.38)
HoH(t)+curlE(t) =0 inQ, (3.39)
JH=0 inQ, (3.40)
(curIH(t)-n,l)ranln t), n=1,...,N, (3.41)
UH(t)-n=0 ondQ, (3.42)

E(t)x n=—0V.(t)xn inHy'*(I)3, (3.43)

where, in the last equatioW, (t) € H1(Q,.) is such thav*(t)|rjn =Vn(t),n=1,...,N, andV,(t)[~ =0.
Hence, in particular,

E(t)xn=0 onfg and E({t)xn=0 onf", n=1...,N

Proof. The proof follows the lines of that of Theorem 7 from Bérezet al. (2005b). Giverv € Z(Q)
it follows that[v € #. Then since according to Theorem 381 € L2(0,T;.# »-), (3.35) yields

/ HoH(t)-Ov=0.
Q

Hence, di¥udH(t)) = 0 and consequentlg (i divH(t)) = O (see Zerisek, 1990, Theorems 111 &
113)). Therefore, (3.38) follows from the fact that ¢iH (0)) = 0.
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Now, letG € 2(Q)2 be such that supB C Q.. ThenG € 7 too and (3.35) yields
/ udtH(t)~G+/ 1curIH(t)~curIG:0.
J Qe Qc o

Hence E(t) := (ZcurlH(t))|, satisfies (3.39).
C

Equation (3.40) follows from the definition dft) and the fact thaH (t) € 2", whereas equation
(3.41) follows from (3.36).

To prove (3.42), notice thatd;H (t) € H(div, Q) because of (3.38). ThamH(t)-nc H-1/2(3 Q).
Moreover, giverv € H(Q), we have

(HAH() nV)s0 = [ dV(HAHO)V+ [ paH(D-Dv=0

the last equality because of (3.38) and (3.35), sifiee= ¥'. Therefored;(uH(t)) = 0 in HY/2(0Q),
which together with the fact thatHy-n =0 ondQ leads to (3.42).

Finally, letV, (t) € H}(Q.) be any function such thm(t)|rjn =W (t),n=1,...,N, andV, (t)|,-E =0;
functions of this type clearly exist sindgn /. = 0. On the other hand, notice th&tt) € H(curl; Q.)
because of (3.39), and consequelElit) x n € H*1/2(0QC)3. Hence, to prove (3.43), it is enough to
show that(E(t) x n,v)5o_= —(OV. (1) x N,V)0 WV E HY2(0Q.)® with suppv CC I.

Given one suclv, notice that there exist6 € H(Q)3 vanishing inQ, and such tha(.-‘.‘|(mC =V.

ThenG € 2" and, from (3.35), (3.39), Green’s formula, and the fact By = %curl H(t) in Q., we
obtain

Oz/gudtH(t)-G+/Q E(t) - curl G+b(G, V(1))

—

_ /;CuatH (t)-G+ /QC rlE(0)-G+ (E(1) xN.Glag ), , +b(GI (D)

- <E(t) X n7v>d(2c + <DV*(t) X n7v>0QC7
the last equality because of the fact that
b(G,V(t)) = (curl G'n’v*(t)‘59c>agc = /Qccurl G- OV, (t) = (OV.(t) x n,v)dQC,

which in its turn follows from the definition b and Green’s formulas. Therefore, we conclude the
proof. O

4. Spacediscretization

We assume tha@, Q., andQ, are Lipschitz polyhedra and consider regular tetrahedeshes7;,

of Q, such that each elemekt € .7, is contained either if2. or in Q, (h stands as usual for the
corresponding mesh-size). We employ edge finite elemenappooximate the magnetic field, more
precisely, the lowest-order finite elements of the familyaduced by Ncélec:

M(Q) :={Gnh e H(curl; Q) : Gplk € A (K) VK € Fh}.
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The field is approximated in each tetrahedkohy a polynomial vector field in the space
N (K):={GheP}: Gn(Xx) =axx+b,abeR3xeK}.
We introduce
Eni={Ghe Mm(Q) :curlGp=0inQ} C Z,
”i/h::{Ghe 2Zh(Q): / curIGh-n:O,nzl,...,N} cv.
[-n
J

Then, the space-discretization of Problem 3.1 leads asisl|
Problem 4.1 FindHy:[0,T] — 27 such that

/rncurIHh(t)-n:In(t), n=1,...,N, (4.1)
| HAHA(0) - Gn+a(Hn().Gr) =0 Gy e ¥, (4.2)
Hn(0) = Hon, (4.3)

whereHgn, € 27y is an approximation dflg.

To prove that this problem is well posed, first we will use action Hp € H(0,T; 2) such that
JrncurlHp(t) -n=1I,(t),n=1,...,N. Let
J

Hn(t,%) = 3 ce(t)¥4(X), (4.4)
ect
where{4:}c+ the nodal basis oy, (with & being the set of edges associated to the n#ggtand

Ce(t) = Ig(lill )

with N, being the number of edgese & lying on y,. Hence,

/ curlﬁh(t)-n:/ ﬁh(t)-tn_ /we th = In
iy ¥

where for the last equality we have used tifigh -t, = |g|. Sincel, € HY(0,T) n=1,...,N, we
conclude thaHp, € H(0, T; 1 2n).
Now, if we write H, = Hh+ Hh, Problem 4.1 is equivalent to flnd||1gh € HY(0,T;#}) such that

ecM1

/uatHh t)-Gn+a(Hn(t),Gn) = / aHn(t)-Gn—a(Hn(t),Gr) VG € n, (4.5)
Hn(0) = Hon — Hn(0). (4.6)
Next, let be a basis of p, {®i 1K ;. We write

_ K

Hp(t,x) = ZlBi () Di(x).
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Let B(t) == (Bi(t))1<i<k andFn(t) := (fn, (t))1<i<k, With

() =~ [ paFn(D)- & —aFin®). @), 1<i<K,
and the matrices#” € RK*K and.#” € RK*X given by

K= a( O, D), M ::/Qucpi-cp,-, 1<i,j <K.
Then, problem (4.5)—(4.6) leads as follows: Fjpid) € RX such that

M B'(t) =~ B(t) +Fn(t),
B(0) =By

since.Z is a positive definite symmetric matrix, this linear systdrdiierential equations has a unique
solution. Thus, we conclude that Problem 4.1 admits a ursgligion, too.
Our next goal is to obtain error estimates for the semi-diecscheme of Problem 4.1. For (%, 1] ,
let
2T = {G € 2 1 Glg_ € H'(curl, Q) andGlq, € Hf(QD)3}

where H(curl,Q.) :== {G e H'(Q.)% : curlG e H'(Q.)3}. If Ge 27, then its Necklec interpolant
IhG € M (Q) is well defined (see (Bertidezet al., 2002, Lemma 5.1) and Amrouclegal. (1998)).

From now on, we assume that the solution of Problem 3.1 satidfic H1(0,T;.2"), which in
particular implies that the initial conditiddg € 2°". Therefore, the Bélec interpolantZ,H (t) is well
defined and satisfies

/ curl ZH(t)-n= JhH(t)~tn:/H(t)-tn:<curIH(t)~n,1>rn:In(t).
’—Jn W Yh J

Thus, we are allowed to udtgy, .= . Ho.
Let py,(t) := H(t) — AH(t) anddn(t) := A H(t) — Hp(t). Notice that from the last equality we
have thaid,(t) € . A straightforward computation yields

/Q UaBn(t) - Gn+a(Bn(t), Gn) = — /Q Hap,(t)-Gn—a(py(t),Gn)  ¥Gne Vh  (4.7)
By taking Gy, := (1), using (3.14) and the Cauchy-Schwartz inequality, we abtai
311801172 05 + 1800117205 < C{lIGPHO Iz )5 + lourl py(DlZ2 s} (48)
Using Gronwall’s inequality and the fact thég(0) = 0, we obtain
T T
18n(1)]122 g0 < C { /O 1304 ()22 )2 dt + /O lcurl ph<t>||ﬁz<m3dt} .
Integrating ovet in (4.8), and using the last inequality, we obtain
't
1800220y + [ 180(S)Z2 008

T 5 T ,
SC{/O ||0tPh(t)||Lz(Q)3dt+/0 |cur|ph(t)||L2(Q)3dt}_ 4.9)
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On the other hand, by takin@y, := :dn(t) in (4.7) and using the fact that

9 a(s(), T1) = a@S(), T) +a(St). aT(),

we obtain that
H A1) P2+ 5 s 2B1). B0(0)
~ [ HaPu1)- A8+ A@Py(0). 81(1) 2P0, 81(0).
Integrating ovet, since || curl ¢5h(t)||EZ(Q)3 < a(dp(t), dn(t)), Cauchy-Schwartz inequality yields
[ 18NSz gy s llcurt B40) 2

t
<{ [ llourt 81911 0,25+ st leurtpy(0) 2 g+ [ 1000 iy o}

Using Gronwall's inequality, we obtain

[ 180922 gy s curt 840 g
<C{O§u\p||curlph<> e 18000 Fanicy ot} (4.10)
Combining the equations (4.9) and (4.10), we obtain
SR 180 i)+ ) 18000

<c{ [ 1800 e+ sup|cur|ph<t>||fz<g>3}. (@.1)
0 o<t<T

Now, we are in a position to prove the following error estiesat

THEOREM 4.2 Suppose that the solution of Problem 3.1 satidfies H(0,T; 2°") with r € (%,1].
Then, there exists a constait> 0 independent dfi such that the solution of Problem 4.1 satisfies

UD [H(0) ~ Hn(® i)+ [ I4(H(O) — Hi(t)] 2z gy

0<t<T

T 2 2
< | [ {1AHOIs ety +IAHO T 0}

+ sup {”H(t)”a'(curl,QC) + H(t)lar(QD)S}] '

o<t<T

Proof. Notice that the regularity ok implies thatd (/hH (1)) = #h(aH(t)) for a.e.t € [0, T] (see
Zerisek (1990)). Therefore (see Bedezet al. (2002)),

1on® Iy < CH {IHO I e, o0) + IHO 2 -
PR () Inceurtia) < CH {IGH )l (curt.o0) +1GH Ol 2 -
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Thus, the result follows by writinéd (t) — Hp(t) = pj,(t) + dn(t) and using the estimates (4.11). O

For the implementation of Problem 4.1, we resort to its fdation in terms of a magnetic po-
tential. With this aim, we assume that the cut surfaEgsre polyhedral and the meshes are com-
patible with them, in the sense that eaEhis a union of faces of tetrahedia € 7,. Therefore,

7% = K e Fh: K C Q,} can also be seen as a meshf
We introduce an approximation of the spa@el et

L(Qy) = {% e HYQ,): Yhlx €P1(K) VK € %QD}
and consider the finite-dimensional subspac® afiven by
Gh:= {% € 4h(Qy) 1 W]y, = constantn= L...,L}.
We introduce the following finite-dimensional subset26fand % °, respectively,
Yy = {(Gh,%) € Nn(Qu) x (Bn/R) : (Gp|grad ) H(curI;Q)},
2= {(Gn.H) € Zn: [%h]5, =0.n=1,...N}.

Proceeding as in Berindezet al. (2005b) it is immediate to show that Problem 4.1 is equiviaten

finding (Hp, ®y) : [0, T] — % such that

[@n(O)]5, =In(t), n=1,...N, (4.12)
/ uatHh<t>-Gh+/ 1curth(t)-curIGh+/ pograd dn(t)-grad%, =0 V(Gy, %) € 77,
Qc QCO' Qp

(4.13)
(Hn(0)|®n(0)) = AHo. (4.14)

Let us remark that the first equation above is actually edgiitdo (4.1) becauskl(t) and @q(t) are
smooth enough for (3.7) to hold. The above problem can be agendiscretization of the magnetic
field - magnetic potential formulation (3.8)—(3.10).

5. Timediscretization

We consider a uniform partition db, T], tx := kAt, k=0,...,M, with time stepAt := % A fully
discrete approximation of Problem 3.1 is defined as follows:

Problem 5.1 FindH{'€ 2, m=1,...,M, such that

/curIHﬂ“«n:In(tm), n=1,...,N,
Gn
m_ pgm-1

h

H
HY = 4 Ho.
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Hence, at each iteration step we have to ftfile 2"y such that

/ curlH' ' n=1Iy(tm), n=1,...,N,
[-n

J

/HHhm'Gh+Ata( hm,Gh)Z/uHﬂ"‘l-Gh VGh € Vh.
Q Q

The problem above has a unique solution. In fact, takiagm in (4.4) and writingHp' = ﬁhm+ ﬁhm,
we have to find-|hm € ¥ such that

/Quﬁ?.c;h+4ta(ﬁhm7c;h):/Quﬁﬁ”.Gth/Quﬁﬂ”.eh—/guﬁﬂ".eh—ma(ﬁ?,eh)

for all G, € ¥, which is a linear system of equations with a positive defisitmmetric matrix.
Our next goal is to obtain error estimates for this fullyedéte scheme. Lgg* := H (t) — .#,H (t),

&= JhH (k) — HE and Tk := % OH (tx). A straightforward computation allows us to
show that
5k gkt k—1
| nE g Gnra@.6y = [ pren- | u% Gn—a(p*.Gn) Gne ¥h (5.1)

ChoosingGy, := & and using that

-8t L1 k2 k—1;2
/QT'J >ﬂ{”6 I2(@) — 10 ”'—2(9>3}

anda(8*,8) > 1| curl 8|2, oy together with the Cauchy-Schwartz inequality, yield
k K— k2
18 22 )3 — 18 H1IE2 oy + Atl| curl 8|12,
7||5kH2 + CAt p_iplFl +||cur|pk||2 —|—||Tk||2 (5 2)
T LZ(Q)?’ At L2(Q)3 L2(Q)3 LZ(Q)3 . .

In particular

18 225 — 18" H1IE2 0

k—1
8122 g 3+cm{HP P

Q>s+”"“”pk52<o)3+”fk52<9>3}'

Using the discrete Gronwall’s inequality in the last inel@iyathe fact thatd® = 0 and summing ovek
in (5.2), we obtain

m
k
18712 )5 + At > lleurls ||52(Q)3

k-1
<CAtZ Hp —p
L2(Q

etz g+ ||rk|52<9>3}. (5.3)
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On the other hand, by taking, := 2 ‘A‘f Zin (5.1) and using that

k k—1
a(&'ﬁ‘s‘Af) > - {as 8 —a(st 5

6k 5k1 1 p pk_
k k k—1 sk-1 k—1
(p,m ) g {208 ~alpk 18 N | a2 08,

together with the Cauchy-Schwartz inequality, we obtain

sk _ &< 1
At

and

At +a(6" 8" —a(8“ ! 81

|_2<_Q)3

k_ pk=12
<CAt{ (T2, 3+"’ p
At H(curl;Q)

+ H curl 6k_1||EZ(Q)3} — Z{a(pk7 6k) <|»a(pk—l7 6k_1)} '

Summing ovek leads to
2
5k gkt
— +||cur|5m||fz(9)3
L2(Q)3

p _pkt
<CAtZ{‘ At

k
+||curld HEz(Q)s + ||Tk52(9)3} :
H(curl;Q)

m
Adding this inequality to (5.3) and using again (5.3) torastieAt z ||curl 6k\\fz<9)3, we obtain

2
18™)|2 + At z leurt 8|2, 3+At§ &5
H(curl;Q) At
|_2<Q)3
< CAt Z p pk : Jr||'l'kH22 3+||Cur|pk||22 3
At H(curl;Q) @) )

Therefore, we are in position to write the main result of {péger which involves error estimates
for the physical quantities of interest, the magnetic fldldnd the current density= curl H.

THEOREM 5.2 LetH be the solution of Problem 3.1 ad, k = 1,...,M, that of Problem 5.1. If
H e HY0,T; 27)NH2(0,T;L2(Q)3), with r € (3,1], then there exists a constadit> 0, independent
of h andAt, such that

M HE — Hk-1 2
H(t Hty) - ——
max |[H(u) - N e
2 2 2r 2 2
<c{<m> IHlEeorazia + 1P SUp [IHO)Rran.an +IHO I a,0)

)
e [ [||atH<t>Har<wr..gc>+||atH<t>||E,r<QD)3} atf.
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Proof. A Taylor expansion shows that

M M ty 2
S 1742 05 =3 |2 / (b= 9AH(S)ds) <At/ |H (1)]1%2 2t
k=1 -1
Moreover,
M p pkl

2,

Let € := H(t,) — HX = p¥+ 8%, Using the estimates fa* and the fact that

1 T
<5 L 18P0 B ot

H(curl;Q)

HE-H? plopit s8-8t

OH (ty) — At = At + At -7
we obtain
m Hk _ kal 2
OH (t) — hAith
=1 |_2(_Q)3
2 il k2 k-1 il k2
<C LI B ourt) + At S 1T +ALY [eurl 0422 00
H(curl;Q) kgl L At H(curl:Q) kgl L2(Q)

T
<C {(At)z/o HdItH(t)”EZ(Q>3 dt-i—/(; ||atph(t)a(curl;Q)dt'i_Oana%),(w|ph(tm)”a(cul’|;ﬂ)} :

Thus, sincepy, := H — .#,H, the result follows from the assumed regularitytbfand standard error
estimates for the Bicelec interpolant. O
For the actual computation of Problem 5.1 we proceed as isghgdiscrete problem and rewrite it

in terms of a magnetic potential: Fir(d-lhm, &3{]“) € %n m=1,....,M, such that
(@ m]]z I (tm), n=1...,N,

m m

/u h h Gh+/ —curIH curIGh+/ u
'QD

(Hﬁ@ﬁ) = JHo.

grad o —A?rad ot gl @ =0

V(Gn, %) € 7,

Notice that the problem above can be seen as a backward Eoéediscretization of (4.12)—(4.14).
This is the discrete problem implemented in the computebse a scalar variab{@[") is used instead
of a vector field(H") in the dielectric domain.

Notice that for all timem the following constraints must be imposed:

° ( ol grad CB,T) € H(curl; Q), which arises in the definition o¥,;

° [[CTJ{]“HZH = constantpn=1,...,L, which arise in the definition a®,.
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To deal with these conditions, we employ the following pichoe (see Beriidezet al. (2002) for more
details).

For the first one we use that, féHhm\ grad fﬁﬁ) € H(curl; Q),
/Hhm~t4:/gfr§j5{,“~tg: &M (PF) — &M (P7) Ve edge ofdh: (T,
¢ ¢ :

whereP,” ande are the initial and end points éf respectively, antl, the unit tangent vector pointing
from P, to Pj . Then the degrees of freedomdf,’ associated with the edgés™ [ are eliminated by

static condensation in terms of those®ff' corresponding to the vertices of the meshpn
Regarding the second constraint, for each cut sua¢eve in principle distinguish the degrees of
freedom of®[" on Z; from those on%; . Then the latter are eliminated by using

‘5rr1n|zn— = 5rr1n|z;f + [[aﬁq}]zn7

with [%] 5, = 0 for the test functions an@ﬂ@ﬂ] s, = In(tm) for the trial functions wheré;(tm), n =
1,---,N, are the input current intensities ahdtm), n=N+1,---,L, will be additional degrees of
freedom of the problem. We notice that these additional anks, I(tn) N=N+1,--- |L, are the
intensities crossing through the conductors called wetgs, which are only due to induced currents
because they are not connected with any power source.

6. Numerical experiments

In this section we report some numerical result obtaineti @iMATLAB code implementing the nu-
merical method described above. First, we present a telstanrkinown analytical solution to validate
the computer code and to test the error estimates provecabavally, we will apply the method to a
problem arising from an electromagnetic forming process.

6.1 A testwith known analytical solution

The problem solved in this section has been already solvdgemmidezet al. (2002) in harmonic
regime. This is the reason why we only give here a brief dpsori and refer the reader to the quoted
paper for further details. Figure 2 shows a sketch of the dowaere the conducting paf@. and
the whole domain2 are coaxial cylinders. An alternating current of intensitt) = locog wt) enters
the conductor througﬁl and goes througl®,. in the axial direction]o denotes the amplitude of the
intensity andw the angular frequency. It is easy to obtain an analyticaltewi of the eddy current
problem inQ by writing all the fields in the fornf (t,x) = Re(d“*.Z(x)). In particular, the solution
leads to a magnetic field which has only an azimuthal comptaarahis defined by a scalar multivalued
potential in the dielectric domain. Notice that in this cage only need one cutting surface in the
dielectric domain. To determine the order of convergenice,tumerical method has been used on
several successively refined meshes and the time-step bascbaveniently reduced to analyze the
convergence with respect to both, the mesh-size and thestiepe We have compared the obtained
numerical solutions with the analytical one.

In order to analyze the linear convergence respect to thésiee and the time-step, we have
computed the relative errors of the different fields coroesiing to(%,%), n=1...,6. Figure 3

shows log-log plots of the relative error for the magnetitdfid in ©°([0, T];H(curl; Q))-norm (left)
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Conductor (QQ¢) Dielectric (€2 p) FE

FIG. 2. Sketch of the domain in the analytical example.
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FIG. 3. 1kM (left) and L2(Q)° (right) versus number of d.o.f. (log-log scale).

max [[H(t .
1<k§MH (k)HH(curl,Q)

mikleHﬁtH(tk)HLz(mz

and for its derivativedH in L2(0,T;L?(Q)%)-norm (right) versus the number of degrees of freedom
(d.o.f.).

The slopes of the curves clearly show an order of convergéithe- At) for all the quantities, which
agrees with the theoretical results, since the solutiom@xh and hence the hypotheses of Theorem 5.2
are fulfilled forr = 1.

6.2 A problem arising from an electromagnetic forming process

Electromagnetic Forming is a metal working process théseain the use of electromagnetic forces to
deform metallic workpieces at high speeds. A transienttietecurrent is induced in a coil which pro-
duces a magnetic field that penetrates a nearby conductikpi@oe where an eddy current is generated.
The magnetic field, together with the eddy current, induceehtz forces that drive the deformation of
the workpiece (see, for instance El-Azabal. (2003)). In this section, we have simulated the electro-
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magnetic behavior of a 3D workpiece under the action of a ttaibrresponds to a similar configuration
to the one presented in Ulaci al. (2009), but with simpler geometry and workpiece data. Thie co
and workpiece are presented in Figure 4, which also showpieatymesh of the conducting domain.
Domain Q has been chosen as a box surrounding the conductor. No#tegvéhonly need to build a

cutting surface in the dielectric domain. The current istgnwhich enters the coil is shown in Figure
5; a typical curve in electromagnetic forming. Concerning physical properties, the workpiece is a
magnesium alloy and the coil is made with copper (see TabfdRagia et al. (2009)). Figure 6 shows
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FiG. 4. Mesh of the conducting domain (left). Detail of the coil imésght).

the computed resultant of the Lorentz force versus timeamtbrkpiece; the peak value corresponds to
the time in which the input current intensity reaches its mmaxn (0.00018 s). All the other reported
results correspond to this time. Figure 7 shows the moduitiseocurrent density in the conducting

domain. Figure 8 shows the current density vector field. Igingigure 9 shows the Lorentz force in
the workpiece.
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. . . FiG. 6. Resultant of the Lorentz force (N) in the work-
FiG. 5. Current intensity (A) vs. time (s).

piece vs. time (s).
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FIG. 9. Lorentz force in the workpiece at timeD0018 s.
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Since this approach is also able to deal with non simply coi@geconductors we have solved
another example in which the workpiece is as shown in Fig0Orela this case, two cut surfaces are
needed, one contained in the interior®f and the other touchingQ,. As we have explained above,
in this example the induced current intensity in the workpiés an additional unknown which must
be computed at each time step. Figure 11 shows the moduldsedhduced current density in the
workpiece at = 0.00018 s. Figure 12 shows the additional unknown (induceckntiintensity in the
workpiece) versus time.

FiG. 10. Mesh of the workpiece. FiG. 11. Modulus of the current density in workpiece

at time 000018 s.

1200 ‘ : ‘
1000f 2% ]
800}
600}
400}

200 ]

Induced current density on the workpiece

1 .
Time (s) %107

FIG. 12. Induced current intensity (A) vs. time (s).
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