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Centro de Investigación en
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Abstract

We first establish sufficient conditions ensuring strong duality for cone con-

strained nonconvex optimization problems under a generalized Slater-type condi-

tion. Such conditions allow us to cover situations where recent results cannot be

applied. Afterwards, we provide a new complete characterization of strong duality

for a problem with a single constraint: showing, in particular, that strong duality

still holds without the standar Slater condition. This yields Lagrange multipliers

characterizations of global optimality in case of (not necessarily convex) quadratic

homogeneous functions after applying a joint-range convexity result due to Dines.

Furthermore, a result which reduces a constrained minimization problem into one

with a single constraint under generalized convexity assumptions, is also presented.
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1 Introduction an formulation of the problem

Let X be a real locally convex topological vector space; Y be a normed space; P ⊆ Y

be a closed convex cone with possibly empty interior, and C be a subset of X. Given

f : C → R and g : C → Y , let us consider the cone constrained minimization problem

µ
.
= inf

g(x)∈−P
x∈C

f(x). (P )
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Thus, the constraint set may be described by inequality and equality constraints. The

Lagrangian dual problem associated to (P ) is

ν
.
= sup

λ∗∈P ∗
inf
x∈C

[f(x) + 〈λ∗, g(x)〉], (D)

where P ∗ is the non negative polar cone of P . We say Problem (P ) has a (Lagrangian)

zero duality gap if the optimal values of (P ) and (D) coincides, that is, µ = ν. The

Problem (P ) is said to have strong duality if it has a zero duality gap and Problem (D)

admits a solution. To characterize this property is one of the most important problems

in optimization, and certainly the lack of convexity makes the task an interesting

challenge in mathematics. To that purpose, some constraints qualification (CQ) are

needed, which may be of Slater-type, or interior-point condition, and in some other

situation it requires a closed-cone CQ. Such CQ often restrict some applications.

More precisely, when X = R
n and P = [0,+∞[ with g being a quadratic function

that is not identically zero, the authors in [15] prove that, (P ) has strong duality for

each quadratic function f if, and only if there exists x̄ ∈ R
n such that g(x̄) < 0.

Similarly, when g is P -convex (see (3.8)) and continuous, it is proven in [4] that (P )

has strong duality for each f ∈ X∗ if, and only if a certain CQ holds. This CQ

involves the epigraph of the support function of C and the epigraph of the conjugate

of the function x 7→ 〈λ∗, g(x)〉. This CQ is also equivalent to (P ) has strong duality

for each continuous and convex function f ([14]). Stable zero duality gaps in convex

programming (g is continuous, P -convex, and f is lower semicontinuous proper convex

function), that is, strong duality for each linear perturbation of f , were characterized

in terms of a similar CQ as above, see [16, 18] for details.

Apart from these characterizations several sufficient conditions of the zero duality gap

have been established in the literature, see [12, 1, 2, 27, 4, 6, 7].

Our goal in this paper is, firstly, to derive conditions for (P ) to have strong duality

under no convexity assumptions. Unlike some of the above results, which involve con-

ditions on g and C that guarantee (P ) has strong duality for every f in a certain class

of functions, our approach allows us to derive conditions on the pair, f and g jointly,

that ensure (P ) has strong duality, under no convexity assumptions; this result can be

used to situations where none result in [12, 4, 16, 14, 5, 6, 7], for instance, is applicable.

Secondly, we provide a new characterization of strong duality in case we have a single

constraint.

By assuming that x0 is a solution to problem (P ), the authors in [6, Corollary 3.1]

prove that strong duality holds if and only if condition

T (M̃ ; (f(x0), 0)) ∩ (] −∞, 0[×{0}) = ∅ (S)
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is satisfied, where T (A;x) stands for the contingent cone to A at x ∈ A, and

M̃
.
= (f, g)(C \ K) + (R+ × P ), K

.
= {x ∈ C : g(x) ∈ −P},

with, (f, g)(C \ K)
.
= {(f(x), g(x)) ∈ R × Y : x ∈ C \ K}. Condition (S) has its

origin in [9]. Since in most problems a solution to (P ) is unknown, such an equivalent

formulation, though interesting, has some disadvantages. Therefore, throughout this

paper we do not assume that (P ) has solution, no convexity assumption is imposed,

and we use topological interior, allowing us to deal with cones possibly with empty

interior.

The paper is organized as follows. In Section 2 some basic notations and prelimi-

naries are collected. Section 3 establishes our first main theorems on strong duality for

(P ) via topological interior; such theorems cover situations where recent results cannot

be applied, see Example 3.4; in addition, we present sufficient conditions allowing us to

formulate (P ) into one with a single inequality constraint; this result generalizes that

due to Luenberger [20], valid when P is the usual non negative orthant, R
n
+, and each

component of g is convex. A new complete characterization of strong duality when

the constrained set is determined by a single inequality, is established in Section 4; in

particular, it is showed that strong duality holds without the standar Slater condition.

Section 5 presents a Lagrange multipliers characterization for global optimality in case

of quadratic homogeneous functions. Here, a joint-range convexity result due to Dines

will play an important role.

2 Basic notations and preliminares

Throughout the paper, Y a real normed vector space, its topological dual space is

Y ∗, and 〈·, ·〉 denotes the duality pairing between Y and Y ∗. Given x, y ∈ Y we set

[x, y] = {tx + (1 − t)y : t ∈ [0, 1]}. The segments ]x, y] etc are defined analogously.

A set P ⊆ Y is said to be a cone if tP ⊆ P , ∀ t ≥ 0; given A ⊆ Y , cone(A) stands

for the smallest cone containing A, that is,

cone(A) =
⋃

t≥0

tA,

whereas cone(A) denotes the smallest closed cone containing A: obviously cone(A) =

cone(A), where A denotes the closure of A. Additionally, we set

cone+(A)
.
=

⋃

t>0

tA.

Evidently, cone(A) = cone+(A)∪{0} and therefore cone(A) = cone+(A). Furthermore,

a (not necessarily convex) cone K ⊆ Y is called “pointed” (see for instance [23]) if
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x1 + · · · + xk = 0 is impossible for x1, x2, . . . , xk in K unless x1 = x2 = · · · = xk = 0.

It is easy to see that a cone K is pointed if, and only if co(K) ∩ (−co(K)) = {0} if,

and only if 0 is a extremal point of co(K).

In subsequent sections, the notations co(A), int A, stand for the convex hull of A which

is the smallest convex set containing A, and topological interior of A, respectively. We

denote R+
.
= [0,+∞[, R++

.
= ]0,+∞[, R−− = −R++.

3 Lagrangian strong duality and reducing to one single

constraint

Given a real locally convex topological vector space X, a nonempty set C ⊆ X, a

mapping f : C → R, let us consider the following cone constrained minimization

problem

µ
.
= inf

x∈K
f(x), (3.1)

where g : C → Y , with Y as before, K
.
= {x ∈ C : g(x) ∈ −P} with P ⊆ Y being

a convex cone with possibly empty topological interior. This means that P may have

the form P = Q×{0}, in which case, the constraint set is described by inequality and

equality constraints.

Let us introduce, as usual, the Lagrangian

L(γ∗, λ∗, x) = γ∗f(x) + 〈λ∗, g(x)〉.

Obviously,

γ∗µ ≥ inf
x∈C

L(γ∗, λ∗, x), ∀ λ∗ ∈ P ∗, ∀ γ∗ ≥ 0. (3.2)

As pointed out in the introduction, our main concern is to find sufficient conditions

ensuring strong duality for problem (3.1), that is, that there exists λ∗
0 ∈ P ∗ such that

inf
x∈K

f(x) = inf
x∈C

L(1, λ∗
0, x). (3.3)

Throughout this section we do not assume that (3.1) has solution, and we will look

for sufficient conditions implying strong duality, under no convexity assumption.

To that end, some constraint qualifications (CQ) are needed, which involve interior-

point conditions, say Slater-type conditions. In addition, some regularity conditions will

be also imposed. It is well known the standar Slater condition (SC) prevents to deal

with inequality and equality constraints, since the cone involved has empty interior:

for instance, Theorem 4.1 of [6] cannot be applied if the constraint set is determined

by inequalities and equalities.

The last part of this section establishes a result which reduces problem (3.1) into one
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with a single constraint, for a quasiconvex function f , a generalized convex mapping

g, and a Slater-type condition. Such a result generalizes that due to Luenberger [20],

valid when P is the usual non negative orthant and each component of g is convex. Set

F (C)
.
= (f, g)(C) = {(f(x), g(x)) ∈ R × Y : x ∈ C}.

3.1 Lagrangian strong duality: the general case

We obtain various equivalent formulations to have an equality in (3.2) for some (γ∗, λ∗).

This preliminary result will allow us to get strong duality for problem (3.1) under a

generalized Slater assumption.

Theorem 3.1. Let us consider problem (3.1). Assume that µ is finite and

int(co(F (C)) − µ(1, 0) + (R+ × P )) 6= ∅.

The following assertions are equivalent:

(a) there exist Lagrange multipliers (γ∗
0 , λ∗

0) ∈ R+ × P ∗, (γ∗
0 , λ∗

0) 6= (0, 0), such that

γ∗
0 inf

x∈K
f(x) = inf

x∈C
L(γ∗

0 , λ∗
0, x);

(b) cone(int(co(F (C)) − µ(1, 0) + (R+ × P ))) is pointed;

(c) (0, 0) 6∈ int(co(F (C)) − µ(1, 0) + (R+ × P )));

(d) cone(F (C) − µ(1, 0) + int(R+ × P )) is pointed, provided int P 6= ∅.

Proof. (b) =⇒ (c): This is straightforward since otherwise, we had

cone(int(co(F (C)) − µ(1, 0) + (R+ × P ))) = R × Y.

(c) =⇒ (a): We apply a standar convex separation theorem to obtain the existence of

γ∗
0 ≥ 0 and λ∗

0 ∈ P ∗, not both zero, satisfying

γ∗
0f(x) + 〈λ∗

0, g(x)〉 ≥ γ∗
0µ ∀ x ∈ C. (3.4)

This implies

inf
x∈C

L(γ∗
0 , λ∗

0, x) ≥ γ∗
0µ.

This together with (3.2) yield the desired result.

(a) =⇒ (b): From (a), (3.4) holds, and this amounts to writing

〈(γ∗
0 , λ∗

0), (f(x) − µ, g(x))〉 ≥ 0 ∀ x ∈ C. (3.5)
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Set A
.
= F (C)−µ(1, 0). Since cone(int(co(A) + (R+ ×P ))) is convex, we have to show

that whenever x,−x ∈ cone(int(co(A) + (R+ × P ))), then x = 0. Assume that x 6= 0.

Then, we can write x = t1ξ1, −x = t2ξ2, ti > 0, ξi ∈ int(co(A) + (R+ × P )), i = 1, 2.

By (3.5), 〈(γ∗
0 , λ∗

0), ξ〉 ≥ 0 ∀ ξ ∈ co(A) + (R+ × P ). Given any y ∈ R × Y , we can

choose δ > 0 such that

ξi + λy ∈ co(A) + (R+ × P ), ∀ |λ| < δ, ∀ i = 1, 2.

Then, by setting p∗
.
= (γ∗

0 , λ∗
0), we obtain

〈p∗, ξi + λy〉 ≥ 0, ∀ |λ| < δ, ∀ i = 1, 2.

It follows that 〈p∗, λy(t1 + t2)〉 ≥ 0, which implies that 〈p∗, y〉 = 0 for all y ∈ R × Y .

Hence (γ∗
0 , λ∗

0) = p∗ = 0, a contradiction.

(b) ⇐⇒ (d): Since K+intQ = int(K+Q) (see [25, 8]) and cone(co(K)) = co(cone(K)),

for every convex cone Q with nonempty interior and every set K, we obtain that

cone(int(co(A) + P )) = co(cone(A + int P )). Taking into the account that pointedness

of any cone is equivalent to pointednes of its convex hull, the result follows.

In order to have strong duality, we need the non-verticality of the linear functional

(γ∗
0 , λ∗

0), that is, we must have γ∗
0 > 0. It holds whenever a Slater-type condition is

imposed as the following corollary shows.

Corollary 3.2. Let us consider problem (3.1). Assume that µ is finite,

int(co(F (C)) − µ(1, 0) + (R+ × P )) 6= ∅

and the generalized (SC) that cone(g(C) + P ) = Y holds. The following assertions are

equivalent:

(a) there exists a Lagrange multiplier λ∗
0 ∈ P ∗, such that

inf
x∈K

f(x) = inf
x∈C

L(1, λ∗
0, x); (3.6)

(b)

inf
x∈K

f(x) = max
λ∗∈P ∗

inf
x∈C

L(1, λ∗, x);

(c) cone(int(co(F (C)) − µ(1, 0) + (R+ × P ))) is pointed;

Proof. (a) ⇐⇒ (b): One implication is obvious. From (a) it follows that

µ ≤ max
λ∗∈P ∗

inf
x∈C

L(λ∗, x),

which together with (3.2) imply (b).

(c) ⇐⇒ (a): One implication follows from the preceding theorem. If γ∗
0 = 0, then
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0 6= λ∗
0 ∈ P ∗ and 〈λ∗

0, g(x)〉 ≥ 0 for all x ∈ C. This implies that λ∗
0 = 0, by the

generalized Slater condition, which is a contradiction. Thus, we may suppose γ∗
0 = 1

in (3.4), and therefore (a) holds.

Some comments are in order. We compare our previous result with that given in [7,

Theorem 4.4] where quasi relative interior is employed but at the expenses of requiring

the convexity of F (C) + (R+ × P ), which implies the convexity of g(C) + P . More

precisely, with the same notations as in the mentioned paper, such a theorem is the

following.

Theorem 3.3. [7, Theorem 4.4] Suppose that F (C)+(R+×P ) is convex, 0 ∈ qi(g(C)+

P ) and (0, 0) 6∈ qri[co((F (C)−µ(1, 0)+R+×P )∪{(0, 0)})]. Then, there exists λ∗
0 ∈ P ∗

such that (3.6) holds.

Here, given a convex set A, by qri(A) and qi(A) we mean the quasi relative interior

and the quasi interior of A. In order to prove the previous theorem, the authors show

first that “Fenchel and Lagrange duality” are equivalent (so, some convexity assump-

tions are imposed) generalizing an earlier result due to Magnanti [21]. Then, from such

an equivalence Theorem 3.3 is obtained.

As a by-product we observe that Theorems 4.2 and 4.4 in [7] are identical. Indeed,

since cone A = cone A, and cone(A−A) = cone A− cone A provided A is convex and

0 ∈ A, we obtain

cone
(

g(C) + P − (g(C) + P )
)

= cone(g(C) + P ) − cone(g(C) + P ).

From this, by assuming that g(C) + P is convex, one immediately gets

0 ∈ qi(g(C) + P ) ⇐⇒ 0 ∈ qi(g(C) + P − (g(C) + P )) and 0 ∈ qri(g(C) + P ).

Our Corollary 3.2 may be applied to problems of minimizing a non quasiconvex

function with equality and inequality constraints. It is illustrated in the following ex-

ample. Notice none result from [12, 4, 16, 14, 5], neither [6, Theorem 4.1], [13, Theorem

4.3], or [7, Theorem 4.4] can be applied, since we are dealing with an objective non-

convex function and the mapping g is such that g(C) + P is not convex.

Example 3.4. Notice this example shows our approach applies even if int P = ∅.
Take C = R, P = R+ × {0},

f(x) =

{

1, if x = 0,

0 if x 6= 0.

g1(x) =















x if x ≤ −1,

−1 if − 1 < x < 0,

0 if x ≥ 0.

g2(x) =

{

x + 1 if x < 0,

0 if x ≥ 0,
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and consider the problem

µ
.
= min{f(x) : g1(x) ≤ 0, g2(x) = 0, x ∈ R}.

Thus, P ∗ = R+ × R and µ = 0. Setting F (x) = (f(x), g1(x), g2(x)), x ∈ C, we obtain

F (x) =



























(0, x, x + 1) if x ≤ −1,

(0,−1, x + 1) if − 1 < x < 0,

(1, 0, 0) if x = 0,

(0, 0, 0) if x > 0.

It follows that

F (C) − µ(1, 0, 0) + (R+ × P ) =

{(x, y, z) : x ≥ 0, y ≥ −1, 0 ≤ z < 1} ∪ {(x, y, z) : x ≥ 0, z ≤ y + 1, z ≤ 0}.

Then, int(co(F (C)) − µ(1, 0, 0) + (R+ × P )) 6= ∅ and

cone(int (co(F (C)) − µ(1, 0, 0) + R+ × P )) = {(0, 0, 0)} ∪ {(x, y, z) : x > 0, y, z ∈ R}

is pointed. Moreover,

(g1, g2)(x) = (g1(x), g2(x)) =















(x, x + 1) if x ≤ −1,

(−1, x + 1) if − 1 < x < 0,

(0, 0) if x ≥ 0.

Thus,

(g1, g2)(C) + P = {(x, y) ∈ R
2 : 0 ≤ y < 1, x ≥ −1} ∪ {(x, y) ∈ R

2 : y ≤ 0, y ≤ x + 1},

which is not convex. This yields

cone((g1, g2)(C) + P ) = R
2,

that is, the generalized Slater condition is satisfied. On the other hand, given λ =

(λ1, λ2) ∈ R+ × R, we obtain

L(λ, x) =



























(λ1 + λ2)x + λ2 if x ≤ −1,

λ2x + λ2 − λ1 if − 1 < x < 0,

1 if x = 0,

0 if x > 0.

Hence, for λ1 ≥ 0 and λ2 ∈ R, we get

inf
x∈R

L(λ, x) =

{

λ2 − λ1 if λ1 + λ2 ≤ 0,

−∞ if λ1 + λ2 > 0,
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and therefore,

max
(λ1,λ2)∈P ∗

inf
x∈R

L(λ, x) = max
λ1+λ2≤0,

λ1≥0,λ2∈R

inf
x∈R

L(λ, x) = max
λ1+λ2≤0,

λ1≥0,λ2∈R

(λ2 − λ1) = 0 = µ.

inf
x∈R

L(λ∗, x) = 0, λ∗ = (0, 0).

Example 3.5. This instance is discussed in [6, Example 3.1] for a different purpose

and shows that a generalized SC is necessary to have strong duality.

Let f(x1, x2) = −√
x1, g1(x1, x2) = −x1 − x2, g2(x1, x2) = x1, C = R+ × R, P =

R+ × {0}. Thus, P ∗ = R+ × R and µ = 0. It is not difficult to see that (g1, g2)(C) +

(R+×{0}) = R×R+, which implies that cone((g1, g2)(C)+P ) 6= R
2. Moreover, setting

F (C) = {(f(x), g1(x), g2(x)) : x ∈ C}, we obtain

F (C) + (R2
+ × {0}) =

⋃

x1>0
x2∈R

{

(−√
x1,−x1 − x2, x1) + (R2

+ × {0})
}

∪
⋃

x2∈R

{

(0,−x2, 0) + (R2
+ × {0})

}

.

Then, int[co(F (C)) + (R2
+ × {0})] 6= ∅ and

cone
(

int[co(F (C)) + (R2
+ × {0})]

)

is pointed.

If there exists (λ1, λ2) ∈ R+ × R such that

−√
x1 + λ1(−x1 − x2) + λ2x1 ≥ 0, ∀ (x1, x2) ∈ R+ × R,

then, setting x1 = 0, we get λ1 = 0. Thus, the previous inequality reduces

−√
x1 + λ2x1 ≥ 0, ∀ x1 ≥ 0,

which is impossible. Hence, strong duality does not hold.

3.2 Reducing a constrained problem into one with a single inequality

constraint

We now establish an important result ensuring that problem (3.1) can be reformulated

with a single constraint under generalized convexity assumptions and a Slater-type

condition. Here, we restrict to the case int P 6= ∅. In addition, we consider the assump-

tion

∀p∗ ∈ P ∗, the restriction of 〈p∗, g(·)〉 on any line segment of C is lower semicontinuous.

(3.7)
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Next theorem extends and generalizes that of [20] valid for finite dimensional spaces

and P -convex functions g. The latter means that, given a convex set C and x, y ∈ C,

one has

g(tx + (1 − t)y) ∈ tg(x) + (1 − t)g(y) − P, ∀ t ∈ ]0, 1[. (3.8)

We recall a larger class of vector functions. According to [19] (where it was used to

derive a Gordan-type alternative theorem), given a convex set C ⊆ X with X as

before, a mapping g : C → Y is called ∗-quasiconvex if 〈p∗, g(·)〉 is quasiconvex for

all p∗ ∈ P ∗. Independently, the authors in [26] say that g is naturally P -quasiconvex

if for all x, y ∈ C, g([x, y]) ⊆ [g(x), g(y)] − P . Both classes coincide as shown in [10,

Proposition 3.9], [11, Theorem 2.3] (it is still valid if P has empty interior) under

assumption (3.7).

It is known from, Corollary 3.11 in [10], that every naturally P -quasiconvex function

g : C → Y satisfying (3.7), is such that g(C) + P is convex, so that g(C ′) + P is also

convex for every convex set C ′ ⊆ C.

A real-valued function h : C → R is said to be semistrictly quasiconvex if

x, y ∈ C, h(x) < h(y) =⇒ h(ξ) < h(y), ∀ ξ ∈ ]x, y[.

Theorem 3.6. Let us consider problem (3.1) with f being quasiconvex and upper semi-

continuous along lines of C. Assume that µ is finite and g is naturally P -quasiconvex

such that for all p∗ ∈ P ∗ \ {0}, x ∈ C 7→ 〈p∗, g(x)〉 is semistrictly quasiconvex and lsc

along any line segment of C. If, in addition, the Slater-type condition that for some

x̄ ∈ C, 〈y∗, g(x̄)〉 < 0 for all y∗ ∈ P ∗ \ {0} holds, that is, g(x̄) ∈ −int P , then, there

exists p∗ ∈ P ∗ \ {0} such that

inf
g(x)∈−P

x∈C

f(x) = inf
〈p∗,g(x)〉≤0

x∈C

f(x). (3.9)

Hence, every solution to (3.1) is also a solution to the problem of right hand-side of

(3.9).

Proof. Let us consider

M
.
= g(C0) + P, C0

.
= {x ∈ C : f(x) < µ}.

Since C0 is convex and g is naturally P -quasiconvex on any convex subset C ′ of C, the

set M is convex by Corollary 3.11 in [10]. We can assume that M is nonempty since

otherwise any p∗ ∈ P ∗ verifies (3.9). Evidently, M ∩ (−P ) = ∅, for if not, there exists

z0 ∈ −P such that z0 ∈ M , that is, there is x0 ∈ C0 satisfying z0 − g(x0) ∈ P . It turns

out that g(x0) ∈ −P , x0 ∈ C, f(x0) < µ, which cannot happen. We apply a convex

separation theorem to obtain the existence of p ∈ P ∗, p∗ 6= 0, α ∈ R, such that

〈p∗, z〉 ≥ α ∀ z ∈ M, 〈p∗, u〉 ≤ α, ∀ u ∈ −P.
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Hence,

p∗ ∈ P ∗ and 〈p∗, g(x)〉 ≥ 0, ∀ x ∈ C0. (3.10)

Let x ∈ C, 〈p∗, g(x)〉 ≤ 0. In case f(x) < µ, that is, x ∈ C0, we get g(x) ∈ M

and thus 〈p∗, g(x)〉 = 0. Set xt = tx̄ + (1 − t)x. By the upper semicontinuity of f ,

f(xt) < µ for some t ∈ ]0, 1[, and therefore xt ∈ C0. Thus, by semistrict quasiconvexity,

0 ≤ 〈p∗, g(xt)〉 < 0, a contradiction. Whence f(x) ≥ µ. This implies

inf
〈p∗,g(x)〉≤0

x∈C

f(x) ≥ inf
g(x)∈−P

x∈C

f(x).

The reverse inequality is trivial.

The previous theorem allows us to reduce a problem with several quasiconvex con-

straints to a problem having a single quasiconvex constraint. If x̄ solves the problem

inf
〈p∗,g(x)〉≤0

x∈C

f(x), (3.11)

we cannot assure that it necessarily solves (3.1) or satisfies 〈p∗, g(x̄)〉 = 0. The latter

is essentially due to the fact that relative minima need not be global minima.

Theorem 3.7. Let us consider problem (3.1). Assume that x0 solves problem (3.1)

(µ = f(x0)) and that all the assumptions of Theorem 3.6 are fulfilled. Then, either

(a) there is x̄ ∈ C, g(x̄) ∈ −int P and f(x̄) = µ, or

(b) there is p∗ ∈ P ∗ such that x0 solves problem (3.11) and 〈p∗, g(x0)〉 = 0.

Proof. Assume that (a) does not hold. Then, 0 6∈ B + int P , where B
.
= g(C1) + P ,

C1 = {x ∈ C : f(x) ≤ µ}. By assumption, B is convex and therefore, there exists

p∗ ∈ Y ∗, p∗ 6= 0, such that

0 ≤ 〈p∗, ξ〉 ∀ ξ ∈ B + int P.

this implies that p∗ ∈ P ∗ and 0 ≤ 〈p∗, g(x)〉 for all x ∈ C1. Hence, 〈p∗, g(x0)〉 = 0, and

by the previous theorem, x0 solves problem (3.11).

4 Characterizing strong duality: the case with a single

inequality constraint

In this situation, we describe completely the pointedness of the cone appearing in

Theorem 3.1; and as a consequence, a new characterization of strong duality is obtained,
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covering situations where a Slater-type condition may fail.

Here, K = {x ∈ C : g(x) ≤ 0}, thus K = S−
g (0) ∪ S=

g (0), where

S−
g (0)

.
= {x ∈ C : g(x) < 0}, S=

g (0)
.
= {x ∈ C : g(x) = 0}, S+

g (0)
.
= {x ∈ C : g(x) > 0}.

Similarly, we define

S−
f (µ)

.
= {x ∈ C : f(x) < µ}, S+

f (µ)
.
= {x ∈ C : f(x) > µ},

S=
f (µ)

.
= {x ∈ C : f(x) = µ}.

Set R
2
++

.
= int R

2, F = (f, g) and F (C)
.
= {(f(x), g(x)) ∈ R

2 : x ∈ C}. By writting

F (C) − µ(1, 0) + R
2
++ = Ω1 ∪ Ω2 ∪ Ω3, it follows that

cone(F (C) − µ(1, 0) + R
2
++) = cone(Ω1) ∪ cone(Ω2) ∪ cone(Ω3), (4.1)

where

Ω1
.
=

⋃

x∈argminKf∩S=
g (0)

[(0, g(x)) + R
2
++] ∪

⋃

x∈argminKf∩S−
g (0)

[(0, g(x)) + R
2
++];

Ω2
.
=

⋃

x∈K\argminKf

[(f(x) − µ, g(x)) + R
2
++];

Ω3
.
=

⋃

x∈C\K

[(f(x) − µ, g(x)) + R
2
++] = Ω1

3 ∪ Ω2
3 ∪ Ω3

3,

with

Ω1
3 =

⋃

x∈S+
g (0)∩S−

f
(µ)

[(f(x) − µ, g(x)) + R
2
++]; Ω2

3 =
⋃

x∈S+
g (0)∩S=

f
(µ)

[(0, g(x)) + R
2
++],

Ω3
3 =

⋃

x∈S+
g (0)∩S+

f
(µ)

[(f(x) − µ, g(x)) + R
2
++].

On the other hand, whenever S−
g (0) ∩ S+

f (µ) 6= ∅ and S+
g (0) ∩ S−

f (µ) 6= ∅, we set

α
.
= inf

x∈S−
g (0)∩S+

f
(µ)

g(x)

f(x) − µ
, β

.
= sup

x∈S+
g (0)∩S−

f
(µ)

g(x)

f(x) − µ
.

Evidently, −∞ ≤ α < 0, −∞ < β ≤ 0 and;

C = K ⇐⇒ S+
g (0) = ∅;

argminKf ∩ S−
g (0) = ∅ and S−

g (0) ∩ S+
f (µ) = ∅ ⇐⇒ S−

g (0) = ∅;

S−
g (0) ∩ S+

f (µ) = ∅ ⇐⇒ S−
g (0) ⊆ argminKf.

The previous discussion along with (4.1) yield Figures 1, 2 and 3. Such figures allow

us to visualize the pointedness of cone(F (C) − µ(1, 0) + R
2
++), which is expressed in

the following theorem.
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cone(Ω1) =











































































v

u•
0

∅ if argminKf = ∅;

if argminKf ∩ S−
g (0) 6= ∅;

•
0

v

u
if argminKf ∩ S−

g (0) = ∅, argminKf ∩ S=
g (0) 6= ∅.

Figure 1: Visualizing Theorem 4.1

cone(Ω2) =


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
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


















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
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




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















































































•

if K = argminKf ;

if S−
g (0) ∩ S+

f (µ) 6= ∅, −∞ < α < 0;

v

u

v = αu

∅

0

• if S−
g (0) ∩ S+

f (µ) 6= ∅, α = −∞;
0

u

v

•
if S−

g (0) ∩ S+
f (µ) = ∅, S=

g (0) ∩ S+
f (µ) 6= ∅.

u

v

0

Figure 2: Visualizing Theorem 4.1
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cone(Ω3) =


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


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
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
















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
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














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



























•

if S+
g (0) = ∅;

if S+
g (0)

⋂

S−
f (µ) 6= ∅, −∞ < β < 0;

v

u

v = βu

∅

0

• if S+
g (0) ∩ S−

f (µ) 6= ∅, β = 0;
0

u

v

• if S+
g (0) ∩ S−

f (µ) = ∅, S+
g (0) 6= ∅.u

v

0

Figure 3: Visualizing Theorem 4.1

Theorem 4.1. Let us consider problem (3.1) such that K 6= ∅ and µ is finite.

(a) Assume that argminKf 6= ∅. Then, cone(F (C)−µ(1, 0)+R
2
++) is pointed if, and

only if any of the following circumstances holds:

(a1) argminKf ∩ S−
g (0) 6= ∅ and, either S+

g (0) = ∅ or [S+
g (0) ∩ S−

f (µ) = ∅,

S+
g (0) 6= ∅];

(a2) argminKf ∩ S−
g (0) = ∅, argminKf ∩ S=

g (0) 6= ∅ and K = argminKf ;

(a3) argminKf ∩ S−
g (0) = ∅, argminKf ∩ S=

g (0) 6= ∅, S−
g (0) ∩ S+

f (µ) 6= ∅,

−∞ < α < 0 and, either S+
g (0) = ∅ or [S+

g (0) ∩ S−
f (µ) 6= ∅, β ≤ α], or

[S+
g (0) ∩ S−

f (µ) = ∅, S+
g (0) 6= ∅];

(a4) argminKf ∩ S−
g (0) = ∅, argminKf ∩ S=

g (0) 6= ∅, S−
g (0) ∩ S+

f (µ) 6= ∅,

α = −∞ and, either S+
g (0) = ∅ or [S+

g (0) ∩ S−
f (µ) = ∅, S+

g (0) 6= ∅];
(a5) argminKf ∩ S−

g (0) = ∅, argminKf ∩ S=
g (0) 6= ∅, S−

g (0) ∩ S+
f (µ) = ∅ and

S=
g (0) ∩ S+

f (µ) 6= ∅.

(b) Assume that argminKf = ∅. Then, cone(F (C)−µ(1, 0)+R
2
++) is pointed if, and

only if any of the following instances holds:

(b1) S−
g (0)∩S+

f (µ) 6= ∅, −∞ < α < 0 and, either S+
g (0) = ∅ or [S+

g (0)∩S−
f (µ) 6=

∅, β ≤ α] or [S+
g (0) ∩ S−

f (µ) = ∅, S+
g (0) 6= ∅];

(b2) S−
g (0) ∩ S+

f (µ) 6= ∅, α = −∞ and, either S+
g (0) = ∅ or [S+

g (0) ∩ S−
f (µ) = ∅,

S+
g (0) 6= ∅];

(b3) S−
g (0) ∩ S+

f (µ) = ∅, S=
g (0) ∩ S+

f (µ) 6= ∅.
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Looking at (4.1) and the expressions for cone(Ωi), i = 1, 2, 3 (see, Figures 1, 2, and

3), we get the following corollary which establishes a complete description concerning

the validity of strong duality for nonconvex minimization problems with a single con-

straint. In particular, we observe that strong duality holds even if the standar Slater

condition is not satisfied.

Corollary 4.2. Let K be non-empty and µ finite.

(a) If either argminKf ∩ S−
g (0) 6= ∅ or [S−

g (0) ∩ S+
f (µ) 6= ∅ with α = −∞], then

λ∗ ≥ 0, f(x) + λ∗g(x) ≥ µ ∀ x ∈ C =⇒ λ∗ = 0;

consequently,

inf
x∈K

f(x) = inf
x∈C

f(x).

(b) Assume that S+
g (0) = ∅ or [S+

g (0)∩S−
f (µ) = ∅, S+

g (0) 6= ∅] are satisfied; if either

(a3) or (a5) with argminKf 6= ∅, or [(b3) with argminKf = ∅] holds, then, any

(γ∗, λ∗) ∈ R
2
+ \ {(0, 0)}, verifies

γ∗(f(x) − µ) + λ∗g(x) ≥ 0 ∀ x ∈ C,

consequently,

γ∗ inf
x∈K

f(x) = inf
x∈C

L(γ∗, λ∗, x).

(c) Assume that β ≤ α; if [(a3) with argminKf 6= ∅], or [(b1) with argminKf = ∅]
hold, then any λ∗ such that − 1

β
≤ λ∗ ≤ − 1

α
satisfies

f(x) + λ∗g(x) ≥ µ ∀ x ∈ C. (4.2)

(d) Assume that −∞ < β < 0 and S+
g (0)∩S−

f (µ) 6= ∅ hold; if either (a2) or (a5) with

argminKf 6= ∅, or [(b3) with argminKf = ∅], then any λ∗ such that − 1
β
≤ λ∗

verifies (4.2).

(e) Assume that either S+
g (0) = ∅ or [S+

g (0)∩S−
f (µ) = ∅, S+

g (0) 6= ∅] are satisfied; if

[(a3) with argminKf 6= ∅] or [(b1) with argminKf = ∅], hold, then any λ∗ such

that − 1
α
≥ λ∗ > 0 verifies (4.2).

(f) If S+
g (0) ∩ S−

f (µ) 6= ∅ with β = 0, then

γ∗ ≥ 0, γ∗(f(x) − µ) + g(x) ≥ 0 ∀ x ∈ C =⇒ γ∗ = 0.

Figures 4 and 5 provide the geometry of different situations occuring in Corollary

4.2.
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•
0

u

v

(γ∗, λ∗)
•

0
u

v
(γ∗, λ∗)

•
0

v = αu

v = βu

u

v

(a) (b) (c)

(γ∗, λ∗)

Figure 4: Corollary 4.2(a), (b), (c)

•
0

v = βu

u

v
(γ∗, λ∗)

•
0

v = αu

u

v

(γ∗, λ∗)

(γ∗, λ∗)

•
0

u

v

(d) (e) (f)

Figure 5: Corollary 4.2(d), (e), (f)

The preceding corollary applies to situations where strong duality still holds even

if the Slater condition fails. This is illustrated in the following example.

Example 4.3. Take C = {(x1, x2) : x2 ≤ x1, x1 ≥ 0, x2 ≥ −1}, P = R+. Let

f(x1, x2) = x2
1 + x1x2 − 2x2

2, g(x1, x2) = x1 − x2.

Thus, K = {(x1, x2) : x1 = x2, x2 ≥ 0}, and there is no x ∈ C such that g(x) < 0,

i.e., S−
g (0) = ∅. In this case,

cone(F (C) + R
2
++) =

{

(u, v) ∈ R
2 : v > −1

2
u, v > 0

}

∪
{

(0, 0)
}

is pointed; µ = 0, argminKf = K, S+
g (0) = {(x1, x2) ∈ C : x1 > x2} and

S−
f (µ) =

{

(x1, x2) : x2 < −1

2
x1, x2 ≥ −1, x1 ≥ 0

}

.

Thus, S+
g (0)∩S−

f (µ) = S−
f (µ), and so β = −1/2. Hence, according to Corollary 4.2(d),

any λ∗ ≥ 2 satisfies f(x) + λ∗g(x) ≥ 0 ∀ x ∈ C, i.e.,

min
g(x)≤0

x∈C

f(x) = min
x∈C

(f(x) + λ∗g(x)), ∀ λ∗ ≥ 2.

Next theorem provides a complete characterization of strong duality for our problem

with a single constraint.

Theorem 4.4. Let K be non-empty and µ finite. The following assertions are equiv-

alent:
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(a) strong duality holds;

(b) cone(F (C)−µ(1, 0)+R
2
++) is pointed, and either S+

g (0)∩S−
f (µ) = ∅ or [S+

g (0)∩
S−

f (µ) 6= ∅ with β < 0] holds.

Proof. (a) =⇒ (b): The pointedness follows from Theorem 3.1. Suppose that S+
g (0) ∩

S−
f (µ) 6= ∅. By assumption, there exists λ∗

0 ≥ 0 such that f(x) + λ∗
0g(x) ≥ µ for all

x ∈ C. This implies that λ∗
0 > 0. Indeed, if λ∗

0 = 0, the previous inequality gives

f(x) − µ ≥ 0 for all x ∈ C, which is impossible if S+
g (0) ∩ S−

f (µ) 6= ∅.
Now, suppose that β = 0. Then, there exists x̄ ∈ S+

g (0) ∩ S−
f (µ) 6= ∅ such that

g(x̄)

f(x̄) − µ
> − 1

λ∗
0

.

It follows that f(x̄) + λ∗
0g(x̄) < µ, yielding a contradiction; this proves that β < 0.

(b) =⇒ (a): This is a consequence of Theorem 4.1 and Corollary 4.2.

We observe the condition S+
g (0) ∩ S−

f (µ) = ∅ can be split into the following two

expressions:

(1) S+
g (0) = ∅;

(2) S+
g (0) ∩ S−

f (µ) = ∅ and S+
g (0) 6= ∅.

The first gives immediately

inf
x∈K

f(x) = inf
x∈C

f(x).

Furthermore, since (F (C) − µ(1, 0)) ∩ (−R
2
++) = ∅, it is not difficult to

see the pointedness of cone(F (C) − µ(1, 0) + R
2
++) is equivalent to the con-

vexity of cone(F (C) − µ(1, 0) + R
2
++), or cone(F (C) − µ(1, 0) + R

2
++), or

cone(F (C) − µ(1, 0)) + R
2
++, see for instance Theorem 4.1 in [10].

As we will see in the next section, the convexity of F (Rn), and so of

cone(F (Rn) − µ(1, 0) + R
2
++), is guaranteed by an important class of quadratic

functions, as a consequence of Dine’s theorem, see [17].

5 A concrete application: the (non convex) quadratic ho-

mogeneous case

We now derive, from Theorem 4.4, a necessary and sufficient optimality condition

for a class of homogeneous programming problems, arising in telecommunications and

robust control, see [22, 24].
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Let us consider the following homogeneous optimization problem:

µ
.
= inf{1

2
x⊤Ax :

1

2
x⊤Bx ≤ 1 }. (5.1)

Setting

f(x) =
1

2
x⊤Ax, g(x) =

1

2
x⊤Bx − 1,

where A,B are symmetric matrices, Dine’s theorem ([17]) ensures that

F (Rn) − µ(1, 0) = {(1
2
x⊤Ax,

1

2
x⊤Bx) : x ∈ R

n} − (µ, 1) is convex.

Therefore, cone(F (Rn) − µ(1, 0) + R
2
++) is pointed. The notation A < 0 means that

the matrix A is positive semidefinite.

Next theorem, which is new in the literature, considers non-convex situations.

Theorem 5.1. Let µ finite and x̄ feasible for (5.1). The following assertions are equiv-

alent:

(a) x̄ is a solution to (5.1) and either S+
g (0)∩S−

f (µ) = ∅ or [S+
g (0)∩S−

f (µ) 6= ∅ with

β < 0] holds;

(b) ∃ λ∗ ≥ 0 such that ∇f(x̄) + λ∗∇g(x̄) = 0, λ∗g(x̄) = 0, A + λ∗B < 0.

Proof. (a) =⇒ (b): By the previous theorem, there exists λ∗ ≥ 0 such that

f(x̄) + λ∗g(x̄) ≤ f(x̄) = inf
x∈Rn

(f(x) + λ∗g(x)).

This implies that ∇(f+λ∗g)(x̄) = 0 and λ∗g(x̄) = 0. We also have f(x)+λ∗g(x) ≥ f(x̄)

for all x ∈ R
n, which, in turn, yields A + λ∗B < 0.

(b) =⇒ (a): Setting L(x) = f(x) + λ∗g(x), x ∈ R
n, L is convex; and since ∇L(x̄) = 0,

L reaches its minimum value at x̄. Then,

inf{f(x) : g(x) ≤ 0} ≥ min
x∈Rn

L(x) = L(x̄) = f(x̄) + λ∗g(x̄) = f(x̄),

proving that x̄ is a solution to (5.1), and thus strong duality holds. The conclusion

follows from the previous theorem.
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