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Abstract 

The centrifugal settling of a flocculated suspension in a rotating tube can be modelled by a 

strongly degenerate parabolic partial differential equation whose coefficients depend on two 

material-specific model functions, namely the hindered settling function and the effective solid 

stress function. These model functions are usually given by certain nonlinear algebraic 

expressions that involve a small number of parameters. The present work is related to the 

problem of determining these parameters for a given material. This problem of parameter 

identification consists in minimizing the distance between observed and simulated concentration 

profiles by successively varying the parameters employed for the simulation, starting from an 

initial guess. The feasibility and robustness of this procedure, which does not necessarily lead to 

a unique solution, decisively depends on the sensitivity of the solution of the direct problem to 

the different scalar parameters. These sensitivities are evaluated by a series of numerical 

experiments. It turns out that the model is extremely sensitive to the choice of the so-called 

critical concentration marking the transition between hindered settling and compression. 

Moreover, the robustness of the parameter identification method depends significantly on 
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whether intermediate (i.e., transient) or stationary concentration profiles are used for 

identification.    
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1 Introduction 

 

1.1 Scope 

The settling of a monodisperse flocculated suspension in a rotating tube centrifuge can be 

modelled by the following spatially one-dimensional strongly degenerate parabolic-hyperbolic 

partial differential equation (PDE) for the local solids concentration (volume fraction) ( , )r tφ φ=  

as a function of radial position r and time t [1–3]: 

 
2 2

2

( )
( ) ,

r A
f

t r g r

φ ω φφ ∂ ∂ ∂+ − = ∂ ∂ ∂ 
            (1) 

where ω  is the angular velocity, g is the acceleration of gravity, the batch hindered settling 

function ( )f φ  is the first of two material-specific model functions of the local solids 

concentration φ , and the integrated diffusion function ( )A φ  is given by  

0
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Here, 0ρ∆ >  is the solid-fluid density difference and 
e ( )σ φ′  is the derivative of the second 

material-specific model function, namely the effective solids stress function e ( )σ φ . 

 Equation (1), together with suitable initial and boundary conditions that are given below, 

can be discretized by a fully implicit first-order finite difference scheme to allow the efficient 

simulation of the settling process. This requires, of course, that the functions ( )f φ  and e ( )σ φ  be 

given for the material under consideration.   

 The model employed herein is based on the assumption that there exists a critical 

concentration (or gel point) denoted by 
cφ , such that wherever 

c( , )r tφ φ φ= < , there is no contact 

between the particles, while for c( , )r tφ φ φ= ≥ , the particles form a compressible sediment layer. 

This means that 

c

e

c

0 for ,
( )

0 for .

φ φ
σ φ

φ φ
= ≤′ > >
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For details on the underlying sedimentation-consolidation theory we refer to Berres et al. 
[4]  

 In 

mathematical terms, we obtain that the governing PDE (1) is of second-order parabolic type for 

cφ φ> . For cφ φ< ,  (1) degenerates into the first-order hyperbolic equation of  a known 

kinematic centrifugation model that has been employed by several authors.
[5–9] 

The  basic 

problem is that the location of the type-change interface cφ φ= , corresponding to the sediment 

level, is not known a priori and is part of the solution.  

The present contribution addresses the problem of identifying certain material specific 

parameters that define the functions ( )f φ  and 
e ( )σ φ  from measured concentration profiles. In 

what follows, we will refer to concentration profiles that have been obtained from measurements 

and, alternatively, by the (numerical) solution of the mathematical model for a given choice of 

these parameters, as observed and simulated data, respectively. The inverse problem of 

parameter identification consists in varying the (unknown) parameters until the best 

approximation of the observation by the simulation is attained. The degree of  approximation, 

that is, the distance between observed and simulated data, is defined by a suitable cost function. 

Consequently, the problem of parameter identification can be regarded as the optimization 

problem  of minimizing this cost function. The variation of parameters is done herein by a Quasi-

Newton method. Sensitivity indicators like the condition number of the Hessian matrix of the 

cost function in its minimum are calculated.
 

In the present model one can distinguish three different types of parameters: the so-called 

“parabolic” parameters appear in the function
e ( )σ φ and therefore affect only  the (degenerating) 

diffusion function; the “hyperbolic” parameters are those of  the function ( )f φ  and appear in 

both the convective and diffusive terms; and  the critical concentration cφ  as a “hyperbolic-

parabolic switch” parameter that  controls whether the  diffusion function is active, i.e., the 

mixture is subject to sediment compressibility at ( , )r t .
 

The number of identifiable parameters is ususally restricted by the quantity of 

information in the observation. For example, if there is only one single datum of information 

(e.g., the speed of the supernatant-suspension interface at one given time) which corresponds to 

the flux function, then only one parameter in ( )f φ  can be identified, since there is only one 

equation to solve. For a given non-linear parametric form, some parameters are supposed to have 

a stronger independent influence on the solution structure, whereas other parameters are more 
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correlated. One goal of this study is to identify different degrees of independence of parameters 

in our sedimentation-consolidation model. Therefore, the influence of various parameter subsets 

is compared. One central goal is to decide which parameters have the strongest correlation and 

exclude them from the set of parameters to identify. The goal is to obtain an appropriate 

parameter set, where the parameters are meaningful in the sense that they show only small 

correlations with each other. 

1.2 Related work 

  To put this work further into the proper perspective, let us first mention that related 

theoretical models, in part for polydisperse suspensions and including filter media, are presented 

by Berres et al.
[2]
, Biesheuvel et al.

 [10]
, Biesheuvel and Verweij

[11]
 , Sambuichi et al.

[12] 
, Demeler 

et al.
 [13]

 and Stickland et al.
 [14]

.  On the other hand, it is well known that one-dimensional 

models such as Eq. (1) do not represent an adequate approximate description of the 

sedimentation of a rotating mixture in general; among the restrictions under which Eq. (1) is 

acceptable, the angular velocity ω  must be large enough so that gravity is negligible but small 

enough so that Coriolis effects are unimportant.
[1, 6]  

A survey on models for the centrifugal 

separation of a mixture is given by Schaflinger
 [15]  

(see also Stibi and Schaflinger
 [16] 

). However, 

there is a fairly large number of combined theoretical and experimental studies that confirm that 

one-dimensional models such as Eq. (1), or its slightly more involved version for rotating basket 

centrifuges,    

2 21 1 ( )
( ) ,

r A
f r

t r r g r r r

φ ω φφ ∂ ∂ ∂ ∂ + − =   ∂ ∂ ∂ ∂  
 

provide at least a useful approximation for laboratory-scale centrifuges, see Detloff and 

Lerche
[7]
, Lerche and Frömer

[8] 
, Chu and Lee

[17, 18]
, Detloff et al.

 [19, 20]
, Eckert et al.

 [21]
, Frömer 

and Lerche
[22]

, Hwang and Chou
[23]

, Lerche
[24]

 and Sambuichi et al.
 [25]

 (this list is not complete). 

Most of these papers present experimental data to which the parameter identification technique 

presented herein could be applied.   

Berres et al. 
[26, 27] 

 solved the parameter identification problem for the centrifugation 

model (1) numerically by an adjoint method. It turned out that when the method is applied to 

synthetic observations generated by a numerical scheme for (1) with given parameters (a 

problem known as parameter recognition),  then only some of the identified parameter values 

are close to the values originally used for the simulation, while others remain close to their initial 
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guess. (See, for example, Tables 1 and 2 in Berres et al.
 [26] 

) It is this observation of different 

sensitivities of different parameters which has motivated the present paper.  

Finally, we mention that related problems of parameter identification in the context of 

applications to drying problems include the papers by Kada and Tarasiewicz
 [28]

  and Weres et 

al.
[29]

   

 

2. Methods 

 

2.1 Initial and boundary conditions; parametric forms of the model functions  

 

The mathematical model describes the evolution of the concentration ( , )r tφ φ=  with respect to 

time t and position r, where t  takes values in the interval 0 t T≤ ≤  and r varies between the inner 

and outer radii of the centrifuge, 1R  and 2R , respectively, i.e., 1 2R r R≤ ≤ . The evolution of 

( , )r tφ φ=  is described by Eq. (1), where it is assumed that the initial condition (at time 0t = ) is 

given by 0 0( ,0) ( )r rφ φ φ= = , which corresponds to an initially homogenous mixture of constant 

concentration 
0φ . At the boundaries the centrifuge is closed, which gives rise to the zero-flux 

boundary condition  

 

 

A common parametric form for the flux function ( )f φ  is due to Richardson and Zaki:
 [30]   

 (1 )   for  0 1,
( )

0                    otherwise,

Cv
f

φ φ φφ ∞ − ≤ ≤
= 


 

with the parameters 0v∞ < , corresponding to the settling velocity of a single particle in an 

unbounded fluid, and the Richardson-Zaki exponent 1C > . A typical expression for the effective 

solid stress function e ( )σ φ is given by the power law
 [31]

  

( )0 c c

e

1    for  ,
( )

0                          otherwise

kσ φ φ φ φ
σ φ

  − >  = 


 

with parameters 0k > , 
0 0σ ≥  and 

c0 1φ< ≤ . 

2.2 Disretization of the direct problem 

2

1 2

( )
( ) ( , ) 0   at  and .b

b b b

r A
f r t r R r R

g r

ω φφ
 ∂+ = = = ∂ 
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We first describe the numerical method to solve the initial-boundary value problem for (1) that 

describes the centrifugal settling process. The space-time domain is discretized by a grid with 

spatial cells of width 2 1( ) /r R R M∆ = − , where M is an integer, and a time step /t T N∆ =  such 

that there are points 1jr R j r= + ∆ , nt n t= ∆ , 0, ,j M= … , 1, ,n N= … , for which the 

approximation ( , )n

j j nr tφ φ≈ is computed, starting from 0

0jφ φ= . The “interior” marching formula 

has the form 

( )

( )

1 2
1 1

1/ 2 1/ 2 1/ 2 1/ 2

1 1 1

1 1

2

( ) 2 ( ) ( )
,

1, 2, , 1,  0,1, 2, , 1,  

n n

j j n n

j j j j

n n n

j j j

r f r f
t r

A A A

r

j M n N

φ φ ω

φ φ φ

+
+ +

+ + − −

+ + +
+ −

−
− −

∆ ∆
− +

=
∆

= − = −… …

                                (2)  

where we define the numerical flux 

( )1 EO 1 1

1 2 1,n n n

j j jf f u u+ + +
+ += , 

where EOf  denotes the Engquist-Osher
[32]

 flux given by 

( ) { } { }EO

0 0

, : (0) max 0, ( ) d min 0, ( ) d .

u v

f u v f f s s f s s′ ′= + +∫ ∫  

For 0j =  and j M= we employ the following “boundary schemes”, which result from 

modifying (2) by discrete versions of the zero-flux boundary conditions: 

( )
1 1 12

10 0 1 0
1/ 2 1/ 2 2

( ) ( )n n n n
n A A

r f
t r r

φ φ φ φω+ + +
+− −− =

∆ ∆ ∆
                                         (3) 

and 

( )
1 1 12

1 1
1/ 2 1/ 2 2

( ) ( )
.

n n n n
nM M M M

M M

A A
r f

t r r

φ φ φ φω+ + +
+ −

− −
− −+ =

∆ ∆ ∆
                                    (4) 

The numerical scheme defined by Eqs. (2)–(4) represents a system of nonlinear equations, which 

are solved iteratively in each time step by the Newton-Raphson method. The basic advantage of 

the implicit discretization lies in the fact that no limitation on the size of time step t∆  needs to be 

imposed, i.e., the scheme is always stable. Finally, we mention that numerical simulations of 

centrifugal separation obtained by the explicit version of (2)–(4) are presented by Bürger and 

Concha
[1]
 and Garrido et al.

 [3]   
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According to one of the examples by Bürger and Concha
[1]
, we herein use the parameters 

1 0,06 mR = , 2 0,3 mR = , 2 2327,000 (rad/s)ω =  (such that 2

2 10000R gω = , where 

29.81 m/sg = ), 31660 kg/mρ∆ = , 0,0001 m/sv∞ = − , 50M = , 6000N = , 0 0,07φ = , and 

6,0555 6h e= −  and the tolerance of the gradient of the cost function tol 1 8g e= −  (see Sect. 3).   

 

2.3 Inverse problem
 

The task of the inverse problem is to determine parameters such that the  cost function that 

measures the distance between the model solution and the observation is minimized. The cost 

function is calculated as distance between the observation profile ˆ( , )r tφ  and the solution ( , )r tφ  

( )
2

0

ˆ( , ) ( , ) d

L

J r t r t rφ φ= −∫  

for a fixed time t . In the examples this fixed time is set to 0.1 st =  and 1.2 st =  for the 

intermediate and stationary observation profile, respectively. Using a discrete approximation of 

the solution n

jφ , we approximate  the cost function by 

( )2
1

ˆ ˆ ˆ,  where ( , ).
M

n n n n

j j j

j

j r tφ φ φ φ
=

− = ∆∑  

The optimization algorithm approximates the optimal solution iteratively. Given the parameter 

vector of,  say, four parameters, 

( )( ) ( ) ( ) ( ) ( )

1 2 3 4, , ,n n n n np p p p p= , 

at  step n of the optimization procedure ( 1, 2,3,n = … ),  the next (improved) parameter vector is 

calculated as 

( 1) ( ) ( ) ( ) ,n n n np p dα+ = −  

where ( )nα  is a scalar variable for the one-dimensional line-search. The direction vector ( )nd  has 

for a Quasi-Newton method the form 

( )( ) 1 ( )

( ) ,n n

nd H J p−= ∇  

where 1

( )nH −  is an approximation of the inverse of the Hessian matrix of the cost function. The 

Hessian matrix for four parameters is defined as 
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∂ 
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The components are approximated by  

(

)

2

2

( ) 1
( ( )) ( ( ))

4

                ( ( )) ( ( ) ) ,   , 1, , 4,

i j i j

i j

i j i j

J p
J p h e e J p h e e

p p h

J p h e e J p h e e i j

∂ ≈ + + − − −
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− + − + − + = …

 

where ie and je  are the i-th and  j-th unit vector, respectively. For the particular case i j=  this 

formula reduces to 

2

2 2

( 2 ) 2 ( ) ( 2 )( )
, 1, , 4.

4

i i

i

J p he J p J p heJ p
i

p h

+ − + −∂ ≈ =
∂

…  

The gradient of the cost function 

1 2 3 4

( ) , , , ( )
J J J J

J p p
p p p p

 ∂ ∂ ∂ ∂∇ =  ∂ ∂ ∂ ∂ 
 

is approximated by central finite differences: 

( ) ( )
( ) ,   1, , 4,

2

j j

j

J p he J p heJ
p j

p h

+ − −∂ ≈ =
∂

…  

where je  is the j-th unit vector and h is a small value, that is recommended to be the cubic root 

of the machine accuracy. With respect to the parametrization of the governing equation we set 

1 2 0 3 4 c, , , .p C p p k pσ φ= = = =  

 

3. Results 

3.1 Hessian matrix and condition numbers 

In Tables 1 and 2 the entries of the Hessian (matrix) in the cost minimum for the simultaneous 

identification of all four parameters is given for the cases of intermediate and stationary 
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observation profiles, respectively. Here, we refer to a profile as “intermediate” if it is observed at 

a time when the suspension is still undergoing transient settling and compression, while a profile 

is called “stationary” if the sediment has already attained the final steady state. The condition 

numbers of the Hessians are calculated as 

( ) 47.7643 10iHκ = ⋅ ,  ( ) 81.2847 10sHκ = ⋅  

for the intermediate and stationary data, respectively. The intermediate data produce significantly  

smaller condition number than the stationary. On the other hand, stationary data lead to a stabler 

algorithm and more reliable estimation, and are therefore  clearly preferable for parameter 

identification. 

It can be observed that the entry corresponding to the critical concentration 
c c

Jφ φ  is 

dominant by several orders of magnitude. At the same time, the other parameters correlate 

negatively with the critical concentration
cφ . In comparison, the matrix related to the stationary 

profile shows greater entries than that  related to the intermediate profile. In the latter case there 

is the inconvenience that 0CCJ < , which means that according to numerical accuracy there is not 

a local minimum and thus numerical identification is endangered to fail. Observing the diagonals 

of the Hessians one can judge that the parameter cφ  is distinctly most sensitive, followed by 0σ  

and then k , whereas the exponent C is the least sensitive. 

In Figure 2 the properties of the Hessians in the cost minimum are shown, comparing the 

cases of observations at intermediate state versus at stationary state. The overall observation is 

that in the transient regime,  and throughout all parameter sets, the condition numbers of the 

Hessians in the cost minimum are smaller and the distribution of the singular values resulting 

from a singular value decomposition (SVD) is more equilibrated. This means that the 

identification for observations at intermediate time is more feasible and promising. We will be 

specific about this point in the following.  

In Figures 2 (a) and (b) the decadic logarithm of the condition numbers of the Hessian in 

the cost optimum for all parameter sets with two or three parameters are compared. For each 

possible parameter set, intermediate observations show a smaller condition number than 

stationary ones. A smaller condition number indicates that the respective parameters are less 

correlated and show smaller parameter dependence. A smaller condition number means 

geometrically that the “valley” of the cost function is less deep, and numerically that an 
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approximation of the cost function by a quadratic function is exposed to less numerical errors, 

making the identification algorithm more stable. 

In the case with two parameters one can observe a common structure for both 

intermediate and stationary observations: for the parameter pair 0 c( , )σ φ  the largest condition 

number is obtained, and for 0( , )C σ  the smallest. This means that the parameter 0σ  is present in 

both extremes, even though it can be judged (by the diagonal of the Hessian) to be third most 

sensitive, and is thus not expected to be present in the case of largest condition number. 

In both types of observation, the parameter 
cφ  is present in the cases of three highest 

sensitivities, and C  appears in the cases of the two lowest sensitivities, confirming the 

conjectures derived from the cases of one single parameter. For the stationary profile, the 

parameter k  correlates less than C  with 
cφ , reversing the situation of the intermediate profile.  

In a similar way, the parameter pair 0( , )kσ  has less sensitivity than ( , )C k  for stationary 

observations, while the reverse holds for the intermediate profile. In both cases, the “hyperbolic” 

parameter C  contributes to relatively small sensitivity in the  transient case and to relatively 

large sensitivity for the stationary case. This corresponds to the expectation that a parameter 

related to the convective term provides a better performance if identified at intermediate state 

since the convective term is active in  non-stationary profiles only. 

In Figure 2 (b) the condition numbers of all Hessians in the cost minimum depending on 

three parameters are shown. The previous observations can be confirmed: the intermediate 

profile  always leads to better condition numbers than the stationary profile. The parameter set 

0( , , )C kσ  (without the critical concentration cφ ) clearly shows less dependence within the 

parameter set than the parameter sets including cφ . It can be noted that the condition number of 

the set 
0( , , )C kσ  for the end profile has the same order of magnitude as the sets with the 

sensitive parameter cφ  in the intermediate profile. Roughly speaking, here, a bad parameter 

choice at good observation conditions is equivalent to a good parameter choice at bad conditions. 

It is remarkable that the parameter choice 0 c( , , )kσ φ , which excludes the convective parameter 

C , at the end profile is more strongly correlated than the other choices where both the critical 

concentration cφ  and the parameter C  are included. This means that the parameter C  

representing the convection term has a stabilizing effect. Most interestingly, this clearly stronger 
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correlation in the set of diffusion parameters 
0 c( , , )kσ φ cannot be observed in the case of a 

transient observation profile. 

In Figure 2 (c) the singular values are plotted for each parameter set containing three 

parameters. In both cases of intermediate and stationary profile observations, for the parameter 

set ( , , )C kσ the largest singular values are smaller than in the other cases obtained from the same 

type of observation. In the case of stationary profiles all parameters sets yield similar largest 

singular values. For the parameter set 
0 c( , , )kσ φ , the smallest singular value is clearly smaller 

than in the other cases, which explains the exceptionally bad condition number. 

In Figure 2 (d) the singular values are shown for the Hessian matrix in the cost minimum 

for the complete set containing all four parameters. One can observe the dominance of the largest 

singular value, which could be anticipated by the singular dominance of 
c c

Jφ φ in the Hessian. For 

the case with a stationary observation profile, the smallest singular value is clearly smaller than 

the other singular values, which is not the case of intermediate observation data. By the 

observations on the parameter set 0 c( , , )kσ φ , which have a remarkable worse condition for 

stationary data, the lower smallest singular value for the complete parameter set in the stationary 

data case can be associated to the strong redundancy of the diffusion parameter. 

   

3.2 Cost function 

In Figures 3 and 4, the one-parameter cost functions for both intermediate and stationary 

observation profiles near the cost optimum, respectively, are plotted. While close to the cost 

minimum, convexity can be confirmed in all cases, anomalies far from the cost minimum can be 

observed in several occasions: 

• For the parameter k  in the intermediate case, the cost function flattens for small values 

and it shows several inflection points for values to the right of  the minimum. This 

behaviour causes the difficulty or even impossibility to apply gradient methods at least 

when the initial guess is chosen far from the optimum (see Figure 3(c)). 

• For the parameter k  in the stationary case there are several non-smooth points, one 

directly in the minimum and one close to the parameter value 9,15. This non-smoothness 

makes the algorithm to work inefficiently (Figure 4(c)).  
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• For the parameter C  in the case of stationary observation data the cost function 

asymmetrically increases on the two sides of the minimum. While there is a strong 

increase to the right hand side, there is only a slight increase on the left side. Numerical 

experiments show that when the initial guess is chosen on the right side,  then there is a 

rapid convergence whereas with data from the left side the convergence get slow or even 

might fail, in particular due to the a local minimum close to 2,75. See Figure 4 (a).  

• For the parameter 
cφ  in the stationary case there are several regions of non-convexity and 

points of discontinuity (see Figure 4(d)).   

 

In conclusion, this non-convexity and non-smoothness of the cost function lets the gradient 

algorithm work very slowly or even fail. Things get even more complicated for two-parameter 

sets by combining anomalies of two parameters. 

Figures 5 and 6 show the cost function of all possible two-parameter sets related to 

intermediate and stationary observation profile, respectively. The graphics extend the 

quantitative results obtained by the evaluation of the condition numbers of the Hessian matrix 

and the qualitative observations based on the cost function plots of the one-parameter sets. 

In Table 5 the qualitative behaviour for parameter sets with two parameters is enlisted. 

The qualitative behaviour is obtained by visual inspection, where saddle-point behaviour and 

regions of non-convexity have been detected. (We refer to saddle-point behaviour if there are 

points where the second derivatives with respect to one parameter have different signs, while  

non-convexity means inflection points of the cost function, where it switches from a convex to 

concave shape.) The non-convexity of the cost functions results in an over- or underestimation of 

the scale, whereas a saddle-point tendency can lead to wrong directions. Both phenomena 

counteract the assumption of convexity which is a basic hypothesis to ensure an appropriate 

performance of gradient methods. 

To illustrate these phenomena, take the cost plot of the parameter set 
c( , )C φ  for the 

intermediate observations (Figure 5(c)). While close to the cost minimum one can detect 

convexity of the cost function, convexity fails away from the cost minimum. Taking an initial 

parameter guess at e.g.  
c( , ) (5,0.14)C φ =  then the gradient points due to a local saddle point 

structure in a completely other direction than towards the cost minimum. Taking an initial guess 
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at 
c( , ) (2,0.14)C φ =  then the gradient direction appears more appropriate but the slope yields a 

clear underestimation. 

In Table 6 identification runs for each two-parameter set are reported. The goal is to 

examine the performance of the identification algorithm depending on the parameter choice. For 

each parameter set two runs with different initial guesses far from the optimal parameter are 

performed, in each case with both intermediate and stationary observation profiles. This means 

that the success of the identification algorithm basically depends on the considered observation 

profile and the chosen initial guess. The identification is stopped either if the convergence 

criterion is met, i.e. if the gradient norm is below a tolerance value, or after 200 iteration as upper 

limit. The identified parameter set 
( )np  is reported together with the calculated cost 

inimum ( )( )nJ p and the condition number of the Hessian matrix in that parameter 

set, ( )( )( )nH pκ . 

Clearly, one can enforce convergence by choosing the initial guess close enough to the 

optimal parameter. In the case that the optimal parameter is not known a pragmatic approach is 

to try several initial guesses. Then by chance one makes a choice close to the optimum or 

opportune convergence behaviour beeing on the more convex side. The goal of the present test 

runs is just to document the bad convergence behaviour without applying such pramgamtic 

strategies. 

Heuristically, from Table 6 we have that the best value for   ( )( ), nd p p  is of the order 

of magnitude 
510 −
and the best value for ( )( )nJ p is around 124 10−⋅ . In the sequel the 

observations are detailed.  

For the parameter set 0 c
( , )σ φ  a rapid decrease of the cost function is observed 

identifying very well one parameter, namely 0 c
( , )σ φ . However, the other parameter 

remains far from its optimum with the consequence that the approximated parameter pair 

remains far from its optimum. This biased identification behaviour can be explained by the fact 

that the condition number of the Hessian is above the square root of the machine error. Another 

observation for this parameter pair is that very similar parameter approximations are obtained for 

both observation profile types. 
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For the parameter pair c( , )k φ a perfect performance in case 5 (with an intermediate 

observation profile) is observed, whereas very slow performance in the other cases (6,7,8) 

leading to parameters far from the optimum. 

For the parameters c
( , )C φ a very good performance in cases 9 and 11 is observed, 

where an intermediate observation profile is used. The test case 10 is very interesting, since there 

is a poor condition number, which is above the square root of the machine accuracy (order of 

magnitude 
8

10
−

). The square root of the machine error is the threshold value above of which 

numerical errors are expected to eliminate the number of significant digits. In test run 10 there is 

convergence even though the distance ( )( ), nd p p  and  the cost function 

( )( )nJ p underperform the optimal benchmark values just in the order of magnitude of the 

difference of the condition number of the Hessian matrix to the square root of machine accuracy. 

The test runs with the parameter set 0
( , )kσ are somehow surprising, since in the 

cases 13 and 15 there is a very small condition number, but the identification is stopped by 

meeting the maximum number of allowed iterations with a result very far away.  It is assumed 

that the gradient points towards a completely wrong direction. Case 16 is also remarkable since 

there is a very good performance of the identification with stationary data while the identification 

of the same data with intermediate observation fails. 

For parameter pair ( , )C k , the case 17 with intermediate profile gives an excellent 

result whereas the corresponding case 18, with stationary data, converges only slowly. Case 20 

with stationary data gives not an excellent but a reasonable result. The corresponding case 19 

with intermediate profile works very slowly. This means, stationary profiles are in general able 

to outperform intermediate observation profiles. 

For the parameter set 0( , )C σ in cases 22 and 23 there appears again the wrong-

direction phenomenon: Even though the condition number is very promising, the algorithm is 

stopped by reaching the maximum number of iterations. Case 24 is somehow particular since the 

run is stopped after only 4 iterations being on the right way but not far enough. The reason of the 

early stop is the small gradient of the cost function. 

In conclusion, for the intermediate profile the algorithm works well in most of the cases. 

One could expect this, since in such profile, there is more information in the direct problem. 
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However, the initial guess is crucial for an appropriate performance of the identification task. 

When the stationary observation profile is used then generally a very slow convergence of the 

optimization algorithm is encountered. This reflects the observation on basis of the evaluation of 

the Hessian matrix. Also the graphics of the cost function contribute to understand the behaviour 

of the identification algorithm when we try to identify one or two parameters.  

In Figure 7 the evolution of the cost function during the identification process is shown. 

 

4. Conclusions 

Several previous studies on parameter identification for flocculated suspensions at several 

revealed the ill-posedness of the problem (Berres et al.
 [26,27], 

Coronel et al. 
[33]

 ). In this work  the 

convergence behaviour of the identification procedure has been evaluated quantitatively. In 

particular, the two cases of observation data given by either intermediate (transient) or stationary 

profiles are considered and compared. As a central result from the analysis of the corresponding 

Hessians we conclude that  the intermediate (transient) data allow a significantly more robust, 

and therefore more reliable,   identification of parameters than  stationary data. 

In previous studies it was detected that the critical concentration 
cφ  plays a crucial role in 

the ill-posedness of the overall identification, but this observation had never been pursued 

further. Here, parameter sets that either include or exclude 
cφ  are evaluated. 

As a surprising result, the identification parameter set containing all three parameters that 

determine the effective solid stress function e ( )σ φ  produces for stationary data an identification 

of remarkably inferior quality than in other cases that include cφ . This is surprising since in the 

case of intermediate profile the set of the three diffusive parameters does not behave so badly 

even though then the parabolic parameters do not play an active role. 

The ill-posedness far from the cost minimum is illustrated qualitatively by the plots of the 

cost functions both for one-parameter and two-parameter sets. There one can observe non-

convexity in various instances like convex-concave regions and saddle-point structure by 

negative combined second derivatives. This non-convexity contradicts all assumptions on 

gradient methods like the cg or the Quasi-Newton method, which ideally intend an 

approximation by a quadratic positive definite function.  
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A series of identifications has been performed with varying parameter sets and initial 

guesses far from the cost minimum. Several parameter choices which provide a very slow or no 

convergence are detected and this inconvenient behaviour is documented together with the 

condition number of the corresponding Hessian. By these test identifications the feasibility of the 

parameter identification in dependence of the choice of the parameter sets indicated by the study 

before is confirmed. 
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List of table captions  

Table 1: Hessian matrix in the cost minimum corresponding to identification with observations 

given by the intermediate observation profile. 

 

Table 2: Hessian matrix in the cost minimum corresponding to identification with observations 

given by the stationary observation profile. 

 

Table 3: Tabular listing of the values in Figure 2 (a), condition numbers for parameter sets with 

two parameters. 

          

Table 4: Tabular form of Figure 2 (b), condition numbers for parameter sets with three 

parameters. 

 

Table 5: Qualitative behaviour for parameter sets with two parameters, detecting saddle-point 

behaviour and one-directional non-convexity 

 

Table 6: Identification runs for two-parameter sets. The identified parameter pairs (IP) are 

referred to by capital letters: A: 0 c
( , )σ φ , B: c

( , )k φ , C: c
( , )C φ , D: 0

( , )kσ , 

E: ( , )C k , F: 0( , )C σ . The type of observation profile (PT)  is either ”intermediate” (i) 

or ”stationary” (s).  Moreover, we display  the optimal parameter (OP) and the initial guess (IG),  

the number of iterations n to meet the convergence criterion (with 200 iteration as upper limit), 

the identified parameter set  
( )np ,  the calculated cost minimum ( )( )nJ p in the 

identified parameter set, the distance between the identified parameter 
( )np  and the optimal 
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parameter p, and the condition number of the Hessian of the cost function evaluated at the 

identified parameter, ( )( )( ) ( )n nH pκ κ= . 
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List of figure captions  

Figure 1: (a) Evolution of the solution of the direct problem in space and time, (b) numerical 

approximation of intermediate and final profiles 

 

Figure 2: Evaluation of Hessian matrices, stationary profile (solid line) and intermediate profile 

(dashed line) 

(a) Log10 of the condition number of the Hessian matrix in the cost minimum for all 

parameter sets with 2 parameters 

(b) Log10 of the condition number of the Hessian matrix in the cost minimum for all 

parameter sets with 3 parameters 

(c) Log10 of the singular values of the Hessian matrix in the cost minimum for all parameter 

sets with 3 parameters 

(d) Log10 of the singular values of the Hessian matrix in the cost minimum for the  

parameters set with 4 parameters 

 

Figure 3: One-parameter cost functions for each parameter (a)C , (b)
0σ , (c) k , (d) cφ ;, obtained 

with intermediate observation profiles. 

 

Figure 4: One-parameter cost functions for each parameter (a)C , (b) 0σ , (c) k , (d) cφ , obtained 

with stationary observation profiles. 

 

Figure 5: Two-parameter cost functions for each parameter set (a) 0 c( , )σ φ , (b) c( , )k φ , (c) 

c( , )C φ , (d) 0( , )kσ , (e) ( , )C k , (f) 0( , )C σ  for the  intermediate observation profile. 
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Figure 6: Two-parameter cost functions for each parameter set  (a) 0 c( , )σ φ , (b) c( , )k φ , (c) 

c( , )C φ , (d) 0( , )kσ , (e) ( , )C k , (f) 0( , )C σ  for the stationary observation profile. 

 

Figure 7: Evolution of the cost function during the identification process. The symbols are 

related to the test cases and parameter sets in Table 6  as follows:  

(a)  0 c( , )σ φ : 1 ' ', 2 ' ', 3 ' ', 4 ' '× ∗ +� , 

(b) c( , )k φ : 5 ' ', 6 ' ', 7 ' ', 8 ' '× ∗ +� , 

(c) c( , )C φ : 9 ' ', 10 ' ', 11 ' ', 12 ' '× ∗ +� , 

(d) 0( , )kσ : 13 ' ', 14 ' ', 15 ' ', 16 ' '× ∗ +� , 

(e) ( , )C k : 17 ' ', 18 ' ', 19 ' ', 20 ' '× ∗ +� , 

(f) 
0( , )C σ : 21 ' ', 22 ' ', 23 ' ', 24 ' '× ∗ +� , 
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Table 1: 

 

 C  
0σ  k  

cφ  

c  -0.0006     0.0002     0.0015    -0.0869 

k  0.0002     0.0006 0.0010 -0.0637 

σ  0.0015 0.0010 0.0084 -0.3975 

cφ  -0.0869 -0.0637 -0.3975 20.2158 

  

Table 2: 

 

 C  
0σ  k  

cφ  

c  0.00003   0.000030 0.00247 -0.18481 

k  0.00030 0.004236 0.00320 -0.21729 

σ  0.00247  0.032020   0.24221 -16.427 

cφ  -0.18481 -0.21729  -16.427 1114.76 

 

Table 3: 

 

 
0 c( , )σ φ  c( , )k φ  c( , )C φ  0( , )kσ  ( , )C k  

0( , )C σ  

Intermediate 5.7803e+4 3.3393e+4 1.9827e+4 20.6688 9.6725 1.1664 

Stationary 3.262e+10 7.8652e+6 2.0188e+8 1.1019e+5 4.4996e+4 7.8286e+2 

 

Table 4: 

   

 
0 c( , , )kσ φ  

0 c( , , )C σ φ  c( , , )C k φ  0( , , )C kσ  

Intermediate 8.5909e+4 5.6555e+4 3.2578e+4 21.2850 

Stationary 1.7380e+10 1.7723e+7 5.8435e+6 8.3379e+3 

 

Table 5: 

 

 
0 c( , )σ φ

 

c( , )k φ  c( , )C φ  0( , )kσ  ( , )C k  
0( , )C σ  

Intermediate  NC SP SP   

Stationary NC, SP NC NC NC, SP  SP 
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Table 6: 

 
# IP PT OP IG 

  n             
( )n

p          
( )nd   

( )nJ  
( )nκ  

1 A     i (5.7, 9.0) ( 3.0,   0.08) 7 ( 2.998083, 0.093110) 2.70020 9.42e-12 8.53e+9 

2 A     s (5.7, 9.0) ( 3.0,   0.08) 7 ( 2.999811, 0.093116) 2.70193 6.85e-12 2.50e+9 

3 A     i (5.7, 9.0) ( 9.0,   0.09) 7 ( 8.999604, 0.105206) 3.29961 1.27e-11 3.75e+1

0 

4 A     s (5.7, 9.0) ( 9.0,   0.09) 9 ( 8.996619, 0.105202) 3.29662 2.34e-11 2.43e+1
0 

5 B     i (9.0, 0.1) ( 4.0,   0.05) 92 ( 9.001084, 0.100014) 0.00108 1.97e-11 3.61e+6 

6 B     s (9.0, 0.1) ( 4.0,   0.05) 134 ( 8.320567, 0.089742) 0.67951 3.81e-5 5.52e+6 

7 B     i (9.0, 0.1) (13.0,  0.1) 39 (12.998922, 0.144271) 3.99917 8.10e-5 4.24e+8 

8 B     s (9.0, 0.1) (13.0,  0.1) 146 (  9.159601, 0.102344) 0.15962 1.73e-6 7.72e+6 

9 C     i (5.0, 0.1) ( 8.0,   0.08) 85 (  5.000013, 0.100000) 0.00001 4.14e-12 1.00e+5 

10 C     s (5.0, 0.1) ( 8.0,   0.08) 59 (  5.094198, 0.100016) 0.09420 9.44e-10 4.74e+9 

11 C     i (5.0, 0.1) ( 1.0,   0.16) 68 (  5.000011, 0.100000) 0.00001 4.13e-12 1.00e+5 

12 C     s (5.0, 0.1) ( 1.0,   0.16) 200 (  1.105115, 0.100540) 3.89488 6.13e-5 3.83e+7 

13 D     i (5.7, 9.0) (10.0,  3.0) 200 (10.005910, 3.088607) 7.31337 4.91e-2 2.25e+2 

14 D     s (5.7, 9.0) (10.0,  3.0) 153 (  7.576703, 8.785610) 1.88891 3.40e-6 1.15e+6 

15 D     i (5.7, 9.0) ( 2.0,   4.0) 200 (  2.026522, 4.081059) 6.13925 4.91e-2 1.15e+1 

16 D     s (5.7, 9.0) ( 2.0,   4.0) 132 (  5.698588, 9.000187) 0.00142 2.85e-12 1.11e+5 

17 E     i (5.0, 9.0) ( 2.0,   5.0) 29 (  5.000019, 9.000003) 0.00002 4.10e-12 1.85e+1 

18 E     s (5.0, 9.0) ( 2.0,   5.0) 34 (  4.032888, 9.007366) 0.96714 5.77e-8 1.98e+5 

19 E     i (5.0, 9.0) ( 9.0, 12.0) 198 (  7.442325, 9.332551) 2.90194 2.14e-3 8.19e+0 

20 E     s (5.0, 9.0) ( 9.0, 12.0) 86 (  4.841348, 9.001659) 0.15866 2.66e-9 1.68e+3 

21 F     i (5.0, 5.7) ( 2.0,   9.0) 21 (  5.000020, 5.700032) 0.00004 4.09e-12 7.04e+0 

22 F     s (5.0, 5.7) ( 2.0,   9.0) 200 (  2.046095, 7.927256) 3.69949 4.63e-3 2.96e+0 

23 F     i (5.0, 5.7) ( 8.0,   7.0) 200 (  5.394523, 7.204722) 1.55558 1.77e-4 1.62e+1 

24 F     s  (5.0, 5.7) ( 8.0,   7.0) 4 (  7.866712, 5.249234) 2.90194 2.97e-5 1.66e+2 
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Figure 1 

 

 
 

 

Figure 2 
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Figure 3 
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Figure 4 

 
 

 

Figure 5 
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Figure 6 

 

 
 

 

Figure 7 
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