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A FICTITIOUS DOMAIN METHOD FOR THE NUMERICAL SIMULATION OF

FLOWS PAST SAILS ∗

Alfredo Bermúdez1, Rodolfo Rodŕıguez2 and Maŕıa Luisa Seoane1

Abstract. This paper deals with the mathematical and numerical analysis of a simplified two-

dimensional model for the interaction between the wind and a sail. The wind is modeled as a steady

irrotational plane flow past the sail, satisfying the Kutta-Joukowski condition. This condition guar-

antees that the flow is not singular at the trailing edge of the sail. Although for the present analysis

the position of the sail is taken as data, the final aim of this research is to develop tools to compute

the sail shape under the aerodynamic pressure exerted by the wind. This is the reason why we pro-

pose a fictitious domain formulation of the problem, involving the wind velocity stream function and

a Lagrange multiplier; the latter allows computing the force density exerted by the wind on the sail.

The Kutta-Joukowski condition is imposed in integral form as an additional constraint. The resulting

problem is proved to be well posed under mild assumptions. For the numerical solution, we propose

a finite element method based on piecewise linear continuous elements to approximate the stream

function and piecewise constant ones for the Lagrange multiplier. Error estimates are proved for both

quantities and a couple of numerical tests confirming the theoretical results are reported. Finally the

method is used to determine the sail shape under the action of the wind.

Résumé. Cet article concerne l’analyse mathématique et numérique d’un modèle bidimensionnel

simplifié pour l’interaction entre le vent et une voile. L’air est modélisé par un écoulement stationnaire,

plan et irrotationnel autour de la voile, qui satisfait la condition de Kutta-Joukowski. Cette condition

entrâıne que l’écoulement n’est pas singulier au bord de fuite de la voile. Bien que pour le présent

analyse la position de la voile est considérée comme donnée, l’objectif final de cette recherche est de

développer des outils pour calculer la forme de la voile sous la pression du vent. C’est la raison par

laquelle nous proposons une formulation du problème en domaine fictif, qui inclut la fonction de courant

et un multiplicateur de Lagrange; ce dernier permet de calculer la densité de force exercée par le vent

sur la voile. La condition de Kutta-Joukowski est imposée en forme intégrale comme une contrainte.

On démontre que le problème qui résulte est bien posé sous des hypothèses légères. Pour la résolution

numérique on propose une méthode d’élements finis qui consiste à approcher la fonction de courant par

des éléments finis continus linéaires par morceaux et le multiplicateur de Lagrange par des fonctions

constantes par morceaux. On démontre des estimations d’erreur pour les deux inconnues et on résout

deux problèmes test qui confirment les résultats théoriques. Finalement, la méthode est utilisée pour

obtenir la forme d’une voile sous l’action du vent.
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1 Departamento de Matemática Aplicada, Universidad de Santiago de Compostela, 15706, Santiago de Compostela, Spain;
e-mail: alfredo.bermudez@usc.es & marialuisa.seoane@usc.es
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Introduction

In the last years the competition in nautical sports, as the America’s Cup, has been the source of many
important developments in mechanical engineering. The computer aided design is the key to the most efficient
use of the wind force and steers the configuration of the hull and the sails in order to reach a greater speed.

The aim of this paper is the mathematical analysis of the interaction between the wind and a sail and its
numerical solution. A large amount of research has been devoted to model and solve the flow past a sharp
obstacle with changeable outline. This problem deals with numerous application domains, yacht and aircraft
design among others. But, even if the aerodynamics are very close, there is a notorious difference: the sails,
contrary to airfoils, are flexible structures. Therefore, the flow around the sail depends upon its shape, whereas
the shape results from the aerodynamic pressure exerted by the wind. The whole problem is very complex, both
from the physical and the mathematical points of view. On the one hand, the more sophisticated fluid models
include viscous effects and the laminar-turbulent transition near the sail, which is considered a curved elastic
membrane subjected to large displacements; on the other hand, these two nonlinear models are coupled in a
fluid-structure problem. Moreover, apart from the theoretical complexity, their computational solution becomes
highly expensive, as is pointed out by Parolini and Quarteroni [11].

The first mathematical model where the sail and the pressure are considered as unknowns was developed by
Thwaites [14] in the framework of the two-dimensional potential flow theory. It involves a linear model of an
elastic flexible sail and an integral equation which expresses that the tension due to the sail curvature is exactly
counterbalanced by the aerodynamic pressure. More recently, an extension to the three dimensional case was
made by Schoop [12] involving the Navier-Stokes equations for flow simulation. Related to the structural sail
problem, Muttin [10] proposed a nonlinear membrane model in large displacements and small strains, which
he solved by a finite element method. However, the approach in all these papers is merely computational and
no rigorous mathematical or numerical analysis of the models is intended. On the other hand, a mathematical
study of steady irrotational plane flows past profiles with a sharp trailing edge was done by Ciavaldini et al. [3].
In particular, they proposed a rigorous mathematical formulation of the classical Kutta-Joukowski condition.

The present paper is somehow inspired in this article, but we consider the case of a sail instead of a wing
profile. Thus, the corresponding flow is singular at the leading edge, which makes the mathematical analysis
more difficult. Moreover, we envisage to consider the full fluid-structure problem, i.e., computing the sail shape
rather than giving it as a data of the problem. This is why we propose a fictitious domain method for the
numerical solution. Thus, we will be able to avoid remeshing the fluid domain when the sail shape changes
along the iterations. The analysis of this method follows essentially the papers by Glowinski et al. [7] and
Girault and Glowinski [5]. However, as explained above, we have to adapt these techniques because of the lack
of regularity of the solution, due to the singularities on the boundary of the flow domain.

The outline of the paper is as follows. After this introduction we state the flow model to be considered along
this paper in Section 1. In particular, we formulate the Kutta-Joukowski condition as an integral constraint
guaranteeing that the flow is not singular at the trailing edge of the sail. The mathematical analysis of the
whole model is performed in Section 2 for a fictitious domain formulation involving the stream function and a
Lagrange multiplier defined on the sail. Although the full problem does not fall into the Babuška-Brezzi theory
of mixed formulations, the latter is the main functional tool to prove the existence and uniqueness of a solution
under mild assumptions. Section 3 is devoted to the numerical solution. A finite element discretization involving
continuous piecewise linear functions to approximate the stream function and piecewise constant ones for the
Lagrange multiplier on the sail is proposed. Appropriate error estimates are obtained for the approximations
of both functions. In Section 4 we report numerical results for a couple of test problems which confirm the
theoretical results. Finally we apply the numerical method to solve the fluid-structure interaction problem of
determining the shape of a sail under the action of the wind.
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1. The mathematical model

In this paper we study a simplified flow model similar to the one considered in [14] (see also [3]): a two-
dimensional flow past a sail modeled as a plane curve S.

Let us denote by xL and xT the two end points of S. More specifically, let xL be the leading point and xT

be the trailing point of the sail. Let us denote the uniform flow velocity at infinity by v∞. For the sake of
simplicity and having in view the numerical solution of the problem by finite element methods, we suppose the
flow takes place in a large enough bounded domain Ω, with a Lipschitz-continuous polygonal exterior boundary
Γ and such that R := Ω ∪ S is convex (see Figure 1).
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Figure 1. Flow domain

We assume the fluid is inviscid and incompressible, and the flow is steady, so that it is governed by the steady
incompressible Euler equations, namely,

ρ (gradv)v + gradπ = b (motion equation),

div v = 0 (incompressibility equation),

where ρ is the (constant) density, v the velocity, π the pressure and b a body force. This is a first order nonlinear
hyperbolic system of partial differential equations. However, assuming that the body force is conservative (i.e.,
b = −ρgradφ for some scalar potential φ) and the flow is irrotational (i.e., curlv = 0), it is well-known that
these equations are fully equivalent to the following simpler ones (see for instance [9]):

curlv = 0, (1.1)

div v = 0, (1.2)

|v|2
2

+
π

ρ
+ φ = const. (1.3)

The latter is the Bernoulli’s equation.
To either of the above systems, the following boundary conditions will be added:

v · n = 0 on S, (1.4)

v · n = v∞ · n on Γ. (1.5)

Here and thereafter n denotes a unit vector normal to a particular curve, which will be clear from the context.
When the curve is the boundary of a bounded domain, n is always taken as the outward normal.



4 A. BERMÚDEZ, R. RODRÍGUEZ AND M.L. SEOANE

Let {e1,e2} be an orthonormal basis of R2. We denote by S+ and S− the two sides of the sail and by
t± = t±1 e1 + t±2 e2 (respectively, n± = t±2 e1 − t±1 e2) the unit tangent (respectively, unit normal) vector to S±,
chosen as shown in Figure 1.

It is possible to obtain an approximation of the force acting at each point of the sail S, which can be used to
determine the sail shape, as follows (see [14]):

f :=π+n+ + π−n− = −ρ |v
+|2
2

n+ − ρ
|v−|2

2
n− = ρ

(
v+ · t+ + v− · t−

) v+ · t+ − v− · t−
2

n−

≈− ρv∞
(
v+ · t+ + v− · t−

)
n−. (1.6)

This shows the interest of an accurate computation of the jump of the tangential component of the velocity
field: v+ · t+ + v− · t−.

Another quantity of physical interest is the circulation around the sail, which we denote γ(S):

γ(S) :=

∫

S+

v+ · t+ ds+

∫

S−

v− · t− ds. (1.7)

Since the domain Ω is not simply connected, problem (1.1)–(1.2) with boundary conditions (1.4)–(1.5) has a
one-parameter family of solutions. In fact, it will be shown below that there exists a unique solution for each
arbitrarily given value of the circulation γ(S) ∈ R. Thus, in order to have uniqueness or, in other words, in
order to determine which solution corresponds to the physical flow, we need more information. This is achieved
by the so-called Kutta-Joukowski condition which says that the physical flow is not singular at the trailing point
xT. Roughly speaking, this leads to the continuity of the velocity at this point and, since v± · n± = 0 on the
sail, it means that taking limit for x ∈ S,

lim
x→xT

v+(x) · t+(x) = lim
x→xT

v−(x) · t+(x).

In the next subsection we will give an analytical formulation of the above Kutta-Joukowski condition. More
specifically, we will introduce an integral equation to be satisfied by the physical solution, which will allow us
to determine the right value of the circulation γ(S).

Meanwhile, let us introduce a stream function. Since the velocity v is a solenoidal field, v · n = 0 on S and

∫

Γ

v · n ds =

∫

Γ

v∞ · n ds = 0, (1.8)

we know that there exists a scalar function ψ defined in Ω such that v = curlψ, where

curlψ :=
∂ψ

∂x2
e1 −

∂ψ

∂x1
e2.

From the irrotationality condition we deduce that ψ must be harmonic, i.e.,

∆ψ = 0. (1.9)

Moreover, boundary condition (1.4) yields

ψ = c on S, (1.10)

for some unknown constant c. Finally, boundary condition (1.5) becomes

∂ψ

∂t
= v∞ · n on Γ,
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which yields, by integration, the Dirichlet condition

ψ = g on Γ, (1.11)

where, for any x ∈ Γ, g(x) is the integral of v∞ · n along Γ from a to x, i.e.,

g(x) :=

∫

Γ(x)

v∞ · nds, (1.12)

a being a chosen point on Γ and Γ(x) the counterclockwise path from a to x along Γ. Since Γ is polygonal,
v∞ · n is constant on each edge of Γ and hence g is linear on each edge. Moreover it is a continuous function,
even at the point a because of (1.8). As a consequence, g ∈ H1(Γ).

For each constant c ∈ R, problem (1.9)–(1.11) has a unique solution in H1(Ω). Furthermore, it is the unique
solution of the following weak problem:

Problem 1.1. Find ψ ∈ H1(Ω) such that ψ = g on Γ, ψ = c on S and

∫

Ω

gradψ · grad z dx = 0 ∀z ∈ H1
0(Ω).

Let us recall that ∂Ω = Γ ∪ S and, hence, functions in H1
0(Ω) have a vanishing trace on S as well as on Γ.

For each value of c, if ψ is the solution of Problem 1.1, then v = curlψ satisfies (1.1)–(1.2), with boundary
conditions (1.4)–(1.5). In principle, for an arbitrary value of the constant c, the solution ψ has two singularities
at points xL and xT. However, the physical solution corresponds to the case where the singularity at the
trailing point xT is removed. This is the classical Kutta-Joukowski condition for which we will give a precise
mathematical formulation in what follows.

1.1. The Kutta-Joukowski condition

As stated above, for an arbitrary value of the constant c, in general the solution of Problem 1.1 becomes
singular at the two end points of the sail profile. However, the Kutta-Joukowski condition establishes that the
physical motion is not singular at the trailing point. In principle, this condition does not look suitable from the
computational point of view. This is why, following the ideas from Ciavaldini et al. [3], we will give an integral
condition that guarantees the previous regularity.

For any r > 0, let Br denote the ball of radius r centered at xT, Cr its boundary, Sr := S ∩ Br and
B̃r := Br \ Sr. Let R > 0 be sufficiently small so that BR ⊂⊂ Ω and xL /∈ B̄R. For the analysis we will assume
that SR is a straight segment. Notice that not the whole sail, but only its piece closest to the trailing point
is assumed to be straight. Moreover, the computational experiments show that the integral condition we are
going to derive also works although this assumption does not hold.

Let us introduce (r, θ), r > 0, θ ∈ [−π, π] a polar coordinate system centered at the trailing point and
such that the segment SR is contained in the straight half-line θ = ±π. When needed, we will distinguish the
segments corresponding to θ = π and θ = −π by introducing the notations S+

R and S−
R , respectively.

Consider the function ξ(r, θ) := r1/2 cos θ
2 . Notice that ξ satisfies

∆ξ = 0 in B̃R,

ξ = 0 on SR.

An easy computation shows that ξ ∈ W1,p(B̃R) for 1 ≤ p < 4, but ξ /∈ W1,4(B̃R). According to [8], the solution
of Problem 1.1 can be decomposed in a neighborhood of xT as the sum of a singular and a regular part. The
former is a multiple of ξ, whereas the latter is smoother than H2(B̃R). More precisely, there exists α ∈ R and
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ψ̃ ∈ W2,p(B̃R) for all p ∈ [1, 4), such that the solution of Problem 1.1 satisfies

ψ = αξ + ψ̃ in B̃R. (1.13)

If α = 0, then ψ = ψ̃ ∈ W2,p(B̃R) for some p > 2 and, from the Sobolev embedding theorem, v = curlψ

is continuous in the closure of B̃R. This closure must be understood by taking S+
R and S−

R as different parts

of the boundary of B̃R, with the trailing point xT being the only common point. Therefore, although v may
have a non vanishing jump on S, it has to be continuous at xT. Instead, if α 6= 0, this cannot happen. In
fact, straightforward computations show that |curl ξ| = 1

2r
−1/2 and, consequently, for α 6= 0, curlψ is not even

bounded at xT.
Let w0 be defined by

w0(r, θ) :=

(
r−1/2 − r1/2

R

)
cos

θ

2
. (1.14)

Then, the function w0 belongs to W1,q(BR) for all q ∈ [1, 4
3 ) and satisfies

∆w0 = 0 in B̃R, (1.15)

w0 = 0 on ∂B̃R = CR ∪ S±
R . (1.16)

The regularity condition can now be characterized by means of an orthogonality relation. In the proof of the
following theorem and thereafter C will denote a generic constant not necessarily the same at each occurrence
but always independent of the particular functions involved and, in the forthcoming sections, also independent
of the mesh-size parameters.

Theorem 1.2. The solution of Problem 1.1 satisfies ψ ∈ W2,p(B̃R) for all p ∈ [1, 4) if and only if

∫

CR

(ψ − c)
∂w0

∂n
ds = 0. (1.17)

Proof. First we prove that the regularity condition implies (1.17). Let ψ ∈ W2,p(B̃R) for all p ∈ [1, 4). By using
a Green’s Formula, (1.9) and (1.16), we have

lim
ǫ→0

∫

B̃R\B̃ǫ

gradψ · gradw0 dx = − lim
ǫ→0

∫

B̃R\B̃ǫ

∆ψw0 dx+ lim
ǫ→0

∫

∂(B̃R\B̃ǫ)

∂ψ

∂n
w0 ds = lim

ǫ→0

∫

Cǫ

∂ψ

∂n
w0 ds,

whereas, from the explicit expression of w0 and the Sobolev embedding theorem, for any p ∈ (2, 4) we have

lim
ǫ→0

∣∣∣∣
∫

Cǫ

∂ψ

∂n
w0 ds

∣∣∣∣ ≤ C ‖gradψ‖0,∞,B̃R
lim
ǫ→0

∫

Cǫ

|w0| ds ≤ C ‖ψ‖2,p,B̃R
lim
ǫ→0

ǫ1/2 = 0.

On the other hand, using a Green’s Formula again, (1.15) and (1.10),

lim
ǫ→0

∫

B̃R\B̃ǫ

gradψ · gradw0 dx = − lim
ǫ→0

∫

B̃R\B̃ǫ

(ψ − c) ∆w0 dx+ lim
ǫ→0

∫

∂(B̃R\B̃ǫ)
(ψ − c)

∂w0

∂n
ds

= lim
ǫ→0

∫

CR∪Cǫ

(ψ − c)
∂w0

∂n
ds.

Therefore, ∫

CR

∂w0

∂n
(ψ − c) ds = − lim

ǫ→0

∫

Cǫ

∂w0

∂n
(ψ − c) ds.



NUMERICAL SIMULATION OF FLOWS PAST SAILS 7

Finally, for x ∈ Cǫ,

|ψ(x) − c| = |ψ(x) − ψ(xT)| ≤ ‖gradψ‖0,∞,B̃R
|x− xT| ≤ C ‖ψ‖2,p,B̃R

ǫ

for any p ∈ (2, 4). Hence, from explicit computations with w0 we obtain

∣∣∣∣limǫ→0

∫

Cǫ

∂w0

∂n
(ψ − c) ds

∣∣∣∣ ≤ C ‖ψ‖2,p,B̃R
lim
ǫ→0

ǫ

∫

Cǫ

∣∣∣∣
∂w0

∂n

∣∣∣∣ ds ≤ C ‖ψ‖2,p,B̃R
lim
ǫ→0

ǫ1/2 = 0,

which allows us to conclude (1.17).
Conversely, we have to prove that if α 6= 0 in (1.13), then (1.17) does not hold. First, we notice that

ψ̃ = ψ − αξ is harmonic in B̃R, satisfies the same boundary condition as ψ on S± and belongs to W2,p(B̃R) for
all p ∈ [1, 4). Thus, we have just proved that

∫

CR

(ψ − αξ − c)
∂w0

∂n
ds = 0.

On the other hand, explicit computations yield

∫

CR

ξ
∂w0

∂n
ds = −π.

Hence, for all α 6= 0,
∫
CR

(ψ − c) ∂w0

∂n
ds = α

∫
CR
ξ ∂w0

∂n
ds 6= 0 and we conclude the proof. �

As a consequence of the above theorem we have that the stream function leading to the physical solution of
Problem 1.1 can be obtained by solving the following problem:

Problem 1.3. Find ψ ∈ H1(Ω) and c ∈ R such that ψ = g on Γ and

∫

Ω

gradψ · grad z dx = 0 ∀z ∈ H1
0(Ω), (1.18)

ψ = c on S, (1.19)
∫

CR

(ψ − c)
∂w0

∂n
ds = 0. (1.20)

2. A fictitious domain formulation

In practical applications the sail shape is unknown, so we are led to solve a typical fluid-structure interaction
problem. A standard method for such problem consists in starting from an initial shape, which is updated along
an iterative process involving flow problems for given sail shapes and structural problems for given aerodynamic
forces.

In order to avoid remeshing at each iteration as the sail shape changes, we propose a fictitious domain method
in which the presence of the sail in the flow domain is taken into account by introducing a Lagrange multiplier.
More specifically, the Dirichlet boundary condition on the sail, ψ = c, is imposed in a weak form by introducing
a Lagrange multiplier and, accordingly, we eliminate the constraint on the test function z = 0 on S in (1.18).

With this purpose, we endow H1
0(R) (recall that R := Ω ∪ S) with the norm

‖z‖H1
0(R) :=

(∫

R

|grad z|2 dx

)1/2

,
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which is equivalent to the standard H1(R) norm. Also, we identify H1/2(S) with the space of traces on S of
functions in H1

0(R), endowed with the norm

‖ζ‖H1/2(S) := inf
{
‖z‖H1

0(R) , z ∈ H1
0(R) : z|S = ζ

}
,

which in its turn is equivalent to the intrinsic norm of this space, as defined for instance in [6, Section I.1, (1.9)].
Finally, we denote by 〈·, ·〉S the duality pairing between H1/2(S)′ and H1/2(S). Hence, the problem to be solved
is the following:

Problem 2.1. Find ψ ∈ H1(R), λ ∈ H1/2(S)′ and c ∈ R such that ψ = g on Γ and

∫

R

gradψ · grad z dx+ 〈λ, z〉S = 0 ∀z ∈ H1
0(R), (2.1)

〈µ, ψ − c〉S = 0 ∀µ ∈ H1/2(S)′, (2.2)
∫

CR

(ψ − c)
∂w0

∂n
ds = 0. (2.3)

Problems 1.3 and 2.1 are equivalent. In fact, if (ψ, λ, c) is a solution of the latter, then clearly (ψ, c) solves
the former. Conversely, let (ψ, c) be a solution of Problem 1.3 and let

λ : H1/2(S) → R,
ζ 7→

∫
Ω

gradψ · grad z dx,

where z is any function in H1
0(R) such that z|S = ζ. The functional λ is well defined since, if ẑ ∈ H1

0(R) also
satisfies ẑ|S = ζ, then ẑ − z ∈ H1

0(Ω) and, hence,
∫
Ω

gradψ · grad ẑ dx =
∫
Ω

gradψ · grad z dx, because of

(1.18). Moreover, λ ∈ H1/2(S)′ since |〈λ, ζ〉S | ≤ ‖gradψ‖L2(Ω)2 ‖z‖H1
0(R) for all z ∈ H1

0(R) such that z|S = ζ

and, hence, ‖λ‖H1/2(S)′ ≤ ‖gradψ‖L2(Ω)2 . Therefore, (ψ, λ, c) is a solution of Problem 2.1.

Remark 2.2. Consider the following mapping:

H1/2(S)′ → H1
0(R),

µ 7→ φµ,

where φµ ∈ H1
0(R) is the unique solution of the problem

∫

R

gradφµ · grad z dx = 〈µ, z〉S ∀z ∈ H1
0(R). (2.4)

It is simple to show that ‖µ‖H1/2(S)′ = ‖φµ‖H1
0(R). In fact, first notice that

‖φµ‖2
H1

0(R) =

∫

R

gradφµ · gradφµ dx = 〈µ, φµ〉S ≤ ‖µ‖H1/2(S)′

∥∥φµ|S
∥∥

H1/2(S)
≤ ‖µ‖H1/2(S)′ ‖φµ‖H1

0(R)

and, hence, ‖φµ‖H1
0(R) ≤ ‖µ‖H1/2(S)′ . On the other hand,

‖µ‖H1/2(S)′ := sup
ζ∈H1/2(S)

〈µ, ζ〉S
‖ζ‖H1/2(S)

= sup
z∈H1

0(R)

〈µ, z〉S
‖z‖H1

0(R)

, (2.5)

and, hence,

‖µ‖H1/2(S)′ = sup
z∈H1

0(R)

∫
R

gradφµ · grad z dx

‖z‖H1
0(R)

≤ ‖φµ‖H1
0(R) .
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Thus, we conclude that ‖µ‖H1/2(S)′ = ‖φµ‖H1
0(R). This will be used in Section 4 to compute the H1/2(S)′-norm.

Remark 2.3. The Lagrange multiplier λ can be used to compute the local force exerted by the flow on the sail
by means of (1.6), as follows:

f ≈ ρv∞λn
−. (2.6)

Indeed, testing (2.1) with z ∈ D(Ω), we have that ψ is harmonic in Ω. Therefore, by using a Green’s formula
in (2.1), we deduce, for all z ∈ H1

0(R),

〈λ, z〉S = −
∫

S+

∂ψ+

∂n+
z ds−

∫

S−

∂ψ−

∂n−
z ds = −

∫

S

(
∂ψ+

∂n+
+
∂ψ−

∂n−

)
z ds,

as long as the integrals above make sense. Thus, for v = curlψ,

λ = −
(
∂ψ+

∂n+
+
∂ψ−

∂n−

)
= −

(
v+ · t+ + v− · t−

)
, (2.7)

which together with (1.6) yield (2.6).

Remark 2.4. The term above corresponds to the jump of the normal derivative of ψ across the sail:

[[
∂ψ

∂n

]]

S

:=
∂ψ+

∂n+
+
∂ψ−

∂n−
.

2.1. Existence and uniqueness of solution to Problem 2.1

In order to prove the existence of a solution to Problem 2.1 we introduce two auxiliary problems. With
this aim, let ω ⊂⊂ R be an open set such that S ∪ CR ⊂ ω and let ψg ∈ H1(R) be a function such that
supp(ψg) ⊂ R̄ \ ω̄ and ψg|Γ = g. Consider the two following auxiliary mixed problems:

• Find ψ1 ∈ H1
0(R) and λ1 ∈ H1/2(S)′ such that

∫

R

gradψ1 · grad z dx+ 〈λ1, z〉S = 0 ∀z ∈ H1
0(R), (2.8)

〈µ, ψ1〉S = 〈µ, 1〉S ∀µ ∈ H1/2(S)′. (2.9)

• Find ψ2 ∈ H1
0(R) and λ2 ∈ H1/2(S)′ such that

∫

R

gradψ2 · grad z dx+ 〈λ2, z〉S = −
∫

R

gradψg · grad z dx ∀z ∈ H1
0(R), (2.10)

〈µ, ψ2〉S = 0 ∀µ ∈ H1/2(S)′. (2.11)

The existence and uniqueness of solution to these two problems follows directly from the standard theory
of mixed problems (see, for instance, [2] or [6]) by virtue of the H1

0(R)-ellipticity of the bilinear form (ψ, z) 7→∫
R

gradψ · grad z dx and the inf-sup condition arising from (2.5).
Now we can prove the following result:

Theorem 2.5. Let us assume that the solution of problem (2.8)–(2.9) is such that

∫

CR

(ψ1 − 1)
∂w0

∂n
ds 6= 0. (2.12)

Then, there exists a unique solution to Problem 2.1.
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Proof. Existence: We observe that 〈µ, ψg〉S = 0 for all µ ∈ H1/2(S)′, because supp(ψg) ∩ S = ∅, and then

∫

R

grad (ψ2 + ψg) · grad z dx+ 〈λ2, z〉S = 0 ∀z ∈ H1
0(R),

〈µ, ψ2 + ψg〉S = 0 ∀µ ∈ H1/2(S)′.

Let the constant c be defined as follows:

c := −

∫

CR

ψ2
∂w0

∂n
ds

∫

CR

(ψ1 − 1)
∂w0

∂n
ds

. (2.13)

Then, it is immediate to see that defining

ψ := cψ1 + ψ2 + ψg

and

λ := cλ1 + λ2,

(ψ, λ, c) is a solution to Problem 2.1.

Uniqueness: Let (ψ, λ, c) and (ψ̂, λ̂, ĉ) be two solutions to Problem 2.1. Then, the difference (ψd, λd, cd) :=

(ψ, λ, c) − (ψ̂, λ̂, ĉ) satisfies ψd = 0 on Γ and

∫

R

gradψd · grad z dx+ 〈λd, z〉S = 0 ∀z ∈ H1
0(R), (2.14)

〈µ, ψd − cd〉S = 0 ∀µ ∈ H1/2(S)′, (2.15)
∫

CR

(ψd − cd)
∂w0

∂n
ds = 0. (2.16)

From the uniqueness of the solution of (2.8)–(2.9), we deduce ψd = cdψ1 and λd = cdλ1. Hence, (2.16) implies

cd

∫

CR

(ψ1 − 1)
∂w0

∂n
ds = 0,

from which it follows that cd = 0, because of assumption (2.12). Then, ψd = 0 and λd = 0. �

Remark 2.6. We have used assumption (2.12) to derive the existence and uniqueness of solution to Problem 2.1
and we will use it again throughout the next section. This assumption is quite plausible. In fact, problem (2.8)–
(2.9) is equivalent to Problem 1.1 with g = 0 and c = 1, which is a weak formulation of the following one:

∆ψ1 = 0 in Ω,

ψ1 = 0 on Γ,

ψ1 = 1 on S.

Thus, as a consequence of Theorem 1.2, assumption (2.12) holds true unless ψ1 were specially smooth in

a neighborhood of the trailing point xT (i.e., ψ1 ∈ W2,p(B̃R), with p > 2). This never happened in our
experiments.
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Remark 2.7. We have stated above that problem (1.1)–(1.2) with boundary conditions (1.4)–(1.5) has a
unique solution for each arbitrary value of the circulation γ(S). Indeed, we have already shown that, by taking
v = curlψ and g defined by (1.12), these equations are equivalent to Problem 1.3. In its turn, equations (1.18)–
(1.20) from this problem have a unique solution (ψ, λ) for each value of the constant c. For this solution, the
same arguments used in the proof of Theorem 2.5 allow us to write λ = cλ1 + λ2, with (ψ1, λ1) and (ψ2, λ2)
being the solutions of problems (2.8)–(2.9) and (2.10)–(2.11), respectively. Therefore, from (1.7) and (2.7),

−γ(S) = 〈λ, 1〉S = c〈λ1, 1〉S + 〈λ2, 1〉S .

Since, ψ1 ∈ H1
0(R) and ψ1 = 1 on S (cf. (2.9)), (2.8) yields

〈λ1, 1〉S = 〈λ1, ψ1〉S = −
∫

R

|gradψ1|2 dx 6= 0,

so that each value of the circulation corresponds to a unique value of the constant c.

3. Numerical approximation

Let {Th} be a regular family of triangulations of R; h denotes as usual the corresponding mesh-size. Let

Zh :=
{
zh ∈ H1(R) : zh|T ∈ P1 ∀T ∈ Th

}
and Z0

h := Zh ∩ H1
0(R).

We assume all the meshes are refinements of a fixed coarse one, Th0
, such that ω̄∩⋃ {T ∈ Th0

: T ∩ Γ 6= ∅} = ∅.
(We recall ω is the open set introduced at the beginning of Section 2.1, which satisfies ω ⊂⊂ R and ω ⊃ S∪CR.)
Since g is piecewise linear and continuous on Γ, this allows us to choose, for problem (2.8)–(2.9), ψg ∈ Zh0

such
that ψg|Γ = g and ψg|ω̄ = 0. Then, as a consequence of the assumption above, ψg ∈ Zh for all meshes Th. This
is the reason for such assumption, which, although not actually necessary, makes the proofs that follow a bit
simpler.

For each mesh Th, we consider a partition of S into curved arcs, TH := {S1, . . . , SN}. The mesh parameter
is in this case H := max {length(Sj), j = 1, . . . , N}. We will use the following finite dimensional subspace of

H1/2(S)′ to approximate the Lagrange multiplier:

MH :=
{
µH ∈ L2(S) : µH |Sj

∈ P0 ∀Sj ∈ TH

}
.

We introduce some additional notation and assumptions concerning the meshes. Let

Nh = {P1, P2, . . . , PM} : set of inner vertices of Th,

ϕi : nodal basis function, for all Pi ∈ Nh,

ωi :=
⋃

{T ∈ Th : T ∋ Pi} : support of ϕi, for all Pi ∈ Nh,

ΩT :=
⋃

{T ′ ∈ Th : T ′ ∩ T 6= ∅} , for all T ∈ Th,

hi := max {diam(T ) : T ∈ Th, T ∋ Pi} , for all Pi ∈ Nh,

Ω̃j :=
⋃

{T ∈ Th : T ∩ Sj 6= ∅} , for all Sj ∈ TH ,

Ωj :=
⋃{

T ∈ Th : T ∩ Ω̃j 6= ∅
}
, for all Sj ∈ TH .

We assume that each mesh Th and the corresponding mesh TH on S satisfy the following constraints:
Assumption: For each Sj ∈ TH , there exists a vertex Pkj

∈ Nh such that

i) ωkj
∩ S ⊂ Sj ,
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ii) the sets ωkj
, j = 1, . . . , N , are mutually disjoint,

iii) there exists a constant L > 0 such that
∫

Sj
ϕkj

ds ≥ Lhkj
and

iv) there exists a constant L̄ > 0 such that length(Sj) ≤ L̄hkj
, for all Sj ∈ TH .

Constants L̄ and L above are independent of h and H. Therefore, as an immediate consequence of assump-
tion (iv), H → 0 as h→ 0.

Meshes with these properties have been introduced and used in [5], where a thorough analysis of the fictitious
domain method to impose a Dirichlet condition is performed. In practice, the assumptions above are fulfilled
provided the mesh-size on the sail, H, is about two or three times larger than that on the domain, h, and the
angles at the corners of S are not too small, the latter in the case that the sail were not a smooth curve. See [5]
for further details.

Lemma 3.1. There exists K > 0, independent of h and H, such that, for all T ∈ Th, # {Ωj : Ωj ⊃ T} ≤ K.

Proof. Let T ∈ Th. For each Ωj such that Ωj ⊃ T , let Pkj
∈ Nh be as in assumption (i). We have

dist(T, Pkj
) ≤ dist(T, Sj) + length(Sj) + dist(Sj , Pkj

) ≤ C1hkj
+ L̄hkj

+ C2hkj
,

with C1 and C2 constants which only depend on the regularity of the mesh and L̄ being the constant from
assumption (iv). Hence, denoting C3 := C1 + L̄+ C2, there holds

# {Ωj : Ωj ⊃ T} ≤ #
{
Pkj

: dist(Pkj
, T ) ≤ C3hkj

}
≤ # {Pk ∈ Nh : dist(Pk, T ) ≤ C3h}

and the lemma follows from the fact that the latter is bounded above by a number that only depends on the
regularity of the mesh, as well. �

The above assumptions allow proving the existence of a Fortin operator for the auxiliary mixed prob-
lems (2.8)–(2.9) and (2.10)–(2.11). From now on, the generic constant C will be always independent of the
mesh parameters h and H.

Lemma 3.2. There exists a linear operator Πh : H1
0(R) → Z0

h such that

‖Πhz‖H1
0(R) ≤ C ‖z‖H1

0(R) ∀z ∈ H1
0(R), (3.1)

〈µH ,Πhz〉S = 〈µH , z〉S ∀z ∈ H1
0(R) ∀µH ∈ MH . (3.2)

Proof. Let Ih : H1
0(R) → Zh be a Clément interpolant preserving zero values on ∂R (see [13]). There holds

‖Ihz‖H1(T ) ≤ C ‖z‖H1(ΩT ) ∀z ∈ H1(R), (3.3)

‖z − Ihz‖L2(Sj)
≤ Ch

1/2
kj

‖grad z‖L2(Ωkj
) ∀z ∈ H1(R). (3.4)

We define Πhz := Ihz +
∑N

j=1 cjϕkj
, with

cj :=

∫
Sj

(z − Ihz) ds
∫

Sj
ϕkj

ds
, j = 1, . . . , N,

which are well defined because
∫

Sj
ϕkj

ds > 0, as a consequence of assumption (iii). Therefore, by virtue of

assumption (i),

∫

Si

Πhz ds =

∫

Si

Ihz ds+

N∑

j=1

cj

∫

Si

ϕkj
ds =

∫

Si

Ihz ds+ ci

∫

Si

ϕki
ds =

∫

Si

z ds, i = 1, . . . , N,
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which amounts to (3.2).
Now, from assumption (ii) there holds

∥∥∥∥∥

N∑

j=1

cjϕkj

∥∥∥∥∥

2

H1
0(R)

=

N∑

j=1

c2j
∥∥ϕkj

∥∥2

H1
0(R)

,

whereas from the definition of cj , assumptions (i) and (iv) and (3.4),

|cj | ≤
length(Sj)

1/2

Lhkj

‖z − Ihz‖L2(Sj)
≤ C ‖grad z‖L2(Ωkj

) .

Thus, by using that for any regular family of triangulations
∥∥ϕkj

∥∥
H1

0(R)
≤ C, we have

∥∥∥∥∥

N∑

j=1

cjϕkj

∥∥∥∥∥

2

H1
0(R)

≤ C
N∑

j=1

‖grad z‖2
L2(Ωkj

) ≤ C ‖z‖2
H1

0(R) ,

the latter because, according to Lemma 3.1, all triangles T ∈ Th belong to at most K sets Ωj , j = 1, 2, . . . , N .
All together yield

‖Πhz‖H1
0(R) ≤ ‖Ihz‖H1

0(R) +

∥∥∥∥∥

N∑

j=1

cjϕkj

∥∥∥∥∥
H1

0(R)

≤ C ‖z‖H1
0(R) ,

which allows us to end the proof. �

Now we are in a position to introduce the discretization of Problem 2.1:

Problem 3.3. Find ψh ∈ Zh, λH ∈ MH and ch ∈ R such that ψh = g on Γ and

∫

R

gradψh · grad zh dx+

∫

S

λHzh ds = 0 ∀zh ∈ Z0
h, (3.5)

∫

S

µH (ψh − ch) ds = 0 ∀µH ∈ MH , (3.6)

∫

CR

(ψh − ch)
∂w0

∂n
ds = 0. (3.7)

To prove that this discrete problem is well posed, we will proceed as in the previous section. With this aim, as
a first step, we will analyze the numerical approximation of the auxiliary problems (2.8)–(2.9) and (2.10)–(2.11).

3.1. Numerical approximation of the auxiliary problems

Consider the discretization of problems (2.8)–(2.9) and (2.10)–(2.11) obtained by means of the same finite
element spaces as above:

• Find ψ1h ∈ Z0
h and λ1H ∈ MH such that

∫

R

gradψ1h · grad zh dx+

∫

S

λ1Hzh ds = 0 ∀zh ∈ Z0
h, (3.8)

∫

S

µHψ1h ds =

∫

S

µH ds ∀µH ∈ MH . (3.9)
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• Find ψ2h ∈ Z0
h and λ2H ∈ MH such that

∫

R

gradψ2h · grad zh dx+

∫

S

λ2Hzh ds = −
∫

R

gradψg · grad zh dx ∀zh ∈ Z0
h, (3.10)

∫

S

µHψ2h ds = 0 ∀µH ∈ MH . (3.11)

As a consequence of Lemma 3.2 and the standard theory of finite element approximation of mixed problems
(see, for instance, [2] or [6]), both problems have a unique solution and the following error estimate holds true:

‖ψi − ψih‖H1
0(R) + ‖λi − λiH‖H1/2(S)′ ≤ C

[
inf

zh∈Zh

‖ψi − zh‖H1
0(R) + inf

µH∈MH

‖λi − µH‖H1/2(S)′

]
, i = 1, 2.

(3.12)
In what follows, we will show additional regularity of the solutions of problems (2.8)–(2.9) and (2.10)–(2.11),

which together with the estimate above will allow us to obtain an error estimate in terms of adequate powers
of the mesh-sizes h and H.

The same arguments used in Remark 2.3, allow us to show that ψ1 and ψ2 + ψg are harmonic in Ω and
that λi = [[∂ψi/∂n]]S , i = 1, 2 (recall that ψ2 + ψg = ψ2 in a neighborhood of the sail, because ψg has been
chosen vanishing in ω ⊃ S). Since ψ1 and ψ2 +ψg are constant on S and piecewise linear and continuous on Γ,
both belong to H1+s(Ω) for all s < 1/2, because of the standard regularity estimates for the Laplace equation
(see [8]). Moreover, each of these two functions takes the same constant values at both sides of the sail S.
Therefore,

ψ1 ∈ H1+s(R) and ψ2 + ψg ∈ H1+s(R) ∀s ∈
(
0, 1

2

)
. (3.13)

On the other hand, the strongest singularities of ψ1 and ψ2 +ψg appear at the end points of the sail, xL and
xT. We focus on the behavior of ψ1 around xT, but the same happens for ψ2 +ψg, as well as for both functions
around xL.

By repeating the arguments leading to (1.13), using the same notation and under the same assumptions, we
can write

ψ1 = α1ξ + ψ̃1 in B̃R,

with α1 ∈ R, ξ(r, θ) = r1/2 cos θ
2 and ψ̃ ∈ W2,p(B̃R) for all p ∈ [1, 4). Explicit computations lead to

∂ψ1

∂n±

∣∣∣∣
S±

R

= −α1

2
r−1/2 +

∂ψ̃1

∂n±

∣∣∣∣∣
S±

R

.

Therefore, the jump of ∂ψ̃1/∂n across SR is given by

[[
∂ψ1

∂n

]]

SR

=
∂ψ+

1

∂n+
+
∂ψ−

1

∂n−
= −α1r

−1/2 +

[[
∂ψ̃1

∂n

]]

SR

.

Now, the smoothness of ψ̃1 implies that [[∂ψ̃1/∂n]]SR
∈ W1−1/p,p(SR) →֒ Lp(SR) for all p ∈ [1, 4). Thus, since∫ R

0

(
r−1/2

)p
dr < ∞ if and only if p < 2, we have that λ1|SR

= [[∂ψ1/∂n]]SR
∈ Lp(SR) for all p ∈ [1, 2). The

same arguments lead us to analogous conclusions for λ1 around xL, and for λ2 around xT and xL. Thus we
conclude that

λ1, λ2 ∈ Lp(S) ∀p ∈ [1, 2) . (3.14)

Next, taking into account the additional regularity (3.13) and (3.14), we will introduce some results about
approximation by the piecewise polynomial functions involved in the discrete problems. The first one is classical
(see, for instance, [4]):
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Proposition 3.4. For all s ∈ [0, 1], there exists a constant C such that, for all z ∈ H1+s(R),

inf
zh∈Zh

‖z − zh‖H1(R) ≤ Chs ‖z‖H1+s(R) .

To prove an analogous result for the approximation from MH , we introduce the L2(S)-orthogonal projection
onto this space. Let PH : L1(S) → MH be defined by

PHϕ :=

N∑

j=1

∫
Sj
ϕds

length(Sj)
χj , ϕ ∈ L1(S),

with χj being the characteristic function of Sj , j = 1, . . . , N . (Notice that {χj}N
j=1 is the natural basis of MH .)

We have the following estimate:

Lemma 3.5. For all q ∈ (2,∞), there exists a constant C > 0 such that

‖ϕ− PHϕ‖Lq(S) ≤ CH1/q ‖ϕ‖H1/2(S) ∀ϕ ∈ H1/2(S).

Proof. For each Sj ∈ TH , let rj : I := [0, 1] → Sj be a smooth parametrization of the arc Sj , such that
∣∣r′j(t)

∣∣ is
constant for all t ∈ I (for instance, the affine map which applies I onto the interval [0, length(Sj)], composed with

the arc-length parametrization of Sj). Then,
∣∣r′j(t)

∣∣ =
∫ 1

0

∣∣r′j(t)
∣∣ dt = length(Sj) for all t ∈ I. Let ϕ̂ := ϕ ◦ rj

and P̂ be the L2(I)-orthogonal projection onto the constant functions. There holds P̂ ϕ̂ = P̂Hϕ := PHϕ ◦ rj

and

‖ϕ− PHϕ‖q
Lq(Sj)

≤ length(Sj)
∥∥ϕ̂− P̂ ϕ̂

∥∥q

Lq(I)
.

Moreover, since both, the canonical injection and the projection P̂ , are continuous operators from H1/2(I) into
Lq(I), we have

∥∥ϕ̂− P̂ ϕ̂
∥∥

Lq(I)
=
∥∥ (ϕ̂− d) − P̂ (ϕ̂− d)

∥∥
Lq(I)

≤ C ‖ϕ̂− d‖H1/2(I)

for all d ∈ R, because P̂ (d) = d. Now, from [4, Theorem 6.1], there exists d ∈ R such that

‖ϕ̂− d‖H1/2(I) ≤ C |ϕ̂|H1/2(I) ≤ C |ϕ|H1/2(Si)
,

the last inequality because of the definition of the intrinsic seminorm |·|H1/2(I) (see, for instance, [6, Section I.1]).
Therefore,

‖ϕ− PHϕ‖Lq(S) ≤ CH1/q

[
N∑

i=1

|ϕ|q
H1/2(Si)

]1/q

≤ CH1/q

[
N∑

i=1

|ϕ|2H1/2(Si)

]1/2

≤ CH1/q |ϕ|H1/2(S) .

�

Proposition 3.6. For all p ∈ (1, 2), there exists a constant C > 0 such that, for all µ ∈ Lp(S),

inf
µH∈MH

‖µ− µH‖H1/2(S)′ ≤ CH1/q ‖µ‖Lp(S) ,

with q ∈ (2,∞) such that 1/p+ 1/q = 1.
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Proof. There holds

‖µ− PHµ‖H1/2(S)′ = sup
z∈H1

0(R)

〈µ− PHµ, z〉S
‖z‖H1

0(R)

= sup
z∈H1

0(R)

〈µ− PHµ, z − PH (z|S)〉S
‖z‖H1

0(R)

≤ sup
z∈H1

0(R)

‖µ− PHµ‖Lp(S) ‖z − PH (z|S)‖Lq(S)

‖z‖H1
0(R)

.

Thus, the result follows from the previous lemma and the inequality

‖µ− PHµ‖Lp(S) ≤ ‖µ‖Lp(S) + ‖PHµ‖Lp(S) ≤ 2 ‖µ‖Lp(S) .

�

The above results allow us to obtain the following error estimate for the auxiliary problems:

Proposition 3.7. Let (ψ1, λ1) and (ψ2, λ2) be the solutions of problems (2.8)–(2.9) and (2.10)–(2.11), respec-
tively, and (ψ1h, λ1H) and (ψ2h, λ2H) the solutions of problems (3.8)–(3.9) and (3.10)–(3.11), respectively. For
all s < 1/2 and for all q > 2, there exists a constant C > 0 such that

‖ψ1 − ψ1h‖H1
0(R) + ‖λ1 − λ1H‖H1/2(S)′ ≤ C

[
hs ‖ψ1‖H1+s(R) +H1/q ‖λ1‖Lp(S)

]
≤ C

(
hs +H1/q

)
,

‖ψ2 − ψ2h‖H1
0(R) + ‖λ2 − λ2H‖H1/2(S)′ ≤ C

[
hs ‖ψ2 + ψg‖H1+s(R) +H1/q ‖λ2‖Lp(S)

]
≤ C

(
hs +H1/q

)
.

Proof. The proof follows from (3.12), Propositions 3.4 and 3.6, (3.13) and (3.14). Notice that for the second
inequality above we have also used that, since ψg has been chosen in Zh0

⊂ Zh,

inf
zh∈Zh

‖ψ2 − zh‖H1
0(R) = inf

zh∈Zh

‖ψ2 + ψg − zh‖H1
0(R).

�

3.2. Numerical approximation of the full problem

Our next step is to prove that Problem 3.3 is well posed, as long as the meshes are sufficiently fine, and that
its solution converges to that of Problem 2.1.

Theorem 3.8. Under the assumption (2.12), there exists h̄ > 0 such that, for all h < h̄, Problem 3.3 has a
unique solution.

Proof. Existence: Let (ψ1h, λ1H) and (ψ2h, λ2H) be the solutions of problems (3.8)–(3.9) and (3.10)–(3.11),
respectively. From Proposition 3.7, ‖ψ1 − ψ1h‖H1

0(R) → 0 as h→ 0. Hence, from (2.12) we deduce the existence

of h̄ > 0 and γ > 0 such that ∣∣∣∣
∫

CR

(ψ1h − 1)
∂w0

∂n
ds

∣∣∣∣ ≥ γ ∀h ≤ h̄. (3.15)

Let us introduce the constant

ch := −

∫

CR

ψ2h
∂w0

∂n
ds

∫

CR

(ψ1h − 1)
∂w0

∂n
ds

. (3.16)

Let ψh := chψ1h + ψ2h + ψg ∈ Zh and λH := chλ1H + λ2H ∈ MH . Then, it is straightforward to show that
(ψh, λH , ch) is a solution of (3.5)–(3.7).

Uniqueness: The proof is essentially identical to that of Theorem 2.5. �
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Now we are in a position to prove the convergence of the full discrete problem and an error estimate.

Theorem 3.9. Let us assume (2.12) and let h̄ > 0 be as in Theorem 3.8. Let (ψ, λ, c) be the solution of
Problem 2.1. For all s < 1/2 and for all q > 2, there exists a constant C > 0 such that, for all h < h̄, the
solution (ψh, λh, ch) of Problem 3.3 satisfies

‖ψ − ψh‖H1(R) + ‖λ− λH‖H1/2(S)′ + |c− ch| ≤ C
(
hs +H1/q

)
.

Proof. We write ψ = cψ1 +ψ2 +ψg and λ = cλ1 +λ2, as in the proof of Theorem 2.5, and ψh = chψ1h +ψ2h +ψg

and λH = chλ1H + λ2H , as in that of Theorem 3.8. Thus, by virtue of Proposition 3.7, there only remains to
prove that |c− ch| ≤ C

(
hs +H1/q

)
.

With this aim, we use (2.13), (3.16) and (3.15), to write for all h < h̄

|c− ch| =

∣∣∣∣c
∫

CR

(ψ1h − ψ1)
∂w0

∂n
ds+

∫

CR

(ψ2h − ψ2)
∂w0

∂n
ds

∣∣∣∣
∣∣∣∣
∫

CR

(ψ1h − 1)
∂w0

∂n
ds

∣∣∣∣

≤ C

γ

[
‖ψ1 − ψ1h‖H1

0(R) + ‖ψ2 − ψ2h‖H1
0(R)

]
.

Thus, the theorem follows from Proposition 3.7, again. �

4. Numerical results

The numerical method described above was implemented in a FORTRAN code. This code was applied to
solve a couple of test problems with known analytical solutions, which allow us to assess the performance of the
method. As a final test, we used it to determine the unknown shape of a sail under the action of the wind by
means of an iterative process.

4.1. Implementation details

Let {ϕi}M
i=1 and {χi}N

i=1 be the respective bases of Z0
h and MH that have been introduced in Section 3. Let

ψg be as in the previous section (ψg ∈ Zh such that ψg|Γ = g and it vanishes in a neighborhood of S ∪CR). We
write the solution of Problem 3.3 as follows:

ψh =
M∑

i=1

ψ̂iϕi + ψg and λH =
N∑

i=1

λ̂iχi.

Let ψ̂ :=
(
ψ̂i

)
∈ RM and λ̂ :=

(
λ̂i

)
∈ RN . The matrix form of Problem 3.3 reads:




A B 0

Bt 0 d

st 0 a








ψ̂

λ̂

ch



 =




b

0

0



 ,
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where A := (Aij) ∈ RM×M , B := (Bij) ∈ RM×N , b := (bi) ∈ RM , d := (di) ∈ RN and s := (si) ∈ RM , with

Aij :=

∫

R

gradϕi · gradϕj dx, i, j = 1, . . . ,M, di := −
∫

S

χi ds = length(Si), i = 1, . . . , N,

Bij :=

∫

S

ϕiχj ds =

∫

Sj

ϕi, i = 1, . . . ,M, j = 1, . . . , N, si :=

∫

CR

ϕi
∂w0

∂n
ds, i = 1, . . . ,M,

bi := −
∫

R

gradψg · gradϕi dx, i = 1, . . . ,M, a := −
∫

CR

∂w0

∂n
ds =

4√
R
.

The integrals over the circle CR that define si have been numerically computed by means of an accurate
quadrature rule on each triangle contained in the support of the basis function ϕi. The same happens in the
case of a curved sail S with the integrals over S defining Bij and di.

4.2. A flat sail

The first test consists in computing the irrotational flow past a flat sail. The analytical solution of this
problem is well-known (see for instance [1]).

We consider a flat sail S = [−5, 5] × {0} within the domain R = [−80, 80] × [−80, 80]. In order to obtain a
good approximation at the leading point xL = (−5, 0), we have used the initial mesh shown in Figure 2 which
is highly refined in the vicinity of the sail and rather coarser far from it. Subsequent finer meshes were obtained
by means of successive uniform refinements of the triangulation shown in this figure.

Figure 2. Flat sail. Initial mesh.

In this test, it would be easy to use meshes such that the sail be union of edges. However, since we are
interested in applying the method to sails with an arbitrary curved shape, we took care to avoid this. Figure 3
shows a zoom of the mesh around the sail where this fact can be clearly observed.
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Figure 3. Flat sail. Zoom of the initial mesh around the sail.

The meshes on the sail were chosen coarse enough so that assumptions (i)-(iv) from Section 3 were fulfilled. In
particular, the initial mesh was taken uniform with only 4 elements. The other ones were obtained by successive
uniform refinements of this one.

The main features of the used meshes are reported in Table 1.

Table 1. Flat sail. Data of the used meshes.

Mesh level 0 1 2 3 4
Number of nodes in S 5 9 17 33 65

Number of elements in R 1826 7304 29216 116864 467456
Number of nodes in R 930 3685 14673 58561 233985

We write the wind velocity at infinity as follows: v∞(cosα, sinα), with α being the angle of incidence. Then,
according to [1], the stream function at each point (x, y) ∈ Ω = R \ S is given by

ψ(x, y) = v∞

[
s cosα− r sinα+

a2 (r sinα− s cosα)

r2 + s2
+ 2a sinα log

(√
r2 + s2

a

)]
,

where a := length(S)/4,

r :=
x

2
±

√
2
√
x4 + 2x2y2 − 8x2a2 + y4 + 8y2a2 + 16a4 + 2(x2 − y2 − 4a2)

4
,

and

s :=
y

2
±

√
2
√
x4 + 2x2y2 − 8x2a2 + y4 + 8y2a2 + 16a4 − 2(x2 − y2 − 4a2)

4
,

the signs being chosen so that r2 + s2 ≥ a2. After some algebraic manipulations, differentiating ψ leads us to
the following expressions for the components of the velocity field v = (v1, v2) = curlψ:

v1(x, y) = v∞
cosα

(
r4 + 2r2s2 + s4 − 2a2r2 + 2a2s2 + a4

)
+ sinα

(
2asr2 − 4a2rs+ 2as3 + 2a3s

)

(r2 + s2)
2

+ a4 + 2a2 (s2 − r2)
,

v2(x, y) = v∞
sinα

(
r4 + 2r2s2 + s4 − 2ar3 − 2ars2 − a4 + 2a3r

)

(r2 + s2)
2

+ a4 + 2a2 (s2 − r2)
.

We chose for this test a wind velocity at infinity corresponding to α = π/3 and v∞ = 1. The radius of the
circle CR to impose the constraint (3.7) was taken R = 0.5.

The stream function ψh computed for the level-3 mesh is shown in Figure 4.
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Figure 4. Flat sail. Stream function computed on the level-3 mesh (left) and zoom of a more
detailed view around the sail (right).

The errors of the computed velocity vh := curlψh in L2(Ω)2-norm, the Lagrange multiplier λH in H1/2(S)′-
norm and the constant value ch of the stream function on the sail are reported in Table 2.1 Computed orders
of convergence in powers of h for all these quantities are also shown in this table. It can be observed that
the experimental orders of convergence agree with those predicted by the theory. Actually, a superconvergence
phenomenon seems to hold for the constant ch, which apparently converges linearly. The table also includes the
errors of the circulation around the sail computed as follows (cf. (1.7) and (2.7)):

γh(S) := −
∫

S

λH ds.

This is a quantity of physical interest and can be seen to converge also with a linear order with respect to h.

Table 2. Flat sail. Errors and convergence order for the velocity field vh, the Lagrange
multiplier λH , the constant value of the stream function on the sail ch and the circulation
around the sail γh(S).

Mesh
level

‖v−vh‖L2(Ω)2

‖v‖L2(Ω)2
Order

‖λ−λH‖
H1/2(S)′

‖λ‖
H1/2(S)′

Order |c− ch| Order |γ(S) − γh(S)| Order

0 0.343E−01 0.177E+00 0.141E+01 0.289E+01
1 0.224E−01 0.61 0.130E+00 0.45 0.494E+00 1.51 0.103E+01 1.49
2 0.157E−01 0.52 0.792E−01 0.71 0.211E+00 1.23 0.427E+00 1.26
3 0.111E−01 0.50 0.577E−01 0.46 0.978E−01 1.11 0.200E+00 1.10
4 0.798E−02 0.48 0.348E−01 0.73 0.485E−01 1.01 0.988E−01 1.02

1The H1/2(S)′-norm was computed by using the characterization given in Remark 2.2 and approximating problem (2.4) by

means of piecewise linear continuous finite elements on a highly refined mesh.
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Figures 5-8 show error curves for all these quantities, namely, log-log plots of the errors reported in Table 2
versus the number of elements in Th (nel).
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Figure 5. Flat sail. L2(Ω)2-error
curve for the velocity field vh.
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Figure 6. Flat sail. H1/2(S)′-error
curve for the Lagrange multiplier λH .
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Figure 7. Flat sail. Error curve for
the constant value ch of the stream
function on the sail.
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Figure 8. Flat sail. Error curve for
the circulation around the sail γh(S).

4.3. A curved sail

As a second test we applied the code to compute the irrotational flow past a curved sail. In this case, the sail
is an arc of a circle with radius 5

√
2 and central angle π/2, the end points of the arc being xL = (−5, 0) and xT =

(5, 0). The domain and the wind velocity at infinity were taken as in the previous test: R = [−80, 80]×[−80, 80],
v∞ = 1 and α = π/3.

We have used the same meshes as in the previous test for the domain R and successively refined meshes on
the curved sail, the initial one having 6 elements.
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Let us remark that this problem does not satisfy thoroughly the assumptions of the theoretical analysis,
because the sail is not a straight line in a neighborhood of the trailing point xT. Such a straight line was
used in Section 1.1 to define the function w0 satisfying (1.15)–(1.16), which in its turn was used to impose the
Kutta-Joukowski condition. In spite of this fact, we took w0 as defined in (1.14) with R = 0.5 and (r, θ) being
a polar coordinate system centered at the trailing point xT and such that the half-line θ = ±π coincides with
the secant to the curved element Si ∈ TH containing xT. We have also tried other reasonable choices for this
half-line (for instance, the tangent to the arc S at xT) and the results do not vary significantly.

In this case, the solution is also analytically known (see [1]). We report in Figures 9, Table 3, and Figures 10
to 13 the same results as in the previous test. Once more the numerical results show a good agreement with
the theoretical ones and linear orders of convergence are apparent for the constant value of the stream function
on the sail and the circulation.

Figure 9. Curved sail. Stream function computed on the level-3 mesh (left) and zoom of a
more detailed view around the sail (right).

Table 3. Curved sail. Errors and convergence order for the velocity field vh, the Lagrange
multiplier λH , the constant value of the stream function on the sail ch and the circulation
around the sail γh(S).

Mesh
level

‖v−vh‖L2(Ω)2

‖v‖L2(Ω)2
Order

‖λ−λH‖
H1/2(S)′

‖λ‖
H1/2(S)′

Order |c− ch| Order |γ(S) − γh(S)| Order

0 0.223E−01 0.735E−01 0.503E+00 0.116E+01
1 0.143E−01 0.64 0.548E−01 0.42 0.270E+00 0.90 0.584E+00 0.99
2 0.973E−02 0.56 0.369E−01 0.57 0.838E−01 1.69 0.183E+00 1.68
3 0.685E−02 0.51 0.250E−01 0.56 0.408E−01 1.04 0.875E−01 1.06
4 0.486E−02 0.50 0.152E−01 0.71 0.170E−01 1.26 0.371E−01 1.24
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Figure 10. Curved sail. L2(Ω)2-error
curve for the velocity field vh.
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Figure 11. Curved sail. H1/2(S)′-
error curve for the Lagrange multiplier
λH .

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

nel

er
ro

r

 

 
Constant c error

Order h

Figure 12. Curved sail. Error curve
for the constant value ch of the stream
function on the sail.
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Figure 13. Curved sail. Error curve
for the circulation around the sail
γh(S).

4.4. Computing the sail shape

As a final test we applied the numerical method introduced above to solve the fluid-structure interaction
problem of determining the shape of a sail under the action of the wind.

In accordance to the linear framework that we are using to deal with this problem, we consider a linear string
model to compute the position of the sail under the force exerted by the wind flow. More precisely, let us assume
that the segment (0, L) is the reference configuration of the sail. A point x ∈ (0, L) undergoes a displacement
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in the y direction that we denote u(x), which is the unique solution of the following boundary-value problem:

−T d
2u

dx2
(x) = f(x) ∀x ∈ (0, L), (4.1)

u(0) = u(L) = 0, (4.2)

where T is the tension of the string and f(x) is the force per unit length exerted by the wind on the sail at
point x.

To compute the force density we make use of Remark 2.3:

f ≈ ρv∞λn
−,

where λ is the Lagrange multiplier arising from Problem 2.1 and n− is a unit vector normal to the sail. Recall
that the multiplier is evaluated on the deformed sail, which is given by

S = {(x, u(x)) : x ∈ (0, L)} .

Moreover, in agreement with the linear theory, we approximate the normal vector n− by e2. Therefore, we are
led to the following fully coupled non-linear problem:

−T d
2u

dx2
(x) = ρv∞λ(x, u(x)) ∀x ∈ (0, L),

u(0) = u(L) = 0,

To solve this problem, we propose a naive fixed point iteration which turns out to be convergent. Starting
with the flat sail (i.e., with u(0)(x) ≡ 0), the flow problem is solved by using the method described in this paper.
Then, we take

f(x) = ρv∞λ(x, u(0)(x)) = ρv∞λ(x, 0), x ∈ (0, L),

as data in problem (4.1)–(4.2). Since λ is piecewise constant, this problem can be easily solved analytically.
Thus we obtain its solution, which will be the next iterate u(1). At the following step we use u(1) to compute
the new position of the sail and use this to solve again the flow problem. (To impose the Kutta-Joukowski
condition, we proceed as in the previous test: we take w0 as defined in (1.14) with a polar coordinate system
(r, θ) centered at xT and such that the half-line θ = ±π coincides with the secant to the curved element Si ∈ TH

containing xT.) The process is iterated until convergence. More precisely, the algorithm reads as follows:

Algorithm 4.1.

• Initialization (k = 0): u(0) := 0 and S(0) := {(x, 0) : x ∈ (0, L)}.
• Iteration k ≥ 1 (S(k−1) is known):

– Solve Problem 3.3 for S := S(k−1) to obtain ψ(k), λ(k) and c(k).
– Compute the force exerted by the flow on the sail by

f (k)(x) := ρv∞λ
(k)(x, u(k−1)(x)).

– Solve problem (4.1)–(4.2) for f := f (k) to obtain u(k).
– Define a new position of the sail by

S(k) :=
{

(x, u(k)(x)) : x ∈ (0, L)
}
.

• Stopping test: ‖u(k) − u(k−1)‖L∞(0,L) ≤ ε (a given tolerance)?

The above algorithm was used with the following data:
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• domain: R = [−80, 80] × [−80, 80] (lengths in meters);
• wind speed at infinity: v∞ = 5 m/s;
• angle of incidence: α = π/6;
• air density: ρ = 1.2 kg/m3;
• string tension: T = 1600 N;
• sail length: L = 10 m;
• radius of CR: R = 0.5 m.

The obtained results are shown in Figures 14 and 15 and Table 4. The final position of the sail (namely, the
set S) is shown after convergence for different meshes in Figure 14. Furthermore, the different shapes of the
sail along the iterations, S(k), are shown in Figure 15 for a fixed mesh. Finally, the values of the differences
between successive iterates for the other physical quantities through the iteration process are reported for the
same mesh in Table 4.
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Figure 14. Computing the sail
shape. Final sail shape on different
meshes.
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Figure 15. Computing the sail
shape. Convergence of the sail shape
(level-4 mesh).

Table 4. Computing the sail shape. Differences between successive iterates for the velocity
v(k) := curlψ(k), the Lagrange multiplier λ(k) and the sail displacement u(k) (level-4 mesh).

Iteration
number k

∥∥v(k) − v(k−1)
∥∥

L2(Ω)2

∥∥λ(k) − λ(k−1)
∥∥

H1/2(S)′

∥∥u(k) − u(k−1)
∥∥

L∞(0,L)

1 0.234E+04 0.493E+03 0.280E+00
2 0.671E+02 0.304E+01 0.352E−01
3 0.962E+01 0.713E−01 0.462E−02
4 0.122E+01 0.728E−02 0.609E−03
5 0.160E+00 0.129E−03 0.815E−04
6 0.214E−01 0.235E−05 0.109E−04
7 0.287E−02 0.432E−07 0.147E−05
8 0.386E−03 0.205E−08 0.199E−06
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