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This paper deals with the approximation of the bending ohangled plate modeled by Reissner-Mindlin
equations. It is known that standard finite element methpgéied to this model lead to wrong results
when the thickness is small. Here, we propose a new mixed formulation in termshef bending
moments, shear stress, rotations and transversal digpiste To prove that the resulting variational
formulation is well posed, we use standard BabuSka-Bithenry with appropriaté-dependent norms.
The problem is discretized by standard finite elements arat estimates are proved with constants
independent of the plate thickness. Moreover, these aatsstizpend on norms of the solution that can
be a priori bounded independently of the plate thicknesssiwleads to the conclusion that the method
is locking-free. A local post-processing leadingHd approximations of transversal displacement and
rotations is introduced. Finally, we report numerical eipents confirming the theoretical results.

Keywords Reissner-Mindlin; bending moment formulation; lockifrge finite elements; error analysis.

1. Introduction

The Reissner-Mindlin theory is the most used model to agprate the deformation of an elastic thin
or moderately thick plate. It is very well understood thainstard finite element methods applied to
this model lead to wrong results when the thickneisssmall with respect to the other dimensions of
the plate, due to the so called locking phenomenon. Nevedbeadopting for instance a reduced inte-
gration or a mixed interpolation technique, this phenonmezan be avoided. Indeed, nowadays several
families of methods have been rigorously shown to be frem fiacking and optimally convergent. We
mention the recent monograph by Falk (2008) for a thorougtrigtion of the state of the art and
further references.

Among the existing methods, a large success has been shatlee mixed interpolation of tenso-
rial components (MITC) methods introduced in Bathe & Dvarki985) or variants of them (Duran
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& Liberman (1992)). Another solution is to write an equivaléormulation between the plate equa-
tions and an uncoupled system of two Poisson equations ploiaied Stokes system, by means of a
Helmholtz decomposition of the shear stress, as in Arnoldcal« FL989).

More recently, Amaraet al. (2002) proposed and analyzed a conforming finite elemenhadlet
for the Reissner-Mindlin model satisfying various boundeonditions. In their analysis the bending
moment is written in terms of three auxiliary variables lgjmg to classical Sobolev spaces. A mixed
formulation in terms of these new variables is discretizgdtandard finite elements. Under regularity
assumption on the exact solution, optimal error estimata®\proved with constants independent of
the plate thickness.

Another approach is presented by Behrens & Guzman (200®)id case the plate bending problem
is posed in terms of six variables lyinglif andH (div) spaces. A discretization in terms of discontinu-
ous polynomials and enriched Raviart-Thomas elementsgsed. Error estimates withndependent
constants are proved. These estimates are quasi optimedutarity, since they involve a norm of the
shear stress which can not be a priori bounded independsfitly

In the present paper we consider a bending moment formalfdidhe plate problem. We introduce
these moments (which in practice usually represents thetiquaf true interest in applications) as a
new unknown, together with the shear stress, the rotatioth&e transversal displacement. We obtain a
mixed variational formulation (Elasticity-like systemhigh, thanks to BabuSka-Brezzi theory, is shown
to be well posed and stable in appropriatiependent norms. For the approximation of bending moment
and rotations we employ PEERS finite elements introducedropld et al. (1984), classical Raviart-
Thomas elements are used for the shear stress and piecewsarts for the transversal displacement.
We prove an uniform inf-sup condition with respect to thecti$ization parametdr and the thickness
t. Moreover, the convergence rate is proved to be optid{a). The obtained estimates only depend
on norms of the quantities which are known to be bounded ied@égnt oft. Therefore, the method
turns out thoroughly locking-free. In addition, we prop@séocal post-processing procedure which
gives piecewise linear rotations and transversal displ@og which converge to the exact solution in a
strongeH* type discrete norm.

The outline of this paper is as follows: In Section 2, we fiestall the Reissner-Mindlin equations
and some regularity results. Then, we prove the unique Bititysand stability properties of the pro-
posed formulation. In Section 3, we present the finite elérsememe, prove a stability result and show
the (linear) convergence of the method. In addition, weothtice and analyze a local post-processing
procedure for transversal displacements and rotatiomallfi in Section 4 we report numerical tests
which allow us to assess the performance of the proposecdiheth

Throughout the paper we will use standard notations for &ebgpaces, norms and seminorms.
Moreover, we will denote witlt andC, with or without subscripts, tildes, or hats a generic cantst
independent of the mesh parameieand the plate thickneds which may take different values in
different occurrences.

From now on, we use the following notation for any tensor fietd (7j) i, j = 1,2, any vector field
n =(n)i=1,2andany scalar field

divn :=oin1+ 0202, rotn := 01Nz — dn1, Ov:= ((i:) ) curlv:= <_§\1/V) )

L. (0111t 02T _(%m  —0m _ [(0in1 dm
v ((31T21+ 02T22> ’ urihn ((3202 —01nz)’ L oz 9anz)’
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2 2
= (15), tr(1):= Zrii, 10 := > 3.
i= i,j=1

Moreover, we denote

2. The plate model.

Consider an elastic plate of thicknessuch that 0< t < 1, with reference configuratio x (-5, 5),
whereQ is a convex polygonal domain & occupied by the midsection of the plate. The deformation
of the plate is described by means of the Reissner-Mindlidehim terms of the rotation8 = (1, 32)

of the fibers initially normal to the plate’s midsurface, thealed shear stress= (y1,)»), and the
transversal displacement Assuming that the plate is clamped on its whole bounda&2ythe following
strong equations describe the plate’s response to comtgnéealed transversal loage L2(Q):

—div(¢(e(B)))—y=0 in Q, 2.1)
—divy=g in Q, (2.2)
y:tﬁz(Dwa) in 0, 2.3)
w=0,8=0 on 0Q, (2.4)

wherek := EK/2(1+ v) is the shear modulus, wita being the Young modulus, the Poisson ratio, and
k a correction factor usually taken agesfor clamped platesg(B) := 3(0B + (OB)!) is the standard
strain tensor, an@’ is the tensor of bending moduli, given by (for isotropic nmitis)

i i (VT Ve @)

The tensof# is invertible with its inverse given by

¢ 1=

12(1—v?) ( 1 v
(

E 17\/)-[_ (1V2)tr(r)l) VT € [LZ(Q)]ZXZ-

To write a variational formulation of the Reissner-Mindjifate problem, we introduce the bending
momento = (0ij), i, ] = 1,2 as a new unknown defined by

0 =% (e(B)).
We can rewrite the equation above as:
1 1
4 0‘:D[3+ ErOtB J,

introducing the auxiliary unknown:= —% rotB3. Multiplying by test function and then integrating by
parts, we get

/Q‘K*la:T+/¥B~divt+/gr(r127r21):0. (2.5)
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Now, by testing (2.1)-(2.3) with adequate functions, imétng by parts, using (2.5) and (2.4), and
imposing weakly the symmetry a@f, we obtain the following mixed variational formulation:
Find ((0,y),(B,r,w)) € H x Q such that

/QCK10:r+§/ﬂy-E+/QB-(divr+E)+/Qr(r12121)+/deiv5O,

/n-(diva+y)+/s(012—021)+/vdivy:—/ v,
Q Q Q Q

forall ((1,£),(n,s,v)) € H x Q, where

(2.6)

H :=H(div; Q) x H(div; Q),
Q:=[L2(Q)]? x L¥(Q) x LA(Q),

with
H(div; Q) := {1 € [L3(Q)]>*?:divT € [L?(Q)]?},

and
H(div; Q) := {& € [L2(Q)]2: divE € L2(Q)}.

In the analysis, we will utilize the following t-dependermtrm for the spaceél
1T, &)lIH == lITlloe + 1div T + &lo.o + 1]t Hdiv;0)
where
€1t H(div;@) =tl€llo.o+ IdivEoq:
while for the spac€&, we will use
(n,s.V)llq = lInllo.o +slo.a +[IVlo.e-
We note that for al(1, &) € H(div; Q) x H(div; Q),
(T, &) ln < CUITlHdiv:e) + 1€ [HdiviQ)):
whereC is independent df and
[Tl (div;e) + 1€ IHdivie) = ITllo.e + 1div T{lo.o +[[¢]lo.q + [[diVE|oq-

We rewrite problem (2.6) as follows:
Find ((a,y),(B,r,w)) € H x Q such that

a((aa V),(T,E))ij((T,E),(B,r,W)) =0 V(T,E) € H,
b((a.y),(n.sv)) =F(n,sv) v(n,sv)€Q,

where the bilinear forma: H x H — R andb: H x Q — R, and the linear functiond : Q — R, are
defined by

2.7)

a((a,y) /% O:T+— /VE

1E‘))(11v/azr_%/tlr ) /V‘s

(2.8)
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b((1,£),(n,sV)) /n (divt+&) +/ (T12— T21 +/ vdivE, (2.9)
and
F(n,sv): /gv

forall (a,y),(1,§) € Handforall(n,s,v) € Q.
We recall the following regularity result for the solutiohsoblem (2.7) (see Arnold & Falk (1989)).

PROPOSITION2.1 Suppose thaR is a convex polygon and € L?(Q). Let ((a,y),(B,r,w)) be the
solution of problem (2.7). Then, there exists a constamhdependent af andg, such that

Wlz.o +[[Bllze + VlHw@iv:e) +tIYILe +0]Le +tdivafie +Irflie < Clgloe-

Now, we will prove that problem (2.7) satisfies the hypotisedehe BabuSka-Brezzi theory, which
yields the unique solvability and continuous dependendbisfvariational formulation.

We first observe that the bilinear forrasb, and the linear function& are bounded with constants
independent of plate thickness

LetV:={(1,§) eH:b((1,£),(n,sVv)) =0 V¥(n,sv) € Q} be the null space of the bilinear form
b. From (2.9), we have that

Vi={(1,§)eH:&+divt=0,T=T1'and divé =0 in Q}.

The following lemma shows that the bilinear foens V-elliptic, with a constant independent of the
plate thickness.

LEMMA 2.1 There exist€ > 0, independent df, such that
a((1.£),(1,8)) = Cl(T,&)[F  V(T,&) €V.
Proof. Given(T,&) €V, usingt{T)> < 2(T:T) VT € [L?(Q)]>*?, from (2.8) we obtain

12(1— t2
a(r.8).(r.8) > 2o + L .

Since||div T+ &||o,o = 0 and||divé || o = 0, we get

12(1—-v) 1 . .
a((r.£).(1.6) > min{ O 2 (1o + v T+ £l g +C1€1 0+ v lEo).
Thus
a(1,6),(1.8)) > Cl(t, 9l
where 61-v) 1
. -V
C.mln{ = ’Z}'
Thereforeais V-elliptic, and we end the proof. O

In order to prove the corresponding inf-sup condition, wet firove the following lemma.

LEMMA 2.2 There exists > 0, independent df, such that the following holds. For @k L?(Q), there
existsT® € H(div; Q) such tha(t$, — 15;) = s, div 1° = 0 in Q, and|| T%|| ;) < Cl/Sllo,a-
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Proof. Letse L?(Q), let us put

P(s) := |Hll/gs,

and consideR := (s—P(s)). We have that € L3(Q) := {v e L%(Q) : [ov = 0} and moreover
A llo.q < clsllo.q- Then, there existe € [H3(Q)]? such that diw = A in Q and||v||1.o < ¢|[A[jo.0-
We consider the following function

¢:=V+?(;‘,),

which satisties dig = sand||¢||1,0 < [|V||1.0 + ¢[/s]lo.o. Now, we define

02V;|_ — 01V;|_ — % P(S)

s._ _
= Cur|¢ <02V2+ %P(S) —01 Vo

> c [LZ(_Q)]ZXZ_

From this, we get thadiv 75 = 0, hencer® € H(div; Q). Moreover

P P ,
(Th— 131) = Vi + 9 +0ovo + % =divv+P(s)=A +P(s) =5,

and it is easy to check that
(7% div;) < cllsllo.q-

Thus, we end the proof. O
We are ready to prove the inf-sup condition for the bilineanfb.

LEMMA 2.3 There exist€ > 0, independent df, such that

Ib((T,€),(7,5))]
o @O

>Cll(n,sV)lle V¥(n,sVv) Q.

Proof. Let (n,sv) € Q. From Lemma 2.2, there exists € H(div; Q) such thatdivt® =0 in Q,
(13— 157) = sin Q and||T%(|(giv;0) < C[/Slo.- Then,

qup [BTD).(0.59)] | [b(10).0.5v))

(1.6)eH 1(T,&)[In ~ oo+ ldivTs|oe
1 ' H S S S
= / n-dvt +/ S(T9r — T31)

[T%llo.e |/2 Q

Islge 1
= — > —||Slo.0- (2.10)
[0a ~ ¢
Now, letT := —&(z), wherez € [H3(Q)]? is the unique weak solution (as a consequence of Korn's

inequality and Lax-Milgram’s lemma) of the following auigity problem

—dive(z)=n in Q,
z=0 on 0Q.
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We have thatdivT = n € [L%(Q)]2, henceT € H(div;Q) andT = T'. Moreover, applying the
continuous dependence result, there exists0"depending only o2 such that

[Tllo.e+ldivTloe <€[nlloe- (2.11)
Therefore, -
o BUT.E).(1:5V)] _ [b(F,0),(7,5V)
p > 2 i)
(1.6)eH I1(T,€)lIn (ITllo,@ +1/divT|oe
= L / div?+/s(f )
~ Tloa+ldvilog /o Q2
Nl o 1
- Q 52 , 2.12
[loa + [dvijog ~ & 1l00 (212)

where the last inequality follows from (2.11).

Finally, let& := —0Z, whereZe H&(Q) is the unique weak solution (as a consequence of Poincaré
inequality and Lax-Milgram’s lemma) of the following auigity problem

—AZ=vVv in Q,
7z=0 on 0Q.

As before, there exists>> 0 depending only o such that

1€]lo.c +[|divE]lo.o < €[Vio.a-

It follows that

b((7,$),(n,S V)| 6((0,€),(n,5))|

Su > 9 )l
(T,E)EH 1(T,&)Im 1+1)|Ello.c + [divE]lo.0
1 -~ ~
ZE z n-&+ [ vdivg
2(|€llo.q + IdivEllo0) /Q /Q
1 S
PN — n-&+|vi3
2(|€llo.0 + [IdiVElo,0) ./Q 0.0

1 < ) _
> — — (v3 ‘ nfD
2 El0n + [dvEog) \ 102 A

> 2 Vioa Il
Z 5elViloo Nilo.q-

Given

: Ib((t,&),(n.s,v))|
A=
(r,SzL;EH [Cor3] I

we have proved that (cf. (2.12))

1
A> = ’
CHUHO,Q
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therefore,

A= [IVl[0.0- (2.13)

Lt
2¢(1+¢)
Thus, the proof follows from (2.10), (2.12) and (2.13). O

We are now in position to state the main result of this sectihich give the solvability of the
continuous problem (2.7).

THEOREM 2.2 There exists a uniquéo, y), (B,r,w)) € H x Q solution of the mixed variational for-
mulation (2.7), and the following continuous dependenealtéolds

[((a.y),(B.r,w))[[Hxq < Cldllo0;

whereC is independent df.

Proof. By virtue of Lemmas 2.1 and 2.3, the proof follows from a gfraforward application of the
abstract Theorem 1.1 in Chapter Il of Brezzi & Fortin (1991). O

3. The Finite Element Scheme

Let .7, be a regular family of triangulations of the polygonal regi@ by trianglesT of diameterhy
with mesh sizér:= max{hr : T € 7}, and such that there holds= U{T : T € %,}. In addition, given
an integerk > 0 and a subse® of R?, we denote byPy(S) the space of polynomials in two variables
defined inS of total degree at mo$t and for eacil € %, we define the local Raviart-Thomas space of

order zero
e (3).(2)-(3)}

X\ . .
where y is a generic vector dR?.

On the other hand, for each triandlez .7, we take the unique polynomibt € P3(T) that vanishes
ondT and is normalized by; bt = 1. This cubic bubble function is extended by zero onto théreg
Q — T and therefore it becomes an elementd{ Q). Hence, we define

B(h) :={Tth € H(diV,Q) : (Ti1h, Tion) € Z(T),i =1,2,VT € S},

whereZ(T) := sparfcurl(br), T € Z}.
Hence, we define the following finite element subspaces:

HY 1= X & B(%),

whereX, is the global Raviart-Thomas space of lowest order,

Xp:={Th € H(div,Q) : Tp|T € [RTo(T)Y2, VT € F},

HY := {& € H(div,Q) : &\t € RTo(T), VT € Fh},

QN = {vh € L*(Q) : |1 € Po(T), VT € F},
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Qf = {nn € [LA(Q)]?: nnlr € [Po(T)]2, VT € Fh},

Q= {sh € HY(Q) 1 5|1 € Po(T), VT € Fh}.

At this point we recall thaH? x Qﬁ x Qj, correspond to the PEERS-space given by Arnold, Brezzi
and Douglas in Arnolet al. (1984).

DefiningHp, := HZ x HY andQy, := Qﬁ x Qf, x QY our mixed finite element scheme associated with
the continuous formulation (2.7) reads as follows:

Find ((On, W), (Bn,Th,Wh)) € Hp x Qp such that

a((an, ¥h), (Th, én)) +b((Th, &n), (Bn,Th,Wh)) =0 ¥(Th,én) € Hp,

b((Th, ¥h), (1Th,Sh;Vh)) = F (Mh,Sh, V) ¥(1h, S, Vh) € Qh. (31)

Our next goal is to show the corresponding discrete versibhiemmas 2.1 and 2.3 to have the
solvability and stability of problem (3.1). With this aim,ewnote that the discrete null space of the
bilinear formb reduces to:

Vh::{(rhafh)eHh:/th'(diVTh—FEh)—f—/QSh(Tlm—TZJh)‘F/(;VhdiVEhZO V(nh,sh,vh)th}.

Let (Th, &n) € Wy, taking(0,0,vn) € Qp and using thatdiv &,)|t is a constant, since,|t is also a
constant, we conclude that diy=0in Q.

Now, taking(nn,0,0) € Qp, sincediv T, =0in Q VT, € B(%,), we have thatdiv T)|7 is a constant
vector. Moreover, since dé&, = 0, we have thafy|t is also a constant vector. Therefore, simgér is
also a constant vector, we conclude tfgit ., + &,) = 0 in Q. Thus, we obtain

Vh{(rh,Eh)EHh céht+divt, =0, /an(rthfrzm):O Vs, € Qf, and divé, =0 in Q}.

Note that the second condition in the above definition doegmarantee the symmetry of the tensors
HZ, as it was the case for the continuous kernéd.of

Hence, we have that, is not included inV, however the proof of Lemma 2.1 can be repeated
(because in this proof we never used that '), to get the following result

LEMMA 3.1 There exist€ > 0 such that

a((Th, &), (Th, &) = Cll(Th, &)IIZ V(Th, &n) € Vi,

where the constaf@ is independent ofi andt.

We introduce the Raviart-Thomas interpolation opera#ar[H(Q)]? — H!. Let us review some
properties of this operator that we will use in the sequel:

e Let # be the orthogonal projection frobf(Q) onto the finite element subspa@¥. Then for
all & € [HY(Q)]?, we have
divzE = 2(divé). (3.2
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e There existg > 0, independent df, such that
1€ = %&lloa <chlélio VEeHY Q) (3:3)

Now, let T, : [H1(Q)]?*2 — X, be the usual interpolation operator defined as the cartps@tuct
of Raviart-Thomas interpolation operat@; which satisfies (see Arnokt al. (1984)):

e Let 7 be the orthogonal projection frofa?(Q)]? onto the finite element subspe@é. Then for
all T € [HY(Q)]?*2, we have

div Myt = 2(divT).
e There existg > 0, independent dfi, such that

IT—Mtllog <ch|Tlie VT € [HY(Q)]22

SinceX, C HZ, the operatofT, can be considered frofii(Q)]>2 into HZ, with the same prop-
erties given above.
Moreover, we let?! : L2(Q) — Q}, the ortogonal projection. Then, we have

Is— 249)]lo.o < Ch|ls]|1.0- (3.4)

We continue with the following lemma establishing the déteranalogue of Lemma 2.3.

LEMMA 3.2 There exist€ > 0, independent df andt, such that

sup IDUT0.E0). (1.5, 00))
(Th.éh)eHp H(rhaEh)HH

> C[[(nh:Sh,Vh)llg  ¥(1h,Sh,Vh) € Qn.

Proof. Let(nh,sh,Vh) € Qn. From Lemma4.4in Arnolét al.(1984), we have that there exidige HZ
andc™> 0 such that,

/f]h-diVTh—F/ Sh(Tioh — T21n)
0 0

[ Thllo.@ + [ div Thllo,0

> E{[Mnllo.o + lIsnllo}- (3.5)

Thus, using (3.5), we have

Ib((Th, &h), (Mh,Sh,Vh)| . [B((Th,0), (M, Sh, V)|
sup > = dihal
(Th,&n)Hn [1(Th, &n)lIH [ Thllo,o + [ div Th|o,0

/nh'diV?hJF/Sn(leh*fZ]h)
_Jo 0

[ Thllo. + [/ div Thllo.0

> &{|Innllo.o + Isnllo0 }

which yields

sup |b((Th75h)v(’7h7Sw,Vh))

| .
= €{||Nnllo.@ + I/snllo, V(Nh,h,Vh) € Qh. (3.6)
(Th.&n)eHn Il(Th, én) 1 {Illoe +lisloa} ( )
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Let nowz be the unique weak solution (as a consequence of Poinaagéality and Lax-Milgram’s
lemma) of the following problem:

—Az=vj in Q,
z=0 on 0Q.

Sincev, € L2(Q) and Q is a convex domain, a classical elliptic regularity resulagntees that
ze H2(Q)NHE(Q) and there exists > 0 such that|z|2.0 < ¢]|Vn|l0.q-

Now, we definef := —Oze [HY(Q)]?. We note that di¥ = v, in Q, and
1€l = 02|10 < Zl20 < Elvilloe- 3.7)

Let Eh = %’E From (3.2) and the fact that df\~I= Vh, we have that di@h =Vh in Q. Hence, using
the approximation property (3.3), we deduce that

[ €nllo.c +ldivénloe < [I&h—Elloe + I€lloe +[ldivEloe < chléie +€]l1e-
From estimates (3.7), we obtain

(1+1)[|Znll0.0 + [IdivEnlloo < 2(|&nllo.o + [IdivEnloe) < EllValloo-

It follows that

sup 12T E0). (0S| - [D((O, &), (5, Vo))
(Th.&n)eHn 1(Th, &n) W (1+1)[[&nllo.o + [|divénloe

1 _ o

Z = — /Uh'5h+/vhdlvfh
2([[€nllo.@ + lIdivén]lo.q) /2 fo

z 2

: Vi

[ &+ il

1
> — __
2(||énllo.0 + l|divénlo.0)

1 2 ~
> ——— (|[wlio—| [ mn-&
2([|&nllo. + [1divénllo.) Q

1
> E”Vh”O,Q —|Innlloe-

)

Given

A= sup 20T &), (T, S, Vh))]
(Thi&n)Hn [(Th. &n)lln
we have proved that (cf. (3.6))
An = €]|nhllo.a
and therefore we have that

¢
mHVhHo,Q-

This allows us to conclude the proof. O
We are now in a position to establish the unique solvabilitg,stability, and the convergence prop-
erties of the discrete problem (3.1).

An >



12 of 20 L. BEIRAO DA VEIGA, D. MORA AND R. RODRIGUEZ

THEOREM3.1 There exists a uniquéoh, yh), (Bn,,Wh)) € Hp x Qp, solution of the discrete problem
(3.1). Moreover, there exi§,C > 0, independent df andt, such that

1((Ths V), (BT Wh)) [0 < Clgllo.0

and
H((07 V)a (B; r,W)) - ((Um M’l)a (Bh)rhawh))HHXQ (3 8)
SC it (@)~ (T &) (e

where((o,y),(B,r,w)) € H x Q is the unique solution of the mixed variational formulat{@nv).

Proof. Is a direct application of the Theorem 2.1 in Chapter Il of ik Fortin (1991). O
The following theorem provides the rate of convergence ofoied finite element scheme (3.1).

THEOREM 3.2 Let((a,y),(B.r,w)) € Hx Q and((on, W), (Bn,rh,Wh)) € Hn x Qn be the unique so-
lutions of the continuous and discrete problems (2.7) ari),(Bespectively. Iy € H1(Q), then,

||((07 V)a (Ba r,W)) - ((aha M’I)v (Bh; rhvwh))HHXQ < ChHngQ
Proof. First, we note that (see (2.1))
l[(diva +y) — (divan+ )00 = || div O+ W00

From the second equation of (3.1), we have that

/th-(divathw):O Vnne QF,
hence 1
~(@vanlr = [ h= 2.
IT| Jr

Thus, also recalling (2.2),

ldvantlifo=_Y ldvon+wldr=_3 Iw-ZmlEr <Ci_y htimlis
T;’“ ' T;"h ' Tezﬁh '

<C 5 Rldvimlr=Ci 5 M| 2(divy)|3r <Clgl§e.
Te% Te%

Therefore
[| div @ + yhl|o,0 < Chllgllo,o- (3.9)

On the other hand, we have

|divy—divin|§o = Ildivy—divin[§r = Y [[divy—2(divy)llsr <C Y hg[divyr,
T;Jh ' Tezﬁh ' Té'n '

which, using (2.2), yields
[divy—divinloo < Chigl1,0. (3.10)
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Now, it is easy to check that (see Lemma 2.1)
(It o +t21€15.0) <Cal(1,§),(T.8)) V(T,§) €H.
In particular, taking o — g,y — ) € H, we get
(lo—onllg o +tlly—Wllg.0) <Cal(a —Gn,y— ). (0~ Oh, V),
and, using the first equation of (2.7), we obtain
(lo = onllg.o +t2lly—wlig.) <Cb((Gh— 0,1 —V).(B.r.W)). (3.11)

Now, from the definition of the bilinear forto(-, -) we get

b{(0n— 0.y~ V). (B.rw) = [ B-(div(0n—0) + ()

. (3.12)
+ [ 11— 02m) — (01— 020+ [ welv ().
Subtracting the second equation of (3.1) from the secondtequ(2.7), we have that
| M- (div(0n—0)+ (=) =0 ¥ e Qf), (3.13)
[ (@13~ 021n) ~ (12~ 021)) =0 Ve € Q. (3.14)
/Q wdiv(sh—y) =0 Y € QY. (3.15)

Consideringﬁ(ﬁ) € Qﬁ, 2Y(r) € Q, and Z(w) € QY, using (3.13), (3.14) and (3.15), we rewrite
(3.12) as follow

b{(0n— 0.y = V). (B.rw)) = [ (B—Z(B))-(div(0n— 0) + (1~ )
+/Q(r — 21(1) (0120 — O21) — (O12— O21))
+ Q(W— 2 (w))div (yh— Y).

From (3.11), the above equation and the Cauchy-Schwarnaiiég we obtain

|6 —onllZ o +t2Iy—wlEa <CIB— 2(B)looldiv(Gh— o)+ (h— Yoo
+C|r— 2%(r)|
+Cllw— Z(w

~—

lo.ollon—0llo.0
lo.olldiv(yh—¥)lo.q-

—

Applying the inequalitypg < 3 p?+ 3¢2, from the above bound it follows
o — ol +t2ly—wli§o <ClIB- 2(B)lo.elldiv(gh—0)+ (h—V)llo.a
1 1
+ §C2||r —2Y0)llho+ §||Uh -0l§0
+Cllw— 2 (W) |[o,o|ldiv(h —Y)llo.e-
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Using standard error estimates arguments, (3.4), (3.9§2a4), yields

o —onl§qo+t%ly—wl§a < C(ch|IBll1ellglloq +chPlr|1a + chPlwl1olgl1e),
and thus, from Proposition 2.1, we get

|0 —Onlloe +tlly— oo < Chlgl1e. (3.16)

Finally, using (3.8) we obtain

” ((0', V)7 (B7 raW)) - ((aha M’I)v (Bh?rfhwh))”HXQ

<C|l((a.y),(B.r,w) — ((Gn, ), (Z(B), Z(r), Z(W)))|IHxq
< Chllgll10,

where in the last inequality we have used standard erranatts arguments, (3.4), (3.9), (3.10) and
(3.16). We conclude the proof. O

3.1 A post processing of transversal displacement and rotation

In this section we present an element-wise post processoag@ure which allows to build piecewise
linear transversal displacement and rotations with impdapproximation properties. In the following,
we indicate withe a general edge of the triangulation and withthe set of all such edges. Moreover,
we indicate withhe the length ofe € &, and associate to each edge a unit normal vegtacthosen once
and for all. For each internal edgef &, we indicate withT ™ and T~ the two triangles of the mesh
which have the edgein common, wher@, corresponds to the outward normal ot and the opposite
for T~. Then, given any piecewise regular (scalar or vector) fonaton Q, for eache € &, we define
the jump on internal edges

M =V le—V e,

wherev* is the restriction of/ to T*. On boundary edges, the jump is simply given by the value of
on the edge. We introduce the followiktf type discrete norm

— 2
VI3 = ; IOvii§ T + % he* V] [5.e-
Te% ecdh

for all sufficiently regular (scalar or vector) functions
Given, the discrete solutioffon, V), (Bn, rh,Wh)), we define a post-processed transversal displace-
mentw; € L2(Q) as follows. For alll € 7 letw;, € P1(T) such that

DPW, = Wh, (3.17)

Owj, = 2 (B +t2k ~1yp).
It is immediate to check that}; is well defined and unique.
Letw, = 2w, we start proving the following preliminary result.

LEMMA 3.3 There holds
Wi —wh|[1n < Chllg]|1,0-
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Proof. To prove the result, we will apply the following inf-sup catidn: For allv, € Q}), there exists
&n € H, such that

/Q wdivE = [ValZn,  [l&nlo. < ClVhlLn: (3.18)

The simple proof of the above inf-sup condition will be shduwiefly. Defining the degrees of freedom
of &, by &, - ne := hg1[[v] for all e € &, an element-wise integration by parts and the definitiomef t
jump operator yield

Jo e = 5 et e = Il

The second bound in (3.18) follows easily by a scaling argume
Applying (3.18) tovy = (W, —w; ), noting that dié;, is piecewise constant and finally using the
discrete equations (3.1), we obtain

i~ wnlF = [ (o —wn)ivén = [ (w—wnivén= [ (B~ Bén+ 13 [ (v- wén
Ja Ja Ja Q
The proof then follows from the above equation using a Catfstiywarz inequality, recalling Theorem

3.2 and using (3.18). O
We have the following improved convergence result for thetyprocessed transversal displacement.

ProrPOSITION3.3 There holds
[w—wj1n < Chllgll10-

Proof. We note that we can split
W = Wh + W, W=Ww +W, (3.19)

wherew, andw;, already defined above, are piecewise constant wijlandw have zero average on
each element.

Applying a scaled trace inequality on each triangland using tha#, andw have zero average on
each element, we have that

; he | [Wh — W] 5. < C ;(h;znvvh—W||%,T+|v~vh—v~v|iT><c ;|\D(wh—W>|\%,T. (3.20)
ecéh Te% Te

We now observe that, due to (3.19), there hol|r = OWy |t and Ow|t = Owjy for all T € .

Therefore, first due to definition (3.17) and (2.3), then gsitandard properties of the projec@vr, for
all T € .7, we obtain

1O — W) |51 = || 2 (Ba+t2k ) — (B+ 2k Hy)|§ 1

|2 (B + 12k~ ) — P (B + 2k Yy) |81 + | 2(B+ Pk ) — (B+ 12k Yy) |3+
[ (Bn+t2k ) — (B +t2K*1V)H%,T +CH|(B +t2K71V)|iT
C(||Bn— 3”%: + 4y — VH%,T + h%|ﬁ|iT + h%t4|V|iT)-

The above estimate, combined with Theorem 3.2 and Propodgtil, immediately yields

1808 — W)+ < CHg|f o- (3.21)

TeIh
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From (3.20), (3.21) and the definition pf || , norm, we finally obtain
[[Wh —W[|1h < Chllgl[1,0-

The above estimate, combined with Lemma 3.3 and a trianghguiality, finally gives the proof of the
Proposition:
[W—Whl[1n < [[Wi = Wh||1n+ [[Wh — Wi[1n < Chllg]|1.0-
O
We define also a post-processed rotation figjds [L?(Q)]? as follows: For allT € ., let B €
[P1(T)]? such that
P B = Bn,
OB = 2(¢ ton+1pd),

whereZ is theL2 projection onto the space of piecewise consR#it? tensor fields. It is immediate to
check thaf3y is well defined and unique.
Moreover, the following results can be proved following tzene lines shown above.

(3.22)

PROPOSITION3.4 There holds
1B —Billuh < Chllgll1e-
Finally note that both post-processing procedures arg fattal and therefore have a negligible
computational cost.

REMARK 3.1 Although the main purpose of this scheme is to computetarbepproximation of the
stresses, using this post-processing a piecewise lingaioxipation of transversal displacement and
rotations, converging in B type norm can be recovered. Note in particular that, frondéfenition of
the norm|| - |15 and the fact that the jumps wfand are null, it follows that at the limit foh — 0 the
post-processed discrete functions will also be continuous

4. Numerical results

We report in this section some numerical experiments whafifion the theoretical results proved
above. The numerical method analyzed has been implemenéel ATLAB code.

As atest problemwe have taken an isotropic and homogeneous ghate- (0,1) x (0,1) clamped
on the whole boundary for which the analytical solution ipleitly known (see Chinosét al. (2006)).
We analyze the convergence properties of the elements gedgeere by considering different uniform
decompositions as shown in Figure 1, and keeping the thastne 0.001.

Choosing the transversal logds:
E
gxy) = 121-v2) [12)’()’— 1)(5¢ —5x+1) (2y2(y_ 1)% 4 x(x— 1) (5y* — 5y + 1))
+12X(x— 1)(5y2 — By + 1) (22(x— 1)2+ y(y— 1)(5% — Bx+ 1))} ,
the exact solution of problem (2.7) is given by

w(xy) =330 Dy 1°

2
75(1& ) [y3(y— 1)3%(x— 1) (5%% — 5x + 1) +x3(x — 1)3y(y — 1)(5y* — By + 1)}
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FIG. 1. Square plate: uniform meshes.

Bu(xy) =Y (y— 1) (x— 1)*(2x— 1),

Ba(xy) =x3(x—1)%y*(y—1)%(2y— 1).

The material constants have been cho$er: 1, v = 0.30 and the shear correction factor has been
takenk = 5/6.

In what follows,N denotes the number of degrees of freedom, narhely; dim(Hy, x Qp). More-
over, we define the individual errors by:

&0) :=[|o—0hlloe, e0,y):=|(dva+y) - (divonti)loe: ey) =V tllindv.e),

er):=|r—rnlloe,  eB)=I[B-LBnlloe,  ew):=[w—whoa,

where((a,y),(B.r,w)) € HxQand((0n, W), (Bn,h,Wh)) € Hn x Qp are the unique solutions of prob-
lems (2.7) and (3.1), respectively.
Also, we define the experimental rates of convergdncefor the errorse(o), e(a, y), e(y), (r),
e(B) ande(w) by
__log(e()/€())
el) = "2 logiN/N)

whereN andN’ denote the degrees of freedom of two consecutive triarignkatvith errorse ande’.
Tables 1, 2 and 3 show the convergence history of the mixete #tément scheme (3.1) applied to
ourtest problem

Table 1. Errors and experimental rates of convergence fahlaso and(div o + y), computed on uniform meshes.

N e(o) rc(o) e(o,y) rc(a,y)
1345 0.40270e-04 - 0.29609e-03 -
5249 0.19649e-04 1.054 0.14805e-03 1.018
20737 0.09760e-04 1.019 0.07404e-03 1.009
82433 0.04868e-04 1.008 0.03702e-03 1.004
328705 0.02431e-04 1.004 0.01851e-03 1.002
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Table 2. Errors and experimental rates of convergence faahlasy andr, computed on uniform meshes.

N &) () EQ) E0
1345 0.31715e-02 - 0.87462e-04 -
5249 0.15876e-02 1.016 0.39217e-04 1.178
20737 0.07942e-02 1.008 0.15009e-04 1.398
82433 0.03971e-02 1.004 0.05491e-04 1.457

328705 0.01986e-02 1.002 0.01991e-04 1.466

Table 3. Errors and experimental rates of convergence faahlas3 andw, computed on uniform meshes.

N &B) <(B) o) rc(w)
1345 0.39713e-04 - 0.66226e-05 -
5249 0.18189e-04 1.147 0.27707e-05 1.280
20737 0.08884e-04 1.043 0.13136e-05 1.086
82433 0.04416e-04 1.013 0.06478e-05 1.025

328705 0.02205e-04 1.004 0.03228e-05 1.007

We observe there that the rate of converge@¢l) predicted by Theorem 3.2 is attained for all
variables.

Figure 2 shows the profiles of the discrete transversalaigphentv, (left) and the first component
of the discrete rotation vectdy, (right) fort = 0.001, and the finest mesh.

FiG. 2. Approximate transversal displacement (left) and ttet iomponent of the rotation vector (right).

Figure 3 shows the profiles of the discrete shear sifgks t = 0.001, and the finest mesh.
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FiG. 3. Approximate shear stress: first component (left) andrsgtcomponent (right).

Figures 4 and 5 show the profiles of the bending moment temger(dijn ), i, j = 1,2, fort = 0.001,
and the finest mesh.

FIG. 4. Approximate bending momentr; 1, (left) and o124 (right).



20 of 20 L. BEIRAO DA VEIGA, D. MORA AND R. RODRIGUEZ

FiG. 5. Approximate bending momentroy, (left) and oo, (right).
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