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Numerical analysis of a locking-free mixed finite element
method for a bending moment formulation of Reissner-Mindlin

plate model

Lourenco Beirao-Da-Veiga, David Mora,
Rodolfo Rodŕıguez
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This paper deals with the approximation of the bending of a clamped plate modeled by Reissner-Mindlin
equations. It is known that standard finite element methods applied to this model lead to wrong results
when the thicknesst is small. Here, we propose a new mixed formulation in terms ofthe bending
moments, shear stress, rotations and transversal displacement. To prove that the resulting variational
formulation is well posed, we use standard Babuška-Brezzitheory with appropriatet-dependent norms.
The problem is discretized by standard finite elements and error estimates are proved with constants
independent of the plate thickness. Moreover, these constants depend on norms of the solution that can
be a priori bounded independently of the plate thickness, which leads to the conclusion that the method
is locking-free. A local post-processing leading toH1 approximations of transversal displacement and
rotations is introduced. Finally, we report numerical experiments confirming the theoretical results.
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1. Introduction

The Reissner-Mindlin theory is the most used model to approximate the deformation of an elastic thin
or moderately thick plate. It is very well understood that standard finite element methods applied to
this model lead to wrong results when the thicknesst is small with respect to the other dimensions of
the plate, due to the so called locking phenomenon. Nevertheless, adopting for instance a reduced inte-
gration or a mixed interpolation technique, this phenomenon can be avoided. Indeed, nowadays several
families of methods have been rigorously shown to be free from locking and optimally convergent. We
mention the recent monograph by Falk (2008) for a thorough description of the state of the art and
further references.

Among the existing methods, a large success has been shared by the mixed interpolation of tenso-
rial components (MITC) methods introduced in Bathe & Dvorkin (1985) or variants of them (Durán
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& Liberman (1992)). Another solution is to write an equivalent formulation between the plate equa-
tions and an uncoupled system of two Poisson equations plus arotated Stokes system, by means of a
Helmholtz decomposition of the shear stress, as in Arnold & Falk (1989).

More recently, Amaraet al. (2002) proposed and analyzed a conforming finite element method
for the Reissner-Mindlin model satisfying various boundary conditions. In their analysis the bending
moment is written in terms of three auxiliary variables belonging to classical Sobolev spaces. A mixed
formulation in terms of these new variables is discretized by standard finite elements. Under regularity
assumption on the exact solution, optimal error estimates were proved with constants independent of
the plate thickness.

Another approach is presented by Behrens & Guzmán (2009). In this case the plate bending problem
is posed in terms of six variables lying inL2 andH(div) spaces. A discretization in terms of discontinu-
ous polynomials and enriched Raviart-Thomas elements is proposed. Error estimates witht-independent
constants are proved. These estimates are quasi optimal in regularity, since they involve a norm of the
shear stress which can not be a priori bounded independentlyof t.

In the present paper we consider a bending moment formulation for the plate problem. We introduce
these moments (which in practice usually represents the quantity of true interest in applications) as a
new unknown, together with the shear stress, the rotations and the transversal displacement. We obtain a
mixed variational formulation (Elasticity-like system) which, thanks to Babuška-Brezzi theory, is shown
to be well posed and stable in appropriatet-dependent norms. For the approximation of bending moment
and rotations we employ PEERS finite elements introduced by Arnold et al. (1984), classical Raviart-
Thomas elements are used for the shear stress and piecewise constants for the transversal displacement.
We prove an uniform inf-sup condition with respect to the discretization parameterh and the thickness
t. Moreover, the convergence rate is proved to be optimalO(h). The obtained estimates only depend
on norms of the quantities which are known to be bounded independent oft. Therefore, the method
turns out thoroughly locking-free. In addition, we proposea local post-processing procedure which
gives piecewise linear rotations and transversal displacement which converge to the exact solution in a
strongerH1 type discrete norm.

The outline of this paper is as follows: In Section 2, we first recall the Reissner-Mindlin equations
and some regularity results. Then, we prove the unique solvability and stability properties of the pro-
posed formulation. In Section 3, we present the finite element scheme, prove a stability result and show
the (linear) convergence of the method. In addition, we introduce and analyze a local post-processing
procedure for transversal displacements and rotations. Finally, in Section 4 we report numerical tests
which allow us to assess the performance of the proposed method.

Throughout the paper we will use standard notations for Sobolev spaces, norms and seminorms.
Moreover, we will denote withc andC, with or without subscripts, tildes, or hats a generic constant
independent of the mesh parameterh and the plate thicknesst, which may take different values in
different occurrences.

From now on, we use the following notation for any tensor fieldτττ = (τi j ) i, j = 1,2, any vector field
η = (ηi) i = 1,2 and any scalar fieldv:

divη := ∂1η1 + ∂2η2, rotη := ∂1η2− ∂2η1, ∇v :=

(
∂1v
∂2v

)
, curlv :=

(
∂2v
−∂1v

)
,

div τττ :=

(
∂1τ11+ ∂2τ12

∂1τ21+ ∂2τ22

)
, Curlη :=

(
∂2η1 −∂1η1

∂2η2 −∂1η2

)
, ∇η :=

(
∂1η1 ∂2η1

∂1η2 ∂2η2

)
,
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τττ t := (τ ji ), tr(τττ) :=
2

∑
i=1

τii , τττa : τττb :=
2

∑
i, j=1

τa
i j τ

b
i j .

Moreover, we denote

I :=

(
1 0
0 1

)
, J :=

(
0 1
−1 0

)
.

2. The plate model.

Consider an elastic plate of thicknesst such that 0< t 6 1, with reference configurationΩ ×
(
− t

2, t
2

)
,

whereΩ is a convex polygonal domain ofR
2 occupied by the midsection of the plate. The deformation

of the plate is described by means of the Reissner-Mindlin model in terms of the rotationsβ = (β1,β2)
of the fibers initially normal to the plate’s midsurface, thescaled shear stressγ = (γ1,γ2), and the
transversal displacementw. Assuming that the plate is clamped on its whole boundary∂Ω , the following
strong equations describe the plate’s response to conveniently scaled transversal loadg∈ L2(Ω):

−div(C (ε(β )))− γ = 000 in Ω , (2.1)

−divγ = g in Ω , (2.2)

γ =
κ
t2 (∇w−β ) in Ω , (2.3)

w = 0, β = 000 on ∂Ω , (2.4)

whereκ := Ek/2(1+ν) is the shear modulus, withE being the Young modulus,ν the Poisson ratio, and
k a correction factor usually taken as 5/6 for clamped plates,ε(β ) := 1

2(∇β +(∇β )t) is the standard
strain tensor, andC is the tensor of bending moduli, given by (for isotropic materials)

C τττ :=
E

12(1−ν2)
((1−ν)τττ + νtr(τττ)I) ∀τττ ∈ [L2(Ω)]2×2.

The tensorC is invertible with its inverse given by

C
−1τττ :=

12(1−ν2)

E

(
1

(1−ν)
τττ −

ν
(1−ν2)

tr(τττ)I
)

∀τττ ∈ [L2(Ω)]2×2.

To write a variational formulation of the Reissner-Mindlinplate problem, we introduce the bending
momentσσσ = (σσσ i j ), i, j = 1,2 as a new unknown defined by

σσσ := C (ε(β )).

We can rewrite the equation above as:

C
−1σσσ = ∇β +

(
1
2

rotβ
)

J,

introducing the auxiliary unknownr := − 1
2 rotβ . Multiplying by test function and then integrating by

parts, we get ∫

Ω
C

−1σσσ : τττ +
∫

Ω
β ·div τττ +

∫

Ω
r(τ12− τ21) = 0. (2.5)
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Now, by testing (2.1)-(2.3) with adequate functions, integrating by parts, using (2.5) and (2.4), and
imposing weakly the symmetry ofσσσ , we obtain the following mixed variational formulation:

Find ((σσσ ,γ),(β , r,w)) ∈ H ×Q such that

∫

Ω
C

−1σσσ : τττ +
t2

κ

∫

Ω
γ ·ξ +

∫

Ω
β · (div τττ + ξ )+

∫

Ω
r(τ12− τ21)+

∫

Ω
wdivξ =0,

∫

Ω
η · (div σσσ + γ)+

∫

Ω
s(σ12−σ21)+

∫

Ω
vdivγ =−

∫

Ω
gv,

(2.6)

for all ((τττ ,ξ ),(η ,s,v)) ∈ H ×Q, where

H := H(div;Ω)×H(div;Ω),

Q := [L2(Ω)]2×L2(Ω)×L2(Ω),

with
H(div;Ω) := {τττ ∈ [L2(Ω)]2×2 : div τττ ∈ [L2(Ω)]2},

and
H(div ;Ω) := {ξ ∈ [L2(Ω)]2 : divξ ∈ L2(Ω)}.

In the analysis, we will utilize the following t-dependent norm for the spaceH

‖(τττ,ξ )‖H := ‖τττ‖0,Ω +‖div τττ + ξ‖0,Ω +‖ξ‖t,H(div;Ω),

where
‖ξ‖t,H(div ;Ω) := t‖ξ‖0,Ω +‖divξ‖0,Ω ,

while for the spaceQ, we will use

‖(η ,s,v)‖Q := ‖η‖0,Ω +‖s‖0,Ω +‖v‖0,Ω .

We note that for all(τττ ,ξ ) ∈ H(div;Ω)×H(div;Ω),

‖(τττ,ξ )‖H 6 C(‖τττ‖H(div;Ω) +‖ξ‖H(div;Ω)),

whereC is independent oft and

‖τττ‖H(div;Ω) +‖ξ‖H(div;Ω) := ‖τττ‖0,Ω +‖div τττ‖0,Ω +‖ξ‖0,Ω +‖divξ‖0,Ω .

We rewrite problem (2.6) as follows:
Find ((σσσ ,γ),(β , r,w)) ∈ H ×Q such that

a((σσσ ,γ),(τττ ,ξ ))+b((τττ,ξ ),(β , r,w)) = 0 ∀(τττ ,ξ ) ∈ H,

b((σσσ ,γ),(η ,s,v)) = F(η ,s,v) ∀(η ,s,v) ∈ Q,
(2.7)

where the bilinear formsa : H ×H → R andb : H ×Q → R, and the linear functionalF : Q → R, are
defined by

a((σσσ ,γ),(τττ ,ξ )) :=
∫

Ω
C

−1σσσ : τττ +
t2

κ

∫

Ω
γ ·ξ

=
12(1−ν2)

E

(
1

1−ν

∫

Ω
σσσ : τττ −

ν
1−ν2

∫

Ω
tr(σσσ)tr(τττ)

)
+

t2

κ

∫

Ω
γ ·ξ ,

(2.8)
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b((τττ,ξ ),(η ,s,v)) :=
∫

Ω
η · (div τττ + ξ )+

∫

Ω
s(τ12− τ21)+

∫

Ω
vdivξ , (2.9)

and
F(η ,s,v) := −

∫

Ω
gv,

for all (σσσ ,γ),(τττ ,ξ ) ∈ H and for all(η ,s,v) ∈ Q.
We recall the following regularity result for the solution of problem (2.7) (see Arnold & Falk (1989)).

PROPOSITION2.1 Suppose thatΩ is a convex polygon andg ∈ L2(Ω). Let ((σσσ ,γ),(β , r,w)) be the
solution of problem (2.7). Then, there exists a constantC, independent oft andg, such that

‖w‖2,Ω +‖β‖2,Ω +‖γ‖H(div;Ω) + t‖γ‖1,Ω +‖σσσ‖1,Ω + t‖div σσσ‖1,Ω +‖r‖1,Ω 6 C‖g‖0,Ω .

Now, we will prove that problem (2.7) satisfies the hypotheses of the Babuška-Brezzi theory, which
yields the unique solvability and continuous dependence ofthis variational formulation.

We first observe that the bilinear formsa, b, and the linear functionalF are bounded with constants
independent of plate thicknesst.

LetV := {(τττ,ξ ) ∈ H : b((τττ,ξ ),(η ,s,v)) = 0 ∀(η ,s,v) ∈ Q} be the null space of the bilinear form
b. From (2.9), we have that

V := {(τττ,ξ ) ∈ H : ξ +div τττ = 000, τττ = τττ t and divξ = 0 in Ω}.

The following lemma shows that the bilinear forma isV-elliptic, with a constant independent of the
plate thicknesst.

LEMMA 2.1 There existsC > 0, independent oft, such that

a((τττ,ξ ),(τττ ,ξ )) > C‖(τττ,ξ )‖2
H ∀(τττ,ξ ) ∈V.

Proof. Given(τττ,ξ ) ∈V, using tr(τττ)2 6 2(τττ : τττ) ∀τττ ∈ [L2(Ω)]2×2, from (2.8) we obtain

a((τττ,ξ ),(τττ ,ξ )) >
12(1−ν)

E
‖τττ‖2

0,Ω +
t2

κ
‖ξ‖2

0,Ω .

Since‖div τττ + ξ‖0,Ω = 0 and‖divξ‖0,Ω = 0, we get

a((τττ,ξ ),(τττ,ξ )) > min

{
12(1−ν)

E
,

1
κ

}(
‖τττ‖2

0,Ω +‖div τττ + ξ‖2
0,Ω + t2‖ξ‖2

0,Ω +‖divξ‖2
0,Ω

)
.

Thus

a((τττ,ξ ),(τττ ,ξ )) > C‖(τττ,ξ )‖2
H ,

where

C := min

{
6(1−ν)

E
,

1
2κ

}
.

Therefore,a is V-elliptic, and we end the proof. �

In order to prove the corresponding inf-sup condition, we first prove the following lemma.

LEMMA 2.2 There existsc> 0, independent oft, such that the following holds. For alls∈ L2(Ω), there
existsτττs ∈ H(div;Ω) such that(τs

12− τs
21) = s, div τττs = 000 in Ω , and‖τττs‖H(div;Ω) 6 c‖s‖0,Ω .
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Proof. Let s∈ L2(Ω), let us put

P(s) :=
1
|Ω |

∫

Ω
s,

and considerλ := (s− P(s)). We have thatλ ∈ L2
0(Ω) := {v ∈ L2(Ω) :

∫
Ω v = 0} and moreover

‖λ‖0,Ω 6 c‖s‖0,Ω . Then, there existsv ∈ [H1
0(Ω)]2 such that divv = λ in Ω and‖v‖1,Ω 6 c‖λ‖0,Ω .

We consider the following function

ϕ := v+
P(s)

2

(
x
y

)
,

which satisties divϕ = sand‖ϕ‖1,Ω 6 ‖v‖1,Ω +c‖s‖0,Ω . Now, we define

τττs := −Curlϕ = −

(
∂2v1 −∂1v1−

1
2P(s)

∂2v2 + 1
2P(s) −∂1v2

)
∈ [L2(Ω)]2×2.

From this, we get thatdiv τττs = 000, henceτττs ∈ H(div;Ω). Moreover

(τs
12− τs

21) = ∂1v1 +
P(s)

2
+ ∂2v2 +

P(s)
2

= divv+P(s) = λ +P(s) = s,

and it is easy to check that
‖τττs‖H(div;Ω) 6 c‖s‖0,Ω .

Thus, we end the proof. �

We are ready to prove the inf-sup condition for the bilinear formb.

LEMMA 2.3 There existsC > 0, independent oft, such that

sup
(τττ,ξ )∈H

|b((τττ,ξ ),(η ,s,v))|
‖(τττ,ξ )‖H

> C‖(η ,s,v)‖Q ∀(η ,s,v) ∈ Q.

Proof. Let (η ,s,v) ∈ Q. From Lemma 2.2, there existsτττs ∈ H(div;Ω) such thatdiv τττs = 000 in Ω ,
(τs

12− τs
21) = s in Ω and‖τττs‖H(div;Ω) 6 c‖s‖0,Ω . Then,

sup
(τττ,ξ )∈H

|b((τττ,ξ ),(η ,s,v))|
‖(τττ,ξ )‖H

>
|b((τττs,000),(η ,s,v))|

‖τττs‖0,Ω +‖div τττs‖0,Ω

=
1

‖τττs‖0,Ω

∣∣∣∣
∫

Ω
η ·div τττs+

∫

Ω
s(τs

12− τs
21)

∣∣∣∣

=
‖s‖2

0,Ω
‖τττs‖0,Ω

>
1
c
‖s‖0,Ω . (2.10)

Now, let τ̃ττ := −ε(z), wherez∈ [H1
0(Ω)]2 is the unique weak solution (as a consequence of Korn’s

inequality and Lax-Milgram’s lemma) of the following auxiliary problem

{
−div ε(z) = η in Ω ,
z= 0 on ∂Ω .
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We have thatdiv τ̃ττ = η ∈ [L2(Ω)]2, henceτ̃ττ ∈ H(div;Ω) and τ̃ττ = τ̃ττ t . Moreover, applying the
continuous dependence result, there exists ˜c > 0 depending only onΩ such that

‖τ̃ττ‖0,Ω +‖div τ̃ττ‖0,Ω 6 c̃‖η‖0,Ω . (2.11)

Therefore,

sup
(τττ,ξ )∈H

|b((τττ,ξ ),(η ,s,v))|
‖(τττ,ξ )‖H

>
|b((τ̃ττ,000),(η ,s,v))|

‖τ̃ττ‖0,Ω +‖div τ̃ττ‖0,Ω

=
1

‖τ̃ττ‖0,Ω +‖div τ̃ττ‖0,Ω

∣∣∣∣
∫

Ω
η ·div τ̃ττ +

∫

Ω
s(τ̃12− τ̃21)

∣∣∣∣

=
‖η‖2

0,Ω

‖τ̃ττ‖0,Ω +‖div τ̃ττ‖0,Ω
>

1
c̃
‖η‖0,Ω , (2.12)

where the last inequality follows from (2.11).
Finally, let ξ̃ := −∇z̃, wherez̃∈ H1

0(Ω) is the unique weak solution (as a consequence of Poincaré
inequality and Lax-Milgram’s lemma) of the following auxiliary problem

{
−∆ z̃= v in Ω ,
z̃= 0 on ∂Ω .

As before, there exists ˆc > 0 depending only onΩ such that

‖ξ̃‖0,Ω +‖div ξ̃‖0,Ω 6 ĉ‖v‖0,Ω .

It follows that

sup
(τττ,ξ )∈H

|b((τττ,ξ ),(η ,s,v))|
‖(τττ,ξ )‖H

>
|b((000, ξ̃ ),(η ,s,v))|

(1+ t)‖ξ̃‖0,Ω +‖div ξ̃‖0,Ω

>
1

2(‖ξ̃‖0,Ω +‖div ξ̃‖0,Ω )

∣∣∣∣
∫

Ω
η · ξ̃ +

∫

Ω
vdiv ξ̃

∣∣∣∣

=
1

2(‖ξ̃‖0,Ω +‖div ξ̃‖0,Ω )

∣∣∣∣
∫

Ω
η · ξ̃ +‖v‖2

0,Ω

∣∣∣∣

>
1

2(‖ξ̃‖0,Ω +‖div ξ̃‖0,Ω )

(
‖v‖2

0,Ω −

∣∣∣∣
∫

Ω
η · ξ̃

∣∣∣∣
)

>
1
2ĉ

‖v‖0,Ω −‖η‖0,Ω .

Given

A := sup
(τττ,ξ )∈H

|b((τττ,ξ ),(η ,s,v))|
‖(τττ,ξ )‖H

,

we have proved that (cf. (2.12))

A >
1
c̃
‖η‖0,Ω ,
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therefore,

A >
1

2ĉ(1+ c̃)
‖v‖0,Ω . (2.13)

Thus, the proof follows from (2.10), (2.12) and (2.13). �

We are now in position to state the main result of this sectionwhich give the solvability of the
continuous problem (2.7).

THEOREM 2.2 There exists a unique((σσσ ,γ),(β , r,w)) ∈ H ×Q solution of the mixed variational for-
mulation (2.7), and the following continuous dependence result holds

‖((σσσ ,γ),(β , r,w))‖H×Q 6 C‖g‖0,Ω ,

whereC is independent oft.

Proof. By virtue of Lemmas 2.1 and 2.3, the proof follows from a straightforward application of the
abstract Theorem 1.1 in Chapter II of Brezzi & Fortin (1991). �

3. The Finite Element Scheme

Let Th be a regular family of triangulations of the polygonal region Ω̄ by trianglesT of diameterhT

with mesh sizeh := max{hT : T ∈Th}, and such that there holds̄Ω =∪{T : T ∈Th}. In addition, given
an integerk > 0 and a subsetS of R

2, we denote byPk(S) the space of polynomials in two variables
defined inSof total degree at mostk, and for eachT ∈ Th we define the local Raviart-Thomas space of
order zero

RT0(T) := span

{(
1
0

)
,

(
0
1

)
,

(
x
y

)}
,

where

(
x
y

)
is a generic vector ofR2.

On the other hand, for each triangleT ∈Th we take the unique polynomialbT ∈ P3(T) that vanishes
on ∂T and is normalized by

∫
T bT = 1. This cubic bubble function is extended by zero onto the region

Ω −T and therefore it becomes an element ofH1
0(Ω). Hence, we define

B(Th) := {τττh ∈ H(div ,Ω) : (τi1h,τi2h) ∈ Z(T), i = 1,2,∀T ∈ Th} ,

whereZ(T) := span{curl(bT),T ∈ Th}.
Hence, we define the following finite element subspaces:

Hσσσ
h := Xh⊕B(Th),

whereXh is the global Raviart-Thomas space of lowest order,

Xh := {τττh ∈ H(div ,Ω) : τττh|T ∈ [RT0(T)t ]2, ∀T ∈ Th},

Hγ
h := {ξh ∈ H(div ,Ω) : ξh|T ∈ RT0(T), ∀T ∈ Th},

Qw
h := {vh ∈ L2(Ω) : vh|T ∈ P0(T), ∀T ∈ Th},
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Qβ
h := {ηh ∈ [L2(Ω)]2 : ηh|T ∈ [P0(T)]2, ∀T ∈ Th},

Qr
h :=

{
sh ∈ H1(Ω) : sh|T ∈ P1(T), ∀T ∈ Th

}
.

At this point we recall thatHσσσ
h ×Qβ

h ×Qr
h correspond to the PEERS-space given by Arnold, Brezzi

and Douglas in Arnoldet al. (1984).
DefiningHh := Hσσσ

h ×Hγ
h andQh := Qβ

h ×Qr
h×Qw

h our mixed finite element scheme associated with
the continuous formulation (2.7) reads as follows:

Find ((σσσh,γh),(βh, rh,wh)) ∈ Hh×Qh such that

a((σσσh,γh),(τττh,ξh))+b((τττh,ξh),(βh, rh,wh)) = 0 ∀(τττh,ξh) ∈ Hh,

b((σσσh,γh),(ηh,sh,vh)) = F(ηh,sh,vh) ∀(ηh,sh,vh) ∈ Qh.
(3.1)

Our next goal is to show the corresponding discrete versionsof Lemmas 2.1 and 2.3 to have the
solvability and stability of problem (3.1). With this aim, we note that the discrete null space of the
bilinear formb reduces to:

Vh :=

{
(τττh,ξh) ∈ Hh :

∫

Ω
ηh · (div τττh + ξh)+

∫

Ω
sh(τ12h− τ21h)+

∫

Ω
vhdivξh = 0 ∀(ηh,sh,vh) ∈ Qh

}
.

Let (τττh,ξh) ∈ Vh, taking(000,0,vh) ∈ Qh and using that(divξh)|T is a constant, sincevh|T is also a
constant, we conclude that divξh = 0 in Ω .

Now, taking(ηh,0,0)∈Qh, sincediv τττh = 000 in Ω ∀τττh ∈B(Th), we have that(div τττh)|T is a constant
vector. Moreover, since divξh = 0, we have thatξh|T is also a constant vector. Therefore, sinceηh|T is
also a constant vector, we conclude that(div τττh + ξh) = 000 in Ω . Thus, we obtain

Vh =

{
(τττh,ξh) ∈ Hh : ξh +div τττh = 000,

∫

Ω
sh(τ12h− τ21h) = 0 ∀sh ∈ Qr

h and divξh = 0 in Ω
}

.

Note that the second condition in the above definition does not guarantee the symmetry of the tensors
Hσσσ

h , as it was the case for the continuous kernel ofb.
Hence, we have thatVh is not included inV, however the proof of Lemma 2.1 can be repeated

(because in this proof we never used thatτττ = τττ t), to get the following result

LEMMA 3.1 There existsC > 0 such that

a((τττh,ξh),(τττh,ξh)) > C‖(τττh,ξh)‖
2
H ∀(τττh,ξh) ∈Vh,

where the constantC is independent ofh andt.

We introduce the Raviart-Thomas interpolation operatorR : [H1(Ω)]2 → Hγ
h . Let us review some

properties of this operator that we will use in the sequel:

• Let P be the orthogonal projection fromL2(Ω) onto the finite element subspaceQw
h . Then for

all ξ ∈ [H1(Ω)]2, we have
divRξ = P(divξ ). (3.2)
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• There existsc > 0, independent ofh, such that

‖ξ −Rξ‖0,Ω 6 ch‖ξ‖1,Ω ∀ξ ∈ [H1(Ω)]2. (3.3)

Now, letΠh : [H1(Ω)]2×2 → Xh be the usual interpolation operator defined as the cartesianproduct
of Raviart-Thomas interpolation operatorR, which satisfies (see Arnoldet al. (1984)):

• Let P̃ be the orthogonal projection from[L2(Ω)]2 onto the finite element subspaceQβ
h . Then for

all τττ ∈ [H1(Ω)]2×2, we have

div Πhτττ = P̃(div τττ).

• There existsc > 0, independent ofh, such that

‖τττ −Πhτττ‖0,Ω 6 ch‖τττ‖1,Ω ∀τττ ∈ [H1(Ω)]2×2.

SinceXh ⊂ Hσσσ
h , the operatorΠh can be considered from[H1(Ω)]2×2 into Hσσσ

h , with the same prop-
erties given above.

Moreover, we letP1 : L2(Ω) → Qr
h the ortogonal projection. Then, we have

‖s−P
1(s)‖0,Ω 6 Ch‖s‖1,Ω . (3.4)

We continue with the following lemma establishing the discrete analogue of Lemma 2.3.

LEMMA 3.2 There existsC > 0, independent ofh andt, such that

sup
(τττh,ξh)∈Hh

|b((τττh,ξh),(ηh,sh,vh))|

‖(τττh,ξh)‖H
> C‖(ηh,sh,vh)‖Q ∀(ηh,sh,vh) ∈ Qh.

Proof. Let (ηh,sh,vh)∈Qh. From Lemma 4.4 in Arnoldet al.(1984), we have that there existsτ̃ττh ∈Hσσσ
h

andc̃ > 0 such that,
∫

Ω
ηh ·div τ̃ττh +

∫

Ω
sh(τ̃12h− τ̃21h)

‖τ̃ττh‖0,Ω +‖div τ̃ττh‖0,Ω
> c̃

{
‖ηh‖0,Ω +‖sh‖0,Ω

}
. (3.5)

Thus, using (3.5), we have

sup
(τττh,ξh)∈Hh

|b((τττh,ξh),(ηh,sh,vh)|

‖(τττh,ξh)‖H
>

|b((τ̃ττh,000),(ηh,sh,vh)|

‖τ̃ττh‖0,Ω +‖div τ̃ττh‖0,Ω

=

∫

Ω
ηh ·div τ̃ττh +

∫

Ω
sh(τ̃12h− τ̃21h)

‖τ̃ττh‖0,Ω +‖div τ̃ττh‖0,Ω
> c̃

{
‖ηh‖0,Ω +‖sh‖0,Ω

}
,

which yields

sup
(τττh,ξh)∈Hh

|b((τττh,ξh),(ηh,sh,vh))|

‖(τττh,ξh)‖H
> c̃

{
‖ηh‖0,Ω +‖sh‖0,Ω

}
∀(ηh,sh,vh) ∈ Qh. (3.6)
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Let nowzbe the unique weak solution (as a consequence of Poincaré inequality and Lax-Milgram’s
lemma) of the following problem:

{
−∆z= vh in Ω ,
z= 0 on ∂Ω .

Sincevh ∈ L2(Ω) andΩ is a convex domain, a classical elliptic regularity result guarantees that
z∈ H2(Ω)∩H1

0(Ω) and there exists ¯c > 0 such that‖z‖2,Ω 6 c̄‖vh‖0,Ω .

Now, we definẽξ := −∇z∈ [H1(Ω)]2. We note that diṽξ = vh in Ω , and

‖ξ̃‖1,Ω = ‖∇z‖1,Ω 6 ‖z‖2,Ω 6 c̄‖vh‖0,Ω . (3.7)

Let ξ̃h := Rξ̃ . From (3.2) and the fact that diṽξ = vh, we have that diṽξh = vh in Ω . Hence, using
the approximation property (3.3), we deduce that

‖ξ̃h‖0,Ω +‖div ξ̃h‖0,Ω 6 ‖ξ̃h− ξ̃‖0,Ω +‖ξ̃‖0,Ω +‖div ξ̃‖0,Ω 6 ch‖ξ̃‖1,Ω +‖ξ̃‖1,Ω .

From estimates (3.7), we obtain

(1+ t)‖ξ̃h‖0,Ω +‖div ξ̃h‖0,Ω 6 2(‖ξ̃h‖0,Ω +‖div ξ̃h‖0,Ω ) 6 ĉ‖vh‖0,Ω .

It follows that

sup
(τττh,ξh)∈Hh

|b((τττh,ξh),(ηh,sh,vh))|

‖(τττh,ξh)‖H
>

|b((000, ξ̃h),(ηh,sh,vh))|

(1+ t)‖ξ̃h‖0,Ω +‖div ξ̃h‖0,Ω

>
1

2(‖ξ̃h‖0,Ω +‖div ξ̃h‖0,Ω )

∣∣∣∣
∫

Ω
ηh · ξ̃h +

∫

Ω
vhdiv ξ̃h

∣∣∣∣

>
1

2(‖ξ̃h‖0,Ω +‖div ξ̃h‖0,Ω )

∣∣∣∣
∫

Ω
ηh · ξ̃h +‖vh‖

2
0,Ω

∣∣∣∣

>
1

2(‖ξ̃h‖0,Ω +‖div ξ̃h‖0,Ω )

(
‖vh‖

2
0,Ω −

∣∣∣∣
∫

Ω
ηh · ξ̃h

∣∣∣∣
)

>
1
ĉ
‖vh‖0,Ω −‖ηh‖0,Ω .

Given

Ah := sup
(τττh,ξh)∈Hh

|b((τττh,ξh),(ηh,sh,vh))|

‖(τττh,ξh)‖H
,

we have proved that (cf. (3.6))
Ah > c̃‖ηh‖0,Ω ,

and therefore we have that

Ah >
c̃

(1+ c̃)ĉ
‖vh‖0,Ω .

This allows us to conclude the proof. �

We are now in a position to establish the unique solvability,the stability, and the convergence prop-
erties of the discrete problem (3.1).
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THEOREM 3.1 There exists a unique((σσσh,γh),(βh, rh,wh)) ∈ Hh×Qh solution of the discrete problem
(3.1). Moreover, there exist̃C,C > 0, independent ofh andt, such that

‖((σσσh,γh),(βh, rh,wh))‖H×Q 6 C̃‖g‖0,Ω ,

and

‖((σσσ ,γ),(β , r,w))− ((σσσh,γh),(βh,rh,wh))‖H×Q

6 C inf
((τττh,ξh),(ηh,sh,vh))∈Hh×Qh

‖((σσσ ,γ),(β , r,w))− ((τττh,ξh),(ηh,sh,vh))‖H×Q, (3.8)

where((σσσ ,γ),(β , r,w)) ∈ H ×Q is the unique solution of the mixed variational formulation(2.7).

Proof. Is a direct application of the Theorem 2.1 in Chapter II of Brezzi & Fortin (1991). �

The following theorem provides the rate of convergence of our mixed finite element scheme (3.1).

THEOREM 3.2 Let((σσσ ,γ),(β , r,w)) ∈ H ×Q and((σσσ h,γh),(βh, rh,wh)) ∈ Hh×Qh be the unique so-
lutions of the continuous and discrete problems (2.7) and (3.1), respectively. Ifg∈ H1(Ω), then,

‖((σσσ ,γ),(β , r,w))− ((σσσ h,γh),(βh, rh,wh))‖H×Q 6 Ch‖g‖1,Ω .

Proof. First, we note that (see (2.1))

‖(div σσσ + γ)− (div σσσh + γh)‖0,Ω = ‖div σσσh + γh‖0,Ω .

From the second equation of (3.1), we have that
∫

Ω
ηh · (div σσσh + γh) = 0 ∀ηh ∈ Qβ

h ,

hence

−(div σσσh)|T =
1
|T|

∫

T
γh = P̃(γh).

Thus, also recalling (2.2),

‖div σσσh + γh‖
2
0,Ω = ∑

T∈Th

‖div σσσh + γh‖
2
0,T = ∑

T∈Th

‖γh−P̃(γh)‖
2
0,T 6 C1 ∑

T∈Th

h2
T |γh|

2
1,T

6 C̃1 ∑
T∈Th

h2
T‖divγh‖

2
0,T = C̃1 ∑

T∈Th

h2
T‖P(divγ)‖2

0,T 6 Ch2‖g‖2
0,Ω .

Therefore
‖div σσσh + γh‖0,Ω 6 Ch‖g‖0,Ω . (3.9)

On the other hand, we have

‖divγ −divγh‖
2
0,Ω = ∑

T∈Th

‖divγ −divγh‖
2
0,T = ∑

T∈Th

‖divγ −P(divγ)‖2
0,T 6 C ∑

T∈Th

h2
T |divγ|21,T ,

which, using (2.2), yields
‖divγ −divγh‖0,Ω 6 Ch|g|1,Ω . (3.10)
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Now, it is easy to check that (see Lemma 2.1)
(
‖τττ‖2

0,Ω + t2‖ξ‖2
0,Ω

)
6 Ca((τττ,ξ ),(τττ,ξ )) ∀(τττ ,ξ ) ∈ H.

In particular, taking(σσσ −σσσh,γ − γh) ∈ H, we get
(
‖σσσ −σσσh‖

2
0,Ω + t2‖γ − γh‖

2
0,Ω

)
6 Ca((σσσ −σσσh,γ − γh),(σσσ −σσσh,γ − γh)),

and, using the first equation of (2.7), we obtain
(
‖σσσ −σσσh‖

2
0,Ω + t2‖γ − γh‖

2
0,Ω

)
6 Cb((σσσh−σσσ ,γh− γ),(β , r,w)). (3.11)

Now, from the definition of the bilinear formb(·, ·) we get

b((σσσh−σσσ ,γh− γ),(β , r,w)) =

∫

Ω
β · (div(σσσh−σσσ)+ (γh− γ))

+

∫

Ω
r ((σσσ12h−σσσ21h)− (σσσ12−σσσ21))+

∫

Ω
wdiv(γh− γ).

(3.12)

Subtracting the second equation of (3.1) from the second equation (2.7), we have that
∫

Ω
ηh · (div(σσσh−σσσ)+ (γh− γ)) = 0 ∀ηh ∈ Qβ

h , (3.13)

∫

Ω
sh ((σσσ12h−σσσ21h)− (σσσ12−σσσ21)) = 0 ∀sh ∈ Qr

h, (3.14)
∫

Ω
vhdiv(γh− γ) = 0 ∀vh ∈ Qw

h . (3.15)

ConsideringP̃(β ) ∈ Qβ
h , P1(r) ∈ Qr

h andP(w) ∈ Qw
h , using (3.13), (3.14) and (3.15), we rewrite

(3.12) as follow

b((σσσh−σσσ ,γh− γ),(β , r,w)) =

∫

Ω
(β −P̃(β )) · (div(σσσh−σσσ)+ (γh− γ))

+

∫

Ω
(r −P

1(r))((σσσ12h−σσσ21h)− (σσσ12−σσσ21))

+
∫

Ω
(w−P(w))div(γh− γ).

From (3.11), the above equation and the Cauchy-Schwarz inequality, we obtain

‖σσσ −σσσh‖
2
0,Ω + t2‖γ − γh‖

2
0,Ω 6 C‖β −P̃(β )‖0,Ω‖div(σσσh−σσσ)+ (γh− γ)‖0,Ω

+C‖r −P
1(r)‖0,Ω‖σσσh−σσσ‖0,Ω

+C‖w−P(w)‖0,Ω‖div(γh− γ)‖0,Ω .

Applying the inequalitypq6 1
2 p2 + 1

2q2, from the above bound it follows

‖σσσ −σσσh‖
2
0,Ω + t2‖γ − γh‖

2
0,Ω 6 C‖β −P̃(β )‖0,Ω‖div(σσσh−σσσ)+ (γh− γ)‖0,Ω

+
1
2

C2‖r −P
1(r)‖2

0,Ω +
1
2
‖σσσh−σσσ‖2

0,Ω

+C‖w−P(w)‖0,Ω‖div(γh− γ)‖0,Ω .
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Using standard error estimates arguments, (3.4), (3.9) and(3.10), yields

‖σσσ −σσσh‖
2
0,Ω + t2‖γ − γh‖

2
0,Ω 6 Ĉ

(
ch2‖β‖1,Ω‖g‖0,Ω +ch2‖r‖1,Ω +ch2‖w‖1,Ω |g|1,Ω

)
,

and thus, from Proposition 2.1, we get

‖σσσ −σσσh‖0,Ω + t‖γ − γh‖0,Ω 6 Ch‖g‖1,Ω . (3.16)

Finally, using (3.8) we obtain

‖((σσσ ,γ),(β , r,w))− ((σσσh,γh),(βh,rh,wh))‖H×Q

6 C‖((σσσ ,γ),(β , r,w))− ((σσσh,γh),(P̃(β ),P1(r),P(w)))‖H×Q

6 Ch‖g‖1,Ω ,

where in the last inequality we have used standard error estimates arguments, (3.4), (3.9), (3.10) and
(3.16). We conclude the proof. �

3.1 A post processing of transversal displacement and rotations

In this section we present an element-wise post processing procedure which allows to build piecewise
linear transversal displacement and rotations with improved approximation properties. In the following,
we indicate withe a general edge of the triangulation and withEh the set of all such edges. Moreover,
we indicate withhe the length ofe∈ Eh and associate to each edge a unit normal vectorne, chosen once
and for all. For each internal edgee of Eh, we indicate withT+ andT− the two triangles of the mesh
which have the edgee in common, wherene corresponds to the outward normal forT+ and the opposite
for T−. Then, given any piecewise regular (scalar or vector) function v on Ω , for eache∈ Eh we define
the jump on internal edges

[[v]] = v+|e−v−|e,

wherev± is the restriction ofv to T±. On boundary edges, the jump is simply given by the value ofv
on the edge. We introduce the followingH1 type discrete norm

‖v‖2
1,h = ∑

T∈Th

‖∇v‖2
0,T + ∑

e∈Eh

h−1
e ‖[[v]]‖2

0,e,

for all sufficiently regular (scalar or vector) functionsv.
Given, the discrete solution((σσσh,γh),(βh, rh,wh)), we define a post-processed transversal displace-

mentw⋆
h ∈ L2(Ω) as follows. For allT ∈ Th let w⋆

h ∈ P1(T) such that

Pw⋆
h = wh,

∇w⋆
h = P̃(βh + t2κ−1γh).

(3.17)

It is immediate to check thatw⋆
h is well defined and unique.

Let wI = Pw, we start proving the following preliminary result.

LEMMA 3.3 There holds
‖wI −wh‖1,h 6 Ch‖g‖1,Ω .
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Proof. To prove the result, we will apply the following inf-sup condition: For all vh ∈ Qw
h , there exists

ξh ∈ Hγ
h such that ∫

Ω
vhdivξh = ‖vh‖

2
1,h , ‖ξh‖0,Ω 6 C‖vh‖1,h. (3.18)

The simple proof of the above inf-sup condition will be shownbriefly. Defining the degrees of freedom
of ξh by ξh ·ne := h−1

e [[vh]] for all e∈ Eh, an element-wise integration by parts and the definition of the
jump operator yield ∫

Ω
vhdivξh = ∑

e∈Eh

h−1
e ‖[[vh]]‖

2
0,e = ‖vh‖

2
1,h.

The second bound in (3.18) follows easily by a scaling argument.
Applying (3.18) tovh = (wh −wI ), noting that divξh is piecewise constant and finally using the

discrete equations (3.1), we obtain

‖wI −wh‖
2
1,h =

∫

Ω
(wI −wh)divξh =

∫

Ω
(w−wh)divξh =

∫

Ω
(β −βh)ξh + t2κ−1

∫

Ω
(γ − γh)ξh.

The proof then follows from the above equation using a Cauchy-Schwarz inequality, recalling Theorem
3.2 and using (3.18). �

We have the following improved convergence result for the post-processed transversal displacement.

PROPOSITION3.3 There holds
‖w−w⋆

h‖1,h 6 Ch‖g‖1,Ω .

Proof. We note that we can split

w⋆
h = wh + w̃h , w = wI + w̃, (3.19)

wherewh andwI , already defined above, are piecewise constant whilew̃h andw̃ have zero average on
each element.

Applying a scaled trace inequality on each triangleT and using that̃wh andw̃ have zero average on
each element, we have that

∑
e∈Eh

h−1
e ‖[[w̃h− w̃]]‖2

0,e 6 C ∑
T∈Th

(h−2
T ‖w̃h− w̃‖2

0,T + |w̃h− w̃|21,T) 6 C ∑
T∈Th

‖∇(w̃h− w̃)‖2
0,T . (3.20)

We now observe that, due to (3.19), there hold∇w⋆
h|T = ∇w̃h|T and ∇w|T = ∇w̃|T for all T ∈ Th.

Therefore, first due to definition (3.17) and (2.3), then using standard properties of the projector̃P, for
all T ∈ Th we obtain

‖∇(w̃h− w̃)‖2
0,T = ‖P̃(βh + t2κ−1γh)− (β + t2κ−1γ)‖2

0,T

6 ‖P̃(βh + t2κ−1γh)−P̃(β + t2κ−1γ)‖2
0,T +‖P̃(β + t2κ−1γ)− (β + t2κ−1γ)‖2

0,T

6 ‖(βh + t2κ−1γh)− (β + t2κ−1γ)‖2
0,T +Ch2

T |(β + t2κ−1γ)|21,T

6 C(‖βh−β‖2
0,T + t4‖γh− γ‖2

0,T +h2
T |β |

2
1,T +h2

Tt4|γ|21,T).

The above estimate, combined with Theorem 3.2 and Proposition 2.1, immediately yields

∑
T∈Th

‖∇(w̃h− w̃)‖2
0,T 6 Ch2‖g‖2

1,Ω . (3.21)
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From (3.20), (3.21) and the definition of‖ · ‖1,h norm, we finally obtain

‖w̃h− w̃‖1,h 6 Ch‖g‖1,Ω .

The above estimate, combined with Lemma 3.3 and a triangle inequality, finally gives the proof of the
Proposition:

‖w−w⋆
h‖1,h 6 ‖wI −wh‖1,h +‖w̃h− w̃‖1,h 6 Ch‖g‖1,Ω .

�

We define also a post-processed rotation fieldβ ⋆
h ∈ [L2(Ω)]2 as follows: For allT ∈ Th let β ⋆

h ∈
[P1(T)]2 such that

P̃β ⋆
h = βh,

∇β ⋆
h = P̂(C−1σσσ h + rhJ),

(3.22)

whereP̂ is theL2 projection onto the space of piecewise constantR
2×2 tensor fields. It is immediate to

check thatβ ⋆
h is well defined and unique.

Moreover, the following results can be proved following thesame lines shown above.

PROPOSITION3.4 There holds
‖β −β ⋆

h‖1,h 6 Ch‖g‖1,Ω .

Finally note that both post-processing procedures are fully local and therefore have a negligible
computational cost.

REMARK 3.1 Although the main purpose of this scheme is to compute a better approximation of the
stresses, using this post-processing a piecewise linear approximation of transversal displacement and
rotations, converging in aH1 type norm can be recovered. Note in particular that, from thedefinition of
the norm‖ ·‖1,h and the fact that the jumps ofw andβ are null, it follows that at the limit forh→ 0 the
post-processed discrete functions will also be continuous.

4. Numerical results

We report in this section some numerical experiments which confirm the theoretical results proved
above. The numerical method analyzed has been implemented in a MATLAB code.

As a test problemwe have taken an isotropic and homogeneous plateΩ := (0,1)× (0,1) clamped
on the whole boundary for which the analytical solution is explicitly known (see Chinosiet al. (2006)).
We analyze the convergence properties of the elements proposed here by considering different uniform
decompositions as shown in Figure 1, and keeping the thicknesst = 0.001.

Choosing the transversal loadg as:

g(x,y) =
E

12(1−ν2)

[
12y(y−1)(5x2−5x+1)

(
2y2(y−1)2+x(x−1)(5y2−5y+1)

)

+12x(x−1)(5y2−5y+1)
(
2x2(x−1)2+y(y−1)(5x2−5x+1)

)]
,

the exact solution of problem (2.7) is given by

w(x,y) =
1
3

x3(x−1)3y3(y−1)3

−
2t2

5(1−ν)

[
y3(y−1)3x(x−1)(5x2−5x+1)+x3(x−1)3y(y−1)(5y2−5y+1)

]
,
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FIG. 1. Square plate: uniform meshes.

β1(x,y) = y3(y−1)3x2(x−1)2(2x−1),

β2(x,y) = x3(x−1)3y2(y−1)2(2y−1).

The material constants have been chosen:E = 1, ν = 0.30 and the shear correction factor has been
takenk = 5/6.

In what follows,N denotes the number of degrees of freedom, namely,N := dim(Hh×Qh). More-
over, we define the individual errors by:

e(σσσ) := ‖σσσ −σσσh‖0,Ω , e(σσσ ,γ) := ‖(div σσσ + γ)− (div σσσh + γh)‖0,Ω , e(γ) := ‖γ − γh‖t,H(div ;Ω),

e(r) := ‖r − rh‖0,Ω , e(β ) := ‖β −βh‖0,Ω , e(w) := ‖w−wh‖0,Ω ,

where((σσσ ,γ),(β , r,w)) ∈ H×Q and((σσσh,γh),(βh, rh,wh)) ∈Hh×Qh are the unique solutions of prob-
lems (2.7) and (3.1), respectively.

Also, we define the experimental rates of convergence(rc) for the errorse(σσσ), e(σσσ ,γ), e(γ), e(r),
e(β ) ande(w) by

rc(·) := −2
log(e(·)/e′(·))

log(N/N′)
,

whereN andN′ denote the degrees of freedom of two consecutive triangulations with errorse ande′.
Tables 1, 2 and 3 show the convergence history of the mixed finite element scheme (3.1) applied to

our test problem.

Table 1. Errors and experimental rates of convergence for variablesσσσ and(div σσσ + γ), computed on uniform meshes.

N e(σσσ) rc(σσσ) e(σσσ ,γ) rc(σσσ ,γ)
1345 0.40270e-04 – 0.29609e-03 –
5249 0.19649e-04 1.054 0.14805e-03 1.018
20737 0.09760e-04 1.019 0.07404e-03 1.009
82433 0.04868e-04 1.008 0.03702e-03 1.004
328705 0.02431e-04 1.004 0.01851e-03 1.002
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Table 2. Errors and experimental rates of convergence for variablesγ andr , computed on uniform meshes.

N e(γ) rc(γ) e(r) rc(r)
1345 0.31715e-02 – 0.87462e-04 –
5249 0.15876e-02 1.016 0.39217e-04 1.178
20737 0.07942e-02 1.008 0.15009e-04 1.398
82433 0.03971e-02 1.004 0.05491e-04 1.457
328705 0.01986e-02 1.002 0.01991e-04 1.466

Table 3. Errors and experimental rates of convergence for variablesβ andw, computed on uniform meshes.

N e(β ) rc(β ) e(w) rc(w)
1345 0.39713e-04 – 0.66226e-05 –
5249 0.18189e-04 1.147 0.27707e-05 1.280
20737 0.08884e-04 1.043 0.13136e-05 1.086
82433 0.04416e-04 1.013 0.06478e-05 1.025
328705 0.02205e-04 1.004 0.03228e-05 1.007

We observe there that the rate of convergenceO(h) predicted by Theorem 3.2 is attained for all
variables.

Figure 2 shows the profiles of the discrete transversal displacementwh (left) and the first component
of the discrete rotation vectorβ1h (right) for t = 0.001, and the finest mesh.

FIG. 2. Approximate transversal displacement (left) and the first component of the rotation vector (right).

Figure 3 shows the profiles of the discrete shear stressγh for t = 0.001, and the finest mesh.
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FIG. 3. Approximate shear stress: first component (left) and second component (right).

Figures 4 and 5 show the profiles of the bending moment tensorσσσh = (σσσ i jh), i, j = 1,2, for t = 0.001,
and the finest mesh.

FIG. 4. Approximate bending moment:σσσ11h (left) andσσσ12h (right).
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FIG. 5. Approximate bending moment:σσσ21h (left) andσσσ22h (right).
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