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Abstract

We use asymptotic analysis to develop finer estimates for the efficient, weak

efficient and proper efficient solution sets (and for their asymptotic cones) to a

convex/quasiconvex vector optimization problems. We also provide a new rep-

resentation for the efficient solution set without any convexity assumption, and

the estimates involve the minima of the linear scalarization of the original vector

problem. Some new necessary conditions for a point to be efficient or weak effi-

cient solution for general convex vector optimization problems, as well as for the

nonconvex quadratic multiobjective optimization problem, are established.
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1 Introduction

When dealing with multiobjective optimization problems we have to specify what we

mean by a solution to such a problem. Usually, the notion of efficient or weakly efficient

soluion is considered. A point is called efficient or Pareto-optimal, if there does not exist

a different point with smaller or equal objective functions values, such that there is

a decrease in at least one objective function value; a point is called weakly efficient

or weakly Pareto-optimal, if there exists no other point with strictly smaller objective

function value. Another notion of solution is that of proper efficient. This notion was
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2 Inner and outer estimates in vector optimization

introduced in order to avoid efficient points satisfying certain abnormal properties: for

instance, efficient points for which at least one objective function exists for which the

marginal trade off between it and each of the other objective functions is infinitely

large [14, 2].

Mathematically, given normed vector spaces X,Y , a convex cone P  Y and a vector

function F : K ⊆ X → Y , we say that x̄ ∈ K is a

• (int P 6= ∅) “weakly efficient” point of F (on K) if

F (x) − F (x̄) 6∈ −int P, ∀ x ∈ K,

or equivalently, (F (K) − F (x̄)) ∩ (−int P ) = ∅, or equivalently, cone(F (K) −

F (x̄) + P ) ∩ (−int P ) = ∅;

• “efficient” point of F (on K) if

F (x) − F (x̄) 6∈ −P \ l(P ), ∀ x ∈ K,

or equivalently, (F (K) − F (x̄)) ∩ (−P \ l(P )) = ∅, or equivalently, cone(F (K) −

F (x̄) + P ) ∩ (−P \ l(P )) = ∅;

• “proper efficient” point of F (on K) if

cone(F (K) − F (x̄) + P ) ∩ (−P ) = {0}.

Here, l(P )
.
= P ∩ (−P ). Notice that every proper efficient point is efficient and every

efficient is weakly efficient. The set of weakly efficient points is denoted by EW , that

of efficient by E, and the set of proper efficient by Epr. It is easy to see that Epr 6= ∅

implies the pointedness of P , that is, l(P ) = {0}.

It is well known that asymptotic tools have proved to be very useful in the study of

minimization problems even in absence of convexity, and have a long history. Roughly

speaking, it serves to describe the asymptotic behaviour of the objective function along

directions that are limit of the normalized of unbounded minimizing sequences. In

vector optimization, it has been used in [4] to characterize the non-emptiness and

compactness of weakly efficient solutions set of convex problems, and for efficiency in

[5, 6]. Further developments in vector optimization can be found in [7, 8, 9, 10, 12, 13],

and references therein.

One of the main goals of the present paper is to find finer outer and inner estimates

for EW , E, and Epr and for their asymptotic cones. These estimates involve the minima

of the linear scalarization of the original vector problem, and will be carried out under

convexity and quasiconvexity assumptions. We also provide two representations for E
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in absence of convexity, see Lemma 3.1. Furthermore, we revise some characterizations

of the nonemptiness and boundedness of E and EW in terms of some cones of critical

directions, which have been used elsewhere by one of the authors.

The paper is organized as follows. In Section 2, we present the necessary basic defi-

nitions and some preliminaries. Section 3 is devoted to find new representations for the

solution set E in absence of convexity (Lemma 3.1) along with some estimates for EW

and E. In Section 4, we present some inner and outer estimates for (EW )∞, E∞ and

(Epr)
∞. Section 5 establishes some characterization of the nonemptiness and bounded-

ness of EW and E. Finally, Section 6 developes new necessary conditions for a point to

be efficient or weak efficient solution for general convex vector optimization problems,

and also for the nonconvex (nonhomogeneous) quadratic multiobjective optimization

problem.

2 Some basic definitions and preliminaries

Let Y ∗ denote the topological dual space of Y and let the duality pairing between Y ∗

and Y be denoted by 〈·, ·〉. The set P ∗ ⊆ Y ∗ is the polar (positive) cone of P defined

by

P ∗ .
= {q ∈ Y ∗ : 〈q, p〉 ≥ 0, ∀ p ∈ P}.

For any given function h : X → R∪ {+∞}, the asymptotic function of h is defined

as the function h∞ such that

epi h∞ = (epi h)∞.

Here, epi h = {(x, t) ∈ X × R : h(x) ≤ t} is the epigraph of h. Consequently, when h

is a convex and lower semicontinuous function, we have

h∞(v) = lim
λ→+∞

h(x0 + λv) − h(x0)

λ
= sup

λ>0

h(x0 + λv) − h(x0)

λ
,∀ x0 ∈ h−1(R).

We notice the independence of h∞ on the choice of x0. If f : K ⊆ X → R, f∞ denotes

the asymptotic function of f , where we extend f to the whole X by setting f(x) = +∞

if x ∈ X \K. More detailed information on asymptotic sets and functions may be found

in [18].

For a given closed convex cone P  Y , we have by the bipolar theorem

p ∈ P ⇐⇒ 〈q, p〉 ≥ 0 ∀ q ∈ P ∗,

and if int P 6= ∅,

p ∈ int P ⇐⇒ 〈q, p〉 > 0 ∀ q ∈ P ∗ \ {0}.



4 Inner and outer estimates in vector optimization

We say that a convex cone P is pointed if P ∩(−P ) = {0}. We denote l(P )
.
= P ∩(−P ).

Given q ∈ P ∗, let the function hq : K → R defined as hq(x) = 〈q, F (x)〉, and

consider the minimization problem

min
x∈K(z)

hq(x), (P (q, z))

where z ∈ K and

K(z)
.
= {x ∈ K : F (x) − F (z) ∈ −P}.

As usual, we denote the set of solution to (P (q, z)) by argminK(z)hq.

3 Representations for the efficient solution set

By extrd P ∗ we mean the set of extreme directions of P ∗: here q∗ ∈ extrd P ∗ if and

only if q∗ ∈ P ∗ \ {0} and for all q∗1, q
∗
2 ∈ P ∗ such that q∗ = q∗1 + q∗2 we actually have

q∗1, q
∗
2 ∈ R++q∗.

We start by establishing a characterization of efficiency in terms of existence to

special scalar minimization problems. Part (a) is new, and particular cases of Part (b)

(P polyhedral) may be found in [5, 15] .

Lemma 3.1. Let P  Y be a closed convex cone.

(a) Assume that P ∗ is the weak-star closed convex hull of extrd P ∗, then x̄ ∈ E if,

and only if there exists z ∈ K such that x̄ ∈ argminK(z)hq for all q ∈ extrd P ∗,

that is,

E =
⋃

z∈K

⋂

q∈extrd P ∗

argminK(z)hq. (1)

(b) Assume that int P ∗ 6= ∅, then x̄ ∈ E if, and only if for all q ∈ int P ∗ there exists

z ∈ K such that x̄ ∈ argminK(z)hq, that is,

E =
⋃

z∈K

argminK(z)hq, ∀ q ∈ int P ∗. (2)

Proof. (a): ⇒ Let x̄ ∈ E and suppose that for all z ∈ K there exists qz ∈ extrd P ∗ such

that x̄ 6∈ argminK(z)hqz
. Thus, setting z = x̄, there exist q̄ ∈ extrd P ∗ and x ∈ K(x̄)

satisfying hq̄(x) < hq̄(x̄). This implies that F (x) − F (x̄) 6∈ P . Since x ∈ K(x̄), we also

get F (x)−F (x̄) ∈ −P . Both relations give F (x)−F (x̄) ∈ (−P ) \P , contradicting the

fact that x̄ ∈ E.

⇐ Let z ∈ K such that x̄ ∈ argminK(z)hq for all q ∈ extrd P ∗. Suppose that x̄ 6∈ E;

then there exists x ∈ K such that

F (x) − F (x) ∈ (−P ) \ l(P ) = (−P ) \ P.
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Thus, x ∈ K(z) and there exits q̄ ∈ P ∗ \ {0} such that 〈q̄, F (x) − F (x̄)〉 < 0. By

assumption, the latter implies the existence of q ∈ extrd P ∗, hq(x) < hq(x̄), which

cannot happen if x̄ ∈ argminK(z)hq.

(b): ⇒ It is not difficult to prove that x̄ ∈ E implies x̄ ∈ argminK(x̄)hq.

⇐ Let q ∈ int P ∗. Let z ∈ K and x̄ ∈ argminK(z)hq. Suppose to the contrary that

x̄ 6∈ E; then there exists x ∈ K satisfying F (x) − F (x̄) ∈ −P \ l(P ) ⊆ −P \ {0}. By

the choice of q, we obtain 〈q,F (x) − F (x̄)〉 < 0, and as x ∈ K(z), a contradiction is

obtained.

Remark 3.2. Conditions ensuring that P ∗ is the weak-star closed convex hull of

extrd P ∗, may be found in Remark 2.2 of [1]. It is true, in particular, when int P 6= ∅.

On the other hand, in finite dimensional spaces int P ∗ 6= ∅ is equivalent to pointedness

of P .

Next example is an instance where Part (a) is applicable whereas (b) is not.

Example 3.3. Consider P = {(x, y) ∈ R2 : y ≥ 0}, K = R and F = (f1, f2),

f1(x) = x, f2(x) = 1. Here, E = R; indeed, given any x̄ ∈ R, one obtains

F (y) − F (x̄) = (y, 1) − (x̄, 1) = (y − x̄, 0) 6∈ −P \ l(P ), ∀ y ∈ R.

Moreover, extrd P ∗ = {(0, 1)}, K(z) = {x ∈ R : F (x) − F (z) ∈ −P} = R, and

therefore, ⋃

z∈R

⋂

q∈extrd P ∗

argminK(z)hq =
⋃

z∈R

argminRf2 = R.

Part (a) of the preceding lemma can be applied to situations where argminKhq = ∅

for all q ∈ extrd P ∗, as the next example shows.

Example 3.4. Consider P = R2
+, K = R, and F = (f1, f2), f1(x) = x,

f2(x) = −x. Here, E = R and argminKhq = ∅ for q ∈ extrd P ∗. We claim that⋃

z∈K

⋂

q∈extrd P ∗

argminK(z)hq = R, where extrd P ∗ = {(t, 0), (0, t) : t > 0}. Indeed,

K(z) = {z} for all z ∈ R, and so argmin{z}hq = {z} for all q ∈ P ∗ = P . This provex

the claim.

A relationship between argminKhq and argminK(z)hq is given below.

Proposition 3.5. For every q ∈ P ∗, we have

argminKhq ⊆
⋃

z∈K

argminK(z)hq.

Proof. It is straightforward since, x ∈ argminKhq =⇒ x ∈ argminK(x)hq.
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The other inclusion may be false as the next example shows.

Example 3.6. Consider K = R, F = (f1, f2), f1(x) = |x|, f2(x) = |x − 1|, P = R2
+.

Then K(0) = {0}, K(1) = {1}. Take q = (1, 0) ∈ P ∗ = R2
+, we obtain

argminKhq = argminRf1 = {0} ⊆ {0, 1} ⊆
⋃

z∈R

argminK(z)f1.

It is well known that argminKhq ⊆ EW for all q ∈ P ∗ \{0}. By taking into account

the previous proposition, next lemma says a finer inclusion holds.

Lemma 3.7. Let P be a closed convex cone with int P 6= ∅. Then,

⋃

z∈K

argminK(z)hq ⊆ EW , ∀ q ∈ P ∗ \ {0}.

Proof. Take any q ∈ P ∗, q 6= 0, and let x̄ ∈ argminK(z)hq for some z ∈ K. If on the

contrary, x̄ 6∈ EW , there exists x ∈ K satisfying F (x) − F (x̄) ∈ −int P , we obtain

x ∈ K(z) and hq(x) < hq(x̄), yielding a contradiction, and therefore x̄ ∈ EW .

We are in a position to establish a chain of inclusions involving Epr, E, EW and

argminK(z)hq, where the first inclusion was already appeared in [19].

Remark 3.8. Let P be a closed convex cone with int P 6= ∅ 6= int P ∗. Then,

argminK〈q0, F (·)〉 ⊆ Epr ⊆ E =
⋃

z∈K

argminK(z)〈q0, F (·)〉 ⊆ EW , ∀ q0 ∈ int P ∗.

We present the next lemma just for completeness: part of it gives a complete char-

acterization of EW in terms of scalar minimization problems. This was established in

[16, Theorem 2.1], see also [11]. In what follows

P ∗i .
= {q ∈ Y ∗ : 〈q, p〉 > 0 ∀ p ∈ P \ {0}}.

Lemma 3.9. Let P  Y be a closed convex cone and hq be quasiconvex and lower

semicontinuous for all q ∈ P ∗ \ {0}.

(a) If int P 6= ∅, then

EW =
⋃

q∈P ∗\{0}

argminKhq. (3)

(b) Assume that Y = Rm, then

E ⊆
⋃

q∈P ∗\{0}

argminKhq. (4)
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(c) Assume that P is locally compact and pointed, then

Epr =
⋃

q∈P ∗i

argminKhq. (5)

Proof. Since

x̄ ∈ EW ⇐⇒ (F (K) − F (x̄) + P ) ∩ (−int P ) = ∅;

x̄ ∈ E ⇐⇒ (F (K) − F (x̄) + P ) ∩ (−P \ l(P )) = ∅;

x̄ ∈ Epr ⇐⇒ cone(F (K) − F (x̄) + P ) ∩ (−P ) = {0}

and F (K) + P is convex by [11, Corollary 3.11], we conclude with (a) and (b) after

applying a standard convex separation theorem, since P \ l(P ) is also convex. For (c)

we use the separation result for convex cones [3, Proposition 3].

Remark 3.10. (a) Since int P 6= ∅ implies that B∗ = {q ∈ P ∗ : 〈q, p〉 = 1} is a

base for P ∗, i.e., P ∗ =
⋃

t≥0 tB∗, (3) reduces to

EW =
⋃

q∈B∗

argminKhq.

(b) If, in addition, P ∗ \ {0} = co(extrd P ∗) (which implies the pointedness of P ∗),

we can substitute P ∗ \ {0} by extrd P ∗ in (3) and (4).

Next example shows the inclusion in (4) may be strict.

Example 3.11. Consider K = R, P = R2
+, F = (f1, f2), where f1(x) =

√
|x| and

f2(x) = 1. Here, E = {0} whereas

⋃

q∈B∗

argminKhq = R.

4 Characterizations and asymptotic estimates

Throughout this section we consider Y = Rm, X = Rn and K ⊆ Rn is a closed convex

set.

The next result, which provides some estimates for the asymptotic cone of the efficient

set E, is the starting point for our further analysis. The case P = Rn
+ was proved in

[6]. We present its proof for convenience of the reader.

We recall that P ∗ \ {0} = co(extrd P ∗) implies the pointedness of P ∗, and therefore

int P 6= ∅.
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Lemma 4.1. Let P  Rm be a closed convex cone such that P ∗ \ {0} = co(extrd P ∗)

with extrd P ∗ being a finite set, that is, P is a polyhedral cone. Assume that

argminK(z)hq0
6= ∅ for some z ∈ K and q0 ∈ int P ∗. Then,

(argminK(z)hq0
)∞ ⊆ E∞ ⊆

⋃

q∈extrd P ∗

{v ∈ K∞ : h∞
q (v) ≤ 0}.

Proof. The first inclusion follows from Lemma 3.1. We now check the remaining inclu-

sion. In case E is bounded such an inclusion is trivial.

Assume that extrd P ∗ = {qi : i = 1, . . . , p} and that E is unbounded. Let v ∈ E∞,

with ‖v‖ = 1; there exists {xk}k∈N ⊆ E satisfying ‖xk‖ → +∞ and
xk

‖xk‖
→ v.

(i): If sup
k∈N

hqi0
(xk) ≤ α < +∞ for some i0 ∈ {1, 2, . . . , p}, then

{x ∈ K : hqi0
(x) ≤ α}∞ ⊆ {v ∈ K∞ : h∞

qi0
(v) ≤ 0} ⊆

p⋃

i=1

{v ∈ K∞ : h∞
qi

(v) ≤ 0},

where the first inclusion is easily obtained.

(ii): If on the contrary, for all i = 1, 2, . . . , p, we have

sup
k∈N

hqi
(xk) = +∞,

then there exists {x1
k}k∈N ⊆ {xk}k∈N such that ‖x1

k‖ → +∞,
x1

k

‖x1
k‖

→ v and in addition

sup
k∈N

hqi
(x1

k) = +∞, ∀ i = 1, 2, . . . , p.

For k̄ ∈ N fixed and any i ∈ {1, 2, . . . , p} there exists ki ∈ N such that hqi
(x1

k) >

hqi
(x1

k̄
), ∀ k ≥ ki. That is, 〈qi, F (x1

k̄
) − F (x1

k)〉 < 0, ∀ k ≥ ki, ∀ i = 1, 2, . . . , p.

Set k0 = max
1≤i≤p

ki. Then, for all i = 1, 2, . . . , p,

〈qi, F (x1
k̄
) − F (x1

k)〉 < 0, ∀ k ≥ k0.

This implies that F (x1
k̄
)−F (x1

k) ∈ −int P ⊆ −P \l(P ), which cannot happen if x1
k ∈ E,

proving that case (i) is only possible.

Next example shows the outer estimate for E∞ is very large when each hqi
is non

convex.

Example 4.2. Take K = R, P = R2
+ and consider f1(x) =

√
|x|, f2(x) =

√
|x − 2|.

Then f∞
1 (v) = 0 = f∞

2 (v), ∀ v ∈ R. Thus,

2⋃

i=1

{v ∈ K∞ : f∞
i (v) ≤ 0} = R,

whereas E = [0, 2] = EW and therefore E∞ = {0}.
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In order to find finer outer estimates to E∞, we consider closed convex cones P ∗

such that

P ∗ =
⋃

t>0

tB∗, B∗ = co(S0), S0 is compact, (6)

where 0 6∈ B∗ is convex and compact, and S0 is the set of extreme points of B∗. Under

assumption (6), P ∗ is pointed, which is equivalent to int P 6= ∅.

Like in [7, 9], we consider the following cones

RP
.
=

⋂

y∈K

{v ∈ K∞ : F (y + λv) − F (y) ∈ −P, ∀ λ > 0}. (7)

RW
.
=

⋂

y∈K

⋂

λ>0

⋃

q∈S0

{v ∈ K∞ : 〈q, F (y + λv) − F (y)〉 ≤ 0}. (8)

R̃W
.
=

⋂

y∈K

⋃

q∈S0

{v ∈ K∞ : 〈q, F (y + λv) − F (y)〉 ≤ 0, ∀ λ > 0}. (9)

R̂W
.
=

⋃

q∈S0

⋂

y∈K

{v ∈ K∞ : 〈q, F (y + λv) − F (y)〉 ≤ 0, ∀ λ > 0}. (10)

It is obvious that

RP ⊆ R̂W ⊆ R̃W ⊆ RW . (11)

Remark 4.3. For the example above, we obtain that E∞ = (EW )∞ = RP = {0}.

Conditions ensuring some equalities in (11) are given in the next proposition which

is taken from [12].

Proposition 4.4. Let P be a closed convex cone and hq are quasiconvex for all q ∈ B∗.

Then, RW ⊆ R̃W , that is, RW = R̃W ,

In what follows we need the following notion. The function F : K → Y is said to be

P -lower semicontinuous (P -lsc) at x0 ∈ K ([17]) if for any neighborhood V of F (x0)

in Y there exists a neighborhood U of x0 in X such that F (U ∩ K) ⊆ V + P . The

function F : K → Y is said to be P -lsc if it is at every point x0 ∈ K.

It is easy to check that Rm
+ -lower semicontinuity of F = (f1, . . . , fm) is equivalent to

the (usual) lower semicontinuity of each fi.

Lemma 4.5. Let P be a closed convex cone satisfying (6) (in particular int P 6= ∅).

Assume that F is P -lsc and that hq is quasiconvex for all q ∈ B∗. Then

(Epr)
∞ ⊆ E∞ ⊆ (EW )∞ ⊆

⋂

y∈K

⋂

λ>0

⋃

q∈S0

{v ∈ K∞ : 〈q, F (y + λv) − F (y)〉 ≤ 0} = RW .
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Proof. We only need to check the third inclusion. In case EW is empty or bounded,

such an inclusion follows. Let v ∈ (EW )∞, ‖v‖ = 1. Then there exists {xk}k∈N ⊆ EW

such that ‖xk‖ → +∞ and
xk

‖xk‖
→ v.

Take any y ∈ K and λ > 0. Then, for some k0 ∈ N,

(1 −
λ

‖xk‖
)y + λ

xk

‖xk‖
∈ K,

λ

‖xk‖
< 1, ∀ k > k0.

Since xk ∈ EW , there existe {qk}k∈N ⊆ S0, such that

hqk
(xk) ≤ hqn

(y) and qk → q ∈ S0.

By quasiconvexity of hqk
we obtain,

〈qk, F ((1 −
λ

‖xk‖
)y + λ

xk

‖xk‖
)〉 ≤ 〈qk, F (y)〉, ∀ k > k0.

Let ε > 0, by [17, Theorem 5.5],

〈qk, F (y)〉 ≥ 〈qk, F ((1 −
λ

‖xk‖
)y + λ

xk

‖xk‖
)〉 ≥ 〈qk, F (y + λv)〉 − ε, ∀ k ≥ k0.

Letting k → +∞, and since ε > 0 was arbitrary, we get

〈q, F (y + λv)〉 ≤ 〈q, F (y)〉,

proving the desired result.

Next lemma provides an interesting inner estimate for (EW )∞.

Lemma 4.6. Let P be a closed convex cone such that int P 6= ∅, and let J ⊆ P ∗ \{0}.

If for all q ∈ J , hq is quasiconvex, lower semicontinuous and argminKhq 6= ∅. Then,

⋃

q∈J

⋂

y∈K

{v ∈ K∞ : hq(y + λv) ≤ hq(y), ∀ λ > 0} ⊆ (EW )∞.

Proof. Since argminKhq ⊆ EW for all q ∈ J , we get

⋃

q∈J

argminKhq ⊆ EW .

Thus, (EW )∞ ⊇
⋃

q∈J

(argminKhq)
∞.

The quasiconvexity and lower semicontinuity of hq, imply that

(argminKhq)
∞ =

⋂

y∈K

{v ∈ K∞ : hq(y + λv) ≤ hq(y), ∀ λ > 0},

from which the result follows.
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Lemma 4.7. Let P be closed convex cone. If E 6= ∅, then

RP
.
=

⋂

y∈K

{v ∈ K∞ : F (y + λv) − F (y) ∈ −P, ∀ λ > 0} ⊆ E∞.

Proof. Let v ∈ RP and x ∈ E. We claim that x+ tv ∈ E, for all t > 0. Take any y ∈ K,

then

F (y) − F (x + tv) = F (y) − F (x) + F (x) − F (x + tv).

Thus, F (y)−F (x)+ F (x)−F (x+ tv) ∈ Y \ (−P \ l(P ))+ P ⊆ Y \ (−P \ l(P )), which

proves the claim, and therefore v ∈ E∞.

Remark 4.8. If hq is convex for all q ∈ J , then the previous lemma reduces to

⋂

q∈J

{v ∈ K∞ : h∞
q (v) ≤ 0} ⊆ E∞.

Next lemma extends and generalizes Lemma 3.2 in [6] which is valid only for poly-

hedral cones.

Lemma 4.9. Assume that P is a closed convex cone. The following assertions hold.

(a) Assume that Epr 6= ∅. If there exists ∅ 6= J ⊆ P ∗ \ {0} such that

sup
x∈Epr

sup
q∈J

hq(x) < +∞, (12)

then

(Epr)
∞ ⊆

⋂

q∈J

{v ∈ K∞ : h∞
q (v) ≤ 0}.

(b) Assume that E 6= ∅. If there exists ∅ 6= J ⊆ P ∗ \ {0} such that

sup
x∈E

sup
q∈J

hq(x) < +∞, (13)

then

E∞ ⊆
⋂

q∈J

{v ∈ K∞ : h∞
q (v) ≤ 0}.

(c) Assume that int P 6= ∅ and EW 6= ∅. If there exists ∅ 6= J ⊆ P ∗ \ {0} such that

sup
x∈EW

sup
q∈J

hq(x) < +∞, (14)

then

(EW )∞ ⊆
⋂

q∈J

{v ∈ K∞ : h∞
q (v) ≤ 0}.
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Proof. Let A ∈ {E,Epr, EW }. If either A is empty or bounded there nothing to prove.

Let v ∈ A∞, ‖v‖ = 1. Then, there exists {xk}k∈N ⊆ A, con ‖xk‖ → +∞, such

that
xk

‖xk‖
→ v. By assumption on A, that is, (12), (13), (14), we have, for some

M > 0, hq(xk) ≤ M , for all k ∈ N, for all q ∈ J , i.e., (xk,M) ∈ epi hq. Since
1

‖xk‖
(xk,M) → (v, 0), we obtain (v, 0) ∈ (epi hq)

∞ = epi h∞
q , for all q ∈ J . Hence

h∞
q (v) ≤ 0, and therefore

A∞ ⊆
⋂

q∈J

{v ∈ K∞ : h∞
q (v) ≤ 0}.

Remark 4.10. By Lemma 4.7 and under assumptions of Lemma 4.9, we have

⋂

y∈K

⋂

λ>0

⋂

q∈P ∗

{v ∈ K∞ : hq(y + λv) ≤ hq(y)} ⊆ E∞ ⊆
⋂

q∈J

{v ∈ K∞ : h∞
q (v) ≤ 0}.

⋂

y∈K

⋂

λ>0

⋂

q∈P ∗

{v ∈ K∞ : hq(y + λv) ≤ hq(y)} ⊆ E∞
W ⊆

⋂

q∈J

{v ∈ K∞ : h∞
q (v) ≤ 0}.

5 Characterizing the nonemptiness and boundedness of

E and EW

We are now devoted to find a formula for E∞ and (EW )∞ under the standard convexity

assumption. It extends partially Lema 3.2 in [6].

We continue to consider throughout this section that Y = Rm, X = Rn and K ⊆ Rn

is a closed convex set.

Theorem 5.1. Let P be a closed convex cone such that P ∗ \ {0} = co(extrd P ∗).

Assume that hq is convex for all q ∈ extrd P ∗.

(a) If assumption (13) holds for J = extrd P ∗, then

E∞ =
⋂

q∈extrd P ∗

{v ∈ K∞ : h∞
q (v) ≤ 0}.

(b) If int P 6= ∅ and assumption (14) holds for J = extrd P ∗, then

(EW )∞ =
⋂

q∈extrd P ∗

{v ∈ K∞ : h∞
q (v) ≤ 0}.

Proof. It is a consequence of Lemma 4.9 and Remark 4.10.

Having found a formula for E∞ and (EW )∞, we proceed to characterize the

nonemptiness and boundedness of E and EW .
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Theorem 5.2. Let P be a closed convex cone such that P ∗ \ {0} = co(extrd P ∗) with

extrd P ∗ being a finite set, that is, P is a polyhedral cone. Assume that hq is convex

and continuous for all q ∈ extrd P ∗.

(a) E is nonempty and bounded if, and only if

⋂

q∈extrd P ∗

{v ∈ K∞ : h∞
q (v) ≤ 0} = {0},

and assumption (13) holds for J = extrd P ∗.

(b) If int P 6= ∅ then, EW is nonempty and compact if, and only if

⋂

q∈extrd P ∗

{v ∈ K∞ : h∞
q (v) ≤ 0} = {0},

and assumption (14) holds for J = extrd P ∗.

Proof. We only check (a), the other being similar.

(⇐) We apply Theorem 2.1 of [5] to conclude that E 6= ∅. Since assumption (13) holds,

the previous theorem implies that

E∞ =
⋂

q∈extrd P ∗

{v ∈ K∞ : h∞
q (v) ≤ 0}.

Thus, E is bounded.

(⇒) Since E is nonempty and bounded and each hq is continuous, assumption (13)

holds, and therefore,

{0} = E∞ =
⋂

q∈extrd P ∗

{v ∈ K∞ : h∞
q (v) ≤ 0}

by the previous theorem.

Remark 5.3. Trying to extend the previous result to a non-convex setting, one can

think in semistrictly quasiconvex functions. Unfortunately, the following example shows

that in such a case, Theorem 5.2 may be false. Indeed, take K = R, P = R2
+, and

consider F = (f1, f2), with f1(x) =
x

1 + |x|
, f2(x) = −

x

1 + |x|
.

It is easy to check that E = R and so E∞ = R; whereas assumption (13) holds and

RP = {0}.

We now present some characterizations of the nonemptiness of E and EW by means

of RP , RW and assumptions (13) and (14).

Theorem 5.4. Let P be a closed convex cone such that P ∗ \ {0} = co(extrd P ∗)

with extrd P ∗ being a finite set, that is, P is polyhedra. Assume that hq is convex and

continuous for all q ∈ extrd P ∗. Let consider the following statements:
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(a) E 6= ∅ and bounded;

(b) RP = {0} and assumption (13) holds for J = extrd P ∗.

In case int P 6= ∅, consider also

(c) RP = {0} and assumption (14) holds for J = extrd P ∗;

(d) EW 6= ∅ and compact;

(e) argminKhq 6= ∅ and compact for all q ∈ extrd P ∗;

(f) RW = {0}.

The following hold: (a) ⇔ (b) ⇐ (c) ⇔ (d) ⇔ (e) ⇔ (f).

Proof. (a) ⇔ (b) and (c) ⇔ (d) are Theorem 5.2. That (c) ⇒ (b) is obvious. The

equivalences (d) ⇔ (e) ⇔ (f) follows from Theorem 5.1 in [12].

6 Necessary conditions: the general convex and the non-

convex quadratic cases

This section developes necessary conditions for existence of efficient and weak effi-

cient solutions. We first consider the convex case and afterwards, we particularize a

nonconvex situation when each component is quadratic and nonhomogeneous.

Next lemma generalizes [10, Proposition 8.3] and [6, Proposition 4.1(b)].

Lemma 6.1. Let X, Y be normed vector spaces, P  Y be convex closed cone and

K ⊆ X be closed and convex.

(a) Assume that P ∗ is the weak-star closed convex hull of extrd P ∗ and that hq is

convex and lower semicontinuous for all q ∈ extrd P ∗. If E 6= ∅ then,

v ∈ K∞ : h∞
q (v) ≤ 0,∀ q ∈ extrd P ∗ ⇒ h∞

q (v) = 0, ∀ q ∈ extrd P ∗.

(b) Assume that P ∗ \ {0} is the convex hull of extrd P ∗, that hq is convex and lower

semicontinuous for all q ∈ extrd P ∗, and that int P 6= ∅. If EW 6= ∅ then,

v ∈ K∞ : h∞
q (v) ≤ 0, ∀ q ∈ extrd P ∗ ⇒ ∃ q0 ∈ extrd P ∗, h∞

q0
(v) = 0.

Proof. (a): If on the contrary, there exists q ∈ extrd P ∗ such that h∞
q (v) < 0, then

hq(y + λv) − hq(y)

λ
≤ sup

λ>0

hq(y + λv) − hq(y)

λ
< 0, ∀ y ∈ K.
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Thus,

hq(y + λv) ≤ hq(y), ∀ q ∈ extrd P ∗ and hq(y + λv) < hq(y),

that is,

F (y + λv) − F (y) ∈ −P \ l(P ), ∀ y ∈ K,

contradicting the fact that E is nonempty. Hence, h∞
q (v) = 0, for all q ∈ extrd P ∗.

(b): Suppose, on the contrary, that for all q ∈ extrd P ∗, h∞
q (v) < 0. Then,

hq(y + λv) − hq(y)

λ
≤ sup

λ>0

hq(y + λv) − hq(y)

λ
< 0, ∀ y ∈ K,

from which hq(y + λv) < hq(y), ∀ y ∈ K,∀ q ∈ extrd P ∗. That is, hq(y + λv) <

hq(y), ∀ y ∈ K,∀ q ∈ P ∗ \ {0}. This cannot happen if EW 6= ∅, proving the result.

We now consider Y = Rm, P = Rm
+ and F = (f1, f2, . . . , fm) with fi(x) = x⊤Aix+

b⊤i x + αi with Ai ∈ M(n × n) being symmetric, bi ∈ Rn and αi ∈ R, for all i =

1, 2, . . . ,m. In addition we assume that K is closed and convex.

Lemma 6.2. Let K ⊆ Rn be closed and convex, let fi be a (not necessarily convex)

queadratic function as above.

(a) If E 6= ∅ then,

v ∈ K∞
m⋂

i=1

ker(Ai), b⊤i v ≤ 0,∀ i = 1, 2, . . . ,m ⇒ b⊤i v = 0, ∀ i = 1, 2, . . . ,m.

(b) If EW 6= ∅ then,

v ∈ K∞
m⋂

i=1

ker(Ai), b⊤i v ≤ 0, ∀ i = 1, 2, . . . ,m ⇒ ∃ i0 ∈ {1, 2, . . . ,m}, b⊤i0v = 0.

Proof. The proofs being similar, we only check (a).

(a): Let v ∈ K∞
m⋂

i=1

ker(Ai) such that b⊤i v ≤ 0 for all i = 1, 2, . . . ,m. Then

fi(y + λv) ≤ fi(y), ∀ i = 1, 2, . . . ,m, ∀ y ∈ K. (15)

Suppose, on the contrary, that there exits i0 ∈ {1, 2, . . . ,m} such that b⊤i0v < 0. Then

fi0(y + λv) < fi0(y), ∀ y ∈ K. (16)

Both inequalities imply F (y+λv)−F (y) ∈ −Rm
+\{0},∀ y ∈ K, which is a contradiction

since E is nonempty.



16 Inner and outer estimates in vector optimization

Corollary 6.3. Let K ⊆ Rn be closed and convex, let fi be a (not necessarily convex)

quadratic function as above.

(a) If E 6= ∅ and bounded, then

K∞
m⋂

i=1

ker(Ai)(
m⋂

i=1

{−bi}
∗) = {0}. (17)

(b) If EW 6= ∅ and bounded, then

K∞
m⋂

i=1

ker(Ai)(

m⋂

i=1

{−bi}
∗) = {0}. (18)

Proof. We only prove (a). Let v ∈ K∞
m⋂

i=1

ker(Ai)(

m⋂

i=1

{−bi}
∗), v 6= 0. By the previous

lemma, b⊤i v = 0 for all i = 1, 2, . . . ,m. This means that

fi(y + λv) = fi(y), ∀ y ∈ K, ∀ λ > 0, ∀ i = 1, 2, . . . ,m.

If y ∈ E, the previous equality implies that y + λv ∈ E for all λ > 0, which cannot

happen if E is bounded. Hence, v = 0.

Remark 6.4. When each Ai is positive semidefinite, i.e., each fi is convex, the nec-

essary conditions in Lemma 6.2 and Corollary 6.3 become also sufficient as Example

8.4 in [10] shows.
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