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Abstract

In this Note we give a proof of the Reynolds transport theorem for the case where the field belongs to the space
WH(Q), Q being the trajectory under a motion of a reference configuration which is a bounded open subset of R™.
We first consider the standard formula in Cartesian coordinates. Next, a particular version in three-dimensional
cylindrical coordinates for an axisymmetric field and an axisymmetric motion keeping invariant the azimuthal
coordinate is proved.

Résumé

Une démonstration du theoréme du transport de Reynolds pour des champs dans Wl’l(Q). Ex-
tension aux coordonnées cylindriques. Dans cette Note nous donnons une démonstration du théoreme du
transport de Reynolds pour le cas ot le champ appartient & I’espace W1 (Q), Q étant la “trajectoire” determinée
par un mouvement d’une configuration de référence qui est un ouvert borné quelconque dans R". On considére
d’abord la version standard en coordonnées cartesiennes et ensuite une version particuliere en coordonnées cylin-
driques en dimension trois pour un champ et un mouvement axisymétriques, celui-ci laissant invariant ’azimut.
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Version francgaise abrégée

Les résultats principaux contenus dans cette Note sont les deux théoremes suivants :
Theorem 0.1 Soit Q un ouvert borné dans R"™ et T > 0. Soit X € C([0,T] x Q;R”) une applica-
tion satisfaisant les hypothéses H1-H6 ci-aprés, ot v est défini par l’équation (1). On pose W (t, &) :=
(t, X (t,2)) et Q := W((0,T) x Q). Soit & € L>°(Q) une fonction donnée et o définie dans ®([0,T] x Q)
par o(t,z) := 5(T), on & := X(t,&). Si ¢ € WHH(Q), A C Q est un ensemble mesurable au sens de
Lebesgue et Ay := X (t, A), alors on a l’égalité

d = o(t,x @ x ra ) v(t.x 2)(div.. v T -
Clt/Ato(t,:cW(t,m)dw—/At (t, )(at(t, )+ (grad, ¢)(t, ) - v(t, ) + ¢(t, z)(divg v)(t, ))d

dans D'(0,T) et aussi p.p. sur (0,T).

La preuve se fait par régularisation et passage a la limite, a partir d’une version du méme résultat pour
des fonctions regulieres.

Le second théoreme concerne le cas axisymmétrique. Por sa démonstration on utilise le theoreme
précédent. La seule difficulté vient du fait que la fonction 1/r est singuliere sur axe r = 0.

Theorem 0.2 Soit Q C (0,00) X R un owvert borné et T > 0. Soit X € C([0,T] x 5; [0,00) x R) une
application satisfaisant les hypothéses H1-H5 et HT-HS. Alors, pour tout ¢ € Wh(Q) et tout ensemble
A C Q mesurable au sens de Lebesgue, on a

d
— 0¢rdrd2:/ U@Tdrder/ Ugbdivvrdrder/ ov-grad ¢rdrdz
dt Ay A, 8t Ay Ay

dans D'(0,T) et aussi p.p. sur (0,T), ot divo := 22 (rv,) +

r

v,
oz °

1. Introduction

The Reynolds transport formula is an important analytical tool in continuum mechanics. The proof in
the case of smooth motions and fields can be found in many books (see, for instance, [2] or [5]). However,
to the best of the authors’ knowledge, a rigorous and complete proof for non-smooth fields cannot be
found in the literature. In the present Note we give a proof for the case where the field belongs to the
Sobolev space W1(Q), where @ is the (in general) non-cylindrical trajectory of an open bounded set
under a smooth motion (see [2]). First, we prove the formula in the n-dimensional setting under mild
regularity assumptions on the motion. These mild assumptions allow us to apply the resulting formula to
prove a particular version of the Reynolds transport theorem for the case where the field and the motion
are three-dimensional axisymmetric and the latter keeps invariant the azimuthal coordinate. We remark
that Theorem 4.2 from [4, Chap. 8] is close to our n-dimensional result, but, there, @ = R™ and the field
is assumed to be in C(0,T; WL (R™)) N C(0, T; L. (R™)).

loc loc

2. A family of diffeomorphisms

In what follows we will make use of the following well-known facts. If Q is a bounded open set in R"
and f € C(Q;R"™) is injective, then £(Q) = £(Q) and f: Q — £(Q) is a homeomorphism. If, furthermore,
f € CH(;R™) and D f(z) is nonsingular at every & € Q, then f|q is an open mapping (hence f(€2) is open
in R™) and, by virtue of the inverse mapping theorem, £~ € C*(£(Q)) and (D(f~"))(f(x)) = (Df(x))!
for all z € Q.




Let Q be a bounded open set in R™ and T > 0. Let X € C([0,T] x 6; R™) be a mapping satisfying the

following assumptions:

H1: X(t,-): Q — R" is injective Vt € [0, T);

H2: the partial derivative Dz X exists and is continuous and bounded in [0, T] X ﬁ;

H3: there exists a constant o > 0 such that det(D;X)(t, ) > o V(t, &) € [0,T] x

H4: the partial derivative aa—)f exists and is continuous in [0,77] X Q At t=0 (t =T) we consider here
and in the sequel the right (resp. left) time derivative.

Let us define the mapping W : [0, T x ) = R by ®(t,Z) := (t, X (t,@)) and the set Q := ¥((0,T) x
Q). Then, ¥ is injective, ¥ € C([0,T] x Q;R"1) N CH((0,T) x ;R™) and, from H3, the Jacobian
matrix D z)®(t, &) is non singular for all (¢, ) € (0,7) x Q. Moreover, from the results recalled at the
beginning of this section, we have that ¥ : [0, 7] x Q- Q@ is a homeomorphism, 'Il|(0 T)x8 is an open
mapping, @Q is an open set in R**!, ! € C'(Q) and (D(tym)('ll_l))(uw) = (D.a)®(t, @), where
(t,z) = ¥ '(t,x) for all (¢,z) € Q. This relation and H2-H4 imply that D; 5 (¥ ") is bounded in Q.

Now, let Q; := X (¢, ﬁ) Using again the results recalled at the beginning of this section, we have that
Q; is open in R™ and X (¢,-) : Q — Q, is a homeomorphism for all ¢ € [0,7]. Recall that v ec@).
Moreover, it is of the form ¥~ '(t,x) = (t, P(t,x)) V(t,x) € Q, where P(t,-) : & - Q is the inverse
of X(t,-) for all t € [0,T]. Mapping P is called the reference map and P(t,-) € C(Q;) N CY(Q;) for all
t € [0,T]. For 0 < t < T this is clear, because ¥~ ' € C*(Q); for t = 0 and t = T we apply the inverse
mapping theorem to X (¢, ). Notice that all the first-order derivatives of P are bounded in Q.

Since 2% € C([0,T] x Q) and ¥~1(Q) = [0, 7] x Q, we can define the velocity field v € C(Q) by
0X 0X

v(t,x) = pr (B (t,x)) = ﬁ(t,P(t,w))) V(t,z) € Q. (1)
The above equation can be rewritten as follows:
O 08) =t X(18)  V(1,8) € [0,7] < 0. 2)

3. The Liouville’s formula

We introduce the following further assumption:
H5: the second order partial derivatives %(D@X ) and D@(%—‘f) exist and are continuous in [0, 7] x .

Notice that, from Schwarz theorem, they coincide in the interior of this set and then in [0, 7] X Q.
From (1) and the chain rule, we have that D, exists for all (t,z) € QU ({0} x Qo) U ({T} x Qr) and is
continuous in Q. Differentiating (2) with respect to  and using the equality of the cross derivatives in
[0, 7] x ©, we obtain

0 R =R =R =R ~

((%(D@X)) (t, ) = (Dgv)(t, X (t,x)) Dz X (¢, Z) V(t,xz) € [0,T] x Q,

which, by using Jacobi’s formula for the derivative of a determinant (see, for instance, [2, Chap. I1.3]),
leads to the Liouville’s formulas:

(gt(det Da;X)> (t,x) = (divy v)(t, X (¢, @)) det Dz X (¢, Z) Y(t,x) € [0,T] x Q.
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4. An (almost) classical version of the Reynolds theorem

The following additional assumption is enough to prove a Reynolds transport theorem:
H6: div, v is bounded in Q.
Theorem 4.1 Let Q be a bounded open set in R™ and T > 0. Let X € C([0,T] x Q;R") be a mapping
satisfying assumptions H1-H6, with v defined by equation (1) Let ¥ (t,x) := (t, X (t,x)) and Q :=
¥ ((0,T) ><7§2) Let 5 € L°(Q) and o be defined in ®([0,T] x Q) by o(t,x) := (&), where x := X (t,T).
If ¢ € C(Q)NCHQ) is such that g—i, i=1,...n, and %—‘f are bounded in Q, then for any Lebesgue
measurable set A C Q and for all t € (0,T), we have

d = @ x ra z) v(t,x x)(divy v)(t, T
[ attatotz)in = [ ote.w) (50.2)+ (arad, 6)03) - ot.3) + ot 2) v ) .3) ) d

dt
3)
where A, := X (t, A).
Proof. For any Lebesgue measurable set A C Q and t € [0,T], Ay := X (¢, A) is a Lebesgue measurable

subset of ;. Moreover, o is a measurable function and o (¢, -) is measurable for all ¢ € [0, T] ([3, Th. 8.26)).
The formula of change of variables ([3, Th. 8.26]) can be applied to obtain

/ ot 2)o(t, o) dz — / 5@)o(t, X (1. 5)) det Do X (1,7) dE Vit € [0,T]. ()
Ag A

Time derivation under the integral sign is justified by applying Lebesgue’s dominated convergence theorem
and using Liouville’s formula, H2, H4 and H6. This yields

—/ o(t, X (t,@))det Dz X (¢, ) dx = /Acr(:c) <?;:(t X(t,z)) + (grad, ¢)(t, X (t,Z)) - aa)t( (t, )

+ ¢(t, X (¢, 2))(divg v) (¢, X (¢, :E))) det Dg X (¢, Z) dz

for all t € (0,T). Since the last integral is equal to the right hand side of (3), we conclude the proof. O
Remark 1 The function ¢ — [, o(t,z)¢(t,z)dz is indeed in C([0,77) N CY(0,T) and its first derivative
is bounded. The continuity at t = 0 and ¢t = T arises from (4).

Remark 2 It can be proved that if ¢ E C (@) has continuous and bounded first derivatives in ¥ ([0, 7] x Q),
then (3) also holds for t = 0 and ¢t =

Remark 3 Let Cl(ﬁ) ={¢ € C(ﬁ) (

) a¢ have continuous extensions to all of Q i=1,...,n}.
IfXe Cl([O,T];Cl(ﬁ)”) and det(DzX) (¢, Z) > () V(t,x) € [0,T] x Q, then X satisfies H2-H6.

5. Reynolds theorem for functions in WH1(Q)

Theorem 5.1 Let ﬁ, T, X, ¥, Q,v, o and o be as in Theorem 4.1. If ¢ € WHL(Q), then, for any
Lebesgue measurable set A C ), function t — Ja, ot )0 (t, @) dx is in WL(0,T) and equation (3) holds
in the sense of distributions on (0,T) and also a.e. in (0,T).

Proof. Since ¥ : (0,7) x Q — Q is a homeomorphism, ¥ € CH((0,T) x ﬁ), v e clQ), Dt 3) W is
bounded in (0,7T) x Q and D(t,m)‘IFl is bounded in @, we obtain from [1, Prop. IX.6] that b:i=poWc
WLL((0,T) x Q). Now we construct an extension ¢ € W1 ((=T,2T) x Q) of ¢ by reflection in time (sce,
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for instance, [1, Lemma IX.2]). By virtue of Friedrich’s theorem (see for instance, [1, Th. I1X.2]), there
exists a sequence ¢y, € D(R™1) such that ¢ — ¢ in L1((—T,2T) x Q) and in Wlloi((—T, 2T) x Q). Let
dr = ¢ o ¥ L; then ¢y € C(Q) NCH(Q) and

Ibr 0 OP; o

a0, 0 =2 g, G PG (), i=Lm (5)
99 a¢ 99 oP

o (@) = 8’“ +Z aﬁj @) (t @), (6)

so that 8¢’“ and 8¢’° are bounded in Q. By applying the previously obtained (almost) classical version of
the Reynolds transport theorem to ¢, we obtain for all ¢ € (0,7,

[ ot 3)00(t ) do = /

. o(t,x) ( O (t,z) + (grad, ¢ )(t,x) - v(t, ) + Pi(t, x)(dive v)(t,w)) dx.

ot
o i )
The convergence of ¢y to ¢ in L1((0,7) x ) implies the convergence of ¢ to ¢ in L(Q). Since ¢ =
o1, by applying [1 Prop. IX.6], we obtain formulas analogous to (5) and (6) with ¢, and on replaced
respectively by ¢ and c;S Using these formulas as well as the convergence of d)k to q5 in LY((~T,27T) x Q)
Wloc(( T,2T) x Q) equations (5) and (6), and the boundedness of the first partial derivatives of P, we
easily obtain that ‘%’“ — ‘% in LY(¥((0,T) x @)) and 8¢’“ — 8¢ in LY(¥((0,T) x@)),i=1,...,n, for

w

dt

any open set @ CC Q. R R

Let us assume first that A CC Q. Then, there exists an open set @ such that A ¢ @ cC Q. The
above convergences together with the boundedness of o, v and div, v allow us to pass to the limit in
the integrals of (7) in the sense of L1 (0, 7). Hence, function ¢ fAt o(t,x)¢(t,x)dx is in WH1(0,T) and
equation (3) holds in the sense of the distributions on (0,7") and also a.e. in (0,T).

Now we consider the case of an arbitrary Lebesgue set A C Q. Let ﬁk, k € N, be a sequence of open

sets such that ﬁk C (Alk_H and U:i1 ﬁk = Q. Let AF .= AN ﬁk Since AF cc fAl, we have

G [ otatarda= [ o) (50 + (erad, o)) oit.w) + o0t @) dive o)(t2) ) do
Af
(8)
in D’(0,T). Next, we pass to the limit as k — oo in the integrals in the sense of L'(0,7); for instance,

/

dt

/ o(t,x)grad, ¢(t,x) - v(t,x)de — / o(t,x)grad,, ¢(t,x) - v(t,x)dx
Ay Ay

T
g/o /At\A? lo(t,x)||(grad,, ¢(t,z)) - v(t,z)| dadt

/ lo(t,2)| | (grad, ¢)(t, @) - v(t, z)| da dt
W((0,T)x(A\AF))

and this integral tends to zero because of the Lebesgue’s dominated convergence theorem. By proceeding
analogously with the remaining integrals in (8), we conclude that (3) holds in the sense of distributions

n (0,7) and also a.e. in (0,T"). Thus we conclude the proof. O
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6. The case of cylindrical coordinates: Reynolds theorem for functions in W}jl (Q)

Consider cylindrical coordinates (r, 6, z) in R3, with corresponding unit vectors e,, eq, €. Let QCR3
be an open axisymmetric bounded set and Q := {(7,z) € (0,00) x R : (7,0,%) € @} the interior of
its meridian section. Let X : [0,T] x Q — R3 be an axisymmetric motion which keeps invariant the
azimuthal coordinate §. Then X is determined by the mapping X : [0, 7] X Q- [0,00) x R which gives
the cylindrical coordinates (r, z) of the point X (¢,%) in terms of ¢ and the cylindrical coordinates (7, Z)
of 7 € Q. In this case, thg velocity field @ is also axisymmetric and meridian; namely, v = v,e, + v, e..
Instead of working with X and T{, we deal with their corresponding descriptions in Q: X and v := (v, v,).
We denote divv := %%(rvr) + %“;, which actually corresponds to div v written in polar coordinates.

We use the notation (¢,7,2) for a generic point of R x [0,00) x R. If G is an open set in R? included
in R x [0,00) x R, we denote L}(G) := {¢: G — R measurable : [ |¢|rdrdzdt < oo} and Wr'(G) :=
{p € LYG) : %, g—f, % € LL(G)}. Moreover, we denote grad ¢ := %er + %ez.

Theorem 6.1 Let  C (0,00) x R be a bounded open set and T > 0. Let X € C([0,T] x [0, 00) x R)
be a mapping satisfying assumptions H1-H5 and, furthermore,

HT7: V(t,7,2) € [0,T) x Q, X(t,7,2) lies on the azis v = 0 if and only if (7,2) lies on the axis 7 = 0.
Let ¥, Q, 0 and o be as in Theorem 4.1. Let v be defined by equation (1) and assume that

HS8: divv =12 (rv,) + 8”; is bounded in Q.

r or 1]
If € WHL(Q), then, for any Lebesgue measurable set A C (AZ, the equation
d
—/ cprdrdz = / 0% rdrdz —|—/ ov-grad ¢rdrdz +/ ocpdivurdrdz (9)
dt A, A, 6t A, A,

holds in the sense of distributions on (0,T) and also a.e. in (0,T).

Proof. First we consider the case where the intersection of 9 with the axis 7 = 0 is empty. By virtue
of H7 and the compactness of @, the r coordinate is bounded from below in this set by a strictly
positive constant. Hence W11(Q) = WH1(Q) and assumption H8 coincides with H6. Thus, by applying
Theorem 5.1 for Cartesian coordinates (r, z) to the function r¢ € W1(Q), we obtain (9).

Next we deal with the case in which 9 has a nonempty intersection with the axis 7=0.Let ¢ €
WL1(Q) and A be a Lebesgue measurable subset of Q. For all € > 0, let Q. := QN {(7,2) : 7> ¢)},
A= AN (AZG and Q. := ¥((0,T) x SAL) We apply the setting of the previous case with the sets (AZ, Q and
A replaced with SAL, Q. and A€, respectively. This leads to an equation analogous to (9) with A; replaced
by Af. Now, by using the dominated convergence theorem, we can pass to the limit as e — 0 in all the
integrals in such equation, in the sense of L!(0, T'), which leads to (9) in D’(0,7) and a.e. in (0, 7). Thus
we conclude the proof. O
Remark 4 If X is smooth enough, for instance X € C*([0, T];C1(Q)?), and det(Dz X )(t,Z) > 0 V(t,Z) €
[0,T] x ﬁ, then X satisfies H2—H5. However, this is not necessarily the case with H8. In fact, divw is
the sum of (87” + BU;) and <=; the first term is clearly bounded in @, but not the latter. A bound of this

or [G]
can be found, for instance, if we further assume:

H9: Va > 0 small enough, QN {(7,2) : 0 <7 < a} is a finite disjoint union of trapezoids.

Assumption H9 is close to the one assumed in [6] and can be further relaxed. In what follows, we give a

vr(trz) _ 0eXa(t,7,2)
T X1 (t,7,2)

(where X is the first component of X)), it is enough to bound the last quotient for 7 > 0 small enough.

With this aim, first note that assumption H7 implies that X;(¢,0,2) = 0 and, hence, 9;X;(¢,0,2) = 0

brief sketch of the proof of this claim. Taking into account H7 and the relationship
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for (¢,0,2) € [0,T] x Q. From this, the mean value theorem and some laborious computations allow us to
conclude H8. These computations make use of assumption H9 and the facts that SBX; = 0 on the axis
7 =0 and 85;1 is bounded below away from zero for 7 > 0 sufficiently small, which in its turn follows
from H3, H7 and the assumed smoothness of X.

Remark 5 Assumption H1 and H7 are natural when X is the description in a meridian plane of a
three-dimensional axisymmetric motion X keeping invariant the azimuthal coordinate. Moreover, in such
a case, assumptions H2-HS5 and H8 are satisfied provided X is sufficiently smooth, for instance, when

X €CL([0,T7;CL(Q)?)) and det(D; X)(t, %) > 0 V(¢,7) € [0,T] x Q.
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