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Abstract. We consider a non-standard mixed method for the Stokes problem in R
n,

n ∈ {2,3}, with Dirichlet boundary conditions, in which, after using the incompress-
ibility condition to eliminate the pressure, the pseudostress tensor σ and the velocity
vector u become the only unknowns. Then, we apply the Babuška-Brezzi theory to
prove the well-posedness of the corresponding continuous and discrete formulations.
In particular, we show that Raviart-Thomas elements of order k≥0 for σ and piecewise
polynomials of degree k for u ensure unique solvability and stability of the associated
Galerkin scheme. In addition, we introduce and analyze an augmented approach for
our pseudostress-velocity formulation. The methodology employed is based on the
introduction of the Galerkin least-squares type terms arising from the constitutive and
equilibrium equations, and the Dirichlet boundary condition for the velocity, all of
them multiplied by suitable stabilization parameters. We show that these parameters
can be chosen so that the resulting augmented variational formulation is defined by a
strongly coercive bilinear form, whence the associated Galerkin scheme becomes well
posed for any choice of finite element subspaces. For instance, Raviart-Thomas ele-
ments of order k≥0 for σ and continuous piecewise polynomials of degree k+1 for u
become a feasible choice in this case. Finally, extensive numerical experiments illustrat-
ing the good performance of the methods and comparing them with other procedures
available in the literature, are provided.

AMS subject classifications: 65N15, 65N30, 65N50, 74B05
Key words: mixed finite element, pseudostress, incompressible flow.

1 Introduction

In the last decade there has been an increasing interest in new mixed finite element meth-
ods for linear and nonlinear Stokes problems. In particular, the velocity-pressure-stress
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formulation and its natural applicability to non-Newtonian flows has gained notoriety
in recent years. Among the main strengths of this and other related mixed formulations,
we highlight the fact that, besides the original unknowns, they provide direct approxi-
mations of several other variables of physical interest. In addition, the stress-based for-
mulations yield a unified analysis for linear and nonlinear flows. However, the increase
in the number of degrees of freedom of the resulting discrete systems and the symmetry
requirement for the stress tensor constitute the main drawbacks of the approaches in-
volving this unknown. In order to circumvent these disadvantages two important ideas
have already been suggested in the literature. The first one, which goes back to [15]
and [1], consists of imposing the symmetry of the stress in a weak sense through the in-
troduction of a suitable Lagrange multiplier (rotation in elasticity and vorticity in fluid
mechanics). The second one, which is more appealing nowadays, is given by the use of
the pseudostress tensor instead of the stress in the corresponding setting of the Stokes
equations.

As a consequence of the latter idea mentioned above, two new approaches for incom-
pressible flows, namely the velocity-pressure-pseudostress and velocity-pseudostress fo-
rmulations, arised specially in the context of least-squares and augmented methods (see,
e.g. [6], [8], [14]). In fact, augmented mixed finite element methods for both pseudostress-
based formulations of the stationary Stokes equations, which extend the results derived
for the Lamé system in [17], are introduced and analyzed in [14]. The corresponding
augmented mixed finite element schemes for the stress-based formulations of the Stokes
problem, in which the vorticity is introduced as the Lagrange multiplier taking care of the
weak symmetry of the stress, had been previously studied in [13]. Other related meth-
ods for the steady Stokes problem, based on least-squares formulations with two or three
fields among velocity, velocity gradient, pressure, vorticity, stress, and pseudostress, can
be found in [3], [4], [7], [10], [11], and the references therein. Similarly, the extension of
the results in [17] to the case of non-homogeneous Dirichlet boundary conditions in lin-
ear elasticity was provided in [16]. The use of the first Korn’s inequality, as done in [17],
is not possible in this case, and hence, an additional consistency term, determined pre-
cisely by the Dirichlet boundary condition, had to be incorporated into the augmented
formulation. This extra term yielded the application of a modified Korn’s inequality,
which turned out to be crucial for the analysis in [16]. The results from [17] and [16] were
extended in [19] to three-dimensional linear elasticity problems, while keeping the same
advantages of the 2D case in the resulting augmented formulation.

Interestingly, the mixed finite element methods for the pure velocity-pseudotress for-
mulation of the Stokes equations, that is without augmenting or employing least-squares
terms, had not been studied in details until [9]. It is shown there that Raviart-Thomas
elements of order k ≥ 0 for the pseudostress and piecewise discontinuous polynomials
of degree k for the velocity lead to a stable Galerkin scheme with quasi-optimal accu-
racy. The pressure and other physical quantities (if needed) can be computed via a post
processing procedure without affecting the accuracy of approximation. In the recent
paper [20] we reconsider the pure velocity-pseudostress formulation from [9] and pro-
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vide further related results. More precisely, we incorporate the pressure unknown into
the discrete analysis, which does not necessarily yield an equivalent formulation at that
level, and derive reliable and efficient residual-based a posteriori error estimators for
both Galerkin schemes. It is important to remark that the idea of reintroducing the pres-
sure in [20] is to allow further flexibility in approximating this unknown. To this respect,
we show there that a Galerkin scheme for the velocity-pressure-pseudostress formulation
only makes sense for pressure finite element subspaces not containing the traces of the
pseudostresses subspace. Otherwise, both discrete schemes coincide and hence one ob-
viously stays with the simplest one. Furthermore, the extension of the results from [20]
to a class of nonlinear problems, particularly those studied in [18] and [24], has been
provided recently in [21]. Indeed, in [21] we develop the a priori and a posteriori error
analyses of the velocity-pseudostress formulation as applied to quasi-Newtonian Stokes
flows whose kinematic viscosities are a nonlinear monotone function of the velocity gra-
dient of the fluid. The latter is introduced as an auxiliary unknown, and the pressure
is eliminated using the incompressibility condition, whence the resulting variational for-
mulation shows a twofold saddle point structure (as in [18] and [24]). In addition, an
augmented version of this formulation, which, thanks to its single saddle point structure,
simplifies the requirements for well-posedness of the associated Galerkin scheme, is also
introduced and analyzed.

Now, in spite of the numerous contributions available in the literature concerning the
application of pseudostress-based formulations in continuum mechanics, it is surprising
to realize that most of them, except possibly [19], have to do with 2D boundary value
problems. According to the above, the purpose of the present paper is to extend the
results provided in [20] and [14] to the three-dimensional case. More precisely, in this first
part we develop the a priori error analysis of the velocity-pseudostress formulation from
[20] and its augmented version from [14] as applied to the Stokes problem in R

n, n∈{2,3}.
For simplicity we do not include the pressure unknown into our analysis since, similarly
as observed in [20] and [14], the corresponding results arise from simple modifications
of those obtained for the velocity-pseudostress formulations. In a subsequent paper we
will address the corresponding a posteriori error analyses and the associated adaptive
algorithms.

In order to describe the boundary value problem of interest, we now let Ω be a
bounded and simply connected polyhedral domain in R

n, n ∈ {2,3}, and boundary Γ.
Our goal is to determine the velocity u, the pseudostress tensor σ, and the pressure p of a
steady flow occupying the region Ω, under the action of external forces. More precisely,
given a volume force f∈ [L2(Ω)]n and g∈ [H1/2(Γ)]n, we seek a tensor field σ, a vector
field u, and a scalar field p such that

σ = 2µ∇u− pI in Ω, div(σ) =−f in Ω,

div(u) = 0 in Ω, u = g on Γ,
(1.1)

where µ is the kinematic viscosity and div stands for the usual divergence operator div
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acting along each row of the tensor. As required by the incompressibility condition, we
assume from now on that the datum g satisfies the compatibility condition

∫

Γ
g·ν = 0, (1.2)

where ν stands for the unit outward normal at Γ. The rest of this work is organized
as follows. In Section 2 we introduce the pseudostress-velocity approach and analyze
the corresponding continuous and discrete formulations. In particular, we prove that
Raviart-Thomas elements of order k≥0 for the pseudostress and piecewise polynomials
of degree k for the velocity yield unique solvability and stability of the Galerkin scheme.
Next, in Section 3 we consider an augmented version of the pseudostress-velocity ap-
proach, whose resulting variational formulation is defined by a strongly coercive bilinear
form. As a consequence, the corresponding Galerkin scheme becomes well posed for
any choice of finite element subspaces. Finally, several numerical results illustrating the
good performance of our mixed finite element schemes and comparing them with other
methods available in the literature, are provided in Section 4.

We end this section with several notations, some of them already employed above and
other to be used below. Given any Hilbert space U, Un and Un×n denote, respectively,
the space of vectors and square matrices of order n with entries in U. In addition, I is the
identity matrix of R

n×n, and given τ :=(τij), ζ :=(ζij)∈R
n×n, we write as usual

τt := (τji), tr(τ) :=
n

∑
i=1

τii , τd :=τ−
1

n
tr(τ)I, and τ : ζ :=

n

∑
i,j=1

τij ζij .

Also, in what follows we utilize the standard terminology for Sobolev spaces and norms,
employ 0 to denote a generic null vector, and use C and c, with or without subscripts,
bars, tildes or hats, to denote generic constants independent of the discretization param-
eters, which may take different values at different places.

2 The pseudostress-velocity approach

2.1 The continuous formulation

We begin by observing from the first equation in (1.1), using that tr(∇u) = div(u) in
Ω, that the incompressibility condition div(u) = 0 in Ω can be stated in terms of the
pseudostress tensor and the pressure as follows

p+
1

n
tr(σ) = 0 in Ω. (2.1)

Conversely, starting from (2.1), and using the first equation in (1.1), we recover the incom-
pressibility condition div(u) = 0 in Ω. In other words, the pair of equations given by

σ = 2µ∇u− pI in Ω and div(u) = 0 in Ω, (2.2)
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is equivalent to

σ = 2µ∇u− pI in Ω and p+
1

n
tr(σ) = 0 in Ω, (2.3)

and therefore, instead of (1.1), we now consider:

σ = 2µ∇u− pI in Ω, div(σ) =−f in Ω,

p+
1

n
tr(σ) = 0 in Ω, u = g on Γ.

(2.4)

Moreover, we proceed to eliminate the pressure, that is we replace p by − 1
n tr(σ) in the

first equation of the (2.4), which yields the following reduced problem with the pseu-
dostress σ and the velocity u as the only unknowns:

1

2µ
σd=∇u in Ω, div(σ) =−f in Ω, u = g on Γ. (2.5)

Next, we adopt the usual procedure and test the two field equations of (2.5) with
τ ∈ H(div;Ω) and v ∈ [L2(Ω)]n, respectively. In this way, noting that σd : τ = σd : τd,

integrating by parts the expression
∫

Ω
∇u:τ, and using the Dirichlet boundary condition,

we arrive at the variational formulation: Find (σ,u) in H(div;Ω)×[L2(Ω)]n such that

1

2µ

∫

Ω
σd : τd+

∫

Ω
u·div(τ)= 〈τν,g〉,

∫

Ω
v·div(σ)=−

∫

Ω
f·v,

(2.6)

for all (τ,v)∈H(div;Ω)×[L2(Ω)]n, where

H(div;Ω) :=
{

τ∈ [L2(Ω)]n×n : div(τ)∈ [L2(Ω)]n
}

,

and 〈·,·〉 denotes the duality pairing between [H−1/2(Γ)]n and [H1/2(Γ)]n, with respect
to the [L2(Γ)]n-inner product.

The following lemma establishes the non-uniqueness of the problem (2.6) and hence
the need of reformulating it to guarantee its unique solvability.

Lemma 2.1. The set of solutions of the homogeneous version of (2.6) is given by
{

(cI,0) : c∈R

}
.

Proof. Let (σ,u) in H(div;Ω)×[L2(Ω)]n such that

1

2µ

∫

Ω
σd : τd+

∫

Ω
u·div(τ)=0,

∫

Ω
v·div(σ)=0,

(2.7)



6

for all (τ,v) ∈ H(div;Ω)×[L2(Ω)]n. It is clear from the second equation of (2.7) that
div(σ) = 0, and taking τ = σ in the first equation of (2.7), we deduce that σd = 0, which
yields σ=cI with c∈R. Finally, thanks to the surjectivity of the operator div:H(div;Ω)→
[L2(Ω)]n, we conclude from the first equation of (2.7) that u = 0 in Ω. In fact, it suffices
to take τ := ∇z, where z ∈ [H1

0(Ω)]n is the unique solution of the Dirichlet problem:
∆z = u in Ω, z = 0 on Γ .

In order to handle this non-uniqueness, we consider the well known decomposition

H(div;Ω) = H0 ⊕RI, (2.8)

where

H0 :=
{

τ∈H(div;Ω) :
∫

Ω
tr(τ)=0

}
,

and require from now on that σ belongs to H0. Equivalently, we are just going to look
for the H0-component of the original pseudostress σ. The following lemma guarantees
that the corresponding test space can also be restricted to H0, which throughout the rest
of the paper is endowed with ‖·‖div,Ω, the norm of H(div;Ω).

Lemma 2.2. Any solution of (2.6) with σ ∈ H0 is also solution of: Find (σ,u)∈ H0×[L2(Ω)]n

such that

1

2µ

∫

Ω
σd : τd+

∫

Ω
u·div(τ)= 〈τν,g〉,

∫

Ω
v·div(σ)=−

∫

Ω
f·v,

(2.9)

for all (τ,v)∈ H0×[L2(Ω)]n. Conversely, any solution of (2.9) is also a solution of (2.6).

Proof. It is immediate that any solution of (2.6) with σ∈H0 is also a solution of (2.9). Con-
versely, let (σ,u) be a solution of (2.9). Because of (2.8) it suffices to prove that (σ,u) also
satisfies (2.6) if tested with (I,0), which can be seen to be true thanks to the compatibility
condition (1.2) .

According to the previous lemma we now focus our analysis on problem (2.9). To this
end, we first introduce the space Q := [L2(Ω)]n and the bilinear forms a : H0×H0 −→R

and b : H0×Q→R defined by

a(ζ,τ) :=
1

2µ

∫

Ω
ζd : τd ∀(ζ,τ)∈ H0×H0 , (2.10)

and

b(ζ,v) :=
∫

Ω
v·div(ζ) ∀(ζ,v)∈ H0×Q. (2.11)
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Then, the variational formulation (2.9) can be rewritten as: Find (σ,u)∈ H0×Q such that

a(σ,τ)+b(τ,u) = 〈τν,g〉 ∀τ ∈ H0 ,

b(σ,v) = −
∫

Ω
f·v ∀v∈ Q.

(2.12)

The following well known estimate is needed to prove that (2.12) is well-posed.

Lemma 2.3. There exists c1 > 0, depending only on Ω, such that

c1 ‖τ‖2
0,Ω ≤

∥∥τd
∥∥2

0,Ω
+‖div(τ)‖2

0,Ω ∀τ ∈ H0 . (2.13)

Proof. See Lemma 3.1 in [2] or Proposition 3.1 of Chapter IV in [5].

Then we have the following main result.

Theorem 2.1. Problem (2.12) has a unique solution (σ,u)∈ H0×Q. Moreover, there exists a
positive constant C, depending only on Ω, such that

‖(σ,u)‖H0×Q ≤C
{
‖f‖0,Ω +‖g‖1/2,Γ

}
.

Proof. It suffices to prove that the bilinear forms a and b satisfy the hypotheses of the
Babuška-Brezzi theory. Indeed, given v in Q, we proceed as in the proof of Lemma 2.1
and let z∈ [H1

0(Ω)]n be the unique weak solution of the boundary value problem:

∆z = v in Ω, z = 0 on Γ. (2.14)

Then, we let τ̄ :=∇z, note that τ̄ ∈ H(div;Ω), and decompose τ̄ = τ̄0 + c0I, with τ̄0 ∈ H0

and c0 ∈R. It follows that div(τ̄0) = div(τ̄) = v, which proves that the bounded linear
operator div:H0→[L2(Ω)]n is surjective, as well. Equivalently, the bilinear form b satisfies
the continuous inf-sup condition, which means that there exists β>0 such that

sup
τ∈H0
τ 6=0

∫

Ω
v·div(τ)

‖τ‖div,Ω

≥ β‖v‖0,Ω ∀v∈ [L2(Ω)]n . (2.15)

Now, let V be the kernel of the operator induced by b, that is

V := {τ∈H0 : b(τ,v)=0 ∀v∈Q}= {τ∈H0 : div(τ)=0} . (2.16)

Then, applying Lemma 2.3, we find that for each τ ∈V there holds

a(τ,τ) =
1

2µ

∥∥τd
∥∥2

0,Ω
≥

c1

2µ
‖τ‖2

0,Ω =
c1

2µ
‖τ‖2

div,Ω , (2.17)

which shows that the bilinear form a is strongly coercive in V. Finally, a direct application
of Theorem 4.1 in Chapter I of [22] completes the proof.
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We end this section with the converse of the derivation of (2.12). More precisely, the
following theorem establishes that the unique solution (σ,u)∈ H0×Q of (2.12) solves the
original boundary value problem (2.5).

Theorem 2.2. Let (σ,u) ∈ H0×Q be the unique solution of (2.12). Then, there hold in the
distributional sense

1

2µ
σd=∇u in Ω, div(σ) =−f in Ω, u = g on Γ,

which shows, in particular, that u∈ [H1(Ω)]n.

Proof. It is clear from the second equation of (2.12) that div(σ) = −f in Ω. Next, we
recall from Lemma 2.2 that the ocurrence of the first equation of (2.12) is equivalent to
require it for each τ ∈ H(div;Ω). Hence, the other two identities follow by integrating
backwardly the left hand side of this equation. We omit further details.

2.2 The Galerkin scheme

Let Hσ
0,h and Qh be arbitrary finite element subspaces of H0 and Q, respectively. Then,

the Galerkin scheme associated with (2.12) reads: Find (σh,uh)∈ Hσ
0,h×Qh such that

a(σh,τ)+b(τ,uh) = 〈τν,g〉 ∀τ ∈ Hσ
0,h ,

b(σh,v) = −
∫

Ω
f·v ∀v∈ Qh .

(2.18)

In order to introduce explicit finite element subspaces guaranteeing the unique solva-
bility and stability of (2.18), we now let {Th}h>0 be a regular family of triangulations of
the region Ω̄ by tetrahedrons T of diameter hT such that Ω̄ = ∪{T : T ∈Th} and define
h := max{hT : T ∈Th}. The faces of the tetrahedrons of Th are denoted by e and their
corresponding diameters by he. Certainly, we are assuming here that n = 3. In the case
n = 2 we just need to replace tetrahedrons by triangles and faces by edges in what fo-
llows. Now, given an integer ℓ≥0 and a subset S of R

n, we denote by Pℓ(S) the space of
polynomials of total degree at most ℓ defined on S. Then, for each integer k ≥ 0 and for
each T ∈Th, we define the local Raviart-Thomas space of order k (see, e.g. [25], [5])

RTk(T) = [Pk(T)]n ⊕Pk(T)x, (2.19)

where x :=




x1
...

xn


 is a generic vector of R

n, and let RTk(Th) be the corresponding global

space, that is

RTk(Th) :=
{

τ ∈ H(div;Ω) : (τi1,. . .,τin)
t ∈RTk(T) ∀i ∈ {1,.. . ,n}, ∀T∈Th

}
. (2.20)
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We also let Pk(Th) be the global space of piecewise polynomials of degree ≤ k, that is

Pk(Th) :=
{

v∈ L2(Ω) : v|T ∈Pk(T) ∀T∈Th

}
. (2.21)

Then we introduce the following finite element subspaces of H0 and Q, respectively,

Hσ
0,h :=

{
τ∈RTk(Th) :

∫

Ω
tr(τ) = 0

}
,

Qh := [Pk(Th)]
n .

(2.22)

Next, we provide the main approximation properties of these subspaces. For this
purpose, we first let E k

h : [H1(Ω)]n×n −→RTk(Th) be the usual equilibrium interpolation
operator (see, e.g. [25], [5]), which, given τ ∈ [H1(Ω)]n×n, is characterized by the follow-
ing identities:

∫

e
E k

h (τ)ν·r =
∫

e
τν·r ∀ face e ∈Th , ∀ r∈ [Pk(e)]n , when k≥0, (2.23)

and
∫

T
E k

h(τ) : r =
∫

T
τ : r ∀T ∈Th , ∀ r∈ [Pk−1(T)]n×n , when k≥1. (2.24)

It is easy to show, using (2.23) and (2.24), that

div(E k
h(τ)) =P k

h(div(τ)), (2.25)

where P k
h is the orthogonal projector from [L2(Ω)]n into [Pk(Th)]

n. In addition, it is well
known (see, e.g. [12]) that for each v∈ [Hm(Ω)]n, with 0≤m≤ k+1, there holds

‖v−P k
h(v)‖0,T ≤Chm

T |v|m,T ∀T ∈Th . (2.26)

Furthermore, the operator E k
h satisfies the following estimates (see, e.g. [5], [25]):

‖τ−E k
h (τ)‖0,T ≤Chm

T |τ|m,T ∀T ∈Th , (2.27)

for each τ ∈ [Hm(Ω)]n×n, with 1≤m≤ k+1,

‖div(τ−E k
h (τ))‖0,T ≤Chm

T |div(τ)|m,T ∀T ∈Th , (2.28)

for each τ∈ [H1(Ω)]n×n such that div(τ)∈ [Hm(Ω)]n, with 0≤m≤ k+1, and

‖τν−E k
h(τ)ν‖0,e ≤Ch1/2

e ‖τ‖1,Te ∀ face e ∈Th , (2.29)

for each τ∈ [H1(Ω)]n×n, where Te is any tetrahedron of Th having e as a face. In particular,
note that (2.28) follows easily from (2.25) and (2.26). Moreover, it turns out (see, e.g.
Theorem 3.16 in [23]) that E k

h can also be defined as a bounded linear operator from the
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larger space [Hs(Ω)]n×n∩H(div;Ω) into RTk(Th) for all s ∈ (0,1], and that in this case
there holds the following interpolation error estimate

‖τ−E k
h(τ)‖0,T ≤Chs

T

{
‖τ‖s,T +‖div(τ)‖0,T

}
∀T ∈Th . (2.30)

Then, as a consequence of (2.26), (2.27), (2.28), (2.30), and the usual interpolation es-
timates, we find that the subspaces Hσ

0,h and Qh given by (2.22) satisfy the following
approximation properties:

(APσ
0,h) For each s ∈ (0,k+1] and for each τ ∈ [Hs(Ω)]n×n∩H0 with div(τ)∈ [Hs(Ω)]n there

exists τh∈Hσ
0,h such that

‖τ−τh‖div,Ω ≤Chs
{
‖τ‖s,Ω+‖div(τ)‖s,Ω

}
.

(APu
h ) For each s∈ [0,k+1] and for each v∈ [Hs(Ω)]n there exists vh ∈ Qh such that

‖v−vh‖0,Ω ≤Chs ‖v‖s,Ω .

Having provided the above, we now establish the unique solvability, stability, and
convergence of the Galerkin scheme (2.18) with the finite element subspaces given by
(2.22). We begin the analysis with the discrete inf-sup condition for the bilinear form b.

Lemma 2.4. Let Hσ
0,h and Qh be given by (2.22). Then, there exists β>0, independent of h, such

that

sup
τ∈Hσ

0,h

τ 6=0

b(τ,v)

‖τ‖div,Ω
≥ β‖v‖0,Ω ∀v∈ Qh . (2.31)

Proof. Since b satisfies the continuous inf-sup condition (cf. (2.15) in the proof of Theorem
2.1), we just need to construct a Fortin operator Πh : H0 −→Hσ

0,h. To this end, we first let

G be a bounded convex polyhedral domain containing Ω̄. Then, given τ ∈ H0, we let
z∈ [H1

0 (G)]n be the unique weak solution of the boundary value problem:

∆z =

{
divτ in Ω

0 in G\Ω
, z = 0 on ∂G . (2.32)

Thanks to the elliptic regularity result for (2.32) we have that z∈ [H2(G)]n and

‖z‖2,G ≤ c‖div(τ)‖0,Ω . (2.33)

Also, it is clear that ∇z|Ω ∈ [H1(Ω)]n×n, div(∇z) = ∆z = div(τ) in Ω, and

‖∇z‖1,Ω ≤ ‖z‖2,Ω ≤ ‖z‖2,G ≤ c‖div(τ)‖0,Ω . (2.34)
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According to the above, we define Πh(τ) as the H0-component of E k
h (∇z) determined by

the decomposition (2.8), that is

Πh(τ) := E k
h(∇z)−

{
1

n|Ω|

∫

Ω
tr(E k

h(∇z))

}
I.

It follows, using (2.25), that

div(Πh(τ)) = div(E k
h(∇z)) =P k

h(div(∇z)) =P k
h(div(τ)) in Ω,

and hence for each v∈ Qh = [Pk(Th)]
n there holds

b(Πh(τ),v) =
∫

Ω
v·div(Πh(τ)) =

∫

Ω
v·P k

h(div(τ)) =
∫

Ω
v·div(τ) = b(τ,v). (2.35)

In addition, using the stability of the decomposition (2.8), and applying (2.27) (with m=1)
and (2.34), we find that

‖Πh(τ)‖2
div,Ω ≤‖E k

h (∇z)‖2
div,Ω = ‖E k

h (∇z)‖2
0,Ω +‖P k

h(div(τ))‖2
0,Ω

≤C
{
‖∇z−E k

h(∇z)‖2
0,Ω +‖∇z‖2

0,Ω +‖div(τ)‖2
0,Ω

}
≤C‖div(τ)‖2

0,Ω ,

which shows that Πh is uniformly bounded. The above estimate and (2.35) prove that Πh

becomes a Fortin operator, which finishes the proof.

We are now in a position to establish the following theorems.

Theorem 2.3. Let Hσ
0,h and Qh be given by (2.22). Then the Galerkin scheme (2.18) has a unique

solution (σh,uh)∈Hσ
0,h×Qh, and there exist positive constants C, C̃, independent of h, such that

‖(σh,uh)‖H0×Q ≤C
{
‖f‖0,Ω +‖g‖1/2,Γ

}
,

and

‖(σ,u)−(σh,uh)‖H0×Q ≤ C̃ inf
(τh ,vh)∈Hσ

0,h×Qh

‖(σ,u)−(τh,vh)‖H0×Q . (2.36)

Proof. Since div(Hσ
0,h)⊆ Qh, we find that the discrete kernel of b is given by

Vh :=
{

τ∈Hσ
0,h : b(τ,v)=0 ∀v∈Qh

}
=

{
τ∈Hσ

0,h : div(τ)=0 in Ω
}

,

which is clearly contained in V (cf. (2.16)), the continuous kernel of b, and hence, thanks
to (2.17), a is strongly coercive in Vh as well. This fact, Lemma 2.4, and a direct applica-
tion of the classical Babuška-Brezzi theory (see, e.g. Theorem 1.1 in Chapter II of [22])
complete the proof.
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Theorem 2.4. Let Hσ
0,h and Qh be given by (2.22) and let (σ,u)∈H0×Q and (σh,uh)∈Hσ

0,h×Qh

be the unique solutions of the continuous and discrete formulations (2.12) and (2.18), respectively.
Assume that σ ∈ [Hs(Ω)]n×n, div(σ) ∈ [Hs(Ω)]n, and u ∈ [Hs(Ω)]n, for some s ∈ (0,k+1].
Then there exists C>0, independent of h, such that

‖(σ,u)− (σh,uh)‖H0×Q ≤Chs
{
‖σ‖s,Ω +‖div(σ)‖s,Ω +‖u‖s,Ω

}
.

Proof. It follows from the Cea estimate (2.36) and the approximation properties (APσ
0,h)

and (APu
h ).

3 The augmented pseudostress-velocity approach

In this section we extend the results from [14] to the three-dimensional case.

3.1 The continuous formulation

We begin by enriching the formulation (2.12) with residuals arising from the modified
constitutive equation, the equilibrium equation, and the Dirichlet boundary condition
(all of them displayed respectively in (2.5)). More precisely, following the same procedure
from [17], [16] and [14], we subtract the second from the first equation in (2.12) and then
add the Galerkin least-squares terms given by

κ1

∫

Ω

(
∇u−

1

2µ
σd

)
:

(
∇v+

1

2µ
τd

)
= 0, (3.1)

κ2

∫

Ω
div(σ)·div(τ) = −κ2

∫

Ω
f·div(τ), (3.2)

and

κ3

∫

Γ
u·v = κ3

∫

Γ
g·v, (3.3)

for all (τ,v) ∈ H0×[H1(Ω)]n, where (κ1,κ2,κ3) is a vector of positive parameters to be
specified later. We notice that (3.1) and (3.3) implicitly require now the velocity u to live
in the smaller space [H1(Ω)]n instead of [L2(Ω)]n.

Thus, we propose to replace (2.12) by the following augmented variational formula-
tion: Find (σ,u)∈ H0 = H0×[H1(Ω)]n such that

A((σ ,u), (τ,v)) = F(τ,v) ∀(τ,v)∈ H0 , (3.4)



13

where the bilinear form A : H0×H0→R and the functional F : H0→R are defined by

A((ζ,w),(τ,v)) := a(ζ,τ)+b(τ,w)−b(ζ,v)

+ κ1

∫

Ω

(
∇w−

1

2µ
ζd

)
:

(
∇v+

1

2µ
τd

)

+ κ2

∫

Ω
div(ζ)·div(τ)+κ3

∫

Γ
w·v

(3.5)

and

F(τ,v) :=
∫

Ω
f·(v−κ2 div(τ))+ 〈τν,g〉+κ3

∫

Γ
g·v, (3.6)

for all (ζ,w), (τ,v)∈ H0.
In what follows we aim to show the well-posedness of (3.4). The main idea is to

choose the vector of parameters (κ1,κ2,κ3) in such a way that A becomes strongly coercive
in H0 with respect to the norm ‖·‖H0 defined by

‖(τ,v)‖H0 :=
{
‖τ‖2

div,Ω +‖v‖2
1,Ω

}1/2
∀(τ,v)∈ H0 , (3.7)

and then to simply apply the classical Lax-Milgram Lemma. Indeed, we first observe that

∫

Ω

(
∇v−

1

2µ
τd

)
:

(
∇v+

1

2µ
τd

)
= |v|21,Ω −

1

4µ2
‖τd‖2

0,Ω , (3.8)

and hence, according to the definitions of a and A (cf. (2.10) and (3.5)), we find that

A((τ,v), (τ,v)) =
1

2µ

(
1−

κ1

2µ

)
‖τd‖2

0,Ω +κ2‖div(τ)‖2
0,Ω +κ1 |v|

2
1,Ω +κ3‖v‖2

0,Γ (3.9)

for each (τ,v)∈ H0. Then, choosing κ1,κ2 and κ3 such that 0 < κ1 < 2µ and 0 < κ2,κ3, and
applying Lemma 2.3, we deduce that

A((τ,v), (τ,v))≥ α1

{
‖τd‖2

0,Ω+‖div(τ)‖2
0,Ω

}
+

κ2

2
‖div(τ)‖2

0,Ω+α2

{
|v|21,Ω +‖v‖2

0,Γ

}

≥ c1α1‖τ‖2
0,Ω +

κ2

2
‖div(τ)‖2

0,Ω + α2

{
|v|21,Ω +‖v‖2

0,Γ

}

≥ α3‖τ‖2
div,Ω + α2

{
|v|21,Ω +‖v‖2

0,Γ

}
∀ (τ,v)∈ H0 ,

where c1 is the constant from Lemma 2.3,

α1 := min

{
1

2µ

(
1−

κ1

2µ

)
,
κ2

2

}
, α2 := min{κ1,κ3}, and α3 := min

{
c1α1,

κ2

2

}
. (3.10)

In order to complete the required estimate for A we need the following Korn type
inequality.
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Lemma 3.1. There exists c2 > 0, depending only on Ω, such that

c2‖v‖2
1,Ω ≤ |v|21,Ω +‖v‖2

0,Γ ∀v∈ [H1(Ω)]n . (3.11)

Proof. It suffices to apply the Peetre-Tartar Lemma (cf. [22, Theorem 2.1, Chapter I]) and
the generalized Poincaré inequality. We omit further details and refer to [16, Section 3]
for the proof of a similar estimate.

It follows from the previous inequality satisfied by A and Lemma 3.1 that

A((τ,v)) ≥ α‖(τ,v)‖2
H0

∀(τ,v)∈ H0 , (3.12)

where α := min{α3 , c2 α2}, which confirms the strong coerciveness of A.
As a consequence of the above analysis we can establish the following main result.

Theorem 3.1. Assume that there hold 0< κ1 < 2µ and 0< κ2,κ3 . Then, the augmented vari-
ational formulation (3.4) has a unique solution (σ,u)∈H0, which coincides with the unique solu-
tion of (2.12). Moreover, there exists a positive constant C, depending only on µ and (κ1,κ2,κ3),
such that

‖(σ,u)‖H0 ≤ C‖F‖
H

′
0
≤ C{‖f‖0,Ω +‖g‖1/2,Γ} . (3.13)

Proof. It is clear from (3.5) and (3.12) that A is bounded and strongly coercive on H0

with constants depending only on µ and (κ1,κ2,κ3). In addition, the Cauchy-Schwarz
inequality in [L2(Ω)]n and [L2(Γ)]n, and the trace inequalities in H(div;Ω) and [H1(Ω)]n

imply that the linear functional F (cf. (3.6)) is also bounded. Therefore, thanks to the
Lax-Milgram Lemma, we deduce the existence of a unique (σ,u) ∈ H0 solution to (3.4),
which satisfies the stability estimate (3.13). Furthermore, it follows from Theorem 2.2
that the unique solution of (2.12) is also a solution of (3.4), and hence the solutions of
both problems coincide.

We end this section by remarking that the introduction of the equation (3.3) in the aug-
mented formulation (3.4) is crucial to obtain, thanks to the inequality (3.11) (cf. Lemma
3.1), the term ‖v‖2

1,Ω in the estimate (3.12). However, when the Dirichlet boundary con-
dition is homogeneous, that is g = 0, the equation (3.3) and the inequality (3.11) are not
necessary since in this case the unknown u would live in [H1

0(Ω)]n, space where the usual
norm and semi-norm of [H1(Ω)]n are equivalent.

3.2 The Galerkin scheme

We now let Hσ
0,h and Hu

h be arbitrary finite element subspaces of H0 and [H1(Ω)]n, re-
spectively, and define H0,h := Hσ

0,h×Hu
h . Then, the Galerkin scheme associated with (3.4)

reads: Find (σh,uh)∈H0,h such that

A((σh,uh), (τ,v)) = F(τ,v) ∀(τ,v)∈ H0,h . (3.14)
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Since the bilinear form A is strongly coercive on any finite element subspace H0,h of
H0, the analogue of Theorem 2.3 for the augmented scheme (3.14) is easily established as
follows.

Theorem 3.2. Assume that the parameters κ1,κ2 and κ3 satisfy the same assumptions of Theorem
3.1, and let H0,h be any finite element subspace of H0. Then, the Galerkin scheme (3.14) has a
unique solution (σh,uh) ∈ H0,h, and there exist positive constants C, C̃, independent of h, such
that

‖(σh,uh)‖H0
≤C

{
‖f‖0,Ω +‖g‖1/2,Γ

}
,

and
‖(σ,u)− (σh,uh)‖H0

≤ C̃ inf
(τh ,vh)∈H0,h

‖(σ,u)− (τh,vh)‖H0
. (3.15)

Proof. It follows from a straightforward application of the Lax-Milgram Lemma and the
corresponding Cea estimate.

At this point we find it important to make a remark concerning the choice of the vector
of parameters (κ1,κ2,κ3). In fact, besides the assumptions in Theorem 3.1, we may adopt
as a criterion the maximization of the coerciveness constant α (cf. (3.12)). However, since
the constants c1 and c2 from Lemmas 2.3 and 3.1 are not known explicitly, we simply aim
to partially satisfy this goal. In this way, we can at least maximize the values of α1 and α2

(cf. (3.10)) by choosing, respectively,

κ2 =
1

µ

(
1−

κ1

2µ

)
and κ3 = κ1 . (3.16)

In particular, κ1 = µ, which obviously satisfies the assumption κ1 ∈ (0,2µ), yields κ2 =
1

2µ
and κ3 = µ. This constitutes precisely the vector of parameters utilized in the numerical
examples shown below in Section 4. However, any other choice of κ1 ∈ (0,2µ) combined
with (3.16) would certainly lead to a feasible set of parameters.

Now, in order to provide the rate of convergence of the augmented scheme (3.14) we
need to consider a specific finite element subspace H0,h. Indeed, with the same notations
and definitions from Section 2.2, and given an integer k ≥ 0, we now let Hσ

0,h be the fi-
nite element subspace defined in (2.22), and introduce the usual Lagrange finite element
subspace of [H1(Ω)]n:

Hu
h :=

{
vh∈ [C(Ω̄)]n : vh|T ∈ [Pk+1(T)]n ∀T ∈Th

}
. (3.17)

It is well known (see, e.g. [12]) that Hu
h satisfies the following approximation property:

(ÃP
u

h) For each s∈ [0,k+1] and for each v∈ [H1+s(Ω)]n there exists vh ∈ Hu
h such that

‖v−vh‖1,Ω ≤ Chs ‖v‖1+s,Ω .

Hence, the analogue of Theorem 2.4 for the augmented scheme (3.14) is stated next.
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Theorem 3.3. Let H0,h := Hσ
0,h×Hu

h with Hσ
0,h and Hu

h given by (2.22) and (3.17), and let
(σ,u)∈H0 and (σh,uh)∈H0,h be the unique solutions of the continuous and discrete augmented
formulations (3.4) and (3.14), respectively. Assume that σ ∈ [Hs(Ω)]n×n, div(σ) ∈ [Hs(Ω)]n,
and u∈ [H1+s(Ω)]n, for some s∈ (0,k+1]. Then there exists C>0, independent of h, such that

‖(σ,u)− (σh,uh)‖H0
≤Chs

{
‖σ‖s,Ω +‖div(σ)‖s,Ω +‖u‖1+s,Ω

}
.

Proof. It follows straightforwardly from the Cea estimate (3.15) and the approximation

properties (APσ
0,h) and (ÃP

u

h ).

4 Numerical results

In this section we present four numerical examples in R
3 illustrating the performance of

the mixed finite element schemes (2.18) and (3.14). For examples in R
2 we refer to [20]

and [14]. In all the computations we consider the specific finite element subspaces Hσ
0,h,

Qh, and Hu
h given by (2.22) and (3.17) with k=0. In addition, similarly as in [17] and [14],

the zero integral mean condition for tensors in the space Hσ
0,h is imposed in both discrete

schemes via a real Lagrange multiplier. Furthermore, as already mentioned in Section 3,
the vector of parameters employed for the implementation of each one of the augmented
schemes (3.14) is given by (κ1,κ2,κ3) = (µ, 1

2µ ,µ). To this respect, we remark that, though

we do not present the corresponding tables here, the same results (up to the first 6 and 7
digits) are obtained with other sets of feasible parameters, which suggests the robustness
of (3.14) with respect to the vector (κ1,κ2,κ3).

In what follows, N stands for the total number of degrees of freedom (unknowns) of
(2.18) and (3.14), which can be proved (see [19, Section 4] for details) to behave asymp-
totically as 9 and 6.5 times, respectively, the number of tetrahedrons of each triangulation.
Also, the individual and total errors are given by

e(σ) := ‖σ−σh‖div,Ω , e(p) := ‖p−ph‖0,Ω , e(u) := ‖u−uh‖0,Ω ,

e0(σ) := ‖σ−σh‖0,Ω , and e(σ,u) :=
{
(e(σ))2+(e(u))2

}1/2
,

where the approximate pressure ph is computed though the post processing formula su-

ggested by the identity (2.1), that is ph =
1

3
tr(σh). In addition, we define the experimental

rates of convergence

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r0(σ) :=
log(e0(σ)/e′0(σ))

log(h/h′)
, and r(σ,u) :=

log(e(σ,u)/e′(σ,u))

log(h/h′)
,
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where e and e′ denote the corresponding errors at two consecutive triangulations with
mesh sizes h and h′, respectively.

The examples to be considered in this section are described next. We take the kine-
matic viscosity µ = 1 in Examples 1, 2, and 3, and µ = 1/2 in Example 4. Example 1 is
employed to illustrate the performance of the mixed finite element schemes when ap-
plied to a typical academic problem. Then, Examples 2 and 3 deal with two more realis-
tic situations in fluid mechanics. Finally, in Example 4 we consider the standard test case
given by a driven cavity, and compare the results provided by our methods with those
obtained by the numerical techniques proposed in [26], [27], and [28], which are based
on a velocity-vorticity formulation.

In Example 1 we consider the L-shaped domain Ω :=]0,1[3−{[1/2,1]×[0,1]×[1/2,1]},
and choose the data f and g so that the exact solution is given by

u(x) =
r

5/3

2




2(x3−0.5)(x2+0.5)

(0.5−x1)(x3−0.5)

(0.5−x1)(x2+0.5)


 ,

p(x) =
1

x3−1.1
− p0 ,

with r={(x1−0.6)2+(x2+0.6)2+(x3−0.6)2}1/2, for all x :=(x1,x2,x3)t∈Ω, where p0 ∈R

is such that
∫

Ω
p = 0.

In Example 2 we consider a 90 degrees elbow duct Ω := Ω1∪Ω2∪Ω3, where

Ω1 :=
{
(x1,x2,x3)

t ∈R
3 : x2

1 + x2
2 < 1, 0 < x3 ≤ 1

}
,

Ω2 :=
{
(x1,x2,x3)

t ∈R
3 : x2

1 +(x3−2)2
< 1, 1≤ x2 < 2

}
,

Ω3 :=

{
(x1,x2,x3)

t ∈R
3 :

(
1−

√
(x2−1)2+(x3−1)2

)2

+ x2
1 < 1, x2 ≤ 1, x3 ≥ 1

}
,

and choose the data f and g so that the exact solution is given by

u(x) =




2sin2
(π x1

8

)
sin

(π x2

4

)
sin

(π x3

4

)

−sin2
(π x2

8

)
sin

(π x1

4

)
sin

(π x3

4

)

−sin2
(π x3

8

)
sin

(π x1

4

)
sin

(π x2

4

)




,

p(x) = sin
(π x1

4

)
sin

(π x2

4

)
sin

(π x3

4

)
− p0 ,

for all x := (x1,x2,x3)t ∈Ω, where p0 ∈R is such that
∫

Ω
p = 0.



18

In Example 3 we consider a diffusor duct Ω := Ω1∪Ω2∪Ω3, where

Ω1 :=
{
(x1,x2,x3)

t ∈R
3 : x2

1 + x2
2 <1, −1< x3≤0

}
,

Ω2 :=
{
(x1,x2,x3)

t ∈R
3 : x2

1 + x2
2 <0.5, 1≤ x3 <2

}
,

Ω3 :=

{
(x1,x2,x3)

t ∈R
3 : x2

1 + x2
2 <

(
1−

x3

2

)2
, 0≤ x3 ≤1

}
,

and choose the data f and g so that the exact solution is given by

u(x) = exp(−x1)exp
( x3

2

)




1

2
sinx1 cosx2

sinx2 (sinx1−cosx1)

cosx2 (cosx1−sinx1)




,

p(x) = cosx1 cosx2 exp(−x3)− p0 .

for all x := (x1,x2,x3)t ∈Ω, where p0 ∈R is such that
∫

Ω
p = 0.

In Example 4 we consider the cubic cavity Ω :=]0,1[3, and take the right hand side
f = 0 on Ω and the Dirichlet boundary condition

g(x) :=

{
(1,0,0)t if 0≤ x1 ≤ 1, 0≤ x2 ≤ 1, x3 = 0,

(0,0,0)t otherwise.

The numerical results shown below were obtained in a Pentium Xeon computer with
dual processors, using a MATLAB code. In Tables 1 and 2 we summarize the convergence
history of the mixed finite element schemes (2.18) and (3.14), respectively, as applied to
Example 1 for sequences of quasi-uniform triangulations of the domain. In addition,
the approximate pressure ph has been computed according to the post processing for-
mula indicated above. We observe here that the experimental rate of convergence of each
unknown tends asymptotically to the theoretical rate of convergence O(h) predicted by
Theorems 2.4 and 3.3 (when s =1). This fact is also illustrated in Figures 1 and 2, where
we display the errors vs. the degrees of freedom N. Finally, in order to emphasize the
good performance of our schemes, in Figures 3 to 6 we display four components of the
approximate and exact solutions for Example 1.

Next, in Tables 3 to 6 we provide the convergence history of the mixed finite element
schemes (2.18) and (3.14), as applied to Examples 2 and 3 for sequences of quasi-uniform
triangulations of the respective domains. The approximate pressure ph is again computed
via the post processing formula. We observe now that the experimental rates of conver-
gence also tend asymptotically to the theoretical rate of convergence O(h) predicted by
Theorems 2.4 and 3.3 (when s=1), but in a more oscillating way than in Example 1. Ac-
tually, these oscillations are more pronounced in Example 2 than in Example 3, which
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could be caused by the geometry more complicated of the former. This behaviour can
also be seen slightly in Figures 7, 8, 12, and 13, where we show the errors vs. the degrees
of freedom N. Furthermore, the augmented scheme (3.14) seems to converge a bit faster
than (2.18) in these examples, specially for Example 3 (cf. Tables 5 and 6). Nevertheless,
both discrete schemes show very satisfactory performances, which is confirmed by Fig-
ures 9 to 11 and Figures 14 to 16, where we display three components of the approximate
and exact solutions of each example.

Finally, we utilize Example 4 to compare our schemes with those proposed in [26],
[27], and [28], which are all based on a velocity-vorticity formulation and employ me-
shless BEM, traditional BEM-FEM, and multiquadrics methods, respectively. Actually,
since Example 3 in [28], which coincides with our present Example 4, already makes the
comparison with the results obtained in the previous papers [26] and [27], we just proceed
here to incorporate the numerical results arising from our schemes into the same kind of
figures provided in [28]. The correspondence of the figures in this paper and in [28] is as
follows

Figure in this paper 17 18 19 20 21 22 23 24 25 26 27 28

Figure in [28] 15 16 17 18 19 20 15 16 17 18 19 20

In particular, Figures 17 to 20 display some components of the approximate solutions ob-
tained with our scheme (2.18). This includes an approximation of the vorticity unknown,
denoted by ω := (ω1,ω2,ω3)t, which is computed via a simple post-processing formula:
curl operator applied to the velocity vector. For instance, Figure 18 shows the resulting
approximation for ω1, which confirms the expected symmetry with respect to the x and
y directions. In addition, Figures 19 and 20 reveal that the effect of the wall (given by the
Dirichlet boundary condition g) makes vorticity distribution more concentrated on the
edges of the cavity. Then, Figures 21 and 22 makes an explicit comparison of some velo-
city profiles resulting from (2.18) and the methods from Tsai et al. (2002) [26], Young et
al. (1999) [27], and Young et al. (2004) [28]. We observe there that our results also capture
the effect of wall at driven direction similarly as the results from the other papers do. The
above analysis is repeated in Figures 23 to 28 for the augmented scheme (3.14), obtaining
the same conclusions.

Summarizing, we believe that there is enough support to consider the mixed finite
element schemes (2.18) and (3.14) as valid and competitive alternatives to solve the sta-
tionary Stokes equations in R

3.
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Table 1: EXAMPLE 1, quasi-uniform scheme (2.18)

N h e(σ) r(σ) e0(σ) r0(σ) e(u) r(u)
391 1/2 5.131E−00 − 1.526E−00 − 1.810E−01 −

2857 1/4 4.679E−00 0.133 1.066E−00 0.517 9.446E−02 0.939
9343 1/6 4.127E−00 0.310 8.260E−01 0.630 6.325E−02 0.989

21793 1/8 3.613E−00 0.462 6.667E−01 0.745 4.742E−02 1.001
42151 1/10 3.180E−00 0.573 5.550E−01 0.822 3.790E−02 1.005
72361 1/12 2.823E−00 0.654 4.732E−01 0.874 3.155E−02 1.005

114367 1/14 2.528E−00 0.716 4.114E−01 0.908 2.702E−02 1.005
170113 1/16 2.283E−00 0.763 3.633E−01 0.932 2.363E−02 1.005
241543 1/18 2.078E−00 0.800 3.248E−01 0.950 2.100E−02 1.004
330601 1/20 1.904E−00 0.829 2.935E−01 0.963 1.889E−02 1.004

N h e(p) r(p) e(σ,u) r(σ,u)
391 1/2 5.114E−01 − 5.135E−00 −

2857 1/4 4.288E−01 0.254 4.680E−00 0.134
9343 1/6 3.481E−01 0.514 4.128E−00 0.310

21793 1/8 2.852E−01 0.693 3.614E−00 0.462
42151 1/10 2.384E−01 0.804 3.180E−00 0.573
72361 1/12 2.033E−01 0.873 2.823E−00 0.654

114367 1/14 1.765E−01 0.918 2.528E−00 0.716
170113 1/16 1.555E−01 0.949 2.283E−00 0.763
241543 1/18 1.387E−01 0.971 2.078E−00 0.800
330601 1/20 1.250E−01 0.986 1.904E−00 0.829
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Figure 1: EXAMPLE 1, quasi-uniform scheme (2.18).
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Table 2: EXAMPLE 1, quasi-uniform scheme (3.14) with (κ1,κ2,κ3)=(µ,
1

2µ
,µ).

N h e(σ) r(σ) e0(σ) r0(σ) e(u) r(u)
355 1/2 5.259E−00 − 1.909E−00 − 7.753E−01 −

2308 1/4 4.706E−00 0.160 1.178E−00 0.696 4.651E−01 0.737
7267 1/6 4.134E−00 0.320 8.594E−01 0.779 3.213E−01 0.912

16636 1/8 3.615E−00 0.466 6.747E−01 0.841 2.432E−01 0.968
31819 1/10 3.180E−00 0.575 5.540E−01 0.883 1.950E−01 0.991
54220 1/12 2.822E−00 0.655 4.691E−01 0.912 1.624E−01 1.001
85243 1/14 2.527E−00 0.716 4.064E−01 0.932 1.391E−01 1.006

126292 1/16 2.282E−00 0.763 3.581E−01 0.946 1.216E−01 1.008
178771 1/18 2.077E−00 0.800 3.199E−01 0.957 1.079E−01 1.009
244084 1/20 1.903E−00 0.829 2.890E−01 0.966 9.706E−02 1.009
323635 1/22 1.755E−00 0.853 2.634E−01 0.972 8.816E−02 1.009

N h e(p) r(p) e(σ,u) r(σ,u)
355 1/2 7.105E−01 − 5.316E−00 −

2308 1/4 4.796E−01 0.567 4.729E−00 0.169
7267 1/6 3.561E−01 0.734 4.146E−00 0.324

16636 1/8 2.810E−01 0.823 3.623E−00 0.469
31819 1/10 2.310E−01 0.878 3.186E−00 0.576
54220 1/12 1.956E−01 0.914 2.827E−00 0.656
85243 1/14 1.692E−01 0.938 2.531E−00 0.717

126292 1/16 1.489E−01 0.956 2.285E−00 0.764
178771 1/18 1.329E−01 0.969 2.080E−00 0.800
244084 1/20 1.199E−01 0.979 1.906E−00 0.830
323635 1/22 1.091E−01 0.986 1.757E−00 0.853

Table 3: EXAMPLE 2, quasi-uniform scheme (2.18).

N h e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ,u) r(σ,u)
7318 1.000 6.308E−01 − 8.820E−02 − 1.894E−01 − 6.370E−01 −

20767 0.642 4.688E−01 0.670 6.657E−02 0.636 1.402E−01 0.679 4.735E−01 0.670
28945 0.536 4.082E−01 0.765 5.953E−02 0.617 1.213E−01 0.799 4.125E−01 0.762
51703 0.468 3.357E−01 1.436 4.902E−02 1.427 9.773E−02 1.588 3.393E−01 1.436
79921 0.414 2.897E−01 1.206 4.241E−02 1.185 8.276E−02 1.360 2.928E−01 1.206

110248 0.352 2.575E−01 0.726 3.739E−02 0.777 7.301E−02 0.774 2.602E−01 0.727
156391 0.323 2.288E−01 1.358 3.352E−02 1.255 6.442E−02 1.437 2.313E−01 1.355
208492 0.301 2.088E−01 1.321 3.061E−02 1.310 5.824E−02 1.451 2.110E−01 1.320
286951 0.264 1.895E−01 0.737 2.788E−02 0.709 5.260E−02 0.774 1.915E−01 0.736
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Figure 2: EXAMPLE 1, quasi-uniform scheme (3.14).
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Figure 3: EXAMPLE 1, approximate (left) and exact p for quasi-uniform scheme (3.14) with h=1/10.
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Figure 4: EXAMPLE 1, approximate (left) and exact u3 for quasi-uniform scheme (3.14) with h=1/10.
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Figure 5: EXAMPLE 1, approximate (left) and exact σ11 for quasi-uniform scheme (3.14) with h=1/10.
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Figure 6: EXAMPLE 1, approximate (left) and exact σ33 for quasi-uniform scheme (3.14) with h=1/10.

Table 4: EXAMPLE 2, quasi-uniform scheme (3.14) with (κ1,κ2,κ3)=(µ,
1

2µ
,µ).

N h e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ,u) r(σ,u)
5602 1.000 6.345E−01 − 2.917E−01 − 1.484E−01 − 6.983E−01 −

15625 0.642 4.651E−01 0.701 2.147E−01 0.693 1.093E−01 0.692 5.123E−01 0.700
21745 0.536 4.021E−01 0.805 1.859E−01 0.795 9.127E−02 0.994 4.430E−01 0.803
38479 0.468 3.318E−01 1.411 1.540E−01 1.382 7.586E−02 1.358 3.658E−01 1.406
59137 0.414 2.875E−01 1.173 1.342E−01 1.130 6.507E−02 1.255 3.172E−01 1.166
81538 0.352 2.560E−01 0.715 1.210E−01 0.640 5.788E−02 0.723 2.832E−01 0.701

115348 0.323 2.278E−01 1.343 1.073E−01 1.374 5.165E−02 1.307 2.518E−01 1.348
153271 0.301 2.078E−01 1.318 9.753E−02 1.376 4.690E−02 1.387 2.296E−01 1.328
210343 0.264 1.889E−01 0.725 8.950E−02 0.653 4.245E−02 0.758 2.091E−01 0.712
270109 0.246 1.726E−01 1.279 8.192E−02 1.250 3.869E−02 1.311 1.910E−01 1.274
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Figure 7: EXAMPLE 2, quasi-uniform scheme (2.18).
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Figure 8: EXAMPLE 2, quasi-uniform scheme (3.14).
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Figure 9: EXAMPLE 2, approximate (left) and exact p for quasi-uniform scheme (3.14) with h=0.246.
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Figure 10: EXAMPLE 2, approximate (left) and exact u3 for quasi-uniform scheme (3.14) with h=0.246.
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Figure 11: EXAMPLE 2, approximate (left) and exact σ33 for quasi-uniform scheme (3.14) with h=0.246.

Table 5: EXAMPLE 3, quasi-uniform scheme (2.18).

N h e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ,u) r(σ,u)
5125 1.000 3.593E−00 − 6.511E−01 − 9.342E−01 − 3.652E−00 −

16168 0.613 2.137E−00 1.061 4.033E−01 0.978 5.367E−01 1.132 2.175E−00 1.059
22165 0.601 2.032E−00 2.547 3.887E−01 1.866 5.141E−01 2.180 2.069E−00 2.524
33367 0.494 1.692E−00 0.937 3.224E−01 0.958 4.290E−01 0.927 1.723E−00 0.938
60892 0.371 1.383E−00 0.704 2.662E−01 0.669 3.375E−01 0.838 1.409E−00 0.703
68290 0.361 1.331E−00 1.380 2.562E−01 1.369 3.168E−01 2.269 1.355E−00 1.379

126337 0.303 1.081E−00 1.200 2.079E−01 1.202 2.557E−01 1.233 1.100E−00 1.200
201415 0.256 9.209E−01 0.933 1.779E−01 0.910 2.156E−01 0.994 9.379E−01 0.932
266860 0.233 8.355E−01 1.073 1.618E−01 1.041 1.929E−01 1.228 8.510E−01 1.072
289885 0.225 8.086E−01 0.890 1.561E−01 0.977 1.891E−01 0.532 8.235E−01 0.893
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Table 6: EXAMPLE 3, quasi-uniform scheme (3.14) with (κ1,κ2,κ3)=(µ,
1

2µ
,µ).

N h e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ,u) r(σ,u)
3943 1.000 3.672E−00 − 1.777E−00 − 5.744E−01 − 4.080E−00 −

12196 0.613 2.145E−00 1.098 1.106E−00 0.968 3.004E−01 1.324 2.414E−00 1.072
16810 0.601 2.050E−00 2.312 1.055E−00 2.404 2.834E−01 2.964 2.305E−00 2.331
25018 0.494 1.682E−00 1.011 8.721E−01 0.975 2.231E−01 1.225 1.895E−00 1.004
45469 0.371 1.376E−00 0.702 7.235E−01 0.653 1.792E−01 0.766 1.555E−00 0.692
66199 0.349 1.245E−00 1.603 6.348E−01 2.102 1.636E−01 1.460 1.398E−00 1.709
93679 0.303 1.071E−00 1.081 5.620E−01 0.872 1.344E−01 1.412 1.210E−00 1.037

149026 0.256 9.120E−01 0.937 4.828E−01 0.885 1.143E−01 0.944 1.032E−00 0.926
197092 0.233 8.275E−01 1.072 4.381E−01 1.070 1.019E−01 1.264 9.363E−01 1.072
214078 0.225 8.003E−01 0.909 4.241E−01 0.887 1.003E−01 0.428 9.057E−01 0.904
264484 0.215 7.433E−01 1.644 3.913E−01 1.792 9.288E−02 1.714 8.400E−01 1.676
328606 0.201 6.902E−01 1.088 3.658E−01 0.986 8.551E−02 1.212 7.811E−01 1.065
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Figure 12: EXAMPLE 3, quasi-uniform scheme (2.18).
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Figure 13: EXAMPLE 3, quasi-uniform scheme (3.14).
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Figure 14: EXAMPLE 3, approximate (left) and exact p for quasi-uniform scheme (3.14) with h=0.201.
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Figure 15: EXAMPLE 3, approximate (left) and exact u3 for quasi-uniform scheme (3.14) with h=0.201.
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Figure 16: EXAMPLE 3, approximate (left) and exact σ33 for quasi-uniform scheme (3.14) with h=0.201.
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Figure 17: EXAMPLE 4, velocity vectors in x−y plane at z=0.5 for quasi-uniform scheme (2.18) with h=1/18.
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Figure 18: EXAMPLE 4, ω1 in x−y plane at z=0.5 for quasi-uniform scheme (2.18) with h=1/18.
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Figure 19: EXAMPLE 4, ω2 in y−z plane at x=0.5 for quasi-uniform scheme (2.18) with h=1/18.
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Figure 20: EXAMPLE 4, ω1 in y−z plane at x=0.5 for quasi-uniform scheme (2.18) with h=1/18.
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Figure 21: EXAMPLE 4, u1 along z at (x,y)=(0.5,0.5) for quasi-uniform scheme (2.18) with h=1/18.
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Figure 22: EXAMPLE 4, u3 along x at (y,z)=(0.5,0.5) for quasi-uniform scheme (2.18) with h=1/18.
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Figure 23: EXAMPLE 4, velocity vectors in x−y plane at z=0.5 for quasi-uniform scheme (3.14) with h=1/18.
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Figure 24: EXAMPLE 4, ω1 in x−y plane at z=0.5 for quasi-uniform scheme (3.14) with h=1/18.
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Figure 25: EXAMPLE 4, ω2 in y−z plane at x=0.5 for quasi-uniform scheme (3.14) with h=1/18.

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−25

−20

−15

−10

−5

0

5

10

15

Figure 26: EXAMPLE 4, ω1 in y−z plane at x=0.5 for quasi-uniform scheme (3.14) with h=1/18.
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Figure 27: EXAMPLE 4, u1 along z at (x,y)=(0.5,0.5) for quasi-uniform scheme (3.14) with h=1/18.
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Figure 28: EXAMPLE 4, u3 along x at (y,z)=(0.5,0.5) for quasi-uniform scheme (3.14) with h=1/18.
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2010-23 Ricardo Durán, Rodolfo Rodŕıguez, Frank Sanhueza: A finite element
method for stiffened plates

2010-24 Fabián Flores-Bazán, Felipe Lara: Inner and outer estimates for solution sets
and their asymptotic cones in vector optimization

2010-25 Tomás Barrios, Rommel Bustinza: An augmented discontinuous Galerkin method
for stationary Stokes problem
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