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AN A POSTERIORI ERROR ESTIMATOR FOR AN
UNSTEADY ADVECTION-DIFFUSION PROBLEM

RODOLFO ARAYA AND PABLO VENEGAS

ABSTRACT. In this work we introduce an a posteriori error estimator, of the residual type, for the unsteady
advection—diffusion-reaction problem. For the discretization in time we use an implicit Euler scheme and a
continuous, piecewise linear triangular finite elements for the space together with a stabilized scheme. We
prove that the approximation error is bounded, by above and below, by the error estimator. Using that, an
adaptive algorithm is proposed, analyzed and tested numerically to prove the efficiency of our approach.

1. INTRODUCTION

In this work we deal with the unsteady advection—diffusion-reaction equation. This kind of problems
arises in many applications, for instance the transport of pollutant in a river. We are interested in the
convection—-dominate regime where a characteristic feature of the solutions is the presence of sharp layers
(see [17]), for that reason we extended a stabilized method presented in [11], for the stationary case, to the
parabolic framework. The idea is to introduce an a posteriori error estimator, extending the techniques de-
veloped in [21] and [3] (for elliptic problems) and in [15] (for the linear parabolic problem). The main result
of this paper consist of exhibiting a local error indicator which can be computed explicitly as a function of
the discrete solution and the data.

There are several works devoted to the development of a posteriori error estimates applied to linear and
non linear parabolic problems. In particular, we can cite the works of Bieterman and Babuska [5, 6] for
problems in dimension one; Eriksson and Johnson [9], Picasso [15] and Verfiirth [22, 23], for problems in
higher dimensions. Also we can mention [13] for error estimators based in recovered gradients; [1] and [16]
where estimators are developed in junction with Crank—Nicolson time scheme both for linear and nonlinear
parabolic problems, or [14] and [18] where the discontinuous Galerkin method is used to approximate the
solution of the parabolic equation.

This work is organized as follows. In Section 2 we introduce the unsteady advection—diffusion—reaction
problem and some standard results concerning the solvability of the variational formulation associate with
it. Also we introduce a fully discrete formulation using a stabilized scheme introduced in [11] for the
stationary case, which will be used in the development of our a posteriori error estimator and in the numerical
experiments. In Section 3 we present some standard auxiliary results that will be used in the sequel. In
Section 4 we present our a posteriori error estimate and the main result of this work: the equivalence between
the error estimate and the true error. Finally, in Section 5 we present several numerical experiments showing
the quality of the adaptive scheme based in our a posteriori error estimate introduced in Section 4.

2. MODEL PROBLEM

Consider the scalar advection—diffusion—reaction equation given by
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Ou —eAu+a(z) - Vu+b(z)u = f(t x) in ]0,T[x€,
u = 0 on 10,T[xTp,
0
(P) sa—Z = g(t,x) on ]0,T[x Ty,
u(0,-) = g in €,

where 2 C R? is a bounded polygonal domain with boundary 0Q =Ty UTp, Tn NTp =0, |T'p| > 0, and
T > 0. We denote by n the outer unit normal vector to 0.
We assume that:

(A1) e€eR,0<ex],

(A2)  fE€C°(J0,T[ L)), g € CO(0,T[ L*(Tw)), @ € WHe(Q)%, b e Lo(Q),
(As) —%V'GZO, b>1,

(Ay) To:={zxe€d:a(x) n(zx) <0} CIp,

where L2(]0,T[; V) and C°(]0,T[; V), are the spaces of square-integrable, respectively of continuous, func-
tions with values in a Hilbert space V. We use standard notation for Sobolev and Lebesgue spaces and
norms, for instance (-,-)s denotes the usual inner product in L2(S) with S C Q and (-,-) if S = Q. Also, we
introduce the following Hilbert space:

HLH(Q):={veH(Q): v=0 on Tp}
The usual variational formulation of (P) is: Find uw € W such that, for all t €]0,T]

(Oyu,v) +e(Vu, Vo) + (a - Vu,v) + (bu,v) = (f,v)+ (g,v)ry,
(VP)
u(0,-) = wo,

for all v € HL (), here (-,-) is the duality product between HL(2) and H} (), u(0,-) = ug € L*(Q) and
W= {v e L*(J0,T[; Hp(Q)) = 9w € L*(J0,T[; Hp()")}-

Assumptions (A;)—(A4) and integration by parts imply that, for all v, w € HL (L),

S(Vo, Vo) + (a- Vo,u) + (bv,v) = e[ Vol 2 g + o]2 (2.1)
and

e(Vu, Vw) + (a - Vv, w) + (bv, w) < (¢ + [[bl o + llall ) Iv]]1 ollwll; g (2.2)

Remark 2.1. Using (2.1), (2.2) and Lions Theorem (see Theorem 6.6 in [10]), we get that there exists a
unique solution of problem (VP). ([

2.1. Space—time discretization. The implicit Euler method is used for time discretization, with a partition
of [0, T}, not necessarily uniform, given by

0=t"<tt<...<tN =T,
with N > 1. We denote by 7, the size of the interval [t"~1 "], i.e.,
Tpi=t"—t""1 1<n<N.

For every time t", 0 < n < N, we associate a family of partitions {7}, (h > 0) of Q into triangles, which
satisfy the following two properties:

(1) Any two triangles in 7, are either disjoint, share a complete edge or have a common vertex,

h
(2) sup sup K < kK, with k a constant independent of n and the mesh—size h,
h>0 KeT;" PK
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here hg is the diameter of K and pg is the diameter of the largest ball inscribed into K.
We consider the usual Lagrange finite element space
Hy ={peHH():¢|xkePy(K),VKeT}, k>1, 0<n<N,

where Pj, denotes the set of polynomials of degree at most k. Note that H* C H} ().
Using the above definitions, and applying an implicit Euler scheme in time, we obtain the following fully
discrete scheme of problem (P): Find u}’ € H!, an approzimation of u(t",-), such that, forn,1 <n <N,

n n—1
U, — U
(D) (St on) + Blufvn) = (/") + (g%, on)r Yon € HY,
u = uon,

where f™:= f(t",), g" := g(t","), uon € HY is an approximation of u° := (0, ), and for all wy,, v, € H}

B(wp,vp) = / eVwy, - Vo, + / (a - Vwpy)vp —I—/ bwy, vy, (2.3)
Q Q Q
We can rewrite (D) as follows: Find u} € H}' such that, forn, 1 <n <N,
B, (up,vp) = Fp(vn) Yo, € HjY (), (2.4)
where, for vy, w;, € Hj', we define
B, (wp,vp) = / eVwy, - Vo, + / (a - Vwp)vp —I—/ by, wp, vp, (2.5)
Q Q Q

Tn

with b, := (b—l— i), and

n—1
U
F,(vp) ::/ fr4 vh—l—/ g" vy, ds.
Q Tn I'n

Assumptions (A;)-(A4) imply that, for all vy, wy, € Hj, there hold
By (vn, vn) > || Vonllg o + lonllg o (2.6)
By (vn, wn) < (€ + [|ball o0 + lallo o) llvally ollwnll; o

Remark 2.2. Using (2.6), (2.7) and Laz—Milgram’s Lemma we have that the problem (D) has a unique
solution. O

It is well known that the standard finite element method yields to poor approximation when ¢ < |a| or
e < b (see, for instance [17]). For this reason we consider the following stabilized formulation introduced in
[11]: Find u} € H} such that, forn, 1 <n <N,

Bs(uﬁ,vh) = Fs(vh) V’Uh S H}?,
(SP)
U% = UOoh,

where for all vy, wy, € H}!

Bg(wp,vp) := Bp(wp,vp) + Z / Ok (eAwy — a - Vwy, — bywp)(—eAvy, — a - Vuop + byup), (2.8)
K

KeTp
and
up !
Fs(vp) := Fy(vp) — Z / I (f™+ )(—eAvp, — a - Vup, + byup). (2.9)
KeTn /K Tn
The stabilization parameter dx is given by
M

O = bnh3 max{1, Pef(x)} + (2¢/my) max{1, Peg (x)}’
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with
2¢ mi|a(x)|hi
P@IR;((E) = m and Pe?}(x) = f’ (211)
being the local Peclet numbers. Here | - | is the standard euclidean norm in R? and my := min{1/3, Cy},

with Cj being a positive constant, which depends on the polynomial degree k, appearing in the following
inverse inequality

Cr Y WllAol§x <IVonl§a,  Von € Hy. (2.12)
KeTy

Remark 2.3. From the definition of Cj, we obtain my, = 1/3 when k = 1. For higher order continuous
interpolation spaces, the inverse inequality constant must be computed. This may be achieved in an elegant
way by computing the biggest non—zero generalized eigenvalue of the problem associated with (2.12) in each
element (for details, see [12]). O

Lemma 2.4. The stabilized problem (SP) admit a unique solution.

Proof. The result is a direct consequence of the inequality (see [2])

Bs(vn,vn) > Y [/ EﬁKIVth2+/ 5K(a-Vvh)2+/ BKbn|Uh|2]a
K K K

KeT

for all v, € H}', where

2e
=—>0.
O = e w2
O
We define the energy norm | - || 4 as follows
) 5 1/2 )
ol = {el Vel s+ 03} voem'(s), (213)

with S C Q. If S = Q we write || - || instead of || - ||,

We finish this section recalling the following two technical lemmas proved in [2] (see lemmas 2 and 3).

Lemma 2.5. Given K € T," and 0x defined by (2.10), the following bounds hold for all x € K and n,
1<n<N.

edr(z) < %,
al@)lox(e) < X,
bp(2)0k () < 1.

Furthermore,
b (2)0k (2) < Cak,

1/2
with C':= max{1, (||bn|\0019/6) } and

ok :=min{hge 21}, VK e T (2.14)

Lemma 2.6. There exists a positive constant C, independent of h, such that the following bounds hold for
all v, € H and K € T;"

IVonllo e < Chicaxcllonlle  and  [Avally e < Chylasclonll -
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3. AUXILIARY RESULTS
Let &' be the set of all edges in 7", which can be split as follows
En =& qUEINUEY D

where &l o, & v and &) , denote the edges in the interior, on the Neumann boundary I'y and on the
Dirichlet boundary I'p, respectively. For F € &}, let h be the diameter of E.

For any K € 7,* we denote by £ and Vg the set of edges and vertices of K, respectively. For K € T,
and E € &' we can define the following neighborhoods

WK = U K, wg = U K'.

VNV s #0 E€&

Let ¢ € L*(wg), with E € & o, such that ¢|x € C(K), VK C wg, we define the jump of ¢ on E in the
direction of the vector ng by

[¢l£(z) := lim p(z+ing) - lim oz —tnp).

Finally, in the sequel we will use the following notation:

a=b < a<cb
a~b <= a=<0b and b=a,

where the constant ¢ > 0, is independent of €, the time step 7,, and the mesh size h.

3.1. Bubble functions. We denote by 1k the usual bubble function of the triangle K € 7,", and by ¥g g,
with 0 < 6 <1, the perturbed bubble function of the edge E € &}, defined in [21]. Let E € &, be an inner
edge and denote by K, K5 the two triangles sharing E. Let G, ¢ = 1,2, be the orientation preserving
affine transformations which maps K onto K; and E onto E (see Figure 1).

©,1)
Gpa E

K,

Gpo

(0,0) E (1,0)

FIGURE 1. Affine transformation Gg;, i =1, 2.

Let II the hyperplane defined by II := {(z,0) : z € R} and let Q : RZ — II be the orthogonal projection
from R? onto II. We introduce the lifting operator Py, : Py (E) — P (K) by

Pp(6) :=60Q.
Let PE,Ki : Pk(E) — ]P)k(KZ) given by
PEJQ = PEA,(O'OGEJ')OGE}Z-, i=1,2.
We define a lifting operator for o € Py (E) by
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PE,Kl(U) n Kl,
Pg(o) :=
PE,K2 (O') in KQ.
For £ € & y the lifting operator Pg is defined similarly, with obvious modifications.
Finally, we introduce the time bubble function ,,, given by

4 n—1 n : n—1 in
—T—%(t—t Yt —tr) if e,

U (t) == (3.1)
0 if te]— oo, t" U, +oo.
Concerning the space bubble functions g and g, and the time bubble function 1, we have the
following estimates:

Lemma 3.1. For all K € T;" and v € Pi(K) we have

(0) Jlollg i = (v, ¥rc0)c,
(i) flovxcllox < l1vllo s
(i) oyl < min{hre"/2, 1} v]lg -
For E € &, we consider 0 := min{e'/?h;', 1}. Then for all o € P(E) it holds
@) llollo.5 = (0,805 PEO)5,
) 505 PE0lly ., = €/ min{hpe™/2, 1312 |o|l, .
Vi) 505 Proll,, = eV/*min{hpe™!/2, 13720y 5.

wWE —

Proof. See Lemma 3.4 in [21]. O

Lemma 3.2. For all v € Pi(Jt"~1,t"]) we have

A

n
2
Hv”O’]tnfl)tn[ ) /tn71 1)21/)ndta

||’an||07]tnfl’tn[ S H’U”O,]tnfl,t"[’
0 1
Hg(%“)”oy]tnil’tn[ = EHUHO,]tnﬂ,tn['

Proof. The first two inequalities follows from the definition of 1,,, using the fact that 0 < ¢,, < 1. For the
last inequality we use standard scaling arguments. In fact, a change of variables give us

t" a 2 1 a - . - 2 A
/tni1 {Ewnv)] dt:/o [a—?(wnv)(t — " ] |J, | di,

where | J¢| is the jacobian of the change of variable. Using that 0 < zzn < 1 and the equivalence of norms on
finite dimensional spaces, we obtain

tm 8 2 1 1 , R
/tnil [E(wnv)} dt mA 07| Je| dt

1 t'Vl 2
< dt
= (gn—gn-1y2 /tni1 v-at,

and the result follows. O

PN

We denote by I : L*(Q) — HJ' the usual Clément’s interpolator (see [8]). Now we establish the local
approximation properties of I}'.
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Lemma 3.3. The following results hold for all K € T,*, E C 0K and v € H' (k)

[v—Thollg = min{hxe /2, Hlvllz,
[v=Thollg g = e  min{hge /2, 1}1/2|||U|||aK=
Inolle = Mol -
Proof. See Lemma 3.2 in [21]. O

4. RESIDUAL A POSTERIORI ERROR ESTIMATOR

In this section our aim is to build a residual a posteriori error estimator for the stabilized scheme defined
in (SP). To this end, we consider the function uy,, defined in [0, 7], such that, restricted to [t" 1, "] is given
by
t—tnt tn—t
tn — ¢n—1 Up + tn — ¢n—1

Uhr =

THa (4.1)

Note that the function ¢ — up,(¢,-) is continuous and piecewise affine with values in HJ,(92), therefore
differentiable in the classical sense in [t"~1, "], 1 < n < N. Let u be the solution of (VP), we define the
error in [0, 7] as

€:=U— Upr

and we measured it, in [t" 71, ¢"], using the following norm

tn

2

/ el
tnfl

Remark 4.1. Using integration by parts we obtain, for all v € H5(Q) and t € [t"~1,¢"], that

(Ore,v) +e(Ve,v) + (a - Ve, Vv) + (be,v) = Z (f — Owunr + eAupr — a - Vupr — bupr, v)
KeT,;

+ Z (g_sanEuhn'U)E‘i‘ Z (—a|[8nEuhT]|E,v)E.

Ee&l Eegy o

From the stabilized problem (SP), we have that for all wy, € Hj}

t— tn—l _
(Ouunr, wn) +e(Vunr, wn) + (@ Vupe, Vwp) + (bupr, wp) = (", wn) + (9" wh)ry + ———Bluj — !
+ Z / O (f" = Orupr + eAuy — a - Vuy — bup)(—eAwy, — a - Vwp, + bywp,).
KeTy K
Thus, using problem (VP) and the above equation, we obtain
(Ore,wp) + e(Ve,wy) + (a - Ve, Vwy) + (be, wp,)
. . t—tn
= (f=f"wn)+(g—9", wn)ry — TiB(uh —up "t wp)
— Z / O (f™* = Orupr + eAuy —a - Vuy —bupl)(—eAwy, — a - Vwp, + bywp,).
K

KeTy

For t € [t"~1, "], let R} and R’ be the volumetric and edge residuals, respectively, defined by
7;( = H?(f — Oups + eAupr — a - Vupr — bup,, VK € 7;:1,
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and
_g[gi’gh it Begp,,
B = H%g—ag“T’g it Eegpy,
0 it Eeep,,

where T is the L2(Jt" "1, #"[x K) projection onto the constants (see [3] and [15]), i.e

K *(tn_tn I |K|/tn /

and I17% is the L2(Jt"~1,¢"[x E) projection onto the constants given by

1 "
g = ——————— ds.
BY = g =1 B / /Eg

We use the residuals R} and R, to define an a posteriori error estimator, in the interval [t 1<
n < N, as follows:

.
o= [ {oklIRiiEx+ X e anlREIE .} (42)

Ecék

KeT!
with ax defined as in (2.14) and ap := min{hge /% 1}.
The main result of this work is stated in the following theorem.

Theorem 4.2. Let u and uj be the solutions of (VP) and (SP), respectively. Consider e = uw — up. for all
t € [t~ "], with up, defined as in (4.1). Let 0% be the a posteriori error estimator defined in (4.2), then
we have that

o
n 2 2 n— 2
[[e(t a')Ho,Q"'/til el < lle(t™ ™" Moo+ D R+ > aKHf 5 f 116k

KeT KeTp 7t
t" 5 t" 5
- / Vaglg=Mgali e+ [ 1=+ [ la=a"le,
Eegn n—1 n—1 tnfl
2 T 12 _
/ Z agellf" = fllg.x + Z %IIIUZ—UZ 1|||K{a§<(€ Y2l oo s + 1]l oo 1)
"t KeTn KeTy
_ 2
(L4 bl e 0+ =72l ) - (4.3)
Moreover,
o 1/2 m 1/2
2 — [(0%7¢
ngk = ag (/t | f — g f||0wK> +(/t 1|||6|||wK> {1+|b|oow,< 1/2||<1||OO,WKO<K+T—}
- - .
" 1/2
— 1/2
+ D> e 1/4aE// lg - kglle o | - (44)
t’ll

Ee&y §
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Proof. Upper bound
From (2.1) and the definition of the error e, we have that

e(Ve,Ve) + (a-Ve,e) + (be,e) > |le]®, Vte[t" ")

Thus, using the above inequality, adding in both sides (O;e, e) and integrating between t"~! y ", we get

t" " t" "
/ (Bre.e) + / lel? < / (Bree — Ife) + / Ble,e — If'e)
tn—1 tn—1 tn—1 pn—1

" "
+/ (8,56,[,’:6}4—/ Be, Ij'e). (4.5)
¢ ¢

n—1 n—1

Taking v = e(t,-) — ITe(t, ), for t € [t"~1, "], in (4.2), and integrating between t"~! and ¢", we obtain

tn t'Vl
/ <6te,e—I,’fe>+/ {e(Ve,V(e—1Ije)) + (a- Ve,e — I}le) + (be,e — Ijle)}
t t

n—1 n—1

/t 1 {R’}(,e—l,’}e)K—|—(f—H’}<f,e—I,’fe)K+ > (Rp.e—Ije)s
" KeTr

EcoK

+ Y (g-Thg,e— I;?e)E}7 (4.6)

EBEER

Thus, using (4.6), Cauchy—Schwarz’s inequality and Lemma 3.3, we arrive at

" t"
/ <8te,e—lﬁe>+/ {e(Ve,V(e—I}'e)) + (a-Ve,e — I}le) + (be,e — Ij'e) }
t t

n—1 n—1

_ 1/2
= / > {aKIIR loge +orcllf ~ T fllo e+ S &0l Rilly
e KET” Ee€ 0K
_ 1/2
+ Y e Miay ||g—n%g||o,E}|||eu|@K
EEE}Q’N
t’!l
2
= [ {a%IIR%HO,ﬂ > e Vap|Rj ||0E}+ > aklf — WSl i
=t \ ket E€ 0K KeT;
1/2 1/2
_ 2 2
+ Y e VPaglg - Tggll; 3 Jlel?,
Eegy y KeT»
2
) Z/ R S e aslbil ) + Z/ 03| f — T2

KeTn Ec 0K KeT»
1/2

" tm 1/2
— n 2 2
. / e 2apg - TIg|2 (/ |||e|||> | (4.7)
EES;?YN tn—l tn—l

On the other hand, taking w;, = Ie(t,-), t € ("7, "] in (4.2) and integrating between t"~! and ", we
get
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/t (Ore, Ij'e) + /t {e(Ve,V(I7e)) + (a- Ve, Iye) + (be,Ie)}

n—1 n—1

" t" t" t—tn_l 1
- / (f = f* Ive) + / (9— g™ IPe)ry + / 2 B —ut Ipe)
t

n—1 tn—1 Tn

/ Z /51( " — Qunr —eAuy —a - Vup +bup)(—eAlle —a - Vije+ byl e).
T KET"

(4.8)

Now, we will bound the last two terms on the right-hand side of (4.8). First, by a classical result (equation
2.4 in [2] and [21]), we obtain that for all ¢t € [¢t"~1, "]

B(uj, —up ™' Iie(t ) < lle(t, )i — wh ™ (1 +11b]l o 0 + 22 llall.0)-

Thus, using the above inequality, Cauchy-Schwarz’s inequality and integrating between t"~' and t", we
arrive at

n

t 1
-t
/ Bluf i~ T
t

n—1

"
< [ e = 0 g+ al)
t n— 1 1/2
- _ 2
< ( / ) Vgt = (L bl 42 1/2|a||oo,g)>

o 1/2
x / lel?
tnfl
1/2 - 1/2
Tn
- (;m«lh—uh g (1+|b|oog+s“2|a|oog)> (/ 1|||e|||2> | (4.9)
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The last term on the right-hand side of (4.8) can be bounded using lemmas 2.5 and 2.6, and Cauchy—Schwarz’s
inequality, as follows

tn

/ Z / O (f™ — Owupr —eAuy —a - Vup +bup)(—eAlj'e —a - Vijle + by I} e)
tn—1 K

KeTp
= [ anls = dun — 26 - a- Vg + b llels,
"t KeTr
~ R? n_ th—t Alu? — "t
i Z okl KHO,K+aK||f tho,K+ ——axklleA(uy —up™)
tn—l K€7—hn Tn
—a- Y —up ) = b(uf - uz-1>||o,K}|||e|||@K
¢ 2 2
<[> {a%(an,Kw%Af"— I
Tt \ KeTr
1/2 1/2
(tn—t)2 2 1,,m n—12 _—1/2 2 2
S ek g — g e P e + 1 ) S lel?,
n Keﬁ:l
t’Vl t’Vl
2 2
< X aklRkI .+ [ Y ekl -1l
" KeTy " KeTy
1/2 - 1/2
T, 12 _ 2
+ 3 okl — el + bl )? ( / 1|||e|||> . (4.10)
KeTy "

Finally, using Cauchy—Schwarz’s inequality, (4.9), (4.10) and Lemma 3.3, we bound (4.8) as follows
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tn t'Vl
/ (Oe, I}}e) + / {e(Ve,V(Iye)) + (a- Ve, Ie) + (be, I7e)}
tn—l tnfl

i 1/2 i 1/2 i 1/2 i 1/2
< ( / ||f—f"||§,g> ( / |||e|||2> T ( / ||g—g“||§,m> ( / |||e|||2>
tnfl tnfl tnfl tnfl

n 2 n n 2
o AR S D SRS T
tn— tn—

KeT KeT
1/2

n 1/2
t
T —1n2 _ 2
+ ) S oiclluh = wi ™ e (€72 llal oo g + 1Bl 10)? (/tnl llel )

KeT,

1/2 4 1/2
Tn n n—1y2 _ 2 2
+<§|||uh—uh P+ 1]l + P lall o.0) ) (/ 1|||e|||>
tn—

o o n
2 2 2
< [or=rar [ =gl [ S akdrgl .
tn—l tn—l tn—l KE’T,:L
tn
2 T 12 _
t [ Akl -G+ Y ek - e g e + bl
" ke KeT;
1/2 o 1/2
T, ) _ 2 2
+§"||IuZ—UZ P+ (1] + €72 lla]l o) ) </ 1|||6||| >
t’Vl*
< " n| 2 " ni|2 ’ 2 R™ 2
= 1||f—f Ho,sz"" 1||£7—9 Ho,rN"’ ) Z ok K”o,K
tn— tn— tn—

KeTy»

tn
2 T 12 _
L D SR VAR PR S e W (Y T L PR [T
" KeT KeTn

1/2 m 1/2
— 2
(14 Bl 0+ 2l 0) )) ( /. |||e|||2> . (411)

Thus the upper bound (4.3) is a consequence of (4.5), (4.7) and (4.11), Cauchy—Schwarz’s and Young’s
inequalities and the identity

(e, .0 = et Vo 0) -

N =

g
[ (o -
tn—1

Lower bound
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To prove the lower bound (4.4), we consider the bubble functions defined in Section 3. Integration by
part implies that for all w € H}(Q2) and ¢ € [t" 1, "]

(R, w)g = /(fw—atuhfw—EVuhTVw—a-VuhTw—buhTw—(f—H’}(f)w)
K
+ Z /Vu;” ngwds
Ecék

= (e, w)+¢e(Ve,Vw)g + (a-Ve,w)k + (be,w)k

+ Z /Vu;” npwds — Z /Vu nEwdS—/(f g fw

Eeék 1A
(4.12)
If we consider w = wik(t,-) in (4.12), with wk(¢,-) := Y ()n(t) R (¢, ) for t € [t"1 "], we have
(R wi(t, N = (Oe,whk(t,-)) +e(Ve, Vwik(t, )k + (a- Ve, wik(t,-)x + (be,wik(t,))k

- [ (=T puce.).

Integrating between ¢! and " in the above equation and using integration by part in time, we obtain

" tn ¢
/ (R, W)k = —/ / Wiy e + / {e(Ve,Vui )k + (a-Ve,wk )k + (be,whk )k}
tn—1 tn—1 JK gn—1
- [ [ - (4.13)
tn—1JK

On the other hand, from lemmas 3.1 and 3.2 we have

| Bwion = [ et v

n—1

t’Vl
n 112
- / A
tnfl
t’Vl
n 112
= [ IRRI (1.14)
tn—

Thus, using Cauchy—Schwarz’s inequality, lemmas 3.1 and 3.2, (4.13) and multiplying (4.14) by ax, we

obtain
" 1/2 o 12
e </ 'R’f?'é,K> = ( /. |||e|||2> <1 bl + e Plal e + a_K)
tm 1/2
+ax </n1 |f— H’;(f|§1K> : (4.15)

Now, for E € &, we define wip(t, ) = ¥ o, ()n(t)(—€[Onpun(t,)]E), for t € [t"~1,¢"]. Taking
v =whk(t,-) in (4.2), we obtain

[ —Wonsnlpwh(t) ds = Ore.up(t. ) + Blewp(t.)

- [ Rkt = 3 [ (= Menupe.). (4.16)

KCwg KCwg



14 RODOLFO ARAYA AND PABLO VENEGAS

Thus

/ /—aI[@nEuhT]]Ew%ds
tn— 1

. / [ oo+ /  A{e(Ve, V) + (a- Ve.wp) + (e wp))

KCwg
—ng/ / R — K;/ /f I fwl. (4.17)

We bound each term on the right side of (4.17). By Cauchy—Schwarz’s inequality, lemmas 3.1 and 3.2 we

have
n i 1/2 " 1/2 1/4 1/2
n 2 2 3 «
> [ [ owpe= ( / |||e|||wE> ( / ||—s[anEuh71E||o,E> =% (4.18)
tn—1 K tn—1 tn—1 Tn

KCwg

also

/t {e(Ve, Vui) + (a-Ve,wh) + (be,whk)}

n—1

tn
< el {0 ol DBl + & Nl Tl )

tn
—1/2 — 1/2
< el {0+ Il )05 4 7 2l A0} = lOmpuncl el
t’Vl*

n—1

o ) 1/2
x ( / |||e|||wE> . (4.19)
tn—1

By Cauchy—Schwarz’s inequality, (4.15), lemmas 3.1 and 3.2, we obtain

- 1/2 o 1/2
2 ~1/2 2
/ | Ricu = ( I E s[anEumlEno,E) iag ( / |||e|||wE>
tn— 1 tnfl tnfl
ap 1/2 " v
X {(1 + ||b||oo,wE) + aE671/2||a||oo)wE + T—} + 51/40415/ / ;
n tn—

o 1/2
_ 1/2
j </t || - ElanEuhT]EHg)E) {(1 + ||b||oo wE)) 1/4 / +e€ 1/4”0‘”00 wEaE/ }

(4.20)

also

S [ [ 2 e (/ |7 - f||owE>l/2

KCwg
o ) 1/2
| [ I=clonsunrlelis) (121)
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Thus, using (4.17)—(4.21) and lemmas 3.1 and 3.2, we arrive at

n

" 1/2 o 1/2
e hay? ( / A —s[anEuhrlEnaE) < ap ( / B If—H}?fllﬁ,wE>

" 1/2
t
_ ap
+ (/ 1 |||e|||wE> {1 Bl el e + T—}. (4.22)
t’Vl*

Similarly, if £ € & y and wi, := VE,05Un(IlEg — €0y uny), it follows that

n

. 1/2 in 1/2
— 1/2 n 2 n 2
€ 1/4aE/ </t . ”HEQ - EanEuhT||0,E> 2ag (/t . Hf - HKf”O,K)

" 1/2
t
2 _ o2
+ (/ |||6|||K> {1+ 18l15 & + €2l om + —}
tn—1 Tn

- 1/2
e Ma? ( [ ta- HgmaE) . (4:23)
tn—1
The lower bound (4.4) is a direct consequence of (4.15), (4.22) and (4.23). O

5. NUMERICAL EXPERIMENTS
In order to develop an adaptive algorithm, we introduce the time error estimator (see [4] and [15]) defined
by
2 1 12 _
ix)” = grallu —up e VEE [T, (5.1)

3
1/2

n = Z (WZK)Q

KeTy

From Theorem 4.2 we note that ((n3)? + (n7")?)'/? is a good approximation of

i 1/2
2
o (/ |||e|||> .
tnfl

The adaptive procedure in space is such that for each n, 1 < n < N, we compute the space—time local error
estimator 7j! x := 1 +1f') for K in T, and ¢ € [t"~", "], and refine those elements K € 7;* such that

i = On max{n,’;K K e 771"}, (5.2)

where 65, €]0,1[ is a prescribed parameter. This procedure is repeated a fixed number of iterations or until
a stop criteria is fulfilled. The aim of the time adaptive procedure is to develop a partition 0 = t° < ¢! <
... <tN =T, such that in each interval [t"~1,#"] the following condition is fulfilled (see [15])

N 1/2
<Z (77?)2>
% < O, (5.3)
(Z |||u2|||2>

where Oy €]0, 1] is a prescribed parameter, which means that the relative error is close to a preset tolerance.
In our computations, to satisfy (5.3), we consider the following necessary condition

(n)? < Ox lupll?,
for eachn, 1 <n < N.
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Remark 5.1. To solve Problem (SP) we use piecewise linear functions which correspond to take k = 1
in the definition of the Lagrange finite element space. On the other hand, for the adaptive procedure we
use the mesh generator Triangle which allows to create successively refined meshes (for details, see [20]).
Other mesh adapted approach is obtained using the BL2D mesh generator (see [7]). The difference between
Triangle and BL2D is the refinement algorithm. 0

Remark 5.2. Note that the solution uzfl, at time t""', is defined on the mesh 7;1"71, thus to compute
the solution uj, at time t", using our adapted scheme, we need to interpolate uzfl onto the new mesh T,
(see step 13 in the Adaptive algorithm below). In our case, we use the Shepard’s algorithm to compute this
interpolation (for details, see [19]). O

The adaptive algorithm that we use is introduced in Algorithm 1, this procedure is similar to the one
introduced in [15].

Algorithm 1 : Adaptive algorithm

1: Input: 70, w9, n=1, 7,
2: while t <T do

3:  Compute uy, ny'r, N
4 if 9P < Onflu}l,, then
5: while stop criteria do
6: for all K € 7," do
7: if 0} x> 0 max {772,1( K e 771"} then
8: mark the element K for refinement
9: end if
10: end for
11: create a refined mesh 7T
12: T T
13: interpolate u} " on 7;" (Shepard’s algorithm)
14: Compute up, 7' 5, Nk
15: end while '
16: t<—t+71,
17: n+<n+1
18: else
19: t<—t—1,
20: Tn  Tn/2
21: t<—t+71,
22:  end if

23: end while

In the following, we present three numerical test to show the performance of the stabilized scheme,
introduced in problem (SP), and the adapted scheme based in the a posteriori error estimator introduced in
(4.2) and (5.1).

The first test concern the numerical validation of our stabilized scheme trough a convergence analysis, in
this case we see a perfect agreement between the theoretical order of convergence and the numerical ones.
The other two tests are introduced to show the effectiveness of our adapted scheme, to produce adapted
meshes that can capture the physical phenomena with precision.

5.1. An analytical solution. We consider the time-space domain ]0, 1[x§2 where Q :=]0,1[%, ¢ = 1, a= (1,
1), b =1, u(0,-) = 0 and f such that the solution of (P) is given by

u(t,z,y) = 16txy(l — x)(1 — y).
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We consider a sequence of uniform meshes and compute the norms: [Ju — unz[lj 11xq, |4 = unrljo,1)xm1 (2)
and [[u — unrlljg 1) 12() defined by

1
2 2
lu= s = [ = wlie

1
Anvw—ummap

! 2
JR
0
where up, is defined as in (4.1).
The results show, as expected, an O(h?) order of convergence for |lu — Unrll1yxr2(o) and O(h) for

2
lu — uhT|[0,1]><H1(Q)

2
lw — wnr|| [0,1]x©

lw = wnr| 0.1]xq and | u — unr|jo,1]x 1 (0)-

]- T T M T T T T T
—— v = unrllp %0
| Ju—unr oo
0.1 F - Koo [ — uny [0,1]x L2(9) ]
0.01 + N
. I
0.0001 i
1e-05 | ]
[ *
1le-06 L L
0.001 0.01 0.1 1
h
F1GURE 2. Convergence history for ¢ = 1.
5.2. A diffusion problem. In this case we consider  :=] —0.25,1.25[%, ¢t €]0,1[, e =1, a = (0,0), b =1,

f is obtained assuming that the solution of (P) is given by
u(t,@,y) = B(t)e 0 L),
with
r*(t,z,y) = (z—0.4t—0.3)*+ (y — 0.4t — 0.3)%,
() = 1 ¢—50(098+0.01)
[ ?)Tote that u is a Gaussian function, which center moves from (0.3,0.3), at ¢ = 0, to (0.7,0.7), at t = 1 (see
15]).

We consider time and space adaptation with x5 = 9 x 1072, 7, = 0.33 and 6, = 0.03. The initial mesh
is presented in the following figure.
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08

06

04r

02

-0.2 0 02 04 06 08 1 12

FIGURE 3. Initial mesh with 74 elements.

Below we show the adapted meshes and solutions obtained using our adaptive scheme at different times.

12 12 1
1 1F i
0.8 08 E
0.6 06 -
04 04l i
02 0zf 4
0 o 4
02 -02 b
L L \ L L L L \

-02 0 0.2 04 0.6 0.8 1 1.2 -02 0 0.2 04 0.6 0.8 1 12

FIGURE 4. Adapted mesh and solution at time ¢t = 0.0667 (7,, = 0.0167).
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0.1

0.05
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12 12 E
09
1 1 g _
08 08} 1 ad
06

06 06} -
05

04 04 B
04
02 02t - -
5 il | 02
01

-0.2 -02f -

-0.2 0 02z 04 06 08 i} 12 -0.2 0 0.z 04 06 08 1 1.2

FIGURE 5. Adapted mesh and solution at time ¢t = 0.6167 (7,, = 0.0167).

12 12 E
0.9
1 1 g _
08 08} 1 ad
06

06 06} -
05

04 04 B
04
02 02t - -
5 il | 02
01

02 02t 4

-0.2 o 02z 04 06 08 i} 12 -0.2 0 0.z 04 06 08 1 1.2

FIGURE 6. Adapted mesh and solution at time ¢ = 0.9500 (7,, = 0.0167).

As we show in Figures 4-6, the evolution of the solution is captured by the adapted meshes generated
with the use of our error estimator.

5.3. An advection—diffusion problem. This example consists of solving (P) with © :=]0,200[x]0, 50],
t €]0,150[, @ = (1,0), b = 0 and f = 1 in the circle of center (25,25) and ratio 0.5. In the first case we
consider € = 1 and in the second one ¢ = 10~°, which allows us to test the performance of our error estimator
in an extreme case. We choose the boundary conditions as shown in Figure 7, with «(0,-) = 0. The initial
mesh is presented in Figure 8. Note that our adapted scheme produces, see Figures 9-11 and 12-14, meshes
and solutions that are in perfect agreement with the physical phenomena even when the diffusion parameter
is very small.
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0
50 mn
Q ou
-0 oy
“ aon
o 200
on
FIGURE 7. Boundary conditions.
50
40
30
>
20
10
0 ¥ T
0 20 40 60 80 100 120 140 160 180 200

FIGURE 8. Initial mesh. 828 elements.

To solve the stabilized problem (SP), we consider 7,, = 3 for 1 < n < N. We show the solution at three
different times for each value of .
Casee=1

0 20 40 60 80 100 120 140 160 180 200

FIGURE 9. Solution and adapted mesh obtained by the adaptive process at time t =9 (¢ = 1).
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FIGURE 11. Solution

and adapted mesh obtained by the

adaptive process at time ¢ = 150 (¢ = 1).
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Case ¢ = 107°

0 20 40 60 80 100 120 140 160 180 200
T T

i i 1 1 1
0 20 40 60 80 100 120 140 160 180 200

FIGURE 12. Solution and adapted mesh obtained by the adaptive process at time ¢ = 9
(e =1075).

B0~

301

i

0 20 40 60 80 100 120 140 160 180 200

F1GURE 13. Solution and adapted mesh obtained by the adaptive process at time t = 75
(e =1075).
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0 01 02 03 04 05 06 0.7 08

0 20 40 60 80 100 120 140 160 180 200

FIGURE 14. Solution and adapted mesh obtained by the adaptive process at time ¢t = 150
(e =1079).
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