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1 Introduction an formulation of the problem

Alternative theorems have proved to be important in deg\iry results in opti-
mization theory like the existence of Lagrange multipljefsality results, scalar-
ization of vector functions,etc. Since the pionering reslule to Julius Farkas in
1902 concerning his alternative lema which is well knownitfre&r programming,
or even the elder alternative result established by Paul&oin 1873, many math-
ematicians have made a lot of effort to generalize both tegub nonlinear setting.
To these author’s knowledge the first Gordan type resultdavex functions is due
to Fan, Glicksberg and Hoffman [13] and was established B71$uch a result
says the following:

LetK C R" be convex, and; : K — R, i =1,...,m, be convex functions. Then,
exactly one of the following two systems has solution:

@ fix)<0,i=1,....mxeK;
(b) pe RT\ {0}, 3", pifi(x) > Oforallx e K.

After that, the problem without the convexity became anriggéng challenge in
mathematics.
To be precise, let us consider a real locally convex topcklgiector spac¥ and a
closed convex con C Y such that inP # 0. We denote by* the topological dual
space ofY, and byP* the (positive) polar cone d&®. Given a nonempty s& C Y, a
Gordan-type alternative theorem asserts the validity aty one of the following
assertions:

Jae€ Asuchthab € —int P; (1)

3 p*eP*, p*#0, suchthatp*,a) >0 VacA. 2

Here (-,-) stands for the duality pairing betwedhandY* and intP denotes the
topological interior ofP. We recall thaP* is defined by

P*={p*eY": (p*,p) >0 VpeP}.

The closedness and convexity of the cdhés equivalent toP = P** by the
bipolar theorem. In this case,

peP < (p*,p) >0 VpeP.

Moreover,
peintP < (p*,p) >0 V p* € P\ {0}. (3)

Via the last equation, we see that the inconsistency of #@ser(1) and (2) is
straightforward, whereas the validity of (2) by assumingttfl) does not hold,
requires a careful analysis due to the lack of convexit.of

In fact, because of many applications, one of our purpostgsrchapter is to avoid
convexity and to allow convex cones possibly with empty togal interior. The
latter happens for instance(if < p < +)
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P=LP ={uelP(Q): u>0 aexeQ},

or if P is of the formP = Q x {0} with int Q # 0.

A good substitute for the interior is the quasi interior amdrethe quasi-relative
interior. Borwein and Lewis in [5] introduced the quasiatite interior of a convex
setA C Y, although the concept of quasi interior was introducedieraNVe use
both notions in order to deal with convex cones with possihpty interior. In this
situation, the convex hull arises naturally.

One of the main goals of the present chapter is to charaetrise seté for
which the negation of (1) implies (2). The negation of (1) mea

AN (—int P) =0, (4)

which is equivalent to
condA+P)N(—intP) =0. (5)

Therefore, by assuming the convexity@nd&A + P), a standard separation theo-
rem of convex sets provides the existencgbsatisfying (2): this fact was proved
in [42], see also [32, 22, 43] for additional sufficiency ciiwhs of alternative the-
orems. In [14, Theorem 4.1] is established that such a camassumption is nec-
essary and sufficient to get the implication &) (2) provided the space is two
dimensional; whereas it is far to being necessary in dinoerngieater than or equal
tothree [14, Example 3.8]. We shall revise that alternatieerem in dimension two
for convex cones having possibly empty interior, as well@sous equivalences to
the above convexity assumption.

This chapter is organized as follows. Section 2 gives thesgary basic defini-
tions together with some elementary results about congsariicular, wherP is a
halfspace, a complete answer to the validity of a Gordae-glfernative theorem
is given, see Corollary 2. In Section 3, we establish sevegaivalent formula-
tions to the Gordan-type alternative theorems valid fott (recessarily pointed or
closed) convex cones with possibly empty (topologicaBiiitr, see Theorem 1 and
Corollary 3. This is given in terms of quasi interior and guaative interior. We
also compare various of the previously introduced notidngemeralized convex-
ity for sets and vector functions. As a consequence of thesdts, we are able to
derive and strenghten several of the already known altemtiteorems. Section 4
establishes an optimal alternative theorem in 2-dimenfgioa cone with possibly
empty interior under a regularity assumption, which alwiagkls if the interior is
nonempty, see Theorem 4.1. Section 5 is devoted to applitatOne of them is de-
voted to characterize those mappifigsk — R? for which a equivalence between

U argmin(p*,F(-)) (resp |J argmin(p*,F(-)))
p*eP*\{0} p*eint P*

andEw (resp.Eyy, the properly efficient set) holds, whelg, denotes the set of
weakly efficient solutions t& on K. Such an equivalence is expected to be useful
for developing a well-posedness theory in vector optiniizeds in [12]. In addition,
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as another application, we revise the Fritz-John optimalitnditions for a class
of nonconvex vector minimization problems. Finally, wecafgesent some recent
developments about proper efficiency.

2 Basic definitions and preliminares

Throughout the papeK will be a vector space and a real locally convex topo-
logical vector space, whefe -) denotes the duality pairing betwe¥rand its topo-
logical dual spacey*. Givenx,y € X we setx,y] = {tx+ (1—-t)y:t € [0,1]}. The
segments$x,y, |x, Y, etc., are defined analogously.

A setP CY is said to be @oneif tP C PVt > 0; givenA CY, conéA) stands
for the smallest cone containig that is,

condA) =  JtA,

t>0

whereascongA) denotes the smallest closed cone contaiMngobviously
congA) = condA), whereA denotes the closure éf Furthermore, we set

cone.(A) = | JtA.
t>0

Evidently, con¢A) = cone.(A) U {0} and thereforeondA) = cone.(A). In [32,
42, 43, 33] the notation cof®) instead of cone(A) is employed.

Given a convex seh C Y andx € A, Na(x) stands for theormal coneto A atx,
defined byNa(x) = {& e Y*: ({,a—x) <0, YVacA}.

Definition 1. We say thak € Ais a (see for instance [7]):

e quasiinterior pointof A, denoted by € gi A, if cONdA—Xx) =Y, or equivalently,
Na(x) = {O};

e quasi relative interior poinbf A, denoted by € gri A, if TongA—X) is a linear
subspace of, or equivalentlyNa(X) is a linear subspace &f.

e ([31, 44])core pointof A, denoted by € coreA, if congA—x) =Y.

e ([6, 18, 44))intrinsic core pointof A, denoted by € icr A, if congA—X) is a
linear subspace of.

e ([31]) strong-quasi relative interior poirdf A, denoted by € sqriA, if cong A—
X) is a closed linear subspaceYof

For any convex seA, we have that ([25, 7]) gh C gri A and, intA # 0 implies
int A= gi A. Similarly, if qi A+ 0, then qiA = gri A. Moreover [5], ifY is a finite
dimensional space, then 8i= int A and qriA =ri A, where riA means the relative
interior of A, which is the interior oA with respect to the affine hull &. In addition,

coreAC sqriAC griA and coreAC giAC gri A
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LetB C Y another convex set. Then
griA+qriBC gri(A+B); griAx griB=qri(Ax B); gri(A—x) =qriA—Xx;

gri(tA) =tqri A Vt e R; gri A= A, providedA s affine; qr{qri A) = qri A;
qri A= A, congqri A) = coneA, ifqri A#0.

Thus, all results in this paper involving @i are also true for infA, provided the
latter set is nonempty. On the other hand, the d8nleas nonempty quasi interior,
but its interior (and even the relative algebraic interis@mpty for allp € [1,4-o].
Likewise, the core and even the strong quasi relative iotexfi Lﬁ is empty. Quasi
relative interior points share some properties of the iatgroints; for instance, if
x € gri Aandy € Athen[x,y[ C gri A. In particular, griA is convex.

If Pis a closed convex cone, then it is easy to checkstiagi P if and only if
(x*,x) > 0 for allx* € P*\ {0}, or equivalently if the seB = {x* € P*: (x*,x) = 1}
is a w'-closed base foP* (we recall that a convex sétis called a base fdp* if 0
is not in the w-closure ofB andP* = congB)). If P #Y, then 0¢ gi P. Note also
that qiP = cone (qi P) andP+qi P=qi P.

In the rest of the papef0} # P & Y will be a convex cone.

Some elementary properties of sets and cones are collectkd next proposi-
tion.

Proposition 1.Let AK CY be any nonempty sets.

a) CO(A) = Co(A), CONgA) = CONdA);

) if Ais open thertone, (A) is open;

) condco(A)) = co(con€A)); cone.(co(A)) = co(cone-(A));

) co(A+K) = co(A) + K provided K is convex;

(e) cone.(A+K) =cone. (A) + K provided K is such that tke K V't > 0;

(f) A+ K=A+K;

(9) K CconéA+K) provided K is a cone;

(h) condA+K) C condA)+K C condA+K) provided K is a cone; if additionally
0€A, then

(
(b
(c
(d

condA+K) =condA) +K;

In the following, K is a convex cone such tlatK # 0.

(i) A+intK = A+ K, intA+ K = A+ intK = int(A+K);

(j) congA+ qri P) =condA+ P), provided P is a convex cone witfti P # 0.

(k) cone. (A+int K) is convex<=- conéA) + int K is convex— tondA+K) is
convex.

Proof. (a), (b), (c), (d), and(e) are straightforward.

(f): SinceK C K, we haveA+ K C A+ K. On the other hand, it is not difficult to
obtainA+K C A+ K, which completes both inclusions.

(9): For any fixa € A, everyx € K can be obtained as the limit é(a+ nx). Hence
K C condA+K).
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(h): The first inclusion is obvious. According {&), cone.(A) + K = cone. (A+

K) C congA+K), which along with(g) prove the second inclusion. The remaining
equality is trivial.

(1): The first part follows fron{f), and the other is in [36, 8].

(j): congA+qriP) =TondA+ qri P) =Con&A+ qri P) = Tong A + P) = CongA+
P).

(k): By (e) and(i),

cone (A+intK) =cone.(A) +int K = int(cone, (A) + K) = int(cone. (A) + K)

=int(congA) + K) = int(condA) + K) = condA) + int K.

This proves the first equivalence. We also obtain
int(cong A+ K)) = int(cone. (A) + K) = cone. (A) +int K = cone. (A+int K),
proving the equivalence between the first and third sets. a

Remark 1Proposition 1k) does not hold with gP in the place of inP. Indeed, let
Y =ItandP=1%. Then qilt = {(ai);cy : @i > 0} whileint1} = 0. Set

A=11 (=qil}) = {(ai)iey : 3i € Nwith a; > 0}.

Each(aj);y € I* can be written as a limit of a sequence of elements each ofwhic
has a finite number of nonzero coordinates. TAus I* andcongA+11) = |1

is convex. However, one can readily check that cqiet+ qi P) = A+qi P =
{(ai)ie : 31 € Nwith aj > 0} is not convex.

Proposition 2. Let® # AC Y. The following assertions hold:

(a) aA+ (1—a)ACcon€A) V o € ]0,1] < TON€A) is convex<=> co(A) C
condA);

(b) aA+ (1—a)AC condA) ¥V a € |0,1] <= condA) is convex<> co(A) C
con€A);

(c) aA+(1—a)ACcone (A)Y a € ]0,1] <= cone,(A) is convex—> co(A) C
cone. (A).

Proof. (a): Let x;, i = 1,2, such that there are nef§” }qen, {X* }aen such that
td > 0,x" € Aandt"x" — x;, 0 € A. We may assumg® >0 foralla,i=1,2. For
any fixedA € 10,1, sett” = At{ + (1—A)ty > 0. Then

Atf 1-td
MIX] +(L-A 95 = t”(t—alX? + (,[70)2X5) €tYcoACt%condA) = condA).
Hence Ax; + (1— A)x2 € condA). This proves the first implication; the next one
results from the inclusioA C congA), and the remaining implication to close the
circle is a consequence afA+ (1— a)AC co(A).

(b): Letxy, X2 be in conéA) andA € ]0,1[. Thenx = tik; for somet; >0 (if; =0
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for somei, there is nothing to provel; € A. Hence, setting= At; + (1— A)t; >0,
we have

M 1- At
Axe+ (1= A)xo = Atgkg + (1— A )toko :t(le1+ %kz) € condA),

proving the firstimplication; the second one follows frora thclusionA C con€A),
whereas the remaining implication is straightforward.

(c): The only implication to close the circle we have to checkesponds to the first
one, and it is a consequence(bj since con@A) is convex if and only if cone(A)
iS convex. O

Corollary 1. Letd# ACY, P be a convex cone. The following assertions hold:

(a) aA+ (1—a)AC cone.(A+P) ¥V ae ]0,1] < cone (A+P) is convex
<= co(A) C cone. (A+P);

(b) aA+ (1—a)A+P CcondA+P) Vae ]0,1] < condA+P) is convex
<= co(A)+P C condA+P);

(c) aA+(1—a)A+int P C cone.(A+intP) VY a € ]0,1] < cone (A+int P)
is convex—> co(A) +int P C cone. (A+int P);

(d) aA+(1—a)AC cone . (A+intP) Va € ]0,1] <= cone (A+int P) is convex
<= co(A) C cone. (A+intP);

(e) aA+(1—a)AC conéA)+P Vae ]0,1] < condA)+P is convex—
co(A) C condA) + P;

(f) aA+(1—a)ACCondA+P) ¥V a € ]0,1] <= TondA+ P) is convex<=-
co(A) C condA+P).

Proof. (a), (b) follow from (c) and (b), respectively, of the previous proposition
applied toA+ P; (c) is a consequence ¢f) by takingA+ int P.

(e): One implication for the second equivalence results fromititlusionsA C
condA) C condA) + P; whereas the other follows from the following (use Propo-
sition 1(c))

co(condA) + P) = co(con€A)) + P = condco(A)) + P

C condcondA) + P)+P C condA) +P.

The first equivalence is straighforward.
(f): It comes from(a) of the previous proposition applied o+ P and the fact that
P-+ConéA+ P) CConéA+P). O

Part(f) already appeared in [32].

Remark 2From Proposition (h)), we obtain
congA+int P) = condA) + P =CcongA+ P). (6)

The next proposition gives us a way for finding a sufficientditon to get
co(A) N (—int P) = 0, say, the convexity cdonéA+ P).



8 Fabian Flores-Bazan, Fernando Flores-Bazan and&@rigera

Proposition 3. Let AC'Y be a nonempty set andPY be a convex cone such that
int P #£ 0. The following assertions hold:

(@) AN (—int P) = 0 <= cone (A) N (—int P) = 0 <= AN (—intP) = 0;
(b) AN (—=intP) =0 <= AgN(—intP) =0, ¥ Ag, A+int P C Ay C cone, (A+P);

Proof. It is straightforward. a
Remark 30n combining(a) and(b), we obtain
AN(—=intP)=0<«<= BN (-intP) =0,

for B = A+int P, A+ P,cone (A),condA) + P,condA + P),cone.(A+ int P),
condA), condA) + int P, and certainly all of their closures.

The case wheR is a halfspace deserves a special formulation.

Lemma 1.Let P Y be aclosed and convex cone satisfyimdp # 0. The following
assertions are equivalent:

(a) P=Y\ —intP;
(b) PU(—P) =;
() 3p" P\ {0}, P={peY:(p',p)>0}.

Proof. (a) = (b): ObviouslyPU(—P) CY. Take any € Y\ P, then by assumption

y € —int P C —P, as required.

(b) = (c): SinceP #£Y, we takepg ¢ P. Then, by an usual separation theorem for
convex sets, there exipt € Y*, p* #0, a € R, such that

(p*,po) < a < (p*,p) VpeP.

Hencea < 0 and thereforep*, p) > O for all p € P, showing thap* € P*\ {0} and
Pc{peY: (p',p) = 0}. (7)

Assume now that there exigts= Y \ P such that p*, p) > 0. SinceP is closed, there
existse > 0 such thap—epp € Y\ P C —P. Thus,

0< <p*7_p> +8<p*7 p0> < £<p*a p0> < Oa

reaching a contradiction. This proves the reverse inclusid7), which completes
the proof of(c).

(c) = (a): Simply take into account that in this case b= {p <Y : (p*,p) >
0}. O

If P is a halfspace we obtain an alternative theorem whatevesetre satisfies
AN (—int P) = 0, as the following result shows.
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Corollary 2. Let ACY be any nonempty set, andZPY be a closed convex cone
satisfying RJ(—P) =Y. Thenjnt P#£ 0, P=Y\ —int P, and A+ P is convex and
so A+int P is also convex. Consequently, the ssisadA + P), condA+int P),
congA) + P, are convex. Furthermore, eith@ngA -+ P) = P, or cone, (A+
int P) =Y and therefor€ongA+P) =Y.

Moreover, the following assertions are equivalent.

(a) AN(—intP) =0;
(b)ACP

(c) co(A)

(d) co(A)N (f|ntP) 0;

(e) co(A+intP) CintP.

Proof. ObviouslyY \ P C —P, and sinceP is closed, we conclude that iRt~ 0. Let
g €A i=12. We may assuma, € a,+ P. Sinceay + P is convex, we obtain that
[a1,82] Cax+P. Thus,[a;,az] + P C ax+ P+ P C ay+P. This proves the convexity
of A+ P, and so intfA+P) = A+ int P is also convex. The convexity of cof# + P
is a consequence of Corollarye) since cong(A+ P) is convex.

Let us prove the last part. Bg) of Proposition 1P C congA+ P). If cong A+ P) \

P # 0, then there exists € Y \ P = —int P and nets{ty }gen, {8ataea, {Pa}aen
satisfyingty > 0,84 € A, pa € P such thaty (ag + pa) — X. Thus, we may assume
ta (8 + pa) € —int P forall a € A . This implies that G= A+ int P. It turns out that
cone.(A+intP) =Y.

The equivalences betweéa), (b), (c) and(d), follow from the factP =Y \ —int P
(see the previous lemma). Clearlp) implies (e); let us prove(a) from (e): if

x € AN (—int P) then

0=Xx+(—x) € A+intP C co(A+intP) CintP.

Thus,0 € int P, which implies thaP =Y, a contradiction. a

3 Equivalent formulations of Gordan-type alternative theaems

The main goal of this section is to establish equivalent fdations of Gordan-type
alternative theorems valid for (not necessarily pointedesed) convex cones with
possibly empty interior. This will be carried out via quasiative and topological
interior.

We recall the definition of pointedness for a cone that is maessarily convex
(see for instance [30]).

Definition 2. A coneK C Y is calledpointedif x; + - - -+ X« = 0 is impossible for
X1,X0,...,. X in K unlessxg =X =--- =x=0.

It is easy to see that a coreis pointed if, and only if cK) N (—co(K)) = {0}
if, and only if O is a extremal point of ¢d).
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3.1 Via quasi-relative interior

We start by noticing that
gri(congco(A) + P)) C gri(condco(A) + P)). (8)

Next theorem subsumes most alternative theorems existitigiliterature.

Theorem 1.Let0 # ACY # {0} and P be a convex cone such that

gri(condco(A) + P)) # 0 # gri[co((A+ P) U{0})].
Let us consider the following statements:

(a) 0 ¢ gri(congco(A) + P));

(b) 0 ¢ grifco((A+P)U{0})];

(c) 0 ¢ gri(con€co(A) + P));

(d) 3 p* € P*\ {0} such that(p*,a) > 0 V a € A, with strict inequality for some
decoA)+P.

In caseqi(co(A) + P) # 0, consider also

(e) 0 gri(co(A) + P);
() condqri(co(A) + P)) is pointed.

The following hold:
(@) <= (b) <= (¢) <= (d) = (¢) = (f) = (9).

Proof. The first two equivalences are a consequences of the folipegualities:

condgco((A+P)U{0})] =cocond (A+ P)U{0})] = cocond A+ P)] =Ttongco(A+ P)]
= congcondco(A) + P)] = condcondco(A) + P)].

(c) (d): See the proof of Proposition 2.16 in [5].
(c) (e): Itis obvious.
()

(f): Letx, —x e conédi(co(A)+P)),x# 0. Thusx, —x & cone.(qri(co(A) +

Im

P). Then

_|

0= %x+ %(—x) € cone.(gri(co(A) + P)).

Hence0 € gri(co(A) + P), proving the desired implication. O
Remark 4 Assume that gP # 0. Since cdA) + qi P C qi(co(A) + P), then
con€qi(co(A)+P)) is pointed—> condco(A) +qi P) is pointed
co(A)N(—qiP)=0 < condA+ qi%’) is pointed

where the last equivalence comes from [14].
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By observing that
gi[co((A+P)U{0})] C gi(congco(A) +P)), 9)

the preceding theorem implies the following result
Corollary 3. LetD # ACY # {0} and P be a convex cone such that

qgi[co((A+P)U{0})] # 0.

The following assertions are equivalent:

(a) 0 ¢ gi(congco(A) +P));

(b) 0 ¢ qgi[co((A+P)U{0})];

(c) 0 ¢ gi(condco(A) + P));

(d) 3 p* € P*\ {0} such that{p*,a) >0, Vaec A

3.2 Via topological interior

Before establishing a similar result for topological imberwe state the following
properties sharing by convex cones.

Proposition 4. Letd = ACY . Let P& Y be a convex cone. The following assertions
hold.

(a) cone.(int(A+P)) Cint(cone. (A+ P)); the equality holds provideit P # 0.
(b) int(co(congA+ P))) = int(co(cone. (A+ P))) = int(co(condA+P))) =

= int(congco(A) + P)).

(c) condA+ P) =cond (AU {0}) + P);
(d) If cong A+ P) is convex theitongco(A) + P) = ConéA+ P).

Proof. (a): The inclusion is immediate. For the other, take aryint(cone.(A+
P)) andv € int P, we can choose > 0 such thak — ev € cone. (A+ P). It follows
easily thatx € cone. (int(A+ P)) = cone. (A+int P) by Proposition {e), proving
our claim.

(b): It follows from the following chain of inclusions:

int(co(CongA+ P))) C int(congco(A+ P))) = int(cone; (co(A+P))) =
int(cone. (co(A+P))) C int(congco(A+P))) =int(co(congA+P))) C int(co(CoN&A+P))).
(c): This follows from the facP C tong A+ P) by Proposition 1d). O

Next example shows an instance where the inclusida)inf the previous propo-
sition may be strict if int® = 0 but in{A+ P) # 0; the second instance shows we
cannot delete the closures(ic).
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Example 1Let us consider ifiR?, the coneP = {(t,0) € R?: t > 0}.

(a) Let A =co({(0,1),(0,0)}) U{(—1,1)}. It is easy to see that i(A+ P) #
0, cone. (int(A+P)) < int(cone,. (A+ P)). See Figure 1.
(b) TakeA = {(0,1),(0,2)}. Then, we obtain corfd&+ P) & cong(AU{0}) + P).

A
J\ cone, (int(A+ P)) ¢ int(cone, (A+ P))
\ A+P is convex is convex
""""""" '()T

Fig. 1 Example 1a)

Next result is the analogue to Theorem 1 when topologicatiat is employed.
Likewise, it allows us to deal with cones having possibly gmpterior.

Theorem 2.Let0 # ACY # {0} and P be a convex cone such that
int[co((A+P)U{0})] # 0.

The following statements are equivalent:

a) 0 Z int(condco(A) + P));
) 0 ¢ int(co(CON€A+ P)));
) 0 & int(co(condA+ P)));
) 0 & int[co((A+P)u{0})};
(e) 0 ¢ int(co(cone. (A+P)));

(f) 3 p* € P*\ {0} such that{p*,a) >0 VacA.

In caseint(co(A) + P) # 0, consider also

(g) 0 & int(co(A) + P);
(h) con€int(co(A) + P)) is pointed.

(
(b
(c
(d

In casentP#0, (h) <= condA+intP) is pointed;(g) <= co(A)N(—intP) =0.

Proof. The equivalences betweéa), (b), (c), (d), (e) and(f) follows from Corol-
lary 3 and Theorem 1.

(h) = (g): If 0 €int(co(A) + P), then it easy to check th&t= cone. (int(co(A) +
P)).

(g) = (f): Itis a consequence of a standar convex separation theorem.
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We now prove the last equivalence in caseAnt 0. Indeed, fron(a) and(e) of
Proposition 1, it follows that corimt(co(A) + P)) = co(conéA + int P)). Taking
into the account the remark made after Definition 2, the tdslibws O

The alternative theorems proved in [33, 43, 42], [10, Theoter9] (wheréA is
the image of a vector-valued function) are consequencésedbtiowing result.

Theorem 3. Assume thaint(cone.(A+ P)) # 0 and
int(co(congA+ P))) = int(cone. (A+ P)). (10)

Then, exactly one of the following assertions holds:
(a) 0O int(cone.(A+P));
(b) 3 p* € P*\ {0} suchthatp*,a) >0 YacA.

Proof. It is a consequence of the first part of Theorem 2. a

Some results from [16], where iRt= 0, are also recovered.
When intP # 0, the convexity ofong A+ P), or equivalently, of cone(A+int P),
implies that(10) is fulfilled, by virtue of Propositions@) and 1k). This yields the
following result, which already appears in [33, 43, 42],,[T@eorem 1.79] (where
Alis the image of a vector-valued function).

Corollary 4. Assume thaint P = 0. If tond A+ P) is convex, then, exactly one of
the following assertions holds:

(a) An(—intP) # 0;
(b) 3 p* € P*\ {0} suchthat{p*,a) >0 YacA.

An example showing the convexity 0bnéA+ P) is not necessary for the valid-
ity of the previous alternative theorem, is exhibited in][14

Let us consider in addition t6 : C — Y and a closed convex cofeg Y with
int P # 0, another mappin : C — Z, with Z being another real locally convex
topological vector space and a closed convex cQreZ.

Corollary 5. ([33]) Assume thatong (F x G)(C) + (P x Q)) is convex and
int(cond (F x G)(C) + (P x Q))) =int(cone.((F x G)(C) + (Px Q))) # 0.
If the following system is inconsistent:
xeC, F(x) € —intP, G(x) € —Q,
then there existsp*,q*) € (P* x Q*)\ {(0,0)} such that
(P, F (X)) + (0", G(x)) > 0 ¥ xeC.

The converse assertion is true if # 0.
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Proof. If the above system has no solution, then

(0,0) ¢ int(cone, ((F x G)(C) + (P x Q))).
Then, Theorem 2 applies. a

A standar constraint qualification implyimg # 0istTon&G(C) + Q) = Z. When
int Q # 0 the latter is implied by the conditio®(xg) € —int Q for somexg € C.

In view of previous results, the following notion arise ina@ural way. It seems
to be the most general among the relaxed notions of convéhatywere used in
alternative theorems.

Definition 3. LetP C Y be a closed convex cone with nonempty interior. ASsetY
is callednearly subconvexlikié TOngA + P) is convex.

The previous notion was introduced originally [#2] whenA is the image of
set-valued mappings, and further developed in [32].

Proposition 2a) provides a characterization of near subconvexlikeness@yr
appeared in [32]. When ir® £ 0, several necessary and sufficient conditions for
having near subconvexlikeness appear in [10, Propositio®] And [14, Proposi-
tion 3.5]. In particular, the presubconvexlikeness whgch transcription of an anal-
ogous definition for vector-valued functions given in [45]nothing else that nearly
subconvexlikeness, see Proposition 6 below. We also knaifroposition (k))

conéA+ P) is convex<=> cone, (int(A+ P)) is convex

However, if intP = 0 but in{ A+ P) # 0, one can show that there is not any relation-
ship between the convexity of cop@nt(A+ P)) and the convexity o€ongA-+ P),
see Figures 2 and 3.

cone, (int(A+P)) is convex
int(cone, (A+P)) is not convex

congA+P) is not convex

Fig. 2 cone (int(A+ P)) convex# congA+ P) convex

Another interesting class of mappings arising in derivitigraative theorems is
the following. Given a convex s€& C X, with X being a locally convex topological
vector space, a mappirkg: C — Y is called«-quasiconvei22] if (x*,F(-)) is qua-
siconvex for allx* € P*. It is callednaturally-P-quasiconved8] if for all x,y € C,
F([x,y]) C [F(x),F(y)] — P. Both classes coincide as shows in [14, Proposition 3.9],
[15, Theorem 2.3]. It is still valid i has empty interior.



Gordan-type alternative theorems and vector optimizageisited 15

cone, (int(A+P)) is not convex

A+P int(cone, (A+P)) is convex
congA -+ P) is convex

_________ 0 P A+ P is not convex

Fig. 3 congA+ P) convex# cone, (int(A+ P)) convex

In [22] it is proven that a Gordan-type alternative theorestdb for A = F(C)
under thex-quasiconvexity of and the assumption

Vp* € P, the restriction of p*,F (-)) on any line segment @ is lower semicontinuous
(11)
We will see the naturallyP-quasiconvexity of along with (11) imply the con-
vexity of F(C) + P; in particular,F is nearly subconvexlike, and so the alternative
theorems of [22] and [38] are consequences from Theorem 2.

Proposition 5. ([14]) Letd £ C C X be any convex sél# P ¢ Y be a closed convex
cone and E C — Y be naturally-P-quasiconvex and satisfyirid). Then

VxyeC, [F(x),F(y)] CF(xy)+P (12)

Consequently, EC) + P is convex.
Next result suplements Proposition 1.76 in [10] and PrdjmosB.5 in [14].

Proposition 6. Letd £ACY, PCY be a convex convex wittt P # 0. The follow-
ing assertions are equivalent.
(a) Ais nearly subconvexlike;
(b) cone_(int(A+ P)) is convex;
c) condA) +int P is convex;
(d)JueintP, VX3, X2 € A, Va € ]0,1], V&> 0,3 p > 0such that
eu+axg+ (1—a)xe € pA+P; (13)

(e) JucY,Vx, xeA Vac |01, Ve>0 3 p>0suchthal3) holds;
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(fyYueintP,Vx;, x2 €A Va e ]0,1],3 p > 0suchthat
ut+oaxi+(1—a)x € pA+P;
(g) YueintP,Vxy, xo €A Va € ]0,1], 3 p > 0such that
u+axi+ (1—a)x € pA+intP;
(h) VX1, X € A,Yae |0,1,Jucint P,V e > 0,3 p > 0such tha13) holds.

Proof. From Proposition 1 we get the equivalences betw@gn(b) and(c). The
equivalencega) <= (d) <= (e) are proved in Proposition 3.5 in [14], whereas
(c) <= (9) is proved in Proposition 1.76 in [10]. The remaining imptioas
(9) = (f) = (d) = (h) = (g) are straightforward. O

Remark 5Assertion(d) refers to the notion of generalized subconvexlikeness in-
troduced in [41], see also [43]; where@s corresponds to the notion of presub-
convexlikeness which is a transcription of an analogousiigfin for vector-valued
functions given in [45].

Proposition 5 shows that any naturafyguasiconvex function satisfyind1) is
nearly-subconvexilke. One can give some examples showagdnverse is not true
in general, see [14].

4 A bidimensional optimal alternative theorem and a
characterization of two-dimensionality

The bidimensional setting deserves a special treatmeoe sas we will see, the
convexity ofcong A+ P) is not only sufficient (see Theorem 3) but also a necessary
condition to have a Gordan-type alternative theorem. It sucase, we refer it as
an optimal alternative theorem, valid for convex cones pitsibly empty interior
under a regularity assumption. This is expressed in thetherrem.

Theorem 4.Let PC R? be a convex cone, & R? such thaint(cone, (A+P)) # 0,
and
int(congA+ P)) = int(cone, (A+ P)). (14)

The following assertions are equivalent:

(a) 0 ¢ int(cone. (A+ P)) andconéA+ P) is convex;
(b) 0 £ int(cone. (A+ P)) andcone. (A+ P) is convex, provide@ € A+ P;
(c) 3 p* € P*\ {0} such that{p*,a) > 0 VacA.

Notice that wherint P # 0 condition(14) is superfluous.
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Proof. (a) = (c): It follows from Theorem 3(b) = (a) is evident.

(c) = (a), (c) = (b): (We do not need (14)) The first part @) is a consequence
of Theorem 2b). For the second part, we re-write the proof of [14, Theoretj 4.
with obvious changes. Certainlyp*,a) > 0 for all a € condA+ P). Chooseu €
P\ {0}. Lety,z< A. Then obviously

cone({y}) + cone{u}) = {Ay+pu: A, > 0}

is a closed convex cone containiggandu and contained itongA+ P) (if 0 €
A+ P, itis contained in cong(A+ P)). The same is true for the cone cdf#}) +
cong{u}). The two cones have the line cdia}) in common and their union is
contained irfongA+P), thus itis contained in the halfspafec R?: (p*,x) > 0}.
Hence, the séB = (cond{y}) + coné{u})) U (cond{z}) + con&{u})) is a convex
cone. Sincg,z € B we deduce thdy,z] C B C tondA+ P). ThusaA+ (1—a)AC
congA+P) for all o € ]0,1], proving the convexity oEonéA+ P) by Corollary
1(f). In case 0= A+ P, we getaA+ (1— a)A C cone.(A+ P), proving the con-
vexity of cone.(A+ P) by Corollary 1a).

O

When intP # 0 a more precise formulation of the previous theorem may be
obtained.

Theorem 5. ([14, Theorem4.1]) Let PC R? be a convex closed cone such that
int P+ 0, and AC R? be any nonempty set satisfyinghA—int P) = 0. Then the
following assertions are equivalent:

a) 3 p* € P*\ {0} such that{p*,a) >0 VacA
b) cond A+ P) is convex;

c) condA+int P) is convex;

d) congA) + P is convex;

(e) CON€A+ P) is convex.

(
(
(

Next result has its own importance from a functional analyssint of view.
Indeed, such a result characterizes the two-dimensignafliany space where a
Gordan-type alternative theorem holds.

Theorem 6. ([14, Theoremd.2]) Let Y be a locally convex topological vector space
and PCY be a closed, convex cone such ithaP £ 0 andint P* = 0. The following
assertions are equivalent:

(a) for all sets AC'Y one has
[3 peP\{0}, (p*,a) >0V ac Al — condA+P) is convex;
(b) for all sets AC'Y one has

[3 p*eP\{0}, (p*,a) >0V ac Al = condA)+P is convex;
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(c) for all sets ACY one has

[3 p* e P\ {0}, (p*,a) >0Vac Al = condA+intP) is convex;
(d) Y is at most two-dimensional.

Remark 6. The assumption irP* £ @ (which corresponds to pointednes$ofhen

Y is finite-dimensional) cannot be removed. IndeedPet {y €Y : (p*,y) > 0}
wherep* € Y*\{0}. ThenP* = cong{p*}), int P* = 0. For any nonemptd C Y,
the setA+ P is convex by Corollary 2. Thuga) in Theorem 6 holds no matter the
dimension of the spacéis.

5 Applications to vector optimization

One of the important issues in optimization concerns theattarization of various
notions of solutions to vector optimization problems thgbdinear scalarization.
This will be done for Benson proper efficiency and weak efficiein case of bi-

criteria problems. For an theoretical treatment of thed®ns and others solution
concepts, we refer the books [26, 20]. The last subsectitirbeidevoted to char-
acterize the Fritz-John optimality condition.

In what follows, for a real-valued functiom, by argmirxh we mean the set of
minima of h on K. Let X be a real vector space, K C X, Y be a real normed
vector space. Given a vector functién K — Y and a convex cone, possibly with
empty interiorP C Y, we immediately obtain the following result.

Theorem 7.Let KC X, F as above, and P a convex cone. Assume that
int(co(F (K)) — F(X) +P) # 0.
The following assertions are equivalent:

(@)
xe |J argmin(p*,F());
preP*,p*#£0
(b) condint(co(F (K)) — F(x) + P)) is pointed;
(b') In caseint P # 0, (b) <= condF (K) — F(X) +int P) is pointed, as observed in
Theoren?.

Proof. It follows from Theorem 2 applied t8 = F (K) — F(X). O
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5.1 Characterizing weakly efficient solutions through liae
scalarization of bicriteria problems

Here, we assume that iRt# 0. We say thak € K is aweakly efficient poinof F
onK, shortlyx € By, if

F(x)—F(X) & —intP, ¥xeK. (15)
Clearly
xe By <= (F(K)=FX)N(=intP)=0. (16)
<= condF(K)—F(X)+P)N(—=intP) =0.

In caseY = R?, we get the following theorem whose proof follows from Theor
5.

Theorem 8.Let0 # K C X and P be a convex cone having nonempty interior with
Y = R2. Then, the following assertions are equivalent:

xe |J argmin(p*,F(-));
p*eP*,p*#0

(b) X e BEw andcone. (F (K) — F(X) +int P) is convex;
(c) xe BEw andcone, (F(K) — F(X) + P) is convex;
(d) xe BEw andcondF (K) — F(x) + P) is convex;

(e) xe BEw andcondF (K) — F(x)) + P is convex.

5.1.1 The Pareto case

We considerP = R2 and denoteR? . = int R2. Given a vector mappin§ =
(f1,f2) 1 K — RR?, we consider the problem of finding

XEK:F(X)—F(X) ¢ -R2,, VxeK. (17)
Letx € By and fori = 1,2, set
§ (¥ ={xeK: fix) <fi(x}; § X ={xeK: fi(x) > fi(x)};

S0 = {xeK: i) =fi(x)}
Taking into account Theorem 8, we writgK) — F(X) + R2, = QU QU Q3. It
follows that

cone, (F(K) — F(x) +R2. ) = cone (Q;) Ucone (Q;) Ucone (Q3),
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where

2= (000~ 1. 200~ f209) + B2.;
xes; ()

2= | (000~ 1R, 209 ~ 29) + B2.;
X[ ()

Q3= U [(fl(x)_fl(@fz(x)—fz(ﬂ)_y[gir]_
XS] (X)

WhenevelS/ (X) NS, (X) # 0 andS; (X) NS (X) # 0, we set

- bX-BE o, o RX-HE

- inf , . 18
xest (xns; (%) F104) — f1(X) xes; (nsg g 1100 = f1(%) (18)

Clearly,—oo < a <0 and—o <  <0.
The following figures can be obtained directly

0 if S (X) =0;

V=pu

Bu

V(/\///

{//// Jf S X A0S (0)NS (X) =0andB <0;
01

\%
ALLLLL U if (S0 A0, S (NS (X) =0, B=0] or S (NS (X) #0.

Fig. 4 To visualize Theorem 9

cone, () =

cone, () =

0% L SN ® £

L T SEns© -0

Fig. 5 To visualize Theorem 9
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if S/ (X) = 0;

if S;(X) #0 and S; (X) NS, (X) = 0;

'
o1
c

cone; (Q3) = -u if SHX) NS, (X) # 0 anda > —;

-u if ST (X)NS, (X) #0 anda = —co.

'
O

Fig. 6 To visualize Theorem 9

Notice that

S (XINS; (X =0+= S/ (% C S (X); S{(KNS,(X) =0 S, (X C S (.
The following theorem is immediate from the expressions @i (Q;), i =

1,2,3.

Theorem 9. Assume thak € Ew. Then,cone. (F(K) — F(X) +R2 ) is convex if,
and only if any of the following assertions hold:

(8) S; () =0;
(b) S, (0 #0, S ((NS;(X) =0, B <0, ST NS, (X = Dand, either

(b1) S} (X) =0, or
(b2) S/ (X) #0and §(X)NS, (X) =0, or
(b3) S{(NS; (X #0,a > —e0, B< a;

(©) Sy (0 #0, S NS; (%) =0, B =0, S (NS5 (V) = dand, either

(c1) Sf () =0, or
(c2) S{(X) #0and § () NS, (X) = 0;

(d) S, (NS (X #0, (KNS, (%) = Dand, either
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(d1) Sf (X) =0, or

(d2) S;(X) #0and § (X NS, (X) = 0.

Proof. We omit the long but easy proof once we get Figures4,5and6. O

We also notice that

(S0 =0 and S{(R)NS (X) = 0 = S, () = ©;
and
[SH(X) #0 and S} (NS, (X) = 0] = S, () = 0.
Both implications assert thdb,) (along with (b)), (b,) (along with (b)), (c) and
(d) of the previous theorem implg, (X) = 0. On the other hand,
S (X) = 0 <= x € argmir ;.

Thus, next corollary, which follows frorfbz) (along with (b)) of Theorem 9, ex-
cludes situations the other situations of such a theorem.

Corollary 6. Letus consider probleif17) and assume that¢ argmin fi, i=1,2.
Then,

()
xe U argmink (p1 f1 + p3f2)
(P1.p3)€RI\{(0.0)}

if and only ifx € Ew and(bs) (along with(b)) of Theorem 9 is satisfied.
(b) If x € BEw and(bg) (along with(b)) holds, then any-a < p; < —f satisfies

X € argmink (p; f1 + f2).

5.2 Characterizing properly efficient solutions throughnear
scalarization of bicriteria problems

We say thatx' € K is (Benson)properly efficient poinbf F on K ([2]), in short
X € Epr, if
congF (K) —F(X) +P) N (-P) = {0}. (19)
One can easily check thatH: is nonempty, thei® is pointed.
Setting

P = {p* €Y, (pp) >0, Vpe F’\{O}}v

it can be seen that
U argming(p*,F(-)) € Epr. (20)

p*ep*i

Conversely, ik € E,r andcongF (K) — F(x) + P) is convex then
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xe |J argmin(p*,F(-)),

p* GP*i

providedP is locally compact (use the separation result for convexesd®, Propo-
sition 3]).

In caseY =R?, we get the following theorem whose proof follows from Theror
4 and the remarks above.

Theorem 10.Let K C X be a convex set and F as above withCAR? being a
pointed, closed, convex cone. Assume that

int(F (K) — F(X) + P) # 0.

Then, the following assertions are equivalent:

(@) - _
xe (J argmin(p*,F();
p*eint P*
(b) x € Epr andTondF (K) — F(X) + P) is convex;
(c) xe Epr andconéF (K) — F(X) + P) is convex.

5.2.1 The Pareto case

We now particularizé® = Ri. Given a vector mapping = (f1, fo) : K — R?, we
consider the problem of finding

xe K: condF(K)—F(x)+R2)N(-R2) = {(0,0)}, (21)

LetX € Epr and fori = 1,2, consider the se§ (x), §"(x) andS~(X) as defined in
the previous subsection.

By (k) of Proposition 1, the convexity afongF (K) — F(X) + R2) is equivalent
to the convexity of cong(F (K) — F(X) +R2 ). Thus, by writingF (K) — F(X) +
RL = Q; U QU Q3, we can use the same expressions for ¢cgtg), i =1,2,3
computed in the preceding section. The fact thatEp, allows us to conclude that
o, 3 (as defined in (18)) satisfito < a < 0, —0 < 3 < 0, and

S/ (X CS(X); S, (%) C ST(%).

Thus, the preceding expressions for c@g, i = 1,2, 3, reduces to
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0 if S (X) =0;

v=pu

N
%‘_ u if S (X) #0.

Fig. 7 To visualize Theorem 11

- <

cone, (Qz) =

NN
N

-

Fig. 8 To visualize Theorem 11

" i S{ (X =0;
\%
o@ y i SH(X)#0 and S, (X) = 0;
cone. (Q3) = \:/
ifé%” s
; ‘W=au

Fig. 9 To visualize Theorem 11

Theorem 11.Assume that € Ep,. ThenoneF (C) — F (X) +RR? ) is convex if, and
only if either(a) or (b) holds. Here,

(a) S; (%) # 0and, either $ (X) = 00r [S; (X) =0, S{ (%) # 0] or [S; (%) 0, B < a1
(b) S, (%) = 0.

Proof. The proof is easy once we get Figures 7, 8 and 9. a

Corollary 7. Let us consider problerf21). Then,
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xe U argmin(pifi+psf2)

(P}, p3)ER? |

if and only if either(a) or (b) holds, where
(a) X€ Epr, S (X) # 0 and, either $(x) =0 or [S, (X) =0, S/ (X) # 0] or [S, (X) #
0,B<aj,

Corollary 8. Let us consider problert21). Then,
(a) If X€ Epr,S; (X) # 0 and, either $(X) =0or [ S, (X) =0, S (X) # 0], then any

p; such thal < p; < —f3 satisfies
x € argmirg (p; f1 + 2).

(b) If xe Epr, S{ (X) #0and[ S, (X) #0, B < a |, thenany psuch that-a < p; <
—p satisfies
x € argmirg (p;i f1 + f2).

(c) If xe Epr, S{ (X) =0and S (X) # 0, then any p such that—a < pj satisfies
x € argmirg (p; f1 + f2).
(d) If X€ Epr, S (X) =0 and S (x) = 0, then any(p;, p;) € RZ , satisfies

x € argmirk (p; f1+ p5f2).

5.3 Characterizing the Fritz-John type optimality condains

For simplicity we now consideX to be a real normed vector space. Itis well known
that if xis a local minimum point for the real-valued differentiablactionF onK,
then

OF (X) € (T(K;%))". (22)

Here,K is a (not necessarily convex) s&tC; x) denotes theontingent conef C
atx € C, defined as the set of vectorsuch that there exist | 0, vk € X, vk — v
such thaix+ tyvi € C for all k; recall thatC* denotes the (positive) polar cone@f

It is now our purpose to extend the previous optimality ctindito the vector case
without smoothness assumptions. More precisel¥ et X be closed and consider
a mapping- : K — R™. A vectorx € K is a local weakly efficient solution fdf on
K, if there exists an open neighborhdéaf x such that

(F(KNV) —F(X)N (—int P) = 0. (23)

Following [37], we say that a functioh: X — R admits aHadamard directional
derivativeatx € X in the directiorv if
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i Ot —h(Y

cR.
(t,u)—(0*,v) t

In this case, we denote such a limit B(x; v).
If F=(f1,fo,...,fm), we set

F (V) = ((dfi(Xv),...,dfn(XV), F(T(K;X))={ZF(V) eR": ve T(K;X)}.

It is known that ifd fi(x;-), i = 1,...,m, do exist inT (K;x), andx € K is a local
weakly efficient solution fofF on K, i.e., X satisfies (23), then (see for instance
Lemma 3.2 of [37])

(dfi(XV),...,dfa(Xv)) e R"\ —int P, Vve T(K;x), (24)
or equivalently,
F(T(K;x))N(=intP) = 0.

The following theorems provide complete characterizatifor the validity of(a)
as a necessary condition foto be a local weakly efficient solution fér onK.

Theorem 12.Let K C X be a closed set, P R" be a closed convex cone such that
int P# 0 and P=# R". Assume thak € K and df(x;-), i=1,...,m, do exist in
T(K;X). Then, the following assertions are equivalent:

(@ 3 (aj,...,am) € P\{0}, a;dfi(x,v)+...+aydfa(X,v) >0 Vve T(K;X);
(b) cond .Z (T (K; X)) 4+ int P) is pointed.

Proof. We obtain the desired result from Theorem 2. |
WhenY = R?, more precise formulations can be obtained from Theorem 5.

Theorem 13.Let K C X be a closed set, B R? be a closed convex cone such that
int P #£ 0. Assume thax € K and df(X;-), i = 1,2, do exist in TK;X). Then, the
following assertions are equivalent:

(@) 3 (a7,a3) € P\ {(0,0)}, ajdfi(x,v)+azdf(x,v) >0 Vve T(K;X);
(b) Z(T(K;x))N(—=int P) =0 andcond.Z (T (K;X)) +int P) is convex.

Proof. We apply Theorem 5 to obtain the desired result. a
We can go further when differentiability conditions are ospd.

Proposition 7. Assume that P= RT and §: R" — R be differentiable for i=
1,...,m, andx € R". Then, for any set & R",

F(A)N(=intRT) =0 < max(0fi(X),v) >0 VveA,

1<i<m
and the following statements are equivalent:
(a) cond.Z (T (K;x)) +intR7 ) is pointed;



Gordan-type alternative theorems and vector optimizageisited 27

(b) F(€O(T (K;X))) N (~int RT) = 0;
(c) ax(Df(@ V) >0 VveTo(T(K;X));

() Co{{DH(9 ¢ i =1,....m})n (T(K;R)" #0

Proof. The first part is a consequence of the linearity/of
F) = (OHEN)..... Dfm(@,V)).
We already know that
cond.Z (T (K;X)) +intRY)) is pointed <= co(.Z (T (K;X)) N (—intRT) = 0.
It is not difficult to prove that coZ (T (K;X))) = .% (co(T (K;x))) and
Z(co(T(K;x)))N(=intRT) =0 <= .7 (To(T (K;X))) N (—int RT) =
<= Z(co(T(K;x))) N (—intRT) =
This and the fact thaa) of Theorem 12 amounts to writing
co{0fi(x): i=1,....mHN(T(K;X))* #0

we get all the remaining equivalences. a

0
0

We apply the previous proposition to get the following résul

Theorem 14.Let K C X be a closed set, Assume that K and § : R" — R? are
differentiable functions for+ 1,2,...,m. Then, the following assertions are equiv-
alent:

(@) Z(T(K;X) N (—intR%) = 0 andcond.Z (T (K; X)) +R2) is convex;
(b) co{Dfi(X) : i = 1,2}) N (T(K;:X))* #0
Before going on some remarks are in order. Certainljj{K; x) is convex, then
(d) is a necessary optimality condition frito be a local weakly efficient solution
(this fact was point out earlier in [39], see also [9]). Thigy, could be considered a
natural extension of (22). However, next example shows(thais not a necessary
optimality condition ifT (K; x) is not convex. The second example shows an instance
where(d) holds without the convexity of (K;X).

Example 2 Take the (modified) example from [1], see also [9, 40]:
K={(x1,%2) : (X1+2%2)(2x1 +%2) <0}, fi(x1,%2) = %, Xx=(0,0) € Ew.

In this caseT (K;X) = K, which is nonconvex,T (K;x))* = {(0,0)}, and therefore
(d) does not hold since ¢¢0f1(x), 0f2(X)}) = co({(1,0),(0,1)}). Since#(v) =
v, the set
cond.Z (T(K; X)) +R%) = [ Jt(T(K;X) +R?).
t>0

is nonconvex.
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Example 3Consider the same mappifgas before and

K = {(x1,%) € R2 : xy% = 0}, x= (0,0) € Ew.
Then,(d) holds since in this cas&,(K;X) = K, (T(K;X))* = R2. Here, the set

cone.7 (T (K; X)) +R%) = (Jt(T(K;%) +R?)
t>0

is convex.

6 More about proper efficiency

We now present some recent developments about proper efficids before,
throughout this section we consider a nonemptyfsgtY, with Y being a locally
convex topological vector space. In addition, we are givearavex cond® ¢ Y. We

say thaa'e Ais a

e Benson proper efficient poiiftcong A—a+ P) N (—P) = {0}. This is the defi-
nition given in Benson [2]. and the set is denotedday(A, P).

e Borwein proper efficient poirit cong A—a) N (—P) = {0}. This notion is intro-
duced in [4] wherP is pointed.

Evidently every Benson proper efficient point is also a Barvefficient.

Proper efficiency is introduced in order to avoid efficienin® satisfying some
abnormal properties, in particular, efficient points foriethat least one objective
function exists for which the marginal trade-off betweemitd each of the other
objective functions is infinitely large, [17], or if one peg§ efficient points that
allow more satisfactory characterization in terms of Inigablinear scalarization,
for instance. The starting point was the pionering work byhKwand Tucker in
multiojective programming problems [24].

Benson and Borwein efficiency coincide Bf has a compact base, see [11];
whereas in general it is not true, as shows Example 4.3 in (/] say thaB is
abasefor P if B is convex, 0z B andP = coné&B). Obviously, the existence of a
base foP implies its pointedness; likewise Hy (A, P) # 0.

When the corresponding scalar function which is involvetth@characterization
of proper efficiency, is a continuous seminorm, we refer id.[This result is based
in the following theorem

Theorem 15.([11, Theoren®.3]) Let P and Q be conesinY satisfying® = {0},
and either(a) P be a weak-closed and Q have a weak-compact bagb)dP be
closed and Q have a compact base. Then, there is a pointedxcoane C such that
Q\ {0} CintC andCnP = {0}.

Now, we present some results on interior of a polar cone, &ednards, dual
characterizations and scalarizations for Benson propiefezfcy. To that purpose,
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we recall thaty* is the topological dual of. For any convex conB C Y, the quasi
interior of P*, is defined as

qiP* =P = {y" cY*: (y",y) >0V pe P\ {0}}.

A convex coneP with int P # 0 is said to be a solid cone. Moreover, a convex
coneP has a base if and only #*' £ 0. For a bas@® of P, we defineB to be the
set

BS'= {y* € Y*: inf(y*,b) >0 }.

For any locally convex topological vector spatewe have various ways of in-
troducing a locally convex topology on the diYdl If ./ is any total saturated class
of bounded subsets &f ([19, 23, 35]), the topology of uniform convergence on the
setsM of . is a locally convex topology oi*. We denote it byr ,. Obviously
{M°:M € .#} is a 0-neighborhood base {¥*, 1 ,). Particularly, we denote the
topologies orY* of uniform convergence on bounded subsets, weakly comabet (
solutely) convex subsets, and finite subset by B(Y*,Y), 7(Y*,Y), anda(Y*,Y),
which are called the strong topology, Mackey topology, aedktopology, respec-
tively.

inf
beB

Lemma 2. ([29,Lemma2.1]) Let PC Y be a convex cone. If there exist a locally
convex topology” on Y* such thatint>P* # 0, whereintP* denotes the interior
of P* in (Y*,7), theninty P* C P*.

Theorem 16.([29, T heoren?.1]). Let PC Y be a convex cone. Thent; , P* # 0
if and only if P has a base B .. In this caseint; , P* = B,

Similar expressions hold for(Y*,Y) and B(Y*,y), for details, see [21, Theo-
rem 3.8.6], [28, Theorem 2.3], [28, Theorem 2.2].

We now give the following general dual characterization andlarization for
Benson proper efficiency.

Theorem 17.([29, TheorenB.1.]) Let PC Y be a closed convex corec ACY.
Then the following statements are equivalent:

(a) ae€Ep(coAP);

(b) (P*—P*Nn(A—a)*)isdenseinY*,.7)where is any locally convex topology
on Y* which is compatible with the dual pafr*,Y) (i.e.,(Y*,.7)* =Y);

(c) for any weakly compact convex setkP and0 ¢ K, there exists pc P* NKS
such that(p*,a) > (p*,a) Vac A

(d) for any pe P\ {0} there exists pe P* such that(p*, p) > 0 and (p*,a) >
(p*,a@) YacA.

Theorem 18.([29, TheorenB.2]) Let PC Y be a closed convex cone aad A C
Y. If there exists a locally convex topology on Y* such that(Y*, .7 )* =Y and
int>P* #£ 0 then the following statements are equivalent:
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(a) ae€Ep(coAP);
(b) there exists pc intsP* such that(p*,a) > (p*,a), VacA,
(c) there exists pe P* such that(p*,a) > (p*,a), VacA.

Corollary 9. ([29,Corollary 3.1]) Let CC Y be a closed convex cone with a weakly
compact base B ar@le A C Y. Then the following statements are equivalent:

(a) a€ Ep(coA,P);
(b) there exists pe B such that(p*,a) > (p*,a) VacA;
(c) there exists pe C* such that(p*,a) > (p*,a) Vaec A

A recent notion of proper efficiency was introduced in [2T]isl equivalent to
strict efficiency, strong efficiency and to super efficiensyshown in [27, Proposi-
tion 2.2], provided® is a convex cone with a (convex) bounded base.
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