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Gordan-type alternative theorems and vector
optimization revisited ∗

Fabián Flores-Bazán, Fernando Flores-Bazán and Cristián Vera

Abstract Theorems of the alternative has proved to be one of the most power-
ful tools in optimization theory. They provide existence ofLagrange multipliers,
(strong) duality results, linear scalarizations of various classes of solutions to vector
optimzation problems. This chapter is devoted to this last part of applications.
The chapter starts by recalling the (1957) Fan-Glicksberg-Hoffman alternative theo-
rem for convex functions. Then, many equivalent formulations to a general Gordan-
type alternative theorem valid for (not neccesarily pointed) convex cones with possi-
bly empty interior, are established. They will be expressedin terms of quasi relative
interior. Several classes of generalized convexity for sets and for vector valued map-
pings, are revisited.
Applications to linear characterizations of weakly efficient, (Benson) proper effi-
cient solutions, and to characterize the Fritz-John type optimality condition in vec-
tor optimization, are discussed. Finally, we also present some recent developments
about proper efficiency.
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1 Introduction an formulation of the problem

Alternative theorems have proved to be important in deriving key results in opti-
mization theory like the existence of Lagrange multipliers, duality results, scalar-
ization of vector functions,etc. Since the pionering result due to Julius Farkas in
1902 concerning his alternative lema which is well known in linear programming,
or even the elder alternative result established by Paul Gordan in 1873, many math-
ematicians have made a lot of effort to generalize both results in a nonlinear setting.
To these author’s knowledge the first Gordan type result for convex functions is due
to Fan, Glicksberg and Hoffman [13] and was established in 1957. Such a result
says the following:

Let K ⊆ Rn be convex, andfi : K → R, i = 1, . . . ,m, be convex functions. Then,
exactly one of the following two systems has solution:

(a) fi(x)< 0, i = 1, . . . ,m, x∈ K;
(b) p∈ Rm

+ \ {0}, ∑m
i=1 pi fi(x)≥ 0 for all x∈ K.

After that, the problem without the convexity became an interesting challenge in
mathematics.
To be precise, let us consider a real locally convex topological vector spaceY and a
closed convex coneP⊆Y such that intP 6= /0. We denote byY∗ the topological dual
space ofY, and byP∗ the (positive) polar cone ofP. Given a nonempty setA⊆Y, a
Gordan-type alternative theorem asserts the validity of exactly one of the following
assertions:

∃ a∈ A such thata∈ −int P; (1)

∃ p∗ ∈ P∗, p∗ 6= 0, such that〈p∗,a〉 ≥ 0 ∀ a∈ A. (2)

Here 〈·, ·〉 stands for the duality pairing betweenY andY∗ and intP denotes the
topological interior ofP. We recall thatP∗ is defined by

P∗ = {p∗ ∈Y∗ : 〈p∗, p〉 ≥ 0 ∀ p∈ P} .

The closedness and convexity of the coneP is equivalent toP = P∗∗ by the
bipolar theorem. In this case,

p∈ P ⇐⇒ 〈p∗, p〉 ≥ 0 ∀ p∗ ∈ P∗.

Moreover,
p∈ int P ⇐⇒ 〈p∗, p〉> 0 ∀ p∗ ∈ P∗ \ {0}. (3)

Via the last equation, we see that the inconsistency of assertions (1) and (2) is
straightforward, whereas the validity of (2) by assuming that (1) does not hold,
requires a careful analysis due to the lack of convexity ofA.
In fact, because of many applications, one of our purposes inthis chapter is to avoid
convexity and to allow convex cones possibly with empty topological interior. The
latter happens for instance if(1< p<+∞)
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P= Lp
+

.
= {u∈ Lp(Ω) : u≥ 0 a.e. x∈ Ω},

or if P is of the formP= Q×{0} with int Q 6= /0.
A good substitute for the interior is the quasi interior and even the quasi-relative

interior. Borwein and Lewis in [5] introduced the quasi-relative interior of a convex
set A ⊆ Y, although the concept of quasi interior was introduced earlier. We use
both notions in order to deal with convex cones with possiblyempty interior. In this
situation, the convex hull arises naturally.

One of the main goals of the present chapter is to characterize those setsA for
which the negation of (1) implies (2). The negation of (1) means

A∩ (−int P) = /0, (4)

which is equivalent to
cone(A+P)∩ (−int P) = /0. (5)

Therefore, by assuming the convexity ofcone(A+P), a standard separation theo-
rem of convex sets provides the existence ofp∗ satisfying (2): this fact was proved
in [42], see also [32, 22, 43] for additional sufficiency conditions of alternative the-
orems. In [14, Theorem 4.1] is established that such a convexity assumption is nec-
essary and sufficient to get the implication (4)=⇒ (2) provided the space is two
dimensional; whereas it is far to being necessary in dimension greater than or equal
to three [14, Example 3.8]. We shall revise that alternativetheorem in dimension two
for convex cones having possibly empty interior, as well as various equivalences to
the above convexity assumption.

This chapter is organized as follows. Section 2 gives the necessary basic defini-
tions together with some elementary results about cones: inparticular, whenP is a
halfspace, a complete answer to the validity of a Gordan-type alternative theorem
is given, see Corollary 2. In Section 3, we establish severalequivalent formula-
tions to the Gordan-type alternative theorems valid for (not necessarily pointed or
closed) convex cones with possibly empty (topological) interior, see Theorem 1 and
Corollary 3. This is given in terms of quasi interior and quasi relative interior. We
also compare various of the previously introduced notions of generalized convex-
ity for sets and vector functions. As a consequence of these results, we are able to
derive and strenghten several of the already known alternative theorems. Section 4
establishes an optimal alternative theorem in 2-dimensionfor a cone with possibly
empty interior under a regularity assumption, which alwaysholds if the interior is
nonempty, see Theorem 4.1. Section 5 is devoted to applications. One of them is de-
voted to characterize those mappingsF : K → R2 for which a equivalence between

⋃

p∗∈P∗\{0}

argminK〈p
∗,F(·)〉 (resp.

⋃

p∗∈int P∗

argminK〈p
∗,F(·)〉)

andEW (resp.Epr, the properly efficient set) holds, whereEW denotes the set of
weakly efficient solutions toF on K. Such an equivalence is expected to be useful
for developing a well-posedness theory in vector optimization as in [12]. In addition,
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as another application, we revise the Fritz-John optimality conditions for a class
of nonconvex vector minimization problems. Finally, we also present some recent
developments about proper efficiency.

2 Basic definitions and preliminares

Throughout the paper,X will be a vector space andY a real locally convex topo-
logical vector space, where〈·, ·〉 denotes the duality pairing betweenY and its topo-
logical dual space,Y∗. Givenx,y∈ X we set[x,y] = {tx+(1− t)y : t ∈ [0,1]}. The
segments]x,y], ]x,y[, etc., are defined analogously.

A setP⊆Y is said to be aconeif tP⊆ P ∀ t ≥ 0; givenA⊆Y, cone(A) stands
for the smallest cone containingA, that is,

cone(A) =
⋃

t≥0

tA,

whereascone(A) denotes the smallest closed cone containingA: obviously
cone(A) = cone(A), whereA denotes the closure ofA. Furthermore, we set

cone+(A)
.
=

⋃

t>0

tA.

Evidently, cone(A) = cone+(A)∪ {0} and thereforecone(A) = cone+(A). In [32,
42, 43, 33] the notation cone(A) instead of cone+(A) is employed.

Given a convex setA⊆Y andx∈ A, NA(x) stands for thenormal coneto A at x,
defined byNA(x) = {ξ ∈Y∗ : 〈ξ ,a− x〉 ≤ 0, ∀ a∈ A}.

Definition 1. We say thatx∈ A is a (see for instance [7]):

• quasi interior pointof A, denoted byx∈ qi A, if cone(A−x) =Y, or equivalently,
NA(x) = {0};

• quasi relative interior pointof A, denoted byx∈ qri A, if cone(A− x) is a linear
subspace ofY, or equivalently,NA(x) is a linear subspace ofY∗.

• ([31, 44])core pointof A, denoted byx∈ coreA, if cone(A− x) =Y.
• ([6, 18, 44]) intrinsic core pointof A, denoted byx ∈ icr A, if cone(A− x) is a

linear subspace ofY.
• ([31]) strong-quasi relative interior pointof A, denoted byx∈ sqriA, if cone(A−

x) is a closed linear subspace ofY.

For any convex setA, we have that ([25, 7]) qiA⊆ qri A and, intA 6= /0 implies
int A= qi A. Similarly, if qi A 6= /0, then qiA= qri A. Moreover [5], ifY is a finite
dimensional space, then qiA= int A and qriA= ri A, where riA means the relative
interior ofA, which is the interior ofA with respect to the affine hull ofA. In addition,

coreA⊆ sqriA⊆ qri A and coreA⊆ qi A⊆ qri A.
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Let B⊆Y another convex set. Then

qri A+qri B⊆ qri(A+B); qri A×qri B= qri(A×B); qri(A− x) = qri A− x;

qri(tA) = tqri A ∀ t ∈R; qri A= A, providedA is affine; qri(qri A) = qri A;

qri A= A; cone(qri A) = coneA, if qri A 6= /0.

Thus, all results in this paper involving qiA are also true for intA, provided the
latter set is nonempty. On the other hand, the conel p

+ has nonempty quasi interior,
but its interior (and even the relative algebraic interior)is empty for allp∈ [1,+∞[.
Likewise, the core and even the strong quasi relative interior of Lp

+ is empty. Quasi
relative interior points share some properties of the interior points; for instance, if
x∈ qri A andy∈ A then[x,y[⊆ qri A. In particular, qriA is convex.

If P is a closed convex cone, then it is easy to check thatx ∈ qi P if and only if
〈x∗,x〉> 0 for all x∗ ∈ P∗\{0}, or equivalently if the setB= {x∗ ∈ P∗ : 〈x∗,x〉= 1}
is a w∗-closed base forP∗ (we recall that a convex setB is called a base forP∗ if 0
is not in the w∗-closure ofB andP∗ = cone(B)). If P 6=Y, then 0/∈ qi P. Note also
that qiP= cone+(qi P) andP+qi P= qi P.

In the rest of the paper,{0} 6= P Y will be a convex cone.
Some elementary properties of sets and cones are collected in the next proposi-

tion.

Proposition 1. Let A,K ⊆Y be any nonempty sets.

(a) co(A) = co(A), cone(A) = cone(A);
(b) if A is open thencone+(A) is open;
(c) cone(co(A)) = co(cone(A)); cone+(co(A)) = co(cone+(A));
(d) co(A+K) = co(A)+K provided K is convex;
(e) cone+(A+K) = cone+(A)+K provided K is such that tK⊆ K ∀ t > 0;

( f ) A+K = A+K;
(g) K ⊆ cone(A+K) provided K is a cone;
(h) cone(A+K)⊆ cone(A)+K ⊆ cone(A+K) provided K is a cone; if additionally

0∈ A, then
cone(A+K) = cone(A)+K;

In the following, K is a convex cone such thatint K 6= /0.
(i) A+ int K = A+K, intA+K = A+ intK = int(A+K);
( j) cone(A+qri P) = cone(A+P), provided P is a convex cone withqri P 6= /0.
(k) cone+(A+ int K) is convex⇐⇒ cone(A)+ int K is convex⇐⇒ cone(A+K) is

convex.

Proof. (a), (b), (c), (d), and(e) are straightforward.

( f ): SinceK ⊆ K, we haveA+K ⊆ A+K. On the other hand, it is not difficult to
obtainA+K ⊆ A+K, which completes both inclusions.
(g): For any fixa∈ A, everyx∈ K can be obtained as the limit of1

n(a+nx). Hence
K ⊆ cone(A+K).
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(h): The first inclusion is obvious. According to(e), cone+(A)+K = cone+(A+
K)⊆ cone(A+K), which along with(g) prove the second inclusion. The remaining
equality is trivial.
(i): The first part follows from( f ), and the other is in [36, 8].

( j): cone(A+qri P)= cone(A+qri P)= cone(A+qri P)= cone(A+P)= cone(A+
P).
(k): By (e) and(i),

cone+(A+ int K) = cone+(A)+ int K = int(cone+(A)+K) = int(cone+(A)+K)

= int(cone(A)+K) = int(cone(A)+K) = cone(A)+ int K.

This proves the first equivalence. We also obtain

int(cone(A+K)) = int(cone+(A)+K) = cone+(A)+ int K = cone+(A+ int K),

proving the equivalence between the first and third sets. ⊓⊔

Remark 1.Proposition 1(k) does not hold with qiP in the place of intP. Indeed, let
Y = l1 andP= l1+. Then qil1+ =

{

(αi)i∈N : αi > 0
}

while int l1+ = /0. Set

A= l1\
(

−qi l1+
)

=
{

(αi)i∈N : ∃ i ∈ N with αi ≥ 0
}

.

Each(ai)i∈N ∈ l1 can be written as a limit of a sequence of elements each of which
has a finite number of nonzero coordinates. ThusA = l1 and cone(A+ l1+) = l1

is convex. However, one can readily check that cone+(A+ qi P) = A+ qi P =
{

(αi)i∈N : ∃ i ∈ N with αi > 0
}

is not convex.

Proposition 2. Let /0 6= A⊆Y. The following assertions hold:

(a) αA+(1−α)A ⊆ cone(A) ∀ α ∈ ]0,1[ ⇐⇒ cone(A) is convex⇐⇒ co(A) ⊆
cone(A);

(b) αA+(1−α)A ⊆ cone(A) ∀ α ∈ ]0,1[ ⇐⇒ cone(A) is convex⇐⇒ co(A) ⊆
cone(A);

(c) αA+(1−α)A⊆ cone+(A) ∀ α ∈ ]0,1[ ⇐⇒ cone+(A) is convex⇐⇒ co(A)⊆
cone+(A).

Proof. (a): Let xi , i = 1,2, such that there are nets{tα
i }α∈Λ , {xα

i }α∈Λ such that
tα
i ≥ 0, xα

i ∈ A andtα
i xα

i → xi , α ∈ Λ . We may assumetα
i > 0 for all α, i = 1,2. For

any fixedλ ∈ ]0,1[, settα = λ tα
1 +(1−λ )tα

2 > 0. Then

λ tα
1 xα

1 +(1−λ )tα
2 xα

2 = tn
(λ tα

1

tα xα
1 +

(1−λ )tα
2

tα xα
2

)

∈ tαcoA⊆ tαcone(A)= cone(A).

Hence,λx1+(1− λ )x2 ∈ cone(A). This proves the first implication; the next one
results from the inclusionA⊆ cone(A), and the remaining implication to close the
circle is a consequence ofαA+(1−α)A⊆ co(A).
(b): Let x1,x2 be in cone(A) andλ ∈ ]0,1[. Thenxi = tiki for someti > 0 (if ti = 0
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for somei, there is nothing to prove),ki ∈ A. Hence, settingt = λ t1+(1−λ )t2 > 0,
we have

λx1+(1−λ )x2 = λ t1k1+(1−λ )t2k2 = t
(λ t1

t
k1+

(1−λ )t2
t

k2

)

∈ cone(A),

proving the first implication; the second one follows from the inclusionA⊆ cone(A),
whereas the remaining implication is straightforward.
(c): The only implication to close the circle we have to check corresponds to the first
one, and it is a consequence of(b) since cone(A) is convex if and only if cone+(A)
is convex. ⊓⊔

Corollary 1. Let /0 6= A⊆Y, P be a convex cone. The following assertions hold:

(a) αA+ (1− α)A ⊆ cone+(A+P) ∀ α ∈ ]0,1[ ⇐⇒ cone+(A+ P) is convex
⇐⇒ co(A)⊆ cone+(A+P) ;

(b) αA+(1−α)A+P ⊆ cone(A+P) ∀ α ∈ ]0,1[ ⇐⇒ cone(A+P) is convex
⇐⇒ co(A)+P⊆ cone(A+P) ;

(c) αA+(1−α)A+ int P⊆ cone+(A+ int P) ∀ α ∈ ]0,1[ ⇐⇒ cone+(A+ int P)
is convex⇐⇒ co(A)+ int P⊆ cone+(A+ int P);

(d) αA+(1−α)A⊆ cone+(A+ int P) ∀ α ∈ ]0,1[ ⇐⇒ cone+(A+ int P) is convex
⇐⇒ co(A)⊆ cone+(A+ int P);

(e) αA+(1−α)A ⊆ cone(A)+P ∀ α ∈ ]0,1[ ⇐⇒ cone(A)+P is convex⇐⇒
co(A)⊆ cone(A)+P;

( f ) αA+ (1−α)A ⊆ cone(A+P) ∀ α ∈ ]0,1[ ⇐⇒ cone(A+P) is convex⇐⇒
co(A)⊆ cone(A+P).

Proof. (a), (b) follow from (c) and(b), respectively, of the previous proposition
applied toA+P; (c) is a consequence of(c) by takingA+ int P.
(e): One implication for the second equivalence results from the inclusionsA ⊆
cone(A) ⊆ cone(A)+P; whereas the other follows from the following (use Propo-
sition 1(c))

co(cone(A)+P) = co(cone(A))+P= cone(co(A))+P

⊆ cone(cone(A)+P)+P⊆ cone(A)+P.

The first equivalence is straighforward.
( f ): It comes from(a) of the previous proposition applied toA+P and the fact that
P+ cone(A+P)⊆ cone(A+P). ⊓⊔

Part( f ) already appeared in [32].

Remark 2.From Proposition 1(h)), we obtain

cone(A+ int P) = cone(A)+P= cone(A+P). (6)

The next proposition gives us a way for finding a sufficient condition to get
co(A)∩ (−int P) = /0, say, the convexity ofcone(A+P).



8 Fabián Flores-Bazán, Fernando Flores-Bazán and Cristián Vera

Proposition 3. Let A⊆Y be a nonempty set and P Y be a convex cone such that
int P 6= /0. The following assertions hold:

(a) A∩ (−int P) = /0⇐⇒ cone+(A)∩ (−int P) = /0⇐⇒ A∩ (−int P) = /0;
(b) A∩ (−int P) = /0⇐⇒ A0∩ (−int P) = /0, ∀ A0, A+ int P⊆ A0 ⊆ cone+(A+P);

Proof. It is straightforward. ⊓⊔

Remark 3.On combining(a) and(b), we obtain

A∩ (−int P) = /0⇐⇒ B∩ (−int P) = /0,

for B = A+ int P,A+ P,cone+(A),cone(A) + P,cone(A+ P),cone+(A+ int P),
cone(A), cone(A)+ int P, and certainly all of their closures.

The case whenP is a halfspace deserves a special formulation.

Lemma 1. Let P Y be a closed and convex cone satisfyingint P 6= /0. The following
assertions are equivalent:

(a) P=Y \−int P;
(b) P∪ (−P) =Y;

(c) ∃ p∗ ∈ P∗ \ {0}, P=
{

p∈Y : 〈p∗, p〉 ≥ 0
}

.

Proof. (a)=⇒ (b): ObviouslyP∪(−P)⊆Y. Take anyy∈Y\P, then by assumption
y∈ −int P⊆−P, as required.
(b) =⇒ (c): SinceP 6=Y, we takep0 6∈ P. Then, by an usual separation theorem for
convex sets, there existp∗ ∈Y∗, p∗ 6= 0, α ∈ R, such that

〈p∗, p0〉< α < 〈p∗, p〉 ∀ p∈ P.

Henceα < 0 and therefore〈p∗, p〉 ≥ 0 for all p∈ P, showing thatp∗ ∈ P∗ \{0} and

P⊆
{

p∈Y : 〈p∗, p〉 ≥ 0
}

. (7)

Assume now that there existsp∈Y\P such that〈p∗, p〉 ≥ 0. SinceP is closed, there
existsε > 0 such thatp− ε p0 ∈Y \P⊆−P. Thus,

0≤ 〈p∗,−p〉+ ε〈p∗, p0〉 ≤ ε〈p∗, p0〉< 0,

reaching a contradiction. This proves the reverse inclusion in (7), which completes
the proof of(c).
(c) =⇒ (a): Simply take into account that in this case intP = {p ∈ Y : 〈p∗, p〉 >
0}. ⊓⊔

If P is a halfspace we obtain an alternative theorem whatever thesetA satisfies
A∩ (−int P) = /0, as the following result shows.
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Corollary 2. Let A⊆ Y be any nonempty set, and P Y be a closed convex cone
satisfying P∪ (−P) =Y. Then,int P 6= /0, P=Y \−int P, and A+P is convex and
so A+ int P is also convex. Consequently, the setscone(A+P), cone(A+ int P),
cone(A) + P, are convex. Furthermore, eithercone(A+ P) = P, or cone+(A+
int P) =Y and thereforecone(A+P) =Y.
Moreover, the following assertions are equivalent.

(a) A∩ (−int P) = /0;
(b) A⊆ P;
(c) co(A)⊆ P;
(d) co(A)∩ (−int P) = /0;
(e) co(A+ int P)⊆ int P.

Proof. ObviouslyY\P⊆−P, and sinceP is closed, we conclude that intP 6= /0. Let
ai ∈ A, i = 1,2. We may assumea1 ∈ a2+P. Sincea2+P is convex, we obtain that
[a1,a2]⊆ a2+P. Thus,[a1,a2]+P⊆ a2+P+P⊆ a2+P. This proves the convexity
of A+P, and so int(A+P) =A+ int P is also convex. The convexity of cone(A)+P
is a consequence of Corollary 1(e) since cone+(A+P) is convex.
Let us prove the last part. By(g) of Proposition 1,P⊆ cone(A+P). If cone(A+P)\
P 6= /0, then there existsx∈Y \P= −int P and nets{tα}α∈Λ , {aα}α∈Λ , {pα}α∈Λ
satisfyingtα > 0, aα ∈ A, pα ∈ P such thattα(aα + pα)→ x. Thus, we may assume
tα(aα + pα) ∈−int P for all α ∈Λ . This implies that 0∈ A+ int P. It turns out that
cone+(A+ int P) =Y.
The equivalences between(a), (b), (c) and(d), follow from the factP=Y\−int P
(see the previous lemma). Clearly(b) implies (e); let us prove(a) from (e): if
x∈ A∩ (−int P) then

0= x+(−x) ∈ A+ int P⊆ co(A+ int P)⊆ int P.

Thus,0∈ int P, which implies thatP=Y, a contradiction. ⊓⊔

3 Equivalent formulations of Gordan-type alternative theorems

The main goal of this section is to establish equivalent formulations of Gordan-type
alternative theorems valid for (not necessarily pointed orclosed) convex cones with
possibly empty interior. This will be carried out via quasi relative and topological
interior.

We recall the definition of pointedness for a cone that is not necessarily convex
(see for instance [30]).

Definition 2. A coneK ⊆ Y is calledpointedif x1+ · · ·+ xk = 0 is impossible for
x1,x2, . . . ,xk in K unlessx1 = x2 = · · ·= xk = 0.

It is easy to see that a coneK is pointed if, and only if co(K)∩ (−co(K)) = {0}
if, and only if 0 is a extremal point of co(K).
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3.1 Via quasi-relative interior

We start by noticing that

qri(cone(co(A)+P))⊆ qri(cone(co(A)+P)). (8)

Next theorem subsumes most alternative theorems existing in the literature.

Theorem 1.Let /0 6= A⊆Y 6= {0} and P be a convex cone such that

qri(cone(co(A)+P)) 6= /0 6= qri[co((A+P)∪{0})].

Let us consider the following statements:

(a) 0 6∈ qri(cone(co(A)+P));
(b) 0 6∈ qri[co((A+P)∪{0})];
(c) 0 6∈ qri(cone(co(A)+P));
(d) ∃ p∗ ∈ P∗ \ {0} such that〈p∗,a〉 ≥ 0 ∀ a ∈ A, with strict inequality for some

ã∈ co(A)+P.

In caseqi(co(A)+P) 6= /0, consider also

(e) 0 6∈ qri(co(A)+P);
( f ) cone(qri(co(A)+P)) is pointed.

The following hold:

(a)⇐⇒ (b)⇐⇒ (c)⇐⇒ (d) =⇒ (e) =⇒ ( f ) =⇒ (g).

Proof. The first two equivalences are a consequences of the following equalities:

cone[co((A+P)∪{0})] = co[cone((A+P)∪{0})]= co[cone(A+P)]= cone[co(A+P)]

= cone[cone(co(A)+P)] = cone[cone(co(A)+P)].

(c)⇐⇒ (d): See the proof of Proposition 2.16 in [5].
(c) =⇒ (e): It is obvious.
(e)=⇒ ( f ): Letx, −x∈ cone(qi(co(A)+P)), x 6= 0. Thus,x, −x∈ cone+(qri(co(A)+
P). Then

0=
1
2

x+
1
2
(−x) ∈ cone+(qri(co(A)+P)).

Hence,0∈ qri(co(A)+P), proving the desired implication. ⊓⊔

Remark 4.Assume that qiP 6= /0. Since co(A)+qi P⊆ qi(co(A)+P), then

cone(qi(co(A)+P)) is pointed=⇒ cone(co(A)+qi P) is pointed
m

co(A)∩ (−qi P) = /0 ⇐⇒ cone(A+qi P) is pointed

where the last equivalence comes from [14].
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By observing that

qi[co((A+P)∪{0})]⊆ qi(cone(co(A)+P)), (9)

the preceding theorem implies the following result

Corollary 3. Let /0 6= A⊆Y 6= {0} and P be a convex cone such that

qi[co((A+P)∪{0})] 6= /0.

The following assertions are equivalent:

(a) 0 6∈ qi(cone(co(A)+P));
(b) 0 6∈ qi[co((A+P)∪{0})];
(c) 0 6∈ qi(cone(co(A)+P));
(d) ∃ p∗ ∈ P∗ \ {0} such that〈p∗,a〉 ≥ 0, ∀ a∈ A.

3.2 Via topological interior

Before establishing a similar result for topological interior, we state the following
properties sharing by convex cones.

Proposition 4. Let /0 6=A⊆Y. Let P Y be a convex cone. The following assertions
hold.

(a) cone+(int(A+P))⊆ int(cone+(A+P)); the equality holds providedint P 6= /0.
(b) int(co(cone(A+P))) = int(co(cone+(A+P))) = int(co(cone(A+P))) =

= int(cone(co(A)+P)).

(c) cone(A+P) = cone((A∪{0})+P);
(d) If cone(A+P) is convex thencone(co(A)+P) = cone(A+P).

Proof. (a): The inclusion is immediate. For the other, take anyx ∈ int(cone+(A+
P)) andv∈ int P, we can chooseε > 0 such thatx− εv∈ cone+(A+P). It follows
easily thatx∈ cone+(int(A+P)) = cone+(A+ int P) by Proposition 1(e), proving
our claim.
(b): It follows from the following chain of inclusions:

int(co(cone(A+P)))⊆ int(cone(co(A+P))) = int(cone+(co(A+P))) =

int(cone+(co(A+P)))⊆ int(cone(co(A+P)))= int(co(cone(A+P)))⊆ int(co(cone(A+P))).

(c): This follows from the factP⊆ cone(A+P) by Proposition 1(d). ⊓⊔

Next example shows an instance where the inclusion in(a) of the previous propo-
sition may be strict if intP = /0 but int(A+P) 6= /0; the second instance shows we
cannot delete the closures in(c).
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Example 1.Let us consider inR2, the coneP= {(t,0) ∈ R2 : t ≥ 0}.

(a) Let A = co({(0,1),(0,0)}) ∪ {(−1,1)}. It is easy to see that int(A+ P) 6=
/0, cone+(int(A+P)) int(cone+(A+P)). See Figure 1.

(b) TakeA= {(0,1),(0,2)}. Then, we obtain cone(A+P) cone((A∪{0})+P).

A+P

•

A

cone+(int(A+P)) int(cone+(A+P))

is convex is convex

P0
•

Fig. 1 Example 1(a)

Next result is the analogue to Theorem 1 when topological interior is employed.
Likewise, it allows us to deal with cones having possibly empty interior.

Theorem 2.Let /0 6= A⊆Y 6= {0} and P be a convex cone such that

int[co((A+P)∪{0})] 6= /0.

The following statements are equivalent:

(a) 0 6∈ int(cone(co(A)+P));
(b) 0 6∈ int(co(cone(A+P)));
(c) 0 6∈ int(co(cone(A+P)));
(d) 0 6∈ int[co((A+P)∪{0})];
(e) 0 6∈ int(co(cone+(A+P)));
( f ) ∃ p∗ ∈ P∗ \ {0} such that〈p∗,a〉 ≥ 0 ∀ a∈ A.

In caseint(co(A)+P) 6= /0, consider also

(g) 0 6∈ int(co(A)+P);
(h) cone(int(co(A)+P)) is pointed.

In caseint P 6= /0, (h)⇐⇒ cone(A+ int P) is pointed;(g)⇐⇒ co(A)∩(−int P)= /0.

Proof. The equivalences between(a), (b), (c), (d), (e) and( f ) follows from Corol-
lary 3 and Theorem 1.
(h) =⇒ (g): If 0 ∈ int(co(A)+P), then it easy to check thatY = cone+(int(co(A)+
P)).
(g) =⇒ ( f ): It is a consequence of a standar convex separation theorem.
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We now prove the last equivalence in case intP 6= /0. Indeed, from(a) and(e) of
Proposition 1, it follows that cone(int(co(A)+P)) = co(cone(A+ int P)). Taking
into the account the remark made after Definition 2, the result follows ⊓⊔

The alternative theorems proved in [33, 43, 42], [10, Theorem 1.79] (whereA is
the image of a vector-valued function) are consequences of the following result.

Theorem 3.Assume thatint(cone+(A+P)) 6= /0 and

int(co(cone(A+P))) = int(cone+(A+P)). (10)

Then, exactly one of the following assertions holds:

(a) 0∈ int(cone+(A+P));
(b) ∃ p∗ ∈ P∗ \ {0} such that〈p∗,a〉 ≥ 0 ∀ a∈ A.

Proof. It is a consequence of the first part of Theorem 2. ⊓⊔

Some results from [16], where intP= /0, are also recovered.
When intP 6= /0, the convexity ofcone(A+P), or equivalently, of cone+(A+ int P),
implies that(10) is fulfilled, by virtue of Propositions 4(b) and 1(k). This yields the
following result, which already appears in [33, 43, 42], [10, Theorem 1.79] (where
A is the image of a vector-valued function).

Corollary 4. Assume thatint P 6= /0. If cone(A+P) is convex, then, exactly one of
the following assertions holds:

(a) A∩ (−int P) 6= /0;
(b) ∃ p∗ ∈ P∗ \ {0} such that〈p∗,a〉 ≥ 0 ∀ a∈ A.

An example showing the convexity ofcone(A+P) is not necessary for the valid-
ity of the previous alternative theorem, is exhibited in [14].

Let us consider in addition toF : C → Y and a closed convex coneP Y with
int P 6= /0, another mappingG : C → Z, with Z being another real locally convex
topological vector space and a closed convex coneQ Z.

Corollary 5. ([33]) Assume thatcone((F ×G)(C)+ (P×Q)) is convex and

int(cone((F ×G)(C)+ (P×Q))) = int(cone+((F ×G)(C)+ (P×Q))) 6= /0.

If the following system is inconsistent:

x∈C, F(x) ∈ −int P, G(x) ∈ −Q,

then there exists(p∗,q∗) ∈ (P∗×Q∗)\ {(0,0)} such that

〈p∗,F(x)〉+ 〈q∗,G(x)〉 ≥ 0 ∀ x∈C.

The converse assertion is true if p∗ 6= 0.
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Proof. If the above system has no solution, then

(0,0) 6∈ int(cone+((F ×G)(C)+ (P×Q))).

Then, Theorem 2 applies. ⊓⊔

A standar constraint qualification implyingp∗ 6= 0 is cone(G(C)+Q) = Z. When
int Q 6= /0 the latter is implied by the condition:G(x0) ∈ −int Q for somex0 ∈C.

In view of previous results, the following notion arise in a natural way. It seems
to be the most general among the relaxed notions of convexitythat were used in
alternative theorems.

Definition 3. LetP⊆Y be a closed convex cone with nonempty interior. A setA⊆Y
is callednearly subconvexlikeif cone(A+P) is convex.

The previous notion was introduced originally in[42] whenA is the image of
set-valued mappings, and further developed in [32].

Proposition 2(a) provides a characterization of near subconvexlikeness already
appeared in [32]. When intP 6= /0, several necessary and sufficient conditions for
having near subconvexlikeness appear in [10, Proposition 1.76] and [14, Proposi-
tion 3.5]. In particular, the presubconvexlikeness which is a transcription of an anal-
ogous definition for vector-valued functions given in [45],is nothing else that nearly
subconvexlikeness, see Proposition 6 below. We also know that (Proposition 1(k))

cone(A+P) is convex⇐⇒ cone+(int(A+P)) is convex.

However, if intP= /0 but int(A+P) 6= /0, one can show that there is not any relation-
ship between the convexity of cone+(int(A+P)) and the convexity ofcone(A+P),
see Figures 2 and 3.

A+P

•

•
P0

cone+(int(A+P)) is convex

int(cone+(A+P)) is not convex

cone(A+P) is not convex

A

Fig. 2 cone+(int(A+P)) convex6⇒ cone(A+P) convex

Another interesting class of mappings arising in deriving alternative theorems is
the following. Given a convex setC⊆ X, with X being a locally convex topological
vector space, a mappingF : C→Y is called∗-quasiconvex[22] if 〈x∗,F(·)〉 is qua-
siconvex for allx∗ ∈ P∗. It is callednaturally-P-quasiconvex[38] if for all x,y∈C,
F([x,y])⊆ [F(x),F(y)]−P. Both classes coincide as shows in [14, Proposition 3.9],
[15, Theorem 2.3]. It is still valid ifP has empty interior.
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A+P

P0
•

A

cone+(int(A+P)) is not convex
int(cone+(A+P)) is convex

cone(A+P) is convex

A+P is not convex

Fig. 3 cone(A+P) convex6⇒ cone+(int(A+P)) convex

In [22] it is proven that a Gordan-type alternative theorem holds forA = F(C)
under the∗-quasiconvexity ofF and the assumption

∀p∗ ∈P∗, the restriction of〈p∗,F(·)〉 on any line segment ofC is lower semicontinuous.
(11)

We will see the naturallyP-quasiconvexity ofF along with (11) imply the con-
vexity of F(C)+P; in particular,F is nearly subconvexlike, and so the alternative
theorems of [22] and [38] are consequences from Theorem 2.

Proposition 5. ([14]) Let /0 6=C⊆X be any convex set,/0 6=P Y be a closed convex
cone and F: C→Y be naturally-P-quasiconvex and satisfying(11). Then

∀ x,y∈C, [F(x),F(y)]⊆ F([x,y])+P. (12)

Consequently, F(C)+P is convex.

Next result suplements Proposition 1.76 in [10] and Proposition 3.5 in [14].

Proposition 6. Let /0 6= A⊆Y, P⊆Y be a convex convex withint P 6= /0. The follow-
ing assertions are equivalent.

(a) A is nearly subconvexlike;
(b) cone+(int(A+P)) is convex;
(c) cone(A)+ int P is convex;
(d) ∃ u∈ int P, ∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∀ ε > 0, ∃ ρ > 0 such that

εu+αx1+(1−α)x2 ∈ ρA+P; (13)

(e) ∃ u∈Y, ∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∀ ε > 0, ∃ ρ > 0 such that(13) holds;
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( f ) ∀ u∈ int P,∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∃ ρ > 0 such that

u+αx1+(1−α)x2 ∈ ρA+P;

(g) ∀ u∈ int P,∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∃ ρ > 0 such that

u+αx1+(1−α)x2 ∈ ρA+ int P;

(h) ∀ x1, x2 ∈ A,∀ α ∈ ]0,1[, ∃ u∈ int P,∀ ε > 0, ∃ ρ > 0 such that(13) holds.

Proof. From Proposition 1 we get the equivalences between(a), (b) and(c). The
equivalences(a) ⇐⇒ (d) ⇐⇒ (e) are proved in Proposition 3.5 in [14], whereas
(c) ⇐⇒ (g) is proved in Proposition 1.76 in [10]. The remaining implications
(g) =⇒ ( f ) =⇒ (d) =⇒ (h) =⇒ (g) are straightforward. ⊓⊔

Remark 5.Assertion(d) refers to the notion of generalized subconvexlikeness in-
troduced in [41], see also [43]; whereas(e) corresponds to the notion of presub-
convexlikeness which is a transcription of an analogous definition for vector-valued
functions given in [45].

Proposition 5 shows that any naturally-P-quasiconvex function satisfying(11) is
nearly-subconvexilke.One can give some examples showing the converse is not true
in general, see [14].

4 A bidimensional optimal alternative theorem and a
characterization of two-dimensionality

The bidimensional setting deserves a special treatment since, as we will see, the
convexity ofcone(A+P) is not only sufficient (see Theorem 3) but also a necessary
condition to have a Gordan-type alternative theorem. In such a case, we refer it as
an optimal alternative theorem, valid for convex cones withpossibly empty interior
under a regularity assumption. This is expressed in the nexttheorem.

Theorem 4.Let P⊆ R2 be a convex cone, A⊆R2 such thatint(cone+(A+P)) 6= /0,
and

int(cone(A+P)) = int(cone+(A+P)). (14)

The following assertions are equivalent:

(a) 0 6∈ int(cone+(A+P)) andcone(A+P) is convex;
(b) 0 6∈ int(cone+(A+P)) andcone+(A+P) is convex, provided0∈ A+P;
(c) ∃ p∗ ∈ P∗ \ {0} such that〈p∗,a〉 ≥ 0 ∀ a∈ A.

Notice that whenint P 6= /0 condition(14) is superfluous.
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Proof. (a) =⇒ (c): It follows from Theorem 3;(b) =⇒ (a) is evident.
(c) =⇒ (a), (c) =⇒ (b): (We do not need (14)) The first part of(a) is a consequence
of Theorem 2(b). For the second part, we re-write the proof of [14, Theorem 4.1]
with obvious changes. Certainly,〈p∗,a〉 ≥ 0 for all a ∈ cone(A+P). Chooseu ∈
P\ {0}. Let y,z∈ A. Then obviously

cone({y})+ cone({u}) = {λy+ µu : λ ,µ ≥ 0}

is a closed convex cone containingy andu and contained incone(A+P) (if 0 ∈
A+P, it is contained in cone+(A+P)). The same is true for the cone cone({z})+
cone({u}). The two cones have the line cone({u}) in common and their union is
contained incone(A+P), thus it is contained in the halfspace

{

x∈ R2 : 〈p∗,x〉 ≥ 0
}

.
Hence, the setB

.
= (cone({y})+ cone({u}))∪ (cone({z})+ cone({u})) is a convex

cone. Sincey,z∈ B we deduce that[y,z]⊆ B⊆ cone(A+P). ThusαA+(1−α)A⊆
cone(A+P) for all α ∈ ]0,1[, proving the convexity ofcone(A+P) by Corollary
1( f ). In case 0∈ A+P, we getαA+(1−α)A⊆ cone+(A+P), proving the con-
vexity of cone+(A+P) by Corollary 1(a).

⊓⊔

When int P 6= /0 a more precise formulation of the previous theorem may be
obtained.

Theorem 5.([14,Theorem4.1]) Let P⊆ R2 be a convex closed cone such that
int P 6= /0, and A⊆ R2 be any nonempty set satisfying A∩ (−int P) = /0. Then the
following assertions are equivalent:

(a) ∃ p∗ ∈ P∗ \ {0} such that〈p∗,a〉 ≥ 0 ∀ a∈ A;
(b) cone(A+P) is convex;
(c) cone(A+ int P) is convex;
(d) cone(A)+P is convex;
(e) cone(A+P) is convex.

Next result has its own importance from a functional analysis point of view.
Indeed, such a result characterizes the two-dimensionality of any space where a
Gordan-type alternative theorem holds.

Theorem 6.([14,Theorem4.2]) Let Y be a locally convex topological vector space
and P⊆Y be a closed, convex cone such thatint P 6= /0 andint P∗ 6= /0. The following
assertions are equivalent:

(a) for all sets A⊆Y one has

[∃ p∗ ∈ P∗ \ {0}, 〈p∗,a〉 ≥ 0 ∀ a∈ A] =⇒ cone(A+P) is convex;

(b) for all sets A⊆Y one has

[∃ p∗ ∈ P∗ \ {0}, 〈p∗,a〉 ≥ 0 ∀ a∈ A] =⇒ cone(A)+P is convex;
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(c) for all sets A⊆Y one has

[∃ p∗ ∈ P∗ \ {0}, 〈p∗,a〉 ≥ 0 ∀ a∈ A] =⇒ cone(A+ int P) is convex;

(d) Y is at most two-dimensional.

Remark 6.The assumption intP∗ 6= /0 (which corresponds to pointedness ofP when
Y is finite-dimensional) cannot be removed. Indeed, letP = {y∈Y : 〈p∗,y〉 ≥ 0}
wherep∗ ∈Y∗\{0}. ThenP∗ = cone({p∗}), int P∗ = /0. For any nonemptyA⊆Y,
the setA+P is convex by Corollary 2. Thus,(a) in Theorem 6 holds no matter the
dimension of the spaceY is.

5 Applications to vector optimization

One of the important issues in optimization concerns the characterization of various
notions of solutions to vector optimization problems through linear scalarization.
This will be done for Benson proper efficiency and weak efficiency in case of bi-
criteria problems. For an theoretical treatment of these notions and others solution
concepts, we refer the books [26, 20]. The last subsection will be devoted to char-
acterize the Fritz-John optimality condition.

In what follows, for a real-valued functionh, by argminKh we mean the set of
minima of h on K. Let X be a real vector space, /06= K ⊆ X, Y be a real normed
vector space. Given a vector functionF : K →Y and a convex cone, possibly with
empty interior,P⊆Y, we immediately obtain the following result.

Theorem 7.Let K⊆ X, F as above, and P a convex cone. Assume that

int(co(F(K))−F(x̄)+P) 6= /0.

The following assertions are equivalent:

(a)
x̄∈

⋃

p∗∈P∗,p∗ 6=0

argminK〈p
∗,F(·)〉;

(b) cone(int(co(F(K))−F(x̄)+P)) is pointed;
(b′) In caseint P 6= /0, (b)⇐⇒ cone(F(K)−F(x̄)+ int P) is pointed, as observed in

Theorem2.

Proof. It follows from Theorem 2 applied toA= F(K)−F(x̄). ⊓⊔
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5.1 Characterizing weakly efficient solutions through linear
scalarization of bicriteria problems

Here, we assume that intP 6= /0. We say that ¯x∈ K is aweakly efficient pointof F
onK, shortlyx̄∈ EW, if

F(x)−F(x̄) 6∈ −int P, ∀ x∈ K. (15)

Clearly
x̄∈ EW ⇐⇒ (F(K)−F(x̄))∩ (−int P) = /0. (16)

⇐⇒ cone(F(K)−F(x̄)+P)∩ (−int P) = /0.

In caseY = R2, we get the following theorem whose proof follows from Theorem
5.

Theorem 8.Let /0 6= K ⊆ X and P be a convex cone having nonempty interior with
Y = R2. Then, the following assertions are equivalent:

(a)
x̄∈

⋃

p∗∈P∗,p∗ 6=0

argminK〈p
∗,F(·)〉;

(b) x̄∈ EW andcone+(F(K)−F(x̄)+ int P) is convex;
(c) x̄∈ EW andcone+(F(K)−F(x̄)+P) is convex;
(d) x̄∈ EW andcone(F(K)−F(x̄)+P) is convex;
(e) x̄∈ EW andcone(F(K)−F(x̄))+P is convex.

5.1.1 The Pareto case

We considerP = R2
+ and denoteR2

++
.
= int R2

+. Given a vector mappingF =
( f1, f2) : K →R2, we consider the problem of finding

x̄∈ K : F(x)−F(x̄) /∈ −R2
++, ∀x∈ K. (17)

Let x̄∈ EW and fori = 1,2, set

S−i (x̄)
.
= {x∈ K : fi(x)< fi(x̄)}; S+i (x̄)

.
= {x∈ K : fi(x)> fi(x̄)};

S=i (x̄)
.
= {x∈ K : fi(x) = fi(x̄)}.

Taking into account Theorem 8, we writeF(K)−F(x̄)+R2
++ = Ω1∪Ω2∪Ω3. It

follows that

cone+(F(K)−F(x̄)+R2
++) = cone+(Ω1)∪cone+(Ω2)∪cone+(Ω3),
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where
Ω1

.
=

⋃

x∈S−1 (x̄)

[( f1(x)− f1(x̄), f2(x)− f2(x̄))+R
2
++];

Ω2
.
=

⋃

x∈S=1 (x̄)

[( f1(x)− f1(x̄), f2(x)− f2(x̄))+R
2
++];

Ω3
.
=

⋃

x∈S+1 (x̄)

[( f1(x)− f1(x̄), f2(x)− f2(x̄))+R
2
++].

WheneverS+1 (x̄)∩S−2 (x̄) 6= /0 andS−1 (x̄)∩S+2 (x̄) 6= /0, we set

α .
= inf

x∈S+1 (x̄)∩S−2 (x̄)

f2(x)− f2(x̄)
f1(x)− f1(x̄)

, β .
= sup

x∈S−1 (x̄)∩S+2 (x̄)

f2(x)− f2(x̄)
f1(x)− f1(x̄)

. (18)

Clearly,−∞ ≤ α < 0 and−∞ < β ≤ 0.
The following figures can be obtained directly

cone+(Ω1) =







































































































if S−1 (x̄) = /0;

if S−1 (x̄) 6= /0, S−1 (x̄))∩S=2 (x̄) = /0 andβ < 0;

v

u

v= βu

/0

0

if [S−1 (x̄) 6= /0, S−1 (x̄)∩S=2 (x̄) = /0, β = 0] or S−1 (x̄)∩S=2 (x̄) 6= /0.
0

u

v

Fig. 4 To visualize Theorem 9

cone+(Ω2) =































































































if S=1 (x̄)∩S−2 (x̄) 6= /0;
0

u

v

if S=1 (x̄)∩S−2 (x̄) = /0.
u

v

0

Fig. 5 To visualize Theorem 9
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Fig. 6 To visualize Theorem 9

Notice that

S−1 (x̄)∩S+2 (x̄) = /0⇐⇒ S−1 (x̄)⊆ S=2 (x̄); S+1 (x̄)∩S−2 (x̄) = /0⇐⇒ S−2 (x̄)⊆ S=1 (x̄).

The following theorem is immediate from the expressions of cone+(Ωi), i =
1,2,3.

Theorem 9.Assume that̄x ∈ EW. Then,cone+(F(K)−F(x̄) +R2
++) is convex if,

and only if any of the following assertions hold:

(a) S−1 (x̄) = /0;
(b) S−1 (x̄) 6= /0, S−1 (x̄)∩S=2 (x̄) = /0, β < 0, S=1 (x̄)∩S−2 (x̄) = /0 and, either

(b1) S+1 (x̄) = /0, or
(b2) S+1 (x̄) 6= /0 and S+1 (x̄)∩S−2 (x̄) = /0, or
(b3) S+1 (x̄)∩S−2 (x̄) 6= /0, α >−∞, β ≤ α;

(c) S−1 (x̄) 6= /0, S−1 (x̄)∩S=2 (x̄) = /0, β = 0, S=1 (x̄)∩S−2 (x̄) = /0 and, either

(c1) S+1 (x̄) = /0, or
(c2) S+1 (x̄) 6= /0 and S+1 (x̄)∩S−2 (x̄) = /0;

(d) S−1 (x̄)∩S=2 (x̄) 6= /0, S=1 (x̄)∩S−2 (x̄) = /0 and, either
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(d1) S+1 (x̄) = /0, or
(d2) S+1 (x̄) 6= /0 and S+1 (x̄)∩S−2 (x̄) = /0.

Proof. We omit the long but easy proof once we get Figures 4, 5 and 6. ⊓⊔

We also notice that

[S+1 (x̄) = /0 and S=1 (x̄)∩S−2 (x̄) = /0] =⇒ S−2 (x̄) = /0;

and
[S+1 (x̄) 6= /0 and S+1 (x̄)∩S−2 (x̄) = /0] =⇒ S−2 (x̄) = /0.

Both implications assert that(b1) (along with(b)), (b2) (along with(b)), (c) and
(d) of the previous theorem implyS−2 (x̄) = /0. On the other hand,

S−i (x̄) = /0⇐⇒ x̄∈ argminK fi .

Thus, next corollary, which follows from(b3) (along with(b)) of Theorem 9, ex-
cludes situations the other situations of such a theorem.

Corollary 6. Let us consider problem(17) and assume that̄x 6∈argminK fi , i = 1,2.
Then,

(a)
x̄∈

⋃

(p∗1,p
∗
2)∈R

2
+\{(0,0)}

argminK(p
∗
1 f1+ p∗2 f2)

if and only ifx̄∈ EW and(b3) (along with(b)) of Theorem 9 is satisfied.
(b) If x̄∈ EW and(b3) (along with(b)) holds, then any−α ≤ p∗1 ≤−β satisfies

x̄∈ argminK(p
∗
1 f1+ f2).

5.2 Characterizing properly efficient solutions through linear
scalarization of bicriteria problems

We say that ¯x ∈ K is (Benson)properly efficient pointof F on K ([2]), in short
x̄∈ Epr, if

cone(F(K)−F(x̄)+P)∩ (−P) = {0}. (19)

One can easily check that ifEpr is nonempty, thenP is pointed.
Setting

P∗i .
=
{

p∗ ∈Y∗, 〈p∗, p〉> 0, ∀ p∈ P\ {0}
}

,

it can be seen that
⋃

p∗∈P∗i

argminK〈p
∗,F(·)〉 ⊆ Epr. (20)

Conversely, if ¯x∈ Epr andcone(F(K)−F(x̄)+P) is convex then
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x̄∈
⋃

p∗∈P∗i

argminK〈p
∗,F(·)〉,

providedP is locally compact (use the separation result for convex cones [3, Propo-
sition 3]).

In caseY=R2, we get the following theorem whose proof follows from Theorem
4 and the remarks above.

Theorem 10.Let K ⊆ X be a convex set and F as above with P⊆ R2 being a
pointed, closed, convex cone. Assume that

int(F(K)−F(x̄)+P) 6= /0.

Then, the following assertions are equivalent:

(a)
x̄∈

⋃

p∗∈int P∗

argminK〈p
∗,F(·)〉;

(b) x̄∈ Epr andcone(F(K)−F(x̄)+P) is convex;
(c) x̄∈ Epr andcone(F(K)−F(x̄)+P) is convex.

5.2.1 The Pareto case

We now particularizeP= R2
+. Given a vector mappingF = ( f1, f2) : K → R2, we

consider the problem of finding

x̄∈ K : cone(F(K)−F(x̄)+R2
+)∩ (−R2

+) = {(0,0)}, (21)

Let x̄∈ Epr and fori = 1,2, consider the setsS−i (x̄), S+i (x̄) andS=i (x̄) as defined in
the previous subsection.
By (k) of Proposition 1, the convexity ofcone(F(K)− F(x̄) +R2

+) is equivalent
to the convexity of cone+(F(K)−F(x̄)+R2

++). Thus, by writingF(K)−F(x̄)+
R2
++ = Ω1∪Ω2 ∪Ω3, we can use the same expressions for cone+(Ωi), i = 1,2,3

computed in the preceding section. The fact that ¯x∈ Epr allows us to conclude that
α,β (as defined in (18)) satisfy−∞ < α < 0,−∞ < β < 0, and

S−1 (x̄)⊆ S+2 (x̄); S−2 (x̄)⊆ S+1 (x̄).

Thus, the preceding expressions for cone(Ωi), i = 1,2,3, reduces to
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Fig. 9 To visualize Theorem 11

Theorem 11.Assume that̄x∈ Epr. Then,cone(F(C)−F(x̄)+R2
+) is convex if, and

only if either(a) or (b) holds. Here,

(a) S−1 (x̄) 6= /0 and, either S+1 (x̄) = /0 or [S−2 (x̄) = /0, S+1 (x̄) 6= /0] or [S−2 (x̄) 6= /0, β ≤α];
(b) S−1 (x̄) = /0.

Proof. The proof is easy once we get Figures 7, 8 and 9. ⊓⊔

Corollary 7. Let us consider problem(21). Then,
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x̄∈
⋃

(p∗1,p
∗
2)∈R

2
++

argminK(p
∗
1 f1+ p∗2 f2)

if and only if either(a) or (b) holds, where

(a) x̄∈ Epr, S−1 (x̄) 6= /0 and, either S+1 (x̄) = /0 or [S−2 (x̄) = /0, S+1 (x̄) 6= /0] or [S−2 (x̄) 6=
/0, β ≤ α];

(b) x̄∈ Epr and S−1 (x̄) = /0.

Corollary 8. Let us consider problem(21). Then,

(a) If x̄∈ Epr,S
−
1 (x̄) 6= /0 and, either S+1 (x̄) = /0 or [ S−2 (x̄) = /0, S+1 (x̄) 6= /0 ], then any

p∗1 such that0< p∗1 ≤−β satisfies

x̄∈ argminK(p
∗
1 f1+ f2).

(b) If x̄∈ Epr, S−1 (x̄) 6= /0 and[ S−2 (x̄) 6= /0, β ≤ α ], then any p∗1 such that−α ≤ p∗1 ≤
−β satisfies

x̄∈ argminK(p
∗
1 f1+ f2).

(c) If x̄∈ Epr, S−1 (x̄) = /0 and S−2 (x̄) 6= /0, then any p∗1 such that−α ≤ p∗1 satisfies

x̄∈ argminK(p
∗
1 f1+ f2).

(d) If x̄∈ Epr, S−1 (x̄) = /0 and S−2 (x̄) = /0, then any(p∗1, p
∗
2) ∈R

2
++ satisfies

x̄∈ argminK(p
∗
1 f1+ p∗2 f2).

5.3 Characterizing the Fritz-John type optimality conditions

For simplicity we now considerX to be a real normed vector space. It is well known
that if x̄ is a local minimum point for the real-valued differentiablefunctionF onK,
then

∇F(x̄) ∈ (T(K; x̄))∗. (22)

Here,K is a (not necessarily convex) set,T(C; x̄) denotes thecontingent coneof C
at x̄ ∈ C, defined as the set of vectorsv such that there existtk ↓ 0, vk ∈ X, vk → v
such that ¯x+ tkvk ∈C for all k; recall thatC∗ denotes the (positive) polar cone ofC.
It is now our purpose to extend the previous optimality condition to the vector case
without smoothness assumptions. More precisely, letK ⊆ X be closed and consider
a mappingF : K →Rm. A vectorx̄∈ K is a local weakly efficient solution forF on
K, if there exists an open neighborhoodV of x̄ such that

(F(K ∩V)−F(x̄))∩ (−int P) = /0. (23)

Following [37], we say that a functionh : X → R admits aHadamard directional
derivativeat x̄∈ X in the directionv if
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lim
(t,u)→(0+,v)

h(x̄+ tu)−h(x̄)
t

∈ R.

In this case, we denote such a limit bydh(x̄;v).
If F = ( f1, f2, . . . , fm), we set

F (v)
.
= ((d f1(x̄;v), . . . ,d fm(x̄;v)), F (T(K; x̄))

.
= {F (v) ∈ Rn : v∈ T(K; x̄)}.

It is known that ifd fi(x̄; ·), i = 1, . . . ,m, do exist inT(K; x̄), and x̄ ∈ K is a local
weakly efficient solution forF on K, i.e., x̄ satisfies (23), then (see for instance
Lemma 3.2 of [37])

(d f1(x̄;v), . . . ,d fn(x̄;v)) ∈Rn \−int P, ∀ v∈ T(K; x̄), (24)

or equivalently,
F (T(K; x̄))∩ (−int P) = /0.

The following theorems provide complete characterizations for the validity of(a)
as a necessary condition for ¯x to be a local weakly efficient solution forF onK.

Theorem 12.Let K⊆ X be a closed set, P⊆ Rn be a closed convex cone such that
int P 6= /0 and P 6= Rn. Assume that̄x ∈ K and d fi(x̄; ·), i = 1, . . . ,m, do exist in
T(K; x̄). Then, the following assertions are equivalent:

(a) ∃ (α∗
1 , . . . ,α

∗
m) ∈ P∗ \ {0}, α∗

1d f1(x̄,v)+ . . .+α∗
md fn(x̄,v)≥ 0 ∀ v∈ T(K; x̄);

(b) cone(F (T(K; x̄))+ int P) is pointed.

Proof. We obtain the desired result from Theorem 2. ⊓⊔

WhenY = R2, more precise formulations can be obtained from Theorem 5.

Theorem 13.Let K⊆ X be a closed set, P⊆ R2 be a closed convex cone such that
int P 6= /0. Assume that̄x ∈ K and d fi(x̄; ·), i = 1,2, do exist in T(K; x̄). Then, the
following assertions are equivalent:

(a) ∃ (α∗
1 ,α

∗
2) ∈ P∗ \ {(0,0)}, α∗

1d f1(x̄,v)+α∗
2d f2(x̄,v)≥ 0 ∀ v∈ T(K; x̄);

(b) F (T(K; x̄))∩ (−int P) = /0 andcone(F (T(K; x̄))+ int P) is convex.

Proof. We apply Theorem 5 to obtain the desired result. ⊓⊔

We can go further when differentiability conditions are imposed.

Proposition 7. Assume that P= Rm
+ and fi : Rn → R be differentiable for i=

1, . . . ,m, andx̄∈ Rn. Then, for any set A⊆ Rn,

F (A)∩ (−int Rm
+) = /0⇐⇒ max

1≤i≤m
〈∇ fi(x̄),v〉 ≥ 0 ∀ v∈ A,

and the following statements are equivalent:

(a) cone(F (T(K; x̄))+ int Rn
+) is pointed;
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(b) F (co(T(K; x̄)))∩ (−int Rm
+) = /0;

(c) max
1≤i≤m

〈∇ fi(x̄),v〉 ≥ 0 ∀ v∈ co(T(K; x̄));

(d) co({∇ fi(x̄) : i = 1, . . . ,m})∩ (T(K; x̄))∗ 6= /0.

Proof. The first part is a consequence of the linearity ofF :

F (v) = (〈∇ f1(x̄),v〉, . . . ,〈∇ fm(x̄),v〉).

We already know that

cone(F (T(K; x̄))+ int Rm
+)) is pointed⇐⇒ co(F (T(K; x̄))∩ (−int Rm

+) = /0.

It is not difficult to prove that co(F (T(K; x̄))) = F (co(T(K; x̄))) and

F (co(T(K; x̄)))∩ (−int Rm
+) = /0⇐⇒ F (co(T(K; x̄)))∩ (−int Rm

+) = /0

⇐⇒ F (co(T(K; x̄)))∩ (−int Rm
+) = /0.

This and the fact that(a) of Theorem 12 amounts to writing

co({∇ fi(x̄) : i = 1, . . . ,m})∩ (T(K; x̄))∗ 6= /0,

we get all the remaining equivalences. ⊓⊔

We apply the previous proposition to get the following result.

Theorem 14.Let K⊆ X be a closed set, Assume thatx̄∈ K and fi : Rn → R2 are
differentiable functions for i= 1,2, . . . ,m. Then, the following assertions are equiv-
alent:

(a) F (T(K; x̄)∩ (−intR2
+) = /0 andcone(F (T(K; x̄))+R2

+) is convex;
(b) co({∇ fi(x̄) : i = 1,2})∩ (T(K; x̄))∗ 6= /0;

Before going on some remarks are in order. Certainly, ifT(K; x̄) is convex, then
(d) is a necessary optimality condition for ¯x to be a local weakly efficient solution
(this fact was point out earlier in [39], see also [9]). Thus,(d) could be considered a
natural extension of (22). However, next example shows that(d) is not a necessary
optimality condition ifT(K; x̄) is not convex. The second example shows an instance
where(d) holds without the convexity ofT(K; x̄).

Example 2.Take the (modified) example from [1], see also [9, 40]:

K = {(x1,x2) : (x1+2x2)(2x1+ x2)≤ 0}, fi(x1,x2) = xi , x̄= (0,0) ∈ EW.

In this caseT(K; x̄) = K, which is nonconvex,(T(K; x̄))∗ = {(0,0)}, and therefore
(d) does not hold since co({∇ f1(x̄),∇ f2(x̄)}) = co({(1,0),(0,1)}). SinceF (v) =
v, the set

cone(F (T(K; x̄))+R2
+) =

⋃

t≥0

t(T(K; x̄)+R2
+).

is nonconvex.
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Example 3.Consider the same mappingF as before and

K = {(x1,x2) ∈ R
2
+ : x1x2 = 0}, x̄= (0,0) ∈ EW.

Then,(d) holds since in this case,T(K; x̄) = K, (T(K; x̄))∗ = R2
+. Here, the set

cone(F (T(K; x̄))+R2
+) =

⋃

t≥0

t(T(K; x̄)+R2
+)

is convex.

6 More about proper efficiency

We now present some recent developments about proper efficiency. As before,
throughout this section we consider a nonempty setA Y, with Y being a locally
convex topological vector space. In addition, we are given aconvex coneP Y. We
say that ¯a∈ A is a

• Benson proper efficient pointif cone(A− ā+P)∩ (−P) = {0}. This is the defi-
nition given in Benson [2]. and the set is denoted byEpr(A,P).

• Borwein proper efficient pointif cone(A− ā)∩ (−P) = {0}. This notion is intro-
duced in [4] whenP is pointed.

Evidently every Benson proper efficient point is also a Borwein efficient.
Proper efficiency is introduced in order to avoid efficient points satisfying some

abnormal properties, in particular, efficient points for which at least one objective
function exists for which the marginal trade-off between itand each of the other
objective functions is infinitely large, [17], or if one prefers efficient points that
allow more satisfactory characterization in terms of linear/sublinear scalarization,
for instance. The starting point was the pionering work by Kuhn and Tucker in
multiojective programming problems [24].

Benson and Borwein efficiency coincide ifP has a compact base, see [11];
whereas in general it is not true, as shows Example 4.3 in [11]. We say thatB is
a basefor P if B is convex, 06∈ B andP= cone(B). Obviously, the existence of a
base forP implies its pointedness; likewise ifEpr(A,P) 6= /0.

When the corresponding scalar function which is involved inthe characterization
of proper efficiency, is a continuous seminorm, we refer to [11]. This result is based
in the following theorem

Theorem 15.([11,Theorem2.3]) Let P and Q be cones in Y satisfying P∩Q= {0},
and either(a) P be a weak-closed and Q have a weak-compact base or(b) P be
closed and Q have a compact base. Then, there is a pointed convex cone C such that
Q\ {0} ⊆ int C and C∩P= {0}.

Now, we present some results on interior of a polar cone, and afterwards, dual
characterizations and scalarizations for Benson proper efficiency. To that purpose,
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we recall thatY∗ is the topological dual ofY. For any convex coneP⊆Y, the quasi
interior ofP∗, is defined as

qi P∗ = P∗i .
= {y∗ ∈Y∗ : 〈y∗,y〉> 0 ∀ p∈ P\ {0}}.

A convex coneP with int P 6= /0 is said to be a solid cone. Moreover, a convex
coneP has a base if and only ifP∗i 6= /0. For a baseB of P, we defineBst to be the
set

Bst .
= {y∗ ∈Y∗ : inf

b∈B
〈y∗,b〉> 0 }.

For any locally convex topological vector spaceY, we have various ways of in-
troducing a locally convex topology on the dualY∗. If M is any total saturated class
of bounded subsets ofY ([19, 23, 35]), the topology of uniform convergence on the
setsM of M is a locally convex topology onY∗. We denote it byτM . Obviously
{M◦ : M ∈ M } is a 0-neighborhood base in(Y∗,τM ). Particularly, we denote the
topologies onY∗ of uniform convergence on bounded subsets, weakly compact (ab-
solutely) convex subsets, and finite subsets ofY byβ (Y∗,Y), τ(Y∗,Y), andσ(Y∗,Y),
which are called the strong topology, Mackey topology, and weak topology, respec-
tively.

Lemma 2. ([29,Lemma2.1]) Let P⊆ Y be a convex cone. If there exist a locally
convex topologyT on Y∗ such thatintT P∗ 6= /0, whereintT P∗ denotes the interior
of P∗ in (Y∗,T ), thenintT P∗ ⊆ P∗i.

Theorem 16.([29,Theorem2.1]). Let P⊆Y be a convex cone. Then,intτM
P∗ 6= /0

if and only if P has a base B∈ M . In this case,intτM
P∗ = Bst.

Similar expressions hold forτ(Y∗,Y) andβ (Y∗,y), for details, see [21, Theo-
rem 3.8.6], [28, Theorem 2.3], [28, Theorem 2.2].

We now give the following general dual characterization andscalarization for
Benson proper efficiency.

Theorem 17.([29,Theorem3.1.]) Let P⊆ Y be a closed convex cone,ā∈ A⊆ Y.
Then the following statements are equivalent:

(a) ā∈ Epr(coA,P);
(b) (P∗−P∗∩(A− ā)∗) is dense in(Y∗,T ) whereT is any locally convex topology

on Y∗ which is compatible with the dual pair(Y∗,Y) (i.e.,(Y∗,T )∗ =Y);
(c) for any weakly compact convex set K⊆ P and0 6∈ K, there exists p∗ ∈ P∗∩Kst

such that〈p∗,a〉 ≥ 〈p∗, ā〉 ∀ a∈ A;
(d) for any p∈ P\ {0} there exists p∗ ∈ P∗ such that〈p∗, p〉 > 0 and 〈p∗,a〉 ≥

〈p∗, ā〉 ∀ a∈ A.

Theorem 18.([29,Theorem3.2]) Let P⊆Y be a closed convex cone andā∈ A⊆
Y. If there exists a locally convex topologyT on Y∗ such that(Y∗,T )∗ = Y and
intT P∗ 6= /0 then the following statements are equivalent:
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(a) ā∈ Epr(coA,P);
(b) there exists p∗ ∈ intT P∗ such that〈p∗,a〉 ≥ 〈p∗, ā〉, ∀ a∈ A;
(c) there exists p∗ ∈ P∗i such that〈p∗,a〉 ≥ 〈p∗, ā〉, ∀ a∈ A.

Corollary 9. ([29,Corollary 3.1]) Let C⊆Y be a closed convex cone with a weakly
compact base B and̄a∈ A⊆Y. Then the following statements are equivalent:

(a) ā∈ Epr(coA,P);
(b) there exists p∗ ∈ Bst such that〈p∗,a〉 ≥ 〈p∗, ā〉 ∀ a∈ A;
(c) there exists p∗ ∈C∗i such that〈p∗,a〉 ≥ 〈p∗, ā〉 ∀ a∈ A.

A recent notion of proper efficiency was introduced in [27]. It is equivalent to
strict efficiency, strong efficiency and to super efficiency as shown in [27, Proposi-
tion 2.2], providedP is a convex cone with a (convex) bounded base.
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2011-01 Alfredo Bermúdez, Rafael Muñoz-Sola, Carlos Reales, Rodolfo Ro-
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