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Abstract

We introduce and analyze a new finite element method for a three-dimensional fluid-solid interaction
problem. The media are governed by the acoustic and elastodynamic equations in time-harmonic
regime, and the transmission conditions are given by the equilibrium of forces and the equality of
the corresponding normal displacements. We employ a dual-mixed variational formulation in the
solid, in which the Cauchy stress tensor and the rotation are the only unknowns, and mantain the
usual primal formulation in the fluid. The main novelty of our method, with respect to previous
approaches for a 2D version of this problem, consists of the introduction of the first transmission
condition as part of the definition of the space to which the stress of the solid and the pressure of
the fluid belong. As a consequence, and since the second transmission condition becomes natural,
no Lagrange multipliers on the coupling boundary are needed, which certainly leads to a much
simpler variational formulation. We show that a suitable decomposition of the space of stresses
and pressures allows the application of the Babuška-Brezzi theory and the Fredholm alternative
for concluding the solvability of the whole coupled problem. The unknowns of the fluid and the
solid are then approximated, respectively, by Lagrange and Arnold-Falk-Winther finite element
subspaces of order 1, which yields a conforming Galerkin scheme. In this way, the stability and
convergence of the discrete method relies on a stable decomposition of the finite element space used
to approximate the stress and the pressure variables, and also on a classical result on projection
methods for Fredholm operators of index zero.
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1 Introduction

The development of suitable numerical methods for fluid-solid interaction problems, specially for those
modelled by the acoustic and elastodynamic equations in time-harmonic regime, has become a subject
of increasing interest during the last two decades. For instance, several approaches relying on a primal
formulation in the solid, in which the displacement becomes the only unknown in this medium, have
been studied in [9], [21], [22], [23], [24], [27], and [28]. More recently, in order to avoid the locking
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phenomenon that arises in the nearly incompressible case, or motivated by the need of obtaining direct
finite element approximations of the stresses, dual-mixed formulations in the solid have begun to be
considered as well (see e.g. [15] and [16]).

More precisely, the interaction problem studied in [15] and [16] consists of an elastic body that is
subject to a given incident wave that travels in the fluid surrounding it. The transmission conditions
hold on the boundary of the solid and they are given by the equilibrium of forces and the equality
of the normal displacements from both media. Actually, in [15] we simplify a bit the original model
and assume that the fluid occupies an annular region, whence a Robin boundary condition imitating
the behavior of the scattered field at infinity is imposed on its exterior boundary, which is located
far from the obstacle. Then, we employ a dual-mixed approach for plane elasticity in the solid, in
which the elastodynamic equation is used to eliminate the displacement unknown, and keeps the usual
primal method in the fluid region. In addition, since the first transmission condition mentioned above
becomes essential, it is enforced weakly by means of a Lagrange multiplier. In this way, the stress
tensor in the solid and the pressure in the fluid, which solves the Helmholtz equation, constitute the
main unknowns of the resulting formulation. Next, we show that a judicious decomposition of the
space of stresses renders suitable the application of a Fredholm alternative for the analysis of the whole
coupled problem. The associated discrete scheme is defined with PEERS elements in the obstacle and
the traditional first order Lagrange finite elements in the fluid domain. The stability and convergence
of this Galerkin method also relies on a stable decomposition of the finite element space used to
approximate the stress variable. In [16] we modify the strategy from [15] and, instead of considering a
Robin condition on the exterior boundary, we follow the approach from [28] and introduce a non-local
absorbing boundary condition based on boundary integral equations. This implies, in particular, that
the exterior boundary can be chosen as any parametrizable smooth closed curve containing the solid,
which, in order to minimize the size of the computational domain, is adjusted as sharply as possible
to the shape of the obstacle. In this way, the discretization procedure proposed in [16] couples the
primal/dual-mixed finite element scheme from [15] with a suitable boundary element method arising
from a combined double and single layer potential representation of the scattered wave (see [13]).
The rest of the analysis for the continuous and discrete formulations of [16] follows very closely the
techniques and arguments developed in [15].

On the other hand, new stable mixed finite element methods for linear elasticity in 2D and 3D,
including strong symmetry and weakly imposed symmetry for the stresses, have been derived during
the last decade using the finite element exterior calculus, a quite abstract framework involving several
sophisticated mathematical tools (see, e.g. [4], [5], [6], [7]). In particular, the first elements using poly-
nomial shape-functions that are known to be stable for the symmetric stress-displacement formulation
in 2D are the ones provided in [7]. The corresponding lowest order element consists of piecewise cubic
polynomials for the stress, with 24 degrees of freedom per triangle, and piecewise linear functions for
the displacement. An analogue of this element in 3D, which considers piecewise quartic stresses with
162 degrees of freedom per tetrahedron, and piecewise linear displacements, was proposed in [1]. In
turn, the stable elements with a weak symmetry condition for the stresses have been constructed in [4]
and [6], and a new proof of some of the main results obtained there, which employs more elementary
and classical techniques, was provided recently in [12]. In fact, the approaches in [12] for the 2D
and 3D cases are based, respectively, on the use of stable Stokes elements and interpolation operators
that keep the reduced symmetry. The resulting Arnold-Falk-Winther (AFW) element with the lowest
polynomial degrees, which is referred to as of order 1, consists of piecewise linear approximations for
the stress and piecewise constants functions for both the displacement and rotation unknowns.

Now, the main purpose of the present paper is to introduce and analyze a new finite element
method for the 3D version of the interaction problem studied in [15]. To this end, and in order to
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simplify the approach from [15], we now incorporate the equilibrium of forces (see the first equation in
(2.2) below) into the definition of the product space to which the stress σ of the solid and the pressure
p of the fluid belong. In this way, we avoid the introduction of further unknowns (Lagrange multipliers)
on the boundary of the solid, which otherwise would yield later on a more expensive Galerkin scheme.
Moreover, the strategy involving a Lagrange multiplier on the transmission boundary would require
the use of two finite element meshes satisfying a stability condition between their corresponding mesh
sizes, which certainly constitutes a very cumbersome restriction in 3D computations. Hence, according
to the availability of the new stable mixed finite elements for 3D linear elasticity with weak symmetry
(which are described in the previous paragraph), we also propose here to approximate the unknowns
of the solid and the fluid by the corresponding components of the AFW and Lagrange finite element
subspaces of order 1, respectively. Thus, because of the coincidence between the polynomial shape-
functions approximating σ ν and − pν, we are able to generate a conforming finite element subspace
for the pair (σ, p). In other words, the first equation in (2.2) is exactly satisfied at the discrete level,
whence the matching described above gives rise to what we call a natural coupling of the Lagrange
and AFW elements of lowest order with respect to that transmission condition. The rest of this work
is organized as follows. In Sections 2 and 3 we describe the fluid-solid interaction problem and derive
its continuous variational formulation. Then, in Section 4, we show that the resulting saddle point
problem is well posed. Finally, the corresponding Galerkin scheme is analyzed in Section 5.

We end this section with some notations to be used below. Since in the sequel we deal with
complex valued functions, we let C be the set of complex numbers, use the symbol ı for

√
−1, and

denote by z and |z| the conjugate and modulus, respectively, of each z ∈ C. In addition, given any
Hilbert space U , U3 and U3×3 denote, respectively, the space of vectors and tensors of order 3 with
entries in U . In particular, I is the identity matrix of C3×3, and given τ := (τij), ζ := (ζij) ∈ C3×3,
we define as usual the transpose tensor τ t := (τji) , the trace tr(τ ) :=

∑3
i=1 τii, the deviator tensor

τ d := τ − 1
3 tr(τ ) I, the tensor product τ : ζ :=

∑3
i,j=1 τij ζij , and the conjugate tensor τ := (τ ij).

Finally, in what follows we utilize the standard terminology for Sobolev spaces and norms, employ 0
to denote a generic null vector (including the null functional and operator), and use C and c, with or
without subscripts, bars, tildes or hats, to denote generic constants independent of the discretization
parameters, which may take different values at different places.

2 The fluid-solid interaction problem

We are interested in the 3D version of the interaction problem studied in [15]. More precisely, we
now consider an incident acoustic wave upon a bounded elastic body (obstacle) in R3 that is fully
surrounded by a fluid, and aim to determine both the response of the body and the scattered wave.
The boundary of the obstacle Ωs is denoted by Σ. We assume that the incident wave and the volume
force acting on the body exhibit a time-harmonic behaviour with frequency ω and amplitudes pi and
f , respectively, so that pi satisfies the Helmholtz equation in R3\Ωs. Hence, we may consider that this
interaction problem is posed in the frequency domain. In this way, and since, following [15], we plan
to employ a mixed variational formulation in the solid, our main unknowns become the amplitude
σ : Ωs → C3×3 of the Cauchy stress tensor, the amplitude u : Ωs → C3 of the displacement field, and
the amplitude of the total (incident + scattered) pressure p : R3\Ωs → C.

The fluid is assumed to be perfect, compressible, and homogeneous, with mass density ρf and
wave number κf :=

ω

v0
, where v0 is the speed of sound in the linearized fluid. In addition, the solid is

supposed to be isotropic and linearly elastic with mass density ρs and Lamé constants µ and λ, which
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means, in particular, that the corresponding constitutive equation is given by

σ = C ε(u) in Ωs ,

where ε(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations, ∇ is the gradient tensor,

and C is the elasticity operator given by Hooke’s law, that is

C ζ := λ tr(ζ) I + 2µ ζ ∀ ζ ∈ [L2(Ωs)]3×3 . (2.1)

Consequently, under the hypotheses of small oscillations, both in the solid and the fluid, the unknowns
σ, u, and p satisfy the elastodynamic and acoustic equations in time-harmonic regime, that is:

div(σ) + κ2
s u = − f in Ωs ,

∆p + κ2
f p = 0 in R3\Ωs ,

where the wave number κs of the solid is defined by
√
ρs ω, together with the transmission conditions:

σ ν = − pν on Σ ,

ρf ω
2 u · ν =

∂p

∂ν
on Σ ,

(2.2)

and the behaviour at infinity given by

p− pi = O(r−1) (2.3)

and
∂(p− pi)

∂r
− ı κf (p− pi) = o(r−1) , (2.4)

as r := ‖x‖ → +∞, uniformly for all directions
x
‖x‖

. Hereafter, div stands for the usual di-

vergence operator div acting on each row of the tensor, ‖x‖ is the euclidean norm of a vector
x := (x1, x2, x3)t ∈ R3, and ν denotes the unit outward normal on Σ, that is pointing toward Ωf .
The transmission conditions given in (2.2) constitute the equilibrium of forces and the equality of the
normal displacements of the solid and fluid, whereas the equation (2.4) is known as the Sommerfeld
radiation condition.

On the other hand, it is important to remark, as a consequence of (2.3) and (2.4), that the
outgoing waves are absorbed by the far field. Motivated by this fact, and aiming to obtain a suitable
simplification of our model problem, we now proceed as in [15] and introduce a sufficiently large
polyhedral surface Γ approximating a sphere centered at the origin, define Ωf as the annular domain
bounded by Σ and Γ, and consider the Robin boundary condition:

∂p

∂ν
− ı κf p = g :=

∂pi
∂ν
− ı κf pi on Γ , (2.5)

where ν denotes also the unit outward normal on Γ.

Therefore, throughout the rest of the paper we assume the Robin boundary condition (2.5), and,
given f ∈ [L2(Ωs)]3 and g ∈ H−1/2(Γ), consider the following fluid-solid interaction problem: Find
σ ∈ H(div; Ωs), u ∈ [L2(Ωs)]3, and p ∈ H1(Ωf ), such that there holds in the distributional sense:
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σ = C ε(u) in Ωs ,

div(σ) + κ2
s u = − f in Ωs ,

∆p + κ2
f p = 0 in Ωf ,

σν = − pν on Σ ,

ρf ω
2 u · ν =

∂p

∂ν
on Σ ,

∂p

∂ν
− ı κf p = g on Γ .

(2.6)

3 The continuous variational formulation

In this section we follow very closely [15] and employ primal and dual-mixed approaches in the fluid
Ωf and the solid Ωs, respectively, to derive the full continuous variational formulation of (2.6). The
main difference with the approach from [15] lies on the fact that, instead of weakly imposing the first
trasmission condition on Σ, we proceed to incorporate the first equation of (2.2) (or fourth equation
of (2.6)) into the definition of the space to which the unknowns σ and p belong. In turn, the second
equation of (2.2) (or fifth equation of (2.6)) is handled as in [15], which means that it becomes a
natural transmission condition. According to the above, we first multiply the acoustic equation by
q ∈ H1(Ωf ), integrate by parts, and use the Robin boundary condition, to obtain∫

Ωf

∇p · ∇q − κ2
f

∫
Ωf

pq + 〈 ∂p
∂ν

, q〉Σ − ı κf

∫
Γ
pq = 〈g, q〉Γ , (3.1)

where, given S ∈ {Σ,Γ}, 〈 ·, · 〉S stands for the duality pairing of H−1/2(S) and H1/2(S) with respect

to the L2(S)-inner product. Next, we replace
∂p

∂ν
by ρf ω

2 u · ν on Σ and divide by ρf ω
2, whence

(3.1) becomes

1
ρf ω2

∫
Ωf

∇p · ∇q −
κ2
f

ρf ω2

∫
Ωf

pq + 〈qν,u〉Σ − ı
κf
ρf ω2

∫
Γ
pq =

1
ρf ω2

〈g, q〉Γ . (3.2)

On the other hand, in order to derive the mixed variational formulation in the solid Ωs, we follow
the usual procedure (see [2], [15] and [30]) and introduce the rotation

γ :=
1
2

(∇u− (∇u)t) ∈ [L2(Ωs)]3×3
asym

as a further unknown, where [L2(Ωs)]3×3
asym denotes the space of asymmetric tensors with entries in

L2(Ωs). In this way, the constitutive equation can be rewritten in the form

C−1 σ = ε(u) = ∇u − γ ,

which, multiplying by a function τ ∈ H(div; Ωs) and integrating by parts, yields∫
Ωs

C−1 σ : τ +
∫

Ωs

u · div(τ ) − 〈τν,u〉Σ +
∫

Ωs

τ : γ = 0 . (3.3)

We recall here that

H(div; Ωs) :=
{
τ ∈ [L2(Ωs)]3×3 : div(τ ) ∈ [L2(Ωs)]3

}
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endowed with the norm ‖τ‖2H(div; Ωs)
:= ‖τ‖2[L2(Ωs)]3×3 + ‖div(τ )‖2[L2(Ωs)]3

is a Hilbert space.

Next, assuming that the test functions τ and q satisfy τν = −qν on Σ and replacing back

u = − 1
κ2
s

(
f + div(σ)

)
,

into (3.3), gives∫
Ωs

C−1 σ : τ − 1
κ2
s

∫
Ωs

div(σ) · div(τ ) + 〈qν,u〉Σ +
∫

Ωs

τ : γ =
1
κ2
s

∫
Ωs

f · div(τ ) . (3.4)

Finally, the symmetry of σ is imposed weakly through the relation∫
Ωs

σ : η = 0 ∀η ∈ [L2(Ωs)]3×3
asym.

In the sequel, for economy of notation, we represent duplets (σ, p) and (τ , q) from H(div; Ωs)×
H1(Ωf ) by σ̂ and τ̂ respectively, and, as suggested by the above choice of τ and q, we introduce the
closed subspace

X :=
{
τ̂ = (τ , q) ∈ H(div; Ωs)×H1(Ωf ) : τ ν + q ν = 0 on Σ

}
of H(div; Ωs)×H1(Ωf ) endowed with the norm

‖τ̂‖2X := ‖τ‖2H(div; Ωs)
+ ‖q‖2H1(Ωf ).

In addition, we also let from now on Y := [L2(Ωs)]3×3
asym.

Hence, substracting (3.4) from (3.2), we arrive to the following variational formulation of (2.6):
Find (σ̂,γ) ∈ X× Y such that

A(σ̂, τ̂ ) + B(τ̂ ,γ) = F (τ̂ ) ∀ τ̂ = (τ , q) ∈ X ,

B(σ̂,η) = 0 ∀η ∈ Y ,
(3.5)

where F : X→ C is the linear functional

F (τ̂ ) := − 1
κ2
s

∫
Ωs

f · div(τ ) +
1

ρf ω2
〈g, q〉Γ ∀ τ̂ = (τ , q) ∈ X ,

and A : X× X→ C, and B : X× Y→ C are the bilinear forms defined by

A(σ̂, τ̂ ) := −
∫

Ωs

C−1 σ : τ +
1
κ2
s

∫
Ωs

div(σ) · div(τ ) +
1

ρf ω2

∫
Ωf

∇p · ∇q

−
κ2
f

ρf ω2

∫
Ωf

pq − ı
κf
ρf ω2

∫
Γ
pq ∀ σ̂ = (σ, p), τ̂ = (τ , q) ∈ X ,

(3.6)

and
B(τ̂ ,η) := −

∫
Ωs

τ : η ∀ τ̂ = (τ , q) ∈ X, ∀η ∈ Y , (3.7)
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It is easy to see that F , A, and B are all bounded with constants depending on ω, ρf , ρs, κf , and
κs, in the case of F and A, and constants independent of the physical parameters for B. Concerning
the form A, we also observe from (2.1) that the inverse operator C−1 reduces to

C−1 ζ :=
1

2µ
ζ − λ

3µ (3λ+ 2µ)
tr(ζ) I ∀ ζ ∈ [L2(Ωs)]3×3 ,

which implies that∫
Ωs

C−1 ζ : τ =
1

2µ

∫
Ωs

ζd : τ d +
1

3 (3λ+ 2µ)

∫
Ωs

tr(ζ) tr(τ ) ∀ ζ, τ ∈ [L2(Ωs)]3×3 ,

and hence ∫
Ωs

C−1 ζ : ζ ≥ 1
2µ
‖ζd‖2[L2(Ωs)]3×3 ∀ ζ ∈ [L2(Ωs)]3×3 . (3.8)

This estimate will be useful for our analysis below.

4 Analysis of the continuous variational formulation

In this section we proceed analogously as in [15] and employ a suitable decomposition of X to show
that (3.5) becomes a compact perturbation of a well-posed problem. Firstly, we need to analyze an
elasticity problem in Ωs with Neumann boundary conditions. Then, this auxiliary problem yields the
definition of an associated operator, which is employed to obtain the above mentioned decomposition.

4.1 An auxiliary Neumann problem

Let RM(Ωs) be the space of rigid body motions in Ωs, that is

RM(Ωs) :=
{

v : Ωs → C2 : v(x) = a + b× x ∀x ∈ Ωs , a, b ∈ C3
}
.

Then, given τ̂ = (τ , q) ∈ X, we consider the boundary value problem

σ̃ = C ε(ũ) , div σ̃ = div τ + r(τ̂ ) in Ωs , σ̃ ν = −qν on Σ , (4.1)

where C ε(ũ) is defined according to (2.1) and r(τ̂ ) ∈ RM(Ωs) is characterized by∫
Ωs

r(τ̂ ) ·w = −〈 qν,w 〉Σ −
∫

Ωs

div τ ·w ∀w ∈ RM(Ωs).

Note that r(τ̂ ) is just an auxiliary rigid motion that is needed to guarantee the usual compatibility
condition required for the Neumann problem (4.1) (cf. [10, Theorem 9.2.30]).

Next, let us define the spaces

H̃ :=
{
τ̃ ∈ H(div; Ωs) : τ̃ ν = 0 on Σ

}
and

Q̃ := (I−M)([L2(Ωs)]3)× [L2(Ωs)]3×3
asym ,
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where M : [L2(Ωs)]3 → RM(Ωs) is the [L2(Ωs)]3-orthogonal projector. Then, introducing the rotation
γ̃ := 1

2

(
∇ũ− (∇ũ)t

)
as a further unknown, the dual-mixed variational formulation of (4.1) reduces

to: Find (σ̃, (ũ, γ̃)) ∈ H(div; Ωs)× Q̃ such that σ̃ν = − q ν on Σ and

a(σ̃, τ̃ ) + b(τ̃ , (ũ, γ̃)) = 0 ∀ τ̃ ∈ H̃ ,

b(σ̃, (ṽ, η̃)) =
∫

Ωs

(div τ + r(τ̂ )) · ṽ ∀ (ṽ, η̃) ∈ Q̃ ,
(4.2)

where a : H(div; Ωs)×H(div; Ωs)→ C and b : H(div; Ωs)× Q̃→ C are the bilinear forms given by

a(σ̃, τ̃ ) :=
∫

Ωs

C−1σ̃ : τ̃ ∀ (σ̃, τ̃ ) ∈ H(div; Ωs)×H(div; Ωs) , (4.3)

and
b(τ̃ , (ṽ, η̃)) :=

∫
Ωs

ṽ · div τ̃ +
∫

Ωs

τ̃ : η̃ ∀ (τ̃ , (ṽ, η̃)) ∈ H(div; Ωs)× Q̃ .

The well-posedness of (4.2) is already well known (see, e.g. [5, Section 11.7, Theorem 11.7] or [16,
Section 3, Theorem 3.1]). In addition, owing to the regularity result for the elasticity problem with
Neumann boundary conditions (see, e.g. [18], [19]), we know that the solution ũ of (4.1) belongs to
[H1+ε(Ωs)]3, for some ε > 0, and there holds

‖ũ‖[H1+ε(Ωs)]3 ≤ C
{
‖div τ‖[L2(Ωs)]3 + ‖q ν‖[L2(Σ)]3

}
≤ C

{
‖div τ‖[L2(Ωs)]3 + ‖q‖H1(Ωf )

}
,

which, in turn, implies that the unique solution of (4.2) satisfies

(σ̃, ũ, γ̃) ∈ [Hε(Ωs)]3×3 × [H1+ε(Ωs)]3 × [Hε(Ωs)]3×3 (4.4)

and

‖σ̃‖[Hε(Ωs)]3×3 + ‖ũ‖[H1+ε(Ωs)]3 + ‖γ̃‖[Hε(Ωs)]3×3 ≤ C
{
‖div τ‖[L2(Ωs)]3 + ‖q‖H1(Ωf )

}
. (4.5)

Note that the trace inequality in H1(Ωf ) is used here to bound ‖q ν‖[L2(Σ)]3 by C ‖q‖H1(Ωf ).

4.2 The associated operator P

We now introduce the linear operators P : X→ H(div; Ωs) and P : X→ X defined by

P (τ̂ ) := σ̃ and P(τ̂ ) := (P (τ̂ ), q) ∀ τ̂ = (τ , q) ∈ X , (4.6)

where (σ̃, (ũ, γ̃)) ∈ H(div; Ωs)× Q̃ is the unique solution of (4.2). It is clear from (4.1) that

P (τ̂ )t = P (τ̂ ) in Ωs , div (P (τ̂ )) = div τ + r(τ̂ ) in Ωs (4.7)

and
(P (τ̂ ))ν = −q ν on Σ . (4.8)

Then, thanks to the continuous dependence result for (4.2), we find that

‖P (τ̂ )‖H(div; Ωs) ≤ C
{
‖div τ‖[L2(Ωs)]3 + ‖q‖H1(Ωf )

}
∀ τ̂ = (τ , q) ∈ X ,

which shows that P is bounded. Moreover, it is easy to see from (4.2), (4.6), (4.7), and (4.8) that P
is actually a projector, and hence there holds

X = P(X) ⊕ (I−P)(X) . (4.9)

Finally, it is clear from (4.4) and (4.5) that P (τ̂ ) ∈ [Hε(Ωs)]3×3 and

‖P (τ̂ )‖[Hε(Ωs)]3×3 ≤ C
{
‖div τ‖[L2(Ωs)]3 + ‖q‖H1(Ωf )

}
∀ τ̂ = (τ , q) ∈ X . (4.10)
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4.3 Well-posedness of the continuous formulation

In order to show that our coupled problem (3.5) is well-posed, we now employ the stable decomposition
(4.9) to reformulate (3.5) in a more suitable form. We begin by observing, according to (4.7), (4.8), the
symmetry of P (τ̂ ), and the fact that ∇r ∈ [L2(Ωs)]3×3

asym ∀ r ∈ RM(Ωs), that for all σ̂ = (σ, p), τ̂ =
(τ , q) ∈ X there holds∫

Ωs

{
divσ − divP (σ̂)

}
· divP (τ̂ ) = −

∫
Ωs

r(σ̂) · divP (τ̂ )

=
∫

Ωs

∇r(σ̂) : P (τ̂ ) − 〈 (P (τ̂ ))ν, r(σ̂) 〉Σ =
∫

Σ
(r(σ̂) · ν) q .

(4.11)

Then, writing σ̂ = P(σ̂) + (I − P)(σ̂) and τ̂ = P(τ̂ ) + (I − P)(τ̂ ) in (3.6), similarly as we did
in [15], using the identity (4.11), and adding and substracting suitable terms, we find that A can be
decomposed as

A(σ̂, τ̂ ) = A0(σ̂, τ̂ ) + K(σ̂, τ̂ ) ∀ σ̂, τ̂ ∈ X , (4.12)

where A0 : X× X→ C and K : X× X→ C are the bounded and symmetric bilinear forms given by

A0(σ̂, τ̂ ) := A(P(σ̂),P(τ̂ )) − A((I−P)(σ̂), (I−P)(τ̂ )) (4.13)

with
A(σ̂, τ̂ ) :=

∫
Ωs

C−1 σ : τ +
1
κ2
s

∫
Ωs

divσ · div τ +
1

ρf ω2

∫
Ωf

∇p · ∇q

+
κ2
f

ρf ω2

∫
Ωf

p q − ı
κf
ρf ω2

∫
Γ
p q ,

(4.14)

and

K(σ̂, τ̂ ) := − 2K(P(σ̂),P(τ̂ )) − K((I−P)(σ̂),P(τ̂ )) − K(P(σ̂), (I−P)(τ̂ ))

+
2
κ2
s

{∫
Ωs

r(σ̂) · r(τ̂ ) +
∫

Σ
r(τ̂ ) · ν p +

∫
Σ

r(σ̂) · ν q
}
,

(4.15)

with

K(σ̂, τ̂ ) :=
∫

Ωs

C−1σ : τ +
κ2
f

ρfω2

∫
Ωf

p q ∀ σ̂ = (σ, p), τ̂ = (τ , q) ∈ X .

Next, we let A0 : X→ X, K : X→ X, and B : X→ Y be the linear and bounded operators induced
by the bilinear forms A0, K, and B, respectively. In addition, we let F ∈ X be the Riesz representant
of F . Hence, using these notations and taking into account the decomposition (4.12), the variational
formulation (3.5) can be rewritten as the following operator equation: Find (σ̂,γ) ∈ X×Y such that(

A0 B∗

B 0

) (
σ̂
γ

)
+
(

K 0
0 0

) (
σ̂
γ

)
=
(

F
0

)
. (4.16)

Throughout the rest of this section we prove that the matrix operators on the left hand side of
(4.16) become invertible and compact, respectively.

Because of the saddle point structure of the matrix operator involving A0 and B, and according
to the well known Babuška-Brezzi theory, we begin the analysis with the continuous inf-sup condition
for B, which, as we know, is equivalent to the surjectivity of B. To this end, we observe from the
definition of the bilinear form B (cf. (3.7)) that B(τ̂ ) := − 1

2

(
τ − τ t

)
∀ τ̂ := (τ , q) ∈ X.
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Lemma 4.1 There exists C1 > 0 such that

supbτ∈Xbτ 6=0

|B(τ̂ ,η) |
‖τ̂‖X

≥ C1 ‖η‖Y ∀η ∈ Y .

Proof. Given η ∈ Y we let z ∈ [H1(Ωs)]3 be the unique (up to a rigid motion) solution of the
variational formulation∫

Ωs

ε(z) : ε(w) = −
∫

Ωs

r(η) ·w −
∫

Ωs

η : ∇w ∀w ∈ [H1(Ωs)]3 , (4.17)

where r(η) ∈ RM(Ωs) is characterized by∫
Ωs

r(η) ·w = −
∫

Ωs

η : ∇w ∀w ∈ RM(Ωs) .

Then, defining ζ := ε(z) + η, we find from (4.17) that div ζ = r(η) in Ωs, whence ζ ∈ H(div; Ωs),
and thus ζ ν = 0 on Σ. It follows that ζ̂ := (− ζ, 0) ∈ X, and clearly B(ζ̂) = η, which proves the
surjectivity of B.

2

Our next goal is to prove that A0 is an isomorphism on the kernel of B. For this purpose, we now
introduce the decomposition

H(div; Ωs) = H0(div; Ωs) ⊕ C I ,

where
H0(div; Ωs) :=

{
τ ∈ H(div; Ωs) :

∫
Ωs

tr(τ ) = 0
}
.

This means that for any τ ∈ H(div; Ωs) there exist unique τ 0 ∈ H0(div; Ωs) and d ∈ C given by

d :=
1

3 |Ωs|

∫
Ωs

tr(τ ), where |Ωs| denotes the measure of Ωs, such that τ = τ 0 + d I .

Our subsequent analysis will strongly depend on the inequalities provided by the following three
lemmata. In particular, note that Lemma 4.3 constitute an interesting generalization of [14, Lemma
2.2] (see also [15, Lemma 4.5]). In addition, we also remark that the coerciveness-type estimate
provided by Lemma 4.4 is less restrictive than the analogue one given in [15, Lemma 4.6].

Lemma 4.2 There exists c1 > 0, depending only on Ωs, such that

c1 ‖τ 0‖2[L2(Ωs)]3×3 ≤ ‖τ d‖2[L2(Ωs)]3×3 + ‖div τ‖2[L2(Ωs)]3
∀ τ ∈ H(div; Ωs) . (4.18)

Proof. See [3, Lemma 3.1] or [11, Proposition 3.1, Chapter IV].
2

Lemma 4.3 There exists c2 > 0 such that

Re
{
A(τ̂ , τ̂ )

}
≥ c2 ‖τ̂‖2X ∀ τ̂ ∈ X . (4.19)

Proof. Let τ̂ = (τ , q) ∈ X with τ = τ 0 + d I. We first notice, from the definition of A (cf. (4.14))
and the inequality (3.8), that

Re
{
A(τ̂ , τ̂ )

}
≥ C4

{
‖τ d‖2[L2(Ωs)]3×3 + ‖div τ‖2[L2(Ωs)]3

+ ‖q‖2H1(Ωf )

}
. (4.20)
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On the other hand, since τ ν = − q ν on Σ, we see that −q ν = τ 0 ν + dν in [H−1/2(Σ)]3,
from which, applying the trace theorem in H(div; Ωs) together with the continuity of the canonical
embedding [L2(Σ)]3 ↪→ [H−1/2(Σ)]3 and the trace theorem in H1(Ωf ), we deduce that

|d| ‖ν‖[H−1/2(Σ)]3 ≤ ‖τ 0 ν‖[H−1/2(Σ)]3 + ‖q ν‖[H−1/2(Σ)]3

≤ C1

{
‖τ 0‖H(div; Ωs) + ‖q‖H1(Ωf )

}
.

It follows that

‖τ‖2H(div; Ωs)
+ ‖q‖2H1(Ωf ) = ‖τ 0‖2H(div; Ωs)

+ 3 d2 |Ωs| + ‖q‖2H1(Ωf )

≤ C2

{
‖τ 0‖2H(div; Ωs)

+ ‖q‖2H1(Ωf )

}
,

which, thanks to (4.18), yields

‖τ‖2H(div; Ωs)
+ ‖q‖2H1(Ωf ) ≤ C3

{
‖τ d‖2[L2(Ωs)]3×3 + ‖div τ‖2[L2(Ωs)]3

+ ‖q‖2H1(Ωf )

}
for all τ̂ = (τ , q) ∈ X. The above estimate and (4.20) imply (4.19) and finish the proof.

2

In what follows we make frequent use of the linear and bounded operator Ξ := (2 P− I) : X→ X.

Lemma 4.4 There exists C > 0, depending on µ, c1, c2, κs, ρf , and ω2, such that for each τ̂ =
(τ , q) ∈ X there holds

Re
{
A0(τ̂ ,Ξ(τ̂ ))

}
≥ C

{
‖P(τ̂ )‖2X + ‖(I−P)τ̂‖2X

}
. (4.21)

Proof. Since P is a projector we easily observe that

P Ξ(τ̂ ) = P(τ̂ ) and (I−P) Ξ(τ̂ ) = − (I−P)(τ̂ ) ∀ τ̂ ∈ X ,

which, according to the definition of A0 (cf. (4.13)), gives

A0(τ̂ ,Ξ(τ̂ )) = A(P(τ̂ ),P(τ̂ )) + A((I−P)(τ̂ ), (I−P)(τ̂ )) . (4.22)

Hence, the inequality (4.21) follows directly from (4.22), Lemma 4.3, and the fact that both P(τ̂ ) and
(I−P)(τ̂ ) belong to X.

2

We now let V be the kernel of B, that is V :=
{
τ̂ = (τ , q) ∈ X : B(τ̂ ) = 0

}
, which, recalling

that B(τ̂ ) := −1
2

(
τ − τ t

)
∀ τ̂ ∈ X, becomes V =

{
τ̂ = (τ , q) ∈ X : τ t = τ

}
. Hence, we are

now in a position to establish the weak coercivity of A0 on V.

Lemma 4.5 There exists C > 0 such that

supbζ∈Vbζ 6=0

|A0(τ̂ , ζ̂) |
‖ζ̂‖X

≥ C ‖τ̂‖X ∀ τ̂ ∈ V . (4.23)

In addition, there holds
supbζ∈V
|A0(ζ̂, τ̂ ) | > 0 ∀ τ̂ ∈ V , τ̂ 6= 0 . (4.24)
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Proof. Since P (τ̂ )t = P (τ̂ ) ∀ τ̂ ∈ X (cf. (4.7)), we find that P(τ̂ ), and hence Ξ(τ̂ ), belong to V
for each τ̂ ∈ V. In addition, it is easy to see, using for instance (4.21) (cf. Lemma 4.4), that for each
τ̂ ∈ X, τ̂ 6= 0, there holds Ξ(τ̂ ) 6= 0. According to the above, for each τ̂ ∈ V, τ̂ 6= 0, we can write

supbζ∈Vbζ 6=0

|A0(τ̂ , ζ̂) |
‖ζ̂‖X

≥ |A0(τ̂ ,Ξ(τ̂ )) |
‖Ξ(τ̂ )‖X

≥
Re
{
A0(τ̂ ,Ξ(τ̂ ))

}
‖Ξ(τ̂ )‖X

, (4.25)

and applying (4.21), the stability of the decomposition (4.9), the fact that ‖τ̂‖X = ‖τ̂‖X, and the
boundedness of Ξ, we deduce that

Re
{
A0(τ̂ ,Ξ(τ̂ ))

}
≥ C ‖τ̂‖2X ≥ C ‖(Ξ(τ̂ ))‖X ‖τ̂‖X ∀ τ̂ ∈ V . (4.26)

In this way, the inf-sup condition (4.23) follows straightforwardly after replacing (4.26) back into
(4.25). Finally, the symmetry of A0 and the estimate (4.26) yields (4.24) and complete the proof.

2

Lemma 4.6 The operator K : X→ X is compact.

Proof. We begin by recalling (cf. (4.10)) that there exists ε > 0 such that P (τ̂ ) ∈ [Hε(Ωs)]3×3 for
all τ̂ ∈ X, which, according to the compact imbedding Hε(Ωr)

c
↪→ L2(Ωr), for r ∈ {s, f}, yields the

compacity of P : X→ [L2(Ωs)]3×3×L2(Ωf ). It follows that P∗ : [L2(Ωs)]3×3×L2(Ωf )→ X, P∗ K̃ P,
(I − P)∗ K̃ P , and P∗ K̃ (I − P) are all compact, where K̃ : [L2(Ωs)]3×3 × L2(Ωf ) → [L2(Ωs)]3×3 ×
L2(Ωf ) is the operator associated to the bilinear form K. This shows that the operator induced by
the first three terms defining K (cf. (4.15)) becomes compact, as well. Finally, it is clear that the
remaining three terms on the right hand side of (4.15) constitute a finite rank operator. 2

We are able now to establish the main result of this section.

Theorem 4.1 Assume that the homogeneous problem associated to (3.5) has only the trivial solution.
Then, given f ∈ [L2(Ωs)]3 and g ∈ H−1/2(Γ), there exists a unique solution ((σ, p),γ) ∈ X × Y to
(3.5) (equivalently (4.16)). In addition, there exists C > 0 such that

‖((σ, p),γ)‖X×Y ≤ C
{
‖f‖[L2(Ωs)]2 + ‖g‖H−1/2(Γ)

}
.

Proof. It suffices to observe that the left hand side of (4.16) constitutes a Fredholm operator of index

zero. In fact, Lemmata 4.1 and 4.5 imply that
(

A0 B∗

B 0

)
is an isomorphism, and Lemma 4.6 yields

the compacity of
(

K 0
0 0

)
.

2

5 Analysis of the Galerkin scheme

In this section we introduce a Galerkin approximation of (3.5) and prove its well-posedness.
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5.1 Preliminaries

We first let {Th}h>0 := {Ths}hs>0 ∪ {Thf }hf>0, where {Ths}hs>0 and {Thf }hf>0 are shape-regular
families of triangulations of the polyhedral regions Ω̄s and Ω̄f , respectively, by tetrahedrons T of
diameter hT with mesh sizes hs := max{hT : T ∈ Ths }, hf := max{hT : T ∈ Thf }, and
h := max{hs, hf}, and such that the vertices of {Ths}hs>0 and {Thf }hf>0 coincide on Σ. In what
follows, given an integer ` ≥ 0 and a subset S of R3, P`(S) denotes the space of polynomials defined
in S of total degree ≤ `. Then, we define

Hh :=
{
τ h ∈ H(div; Ωs) : τ h|T ∈ [P1(T )]3×3 ∀T ∈ Ths

}
,

Wh :=
{
qh ∈ C(Ω̄f ) : qh|T ∈ P1(T ) ∀T ∈ Thf

}
,

and introduce the finite element subspaces of X and Y, given, respectively, by

Xh :=
{
τ̂ h = (τ h, qh) ∈ Hh ×Wh : τ h ν = − qh ν on Σ

}
, (5.1)

and
Yh :=

{
ηh ∈ Y : ηh|T ∈ [P0(T )]3×3 ∀T ∈ Ths

}
.

In addition, throughout the analysis below we will also need the spaces

H̃h :=
{
τ̃ h ∈ Hh : τ̃ h ν = 0 on Σ

}
and

Uh :=
{

vh ∈ [L2(Ωs)]3 : vh|T ∈ [P0(T )]3 ∀T ∈ Ths
}
.

Note that Hh × Uh × Yh constitutes the lowest order mixed finite element approximation of the
linear elasticity problem introduced recently by Arnold Falk and Winther (see [6], [5]). Moreover,
the definition of Xh represents the announced coupling between the H(div; Ωs)-component of the
Arnold-Falk-Winther element (represented by Hh) and the Lagrange finite elements (represented by
Wh).

Hence, the finite element scheme associated to our coupled problem (3.5) is defined as: Find
σ̂h = (σh, ph) ∈ Xh and γh ∈ Yh such that

A(σ̂h, τ̂ h) + B(τ̂ h,γh) = F (τ̂ h) ∀ τ̂ h = (τ h, qh) ∈ Xh ,

B(σ̂h,ηh) = 0 ∀ηh ∈ Yh .
(5.2)

The well-posedness of (5.2) will be proved below in Section 5.3. We previously collect in what remains
of this section the approximation properties of the subspaces involved, and then in Sections 5.2 and
5.3 we analyze a Galerkin approximation of (4.2) with data in Xh, which yields a mixed finite element
approximation of the operator P|Xh (cf. (4.6)).

We begin with Hh. Indeed, given δ ∈ (0, 1], we let Eh : [Hδ(Ωs)]3×3 ∩ H(div; Ωs) → Hh be the
usual BDM interpolation operator (see [11]), which is characterized by the identities∫

F
Eh(τ )ν · p =

∫
F
τ ν · p ∀ p ∈ [P1(F )]3 , ∀ face F of Ths . (5.3)

Moreover, the conmuting diagram property yields

div(Eh(τ )) = Ph(div τ ) ∀ τ ∈ [Hδ(Ωs)]3×3 ∩ H(div; Ωs) , (5.4)
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where Ph : [L2(Ωs)]3 → Uh is the [L2(Ωs)]3-ortogonal projector. In addition, it is well known
(see, e.g. [20, Theorem 3.16]) that there exists C > 0, independent of h, such that for each τ ∈
[Hδ(Ωs)]3×3 ∩ H(div; Ωs) there holds

‖τ − Eh(τ )‖[L2(T )]3×3 ≤ C hδT

{
|τ |[Hδ(T )]3×3 + ‖div τ‖[L2(T )]3

}
∀T ∈ Ths . (5.5)

We now let Πh : H1(Ωf ) → Wh and Rh : [L2(Ωs)]3×3 → Yh be the corresponding orthogonal
projectors with respect to the natural norms of each space. Then, we have (see [8], [11], [29]):

(APσ
h ) For each δ ∈ (0, 1] and for each τ ∈ [Hδ(Ωs)]3×3, with div τ ∈ [Hδ(Ωs)]3, there holds

‖τ − Eh(τ )‖H(div; Ωs) ≤ C hδ
{
‖τ‖[Hδ(Ωs)]3×3 + ‖div τ‖[Hδ(Ωs)]3

}
.

(APph) For each s ∈ (1, 2] and for each q ∈ Hs(Ωf ), there holds

‖q −Πh(q)‖H1(Ωf ) ≤ C hs−1 ‖q‖Hs(Ωf ) .

(APγh ) For each s ∈ (0, 1] and for each η ∈ [Hs(Ωs)]3×3 ∩ [L2(Ωs)]3×3
asym, there holds

‖η −Rh(η)‖[L2(Ωs)]3×3 ≤ C hs ‖η‖[Hs(Ωs)]3×3 .

(APu
h) For each t ∈ (0, 1] and for each v ∈ [Ht(Ωs)]3, there holds

‖v − Ph(v)‖[L2(Ωs)]3 ≤ C ht ‖v‖[Ht(Ωs)]3 .

Note here that (APσ
h ) is actually a straightforward consequence of (5.4), (5.5), and (APu

h).

We end this section with an approximation property of our finite element subspace Xh (cf. (5.1)).
For this purpose, we first proceed similarly as in [17, Section 5.2, Lemma 5.1] and assume from now
on that {Ths}hs>0 is quasi-uniform around Σ. This means that there exists an open neighborhood of
Σ, say ΩΣ, with Lipschitz boundary, and such that the elements of Ths intersecting that region are
more or less of the same size. In other words, we define

TΣ,h :=
{
T ∈ Ths : T ∩ ΩΣ 6= ∅

}
,

and assume that there exists c > 0, independent of h, such that

max
T∈TΣ,h

hT ≤ c min
T∈TΣ,h

hT ∀h > 0 . (5.6)

Note that this assumption and the shape-regularity property of the meshes imply that Σh, the partition
on Σ inherited from Ths , is also quasi-uniform, which means that there exists C > 0, independent of
h, such that

hΣ := max
{

diam {F} : F face of Σh

}
≤ C min

{
diam {F} : F face of Σh

}
.

In addition, the quasi-uniformity of Σh guarantees the inverse inequality on Φh(Σ), the subspace of
[L2(Σ)]3 given by the piecewise polynomials of degree ≤ 1, that is, in particular,

‖φh‖[L2(Σ)]3 ≤ C h
−1/2
Σ ‖φh‖[H−1/2(Σ)]3 ∀φh ∈ Φh(Σ) . (5.7)

Then, we are now in a position to establish the following lemma.
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Lemma 5.1 Given ε ∈ (0, 1], define Xε :=
{
H(div; Ωs) ∩ [Hε(Ωs)]3×3

}
×H1+ε(Ωf ). Then, there

exists a linear operator Ih : Xε −→ Xh, such that for each τ̂ = (τ , q) ∈ X ∩ Xε there holds

‖τ̂ − Ih(τ̂ )‖X ≤ C
{
‖τ − Eh(τ )‖H(div; Ωs) + ‖q −Πh(q)‖H1(Ωf )

}
. (5.8)

Proof. Given τ̂ := (τ , q) ∈ X ∩ Xε, we let ϕ : Ωs 7→ R3 be the unique solution (guaranteed by the
Lax-Milgram Lemma) of the vectorial Laplace problem

∆ϕ =
1
|Ωs|

∫
Σ

{
Eh(τ )ν + Πh(q)ν

}
in Ωs

∂ϕ

∂ν
= Eh(τ )ν + Πh(q)ν on Σ ,

∫
Ωs

ϕ = 0 ,
(5.9)

whose corresponding continuous dependence result states that

‖ϕ‖[H1(Ωs)]3 ≤ C ‖Eh(τ )ν + Πh(q)ν‖[H−1/2(Σ)]3 . (5.10)

Actually, since the Neumann data Eh(τ )ν + Πh(q)ν, being a piecewise polynomial of degree ≤ 1,
belongs to [Hδ(Σ)]3 for any δ ∈ [0, 1/2), we deduce that we have at least [H3/2(Ωs)]3-regularity for
the solution ϕ and

‖ϕ‖[H3/2(Ωs)]3
≤ C ‖Eh(τ )ν + Πh(q)ν‖[L2(Σ)]3 . (5.11)

Moreover, since Ωint
s := Ωs\ΩΣ is an interior region of Ωs, the interior elliptic regularity estimate

(see, e.g. [26, Theorem 4.16]) says that

‖ϕ‖[H2(Ωint
s )]3 ≤ C ‖Eh(τ )ν + Πh(q)ν‖[H−1/2(Σ)]3 . (5.12)

Next, we define ζ := ∇ϕ in Ωs, whence ζ ∈ [H1/2+δ(Ωs)]3×3, and observe from (5.9) that

div ζ =
1
|Ωs|

∫
Σ

{
Eh(τ )ν + Πh(q)ν

}
in Ωs , and ζ ν = Eh(τ )ν + Πh(q)ν on Σ , (5.13)

which, in particular, implies that ζ ∈ H(div; Ωs). Hence, we now set

Ih(τ̂ ) :=
(
Eh(τ − ζ),Πh(q)

)
∈ Hh ×Wh ,

and show that Ih is well defined, that is Ih(τ̂ ) ∈ Xh. In fact, employing the characterization (5.3) and
the second identity in (5.13), we find that for each face F ⊆ Σ and for each p ∈ [P1(F )]3, there holds∫

F
Eh(ζ)ν · p =

∫
F
ζ ν · p =

∫
F

{
Eh(τ )ν + Πh(q)ν

}
· p

which, noting that
{
Eh(τ − ζ)ν + Πh(q)ν

}∣∣∣
F
∈ [P1(F )]3, yields Eh(τ − ζ)ν = −Πh(q)ν on Σ.

We now aim to prove (5.8). We first observe, applying the triangle inequality, that

‖τ̂ − Ih(τ̂ )‖2X ≤ 2 ‖τ − Eh(τ )‖2H(div; Ωs)
+ 2 ‖Eh(ζ)‖2H(div; Ωs)

+ ‖q −Πh(q)‖2H1(Ωf ) . (5.14)

Then, using the first identity in (5.13), which says that div(ζ) ∈ Uh, and (5.4), we deduce that

‖Eh(ζ)‖2H(div; Ωs)
= ‖Eh(ζ)‖2[L2(Ωs)]3×3 + ‖div ζ‖2[L2(Ωs)]3

≤ C
{
‖Eh(ζ)‖2[L2(Ωs)]3×3 + ‖Eh(τ )ν + Πh(q)ν‖2

[H−1/2(Σ)]3

}
.

(5.15)
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Now, adding and substracting τ ν = − q ν on Σ, and applying the trace theorems in H(div; Ωs)
and H1(Ωf ), we find that

‖Eh(τ )ν + Πh(q)ν‖[H−1/2(Σ)]3 ≤ ‖
(
τ − Eh(τ )

)
ν‖[H−1/2(Σ)]3 + ‖

(
q − Πh(q)

)
ν‖H−1/2(Σ)

≤ C
{
‖τ − Eh(τ )‖H(div; Ωs) + ‖q − Πh(q)‖L2(Σ)

}
≤ C

{
‖τ − Eh(τ )‖H(div; Ωs) + ‖q −Πh(q)‖H1(Ωf )

}
.

(5.16)

It remains to estimate ‖Eh(ζ)‖[L2(Ωs)]3×3 . In fact, defining the sets

ΩΣ,h := ∪
{
T : T ∈ TΣ,h

}
and Ωint

s,h := Ωs\ΩΣ,h ⊆ Ωint
s ,

and using the stability of Eh when applied to [H1(Ωint
s,h )]3, and the estimate (5.12), we find that

‖Eh(ζ)‖[L2(Ωs)]3×3 ≤ ‖Eh(ζ)‖[L2(Ωint
s,h)]3×3 + ‖Eh(ζ)‖[L2(ΩΣ,h)]3×3

≤ C ‖ϕ‖[H2(Ωint
s )]3 + ‖Eh(ζ)‖[L2(ΩΣ,h)]3×3

≤ C ‖Eh(τ )ν + Πh(q)ν‖[H−1/2(Σ)]3 + ‖Eh(ζ)‖[L2(ΩΣ,h)]3×3 .

(5.17)

In turn, adding and substracting ζ = ∇ϕ, and utilizing the upper bound (5.10), the estimates (5.5)
(with δ = 1/2) and (5.11), the first identity in (5.13), the quasi-uniformity bound (5.6), and the inverse
inequality (5.7), we arrive at

‖Eh(ζ)‖2[L2(ΩΣ,h)]3×3 ≤ C
{
‖ζ − Eh(ζ)‖2[L2(ΩΣ,h)]3×3 + ‖Eh(τ )ν + Πh(q)ν‖2

[H−1/2(Σ)]3

}
≤ C

∑
T∈TΣ,h

hT ‖ϕ‖2[H3/2(T )]3
+ C ‖div ζ‖2[L2(Ωs)]3

+ C ‖Eh(τ )ν + Πh(q)ν‖2
[H−1/2(Σ)]3

≤ C hΣ ‖Eh(τ )ν + Πh(q)ν‖2[L2(Σ)]3 + C ‖Eh(τ )ν + Πh(q)ν‖2
[H−1/2(Σ)]3

≤ C ‖Eh(τ )ν + Πh(q)ν‖2
[H−1/2(Σ)]3

.

(5.18)

Finally, (5.14), (5.15), (5.16), (5.17) and (5.18) finish the proof.
2

5.2 Numerical analysis of the auxiliary Neumann problem

Given τ̂ h = (τ h, qh) ∈ Xh ⊆ X, we recall from (4.2) and (4.6) that P(τ̂ h) = (P (τ̂ h), qh) := (σ̃, qh),
where (σ̃, (ũ, γ̃)) is the unique element in H(div; Ωs)× Q̃ such that σ̃ν = − qh ν on Σ and

a(σ̃, τ̃ ) + b(τ̃ , (ũ, γ̃)) = 0 ∀ τ̃ ∈ H̃ ,

b(σ̃, (ṽ, η̃)) =
∫

Ωs

(div τ h + r(τ̂ h)) · ṽ ∀ (ṽ, η̃) ∈ Q̃ .
(5.19)

In this case, the regularity estimate for (5.19) (cf. (4.5)) becomes

‖σ̃‖[Hε(Ωs)]3×3 + ‖ũ‖[H1+ε(Ωs)]3 + ‖γ̃‖[Hε(Ωs)]3×3 ≤ C
{
‖div τ h‖[L2(Ωs)]3 + ‖qh‖H1(Ωf )

}
. (5.20)
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Hence, we now consider the following Galerkin approximation of (5.19): Find (σ̃h, (ũh, γ̃h)) ∈
Hh × Q̃h such that σ̃h ν = − qh ν on Σ and

a(σ̃h, τ̃ h) + b(τ̃ h, (ũh, γ̃h)) = 0 ∀ τ̃ h ∈ H̃h ,

b(σ̃h, (ṽh, η̃h)) =
∫

Ωs

(div τ h + r(τ̂ h)) · ṽh ∀ (ṽh, η̃h) ∈ Q̃h ,
(5.21)

where Q̃h := (I−M)(Uh)× Yh is a finite element subspace of Q̃.

Note that the solution of (5.19) can be defined, equivalently, as (σ̃, (ũ, γ̃)) := (σ̃0 + τ h, (ũ, γ̃)),
where (σ̃0, (ũ, γ̃)) is the unique element in H̃× Q̃ such that

a(σ̃0, τ̃ ) + b(τ̃ , (ũ, γ̃)) = −a(τ h, τ̃ ) ∀ τ̃ ∈ H̃ ,

b(σ̃0, (ṽ, η̃)) =
∫

Ωs

(div τ h + r(τ̂ h)) · ṽ − b(τ h, (ṽ, η̃)) ∀ (ṽ, η̃) ∈ Q̃ .
(5.22)

Similarly, we may look for the solution of (5.21) in the form (σ̃h, (ũh, γ̃h)) := (σ̃0,h + τ h, (ũh, γ̃h)),
where (σ̃0,h, (ũh, γ̃h)) ∈ H̃h × Q̃h is such that

a(σ̃0,h, τ̃ h) + b(τ̃ h, (ũh, γ̃h)) = −a(τ h, τ̃ h) ∀ τ̃ h ∈ H̃h,

b(σ̃0,h, (ṽh, η̃h)) =
∫

Ωs

(div τ h + r(τ̂ h)) · ṽh − b(τ h, (ṽh, η̃h)) ∀ (ṽh, η̃h) ∈ Q̃h.

(5.23)
It is clear that (5.23) constitutes a conforming Galerkin approximation of (5.22).

In what follows we apply the discrete Babuška-Brezzi theory to show the unique solvability, sta-
bility, and convergence of (5.21) (equivalently (5.23)). We provide first the discrete inf-sup condition
for b on H̃h × Q̃h, which has already been established in [5].

Lemma 5.2 There exist β̃ > 0, independent of h, such that for each (ṽh, η̃h) ∈ Q̃h, there hold

sup
τ̃h∈H̃h
τ̃h 6=0

|b(τ̃ h, (ṽh, η̃h)) |
‖τ̃ h‖H(div; Ωs)

≥ β̃1 ‖(ṽh, η̃h)‖[L2(Ωs)]3×[L2(Ωs)]3×3 . (5.24)

Proof. See [5, Section 11.7, Theorem 11.9].
2

Next, we prove that a is strongly coercive on the discrete kernel of b, which is given by

S̃h :=
{
τ̃ h ∈ H̃h :

∫
Ωs

ṽh · div τ̃ h +
∫

Ωs

τ̃ h : η̃h = 0 ∀ (ṽh, η̃h) ∈ Q̃h

}
.

However, given τ̃ h ∈ S̃h ⊆ H̃h and vh ∈ Uh, we find, defining ṽh := (I −M)(vh) ∈ (I −M)(Uh),
integrating by parts, and noting that ∇M(vh) ∈ Yh, that∫

Ωs

vh · div τ̃ h =
∫

Ωs

(ṽh + M(vh)) · div τ̃ h

=
∫

Ωs

ṽh · div τ̃ h −
∫

Ωs

∇M(vh) : τ̃ h + 〈τ̃ h ν,M(vh)〉Σ = 0 ,
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whence S̃h actually becomes

S̃h :=
{
τ̃ h ∈ H̃h :

∫
Ωs

vh · div τ̃ h +
∫

Ωs

τ̃ h : η̃h = 0 ∀ (vh, η̃h) ∈ Uh × Yh

}
.

In this way, since div τ̃ h ∈ Uh for all τ̃ h ∈ H̃h, we deduce that

S̃h :=
{
τ̃ h ∈ H̃h : div τ̃ h = 0 in Ωs and

∫
Ωs

τ̃ h : η̃h = 0 ∀ η̃h ∈ Yh

}
.

The strong coerciveness of a on a space containing S̃h is established next.

Lemma 5.3 There exists α > 0, independent of h, such that

a(τ̃ h, τ̃ h) ≥ α ‖τ̃ h‖2H(div; Ωs)
∀ τ̃ h ∈ H̃h such that div τ̃ h = 0 in Ωs .

Proof. Let τ̃ h = τ̃ h,0 + dh I as indicated, with τ̃ h,0 ∈ H0(div; Ωs) and dh ∈ C. Since 0 = div τ̃ h =
div τ̃ h,0 in Ωs and τ̃ h ν = 0 on Σ, it follows from (3.8), (4.3), Lemma 4.2, and [15, Lemma 4.5] (see
also Lemma 4.3 or [14, Lemma 2.2]), that

a(τ̃ h, τ̃ h) ≥ 1
2µ
‖τ̃ dh‖[L2(Ωs)]3×3 ≥

c1

2µ
‖τ̃ h,0‖2[L2(Ωs)]3×3 =

c1

2µ
‖τ̃ h,0‖2H(div; Ωs)

≥ α ‖τ̃ h‖2H(div; Ωs)
,

which finishes the proof.
2

We are now in a position to state the unique solvability, stability, and convergence of (5.21).

Theorem 5.1 Given τ̂ h = (τ h, qh) ∈ Xh, there exists a unique (σ̃h, (ũh, γ̃h)) ∈ Hh × Q̃h solution
of (5.21). Moreover, there exist C, C̃ > 0, independent of h, such that

‖σ̃h‖H(div; Ωs) + ‖ũh‖[L2(Ωs)]3 + ‖γ̃h‖[L2(Ωs)]3×3 ≤ C
{
‖τ h‖[H(div; Ωs) + ‖qh‖H1(Ωf )

}
(5.25)

and

‖σ̃ − σ̃h‖H(div; Ωs) + ‖ũ− ũh‖[L2(Ωs)]3 + ‖γ̃ − γ̃h‖[L2(Ωs)]3×3

≤ C̃

{
‖(I− Eh)(σ̃)‖H(div; Ωs) + ‖(I− Ph)(ũ)‖[L2(Ωs)]3 + ‖(I−Rh)(γ̃)‖[L2(Ωs)]3×3

}
,

(5.26)

where (σ̃, (ũ, γ̃)) ∈ H(div; Ωs)× Q̃ is the unique solution of (5.19).

Proof. It follows straightforwardly from Lemma 5.2, Lemma 5.3, and the Babuška-Brezzi theory (see
[11], [29]) applied to the continuous and discrete formulations (5.19) and (5.21) (equivalently (5.22)
and (5.23)).

2

5.3 A mixed finite element approximation of P|Xh
As suggested by the previous analysis, we now introduce the linear operators Ph : Xh → Hh and
Ph : Xh → Xh defined by

Ph(τ̂ h) = σ̃h and Ph(τ̂ h) := (Ph(τ̂ h), qh) ∀ τ̂ h = (τ h, qh) ∈ Xh ,
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where (σ̃h, (ũh, γ̃h)) ∈ Hh × Q̃h is the unique solution of (5.21). The operator Ph constitutes what
we call the mixed finite element approximation of P|Xh . It follows from Theorem 5.1 (cf. (5.25)) that
Ph is a linear and bounded operator. In addition, it is clear from (5.21) that

Ph(τ̂ h)ν = − qh ν on Σ and
∫

Ωs

Ph(τ̂ h) : η̃h = 0 ∀ η̃h ∈ Yh . (5.27)

Our next goal is to estimate ‖P (τ̂ h) − Ph(τ̂ h)‖H(div; Ωs) = ‖σ̃ − σ̃h‖H(div; Ωs) for each τ̂ h ∈ Xh.
More precisely, we have the following result.

Lemma 5.4 Let ε > 0 be the parameter defining the regularity of the solution of (5.19). Then, there
exists C > 0, independent of h, such that

‖P (τ̂ h) − Ph(τ̂ h)‖H(div; Ωs) ≤ C hε
{
‖div τ h‖[L2(Ωs)]3 + ‖qh‖H1(Ωf )

}
∀ τ̂ h ∈ Xh . (5.28)

Proof. It suffices to show that the right hand side of (5.26) is bounded by the right hand side of
(5.28). Indeed, using (APu

h), (APγh ), and the regularity estimate (5.20), we easily find that

‖(I− Ph)(ũ)‖[L2(Ωs)]2 + ‖(I−Rh)(γ̃)‖[L2(Ωs)]2×2

≤ C hε
{
‖ũ‖[H1+ε(Ωs)]2 + ‖γ̃‖[Hε(Ωs)]2×2

}
≤ C hε

{
‖div τ h‖[L2(Ωs)]3 + ‖qh‖H1(Ωf )

}
.

(5.29)

Now, in order to bound ‖(I− Eh)(σ̃)‖H(div; Ωs) we proceed exactly as in [15, Lemma 5.4]. In fact,
using that

div σ̃ = div τ h + r(τ̂ h) in Ωs , (5.30)

and then applying the approximation property (5.5), the regularity estimate (5.20), and the bound-
edness of r, we deduce that

‖(I− Eh)(σ̃)‖[L2(Ωs)]3×3 ≤ C hε
{
|σ̃|[Hε(Ωs)]3×3 + ‖div σ̃‖[L2(Ωs)]3

}
≤ C hε

{
‖div τ h‖[L2(Ωs)]3 + ‖qh‖H1(Ωf )

}
.

(5.31)

Furthermore, it follows from (5.4) and (5.30) that

‖div σ̃ − div(Eh(σ̃))‖[L2(Ωs)]3 = ‖(I− Ph)(div(σ̃))‖[L2(Ωs)]3 = ‖(I− Ph)(r(τ̂ h))‖[L2(Ωs)]3 ,

whence, (APu
h), the fact that all the norms in RM(Ωs) are equivalent (with constants certainly inde-

pendent of h), and the boundedness of r, imply that

‖div σ̃ − div(Eh(σ̃))‖[L2(Ωs)]3 ≤ C h ‖r(τ̂ h)‖[H1(Ωs)]3 ≤ C h ‖r(τ̂ h)‖[L2(Ωs)]3

≤ C h
{
‖div τ h‖[L2(Ωs)]3 + ‖qh‖H1(Ωf )

}
.

(5.32)

In this way, (5.31) and (5.32) give the required estimate for ‖(I − Eh)(σ̃)‖H(div; Ωs), which, together
with (5.29) and (5.26), yields (5.28) and finishes the proof.

2

19



5.4 Well-posedness of the discrete formulation

In this section we prove the well-posedness of our mixed finite element scheme (5.2). To this end,
as established by a classical result on projection methods for Fredholm operators of index zero (see,
e.g. Theorem 13.7 in [25]), it suffices to show that the Galerkin scheme associated to the isomorphism(

A0 B∗

B 0

)
is well-posed. Therefore, in what follows we prove that A0 and B (cf. (4.13), (3.7))

satisfy the corresponding inf-sup conditions on the finite element subspace Xh × Yh, thus providing
the discrete analogues of Lemmata 4.1 and 4.5.

We begin with the discrete inf-sup condition for B.

Lemma 5.5 There exists β > 0, independent of h, such that for each ηh ∈ Yh, there holds

supbτh∈Xhbτh 6=0

|B(τ̂ h,ηh) |
‖τ̂ h‖X

≥ β ‖ηh‖[L2(Ωs)]3×3 .

Proof. It suffices to notice that

supbτh∈Xhbτh 6=0

|B(τ̂ h,ηh) |
‖τ̂ h‖X

≥ sup
(τh,0)∈Xh

τh 6=0

|B((τ h, 0),ηh) |
‖(τ h, 0)‖X

= sup
τh∈H̃h
τh 6=0

∣∣∣∣∫
Ωs

τ h : ηh

∣∣∣∣
‖τ h‖H(div; Ωs)

and then to take ṽh = 0 in (5.24). 2

We now let Vh be the discrete kernel of B, that is

Vh := { τ̂ = (τ h, qh) ∈ Xh : B(τ̂ h,ηh) = 0 ∀ηh ∈ Yh }

=
{
τ̂ h = (τ h, qh) ∈ Xh :

∫
Ωs

τ h : ηh = 0 ∀ηh ∈ Yh

}
.

Then, the discrete weak coercivity of A0 is established as follows.

Lemma 5.6 There exist C, h1 > 0, independent of h such that for each h ≤ h1 there holds

supbζh∈Vhbζh 6=0

|A0(τ̂ h, ζ̂h) |
‖ζ̂h‖X

≥ C ‖τ̂ h‖X ∀ τ̂ h ∈ Vh . (5.33)

In addition, for each h ≤ h1 there holds

supbζh∈Vh
|A0(ζ̂h, τ̂ h) | > 0 ∀ τ̂ h ∈ Vh , τ̂ h 6= 0 . (5.34)

Proof. Let us introduce the linear and bounded operator Ξh := (2 Ph − I) : Xh → Xh, which
constitutes a discrete approximation of the operator Ξ := (2 P − I) : X → X (cf. Section 4.3). It
follows from Lemma 5.4 that

‖Ξ(τ̂ h) − Ξh(τ̂ h)‖H(div; Ωs) ≤ C hε
{
‖div τ h‖[L2(Ωs)]3 + ‖qh‖H1(Ωf )

}
≤ C̃ hε ‖τ̂ h‖X ∀ τ̂ h ∈ Xh ,
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and hence, using the boundedness of A0, the inequality (4.21) (cf. Lemma 4.4), and the stability of
the decomposition (4.9), we find that for each τ̂ h = (τ h, qh) ∈ Xh there holds∣∣∣Re

{
A0(τ̂ h,Ξhτ̂ h)

} ∣∣∣ ≥ ∣∣∣Re
{
A0(τ̂ h,Ξ(τ̂ h)

} ∣∣∣ − C̃ hε ‖τ̂ h‖2X

≥ C
{
‖P(τ̂ h)‖2X + ‖(I−P)(τ̂ h)‖2X

}
− C̃ hε ‖τ̂ h‖2X

≥
{
C − C̃ hε

}
‖τ̂ h‖2X .

Thus, from this estimate we deduce the existence of h1 > 0 such that for each h ≤ h1 there holds∣∣∣Re
{
A0(τ̂ h,Ξh(τ̂ h))

} ∣∣∣ ≥ C ‖τ̂ h‖2X ≥ C ‖(Ξh(τ̂ h))‖X ‖τ̂ h‖X ∀ τ̂ ∈ Xh , (5.35)

where the boundedness of Ξh has also been used in the last inequality.

In this way, since (5.27) implies that Ξh(τ̂ h) ∈ Vh for each τ̂ h ∈ Vh, we realize that the discrete
inf-sup condition (5.33) follows straightforwardly from (5.35), noting also from this inequality that
Ξh(τ̂ h) 6= 0 for each τ̂ h 6= 0. Finally, similarly as in the continuous case (cf. Lemma 4.5), the
symmetry of A0 and the estimate (5.35) yield the discrete inf-sup condition (5.34).

2

The well-posedness and convergence of the discrete scheme (5.2) can now be established.

Theorem 5.2 Assume that the homogeneous problem associated to (3.5) has only the trivial solution.
Let h1 > 0 be the constant provided by Lemma 5.6. Then, for each h ≤ h1, the mixed finite element
scheme (5.2) has a unique solution (σ̂h = (σh, ph),γh) ∈ Xh×Yh. In addition, there exist C1, C2 > 0,
independent of h, such that

‖((σh, ph),γh)‖X×Y ≤ C1 sup
(τh,qh)∈Xh
(τh,qh)6=0

|F (τ h, qh)|
‖(τ h, qh)‖X

≤ C1

{
‖f‖[L2(Ωs)]3 + ‖g‖H−1/2(Γ)

}

and
‖((σ, p),γ) − ((σh, ph),γh)‖X×Y

≤ C2 inf
((τh,qh),ηh)∈Xh×Yh

‖((σ, p),γ) − ((τ h, qh),ηh)‖X×Y .
(5.36)

Furthermore, if there exists δ ∈ (0, 1] such that σ ∈ [Hδ(Ωs)]3×3, divσ ∈ [Hδ(Ωs)]3, p ∈ H1+δ(Ωf ),
and γ ∈ [Hδ(Ωs)]3×3, then there holds

‖((σ, p),γ) − ((σh, ph),γh)‖X×Y

≤ C3 h
δ
{
‖σ‖[Hδ(Ωs)]3×3 + ‖div(σ)‖[Hδ(Ωs)]3 + ‖p‖H1+δ(Ωf ) + ‖γ‖[Hδ(Ωs)]3×3

}
,

(5.37)

with a constant C3 > 0, independent of h.

Proof. Thanks to Lemmata 5.5 and 5.6, the proof of the first part is a direct application of Theorem
13.7 in [25], whereas the rate of convergence (5.37) follows directly from the Cea estimate (5.36), and
the approximation properties (APσ

h ), (APph), (APγh ), and the special one for Xh given by Lemma 5.1
(cf. (5.8)).

2
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