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Abstract. Numerical methods for the reliable and efficient identification of parameters defining the flux

function and the diffusion coefficient of a strongly degenerate parabolic equation are of great importance in

applicative areas including a sedimentation-consolidation model and a diffusively corrected kinematic traffic
model. This problem can be treated by repeatedly solving the corresponding direct problem under systematic

variation of an initially guessed set of model parameters, with the aim of successively minimizing a cost

functional that measures the distance between a space- or time-dependent observation and the corresponding
numerical solution. The direct problem is solved herein by a version of a well-known explicit, monotone

three-point finite difference scheme. This version is obtained by replacing the standard conservative three-

point finite difference discretization of the diffusive term by a formula that involves a discrete mollification
operator. The mollified scheme occupies a larger stencil but converges under a less restrictive CFL condition,

which allows to employ a larger time step than for the basic scheme. By numerical experiments it is
demonstrated that despite additional computational effort, the mollified scheme leads to gains in CPU time

for the parameter identification procedure. Moreover, results are also favorable compared with the basic

scheme in terms of the error level and the sensitivity with respect to the initial guess and noise in the context
of parameter recognition problems.

1. Introduction

1.1. Scope. We are interested in the numerical identification of unknown parameters appearing in the
flux and diffusion terms for the following initial-boundary value problem (IBVP) for a strongly degenerate
parabolic equation in one space dimension:

ut + f(u)x = A(u)xx, (x, t) ∈ ΩT := (0, L)× (0, T ], T > 0, (1.1a)

u(x, 0) = u0(x), x ∈ [0, L] , (1.1b)

f(u)−A(u)x
∣∣
x=0

= ψ0(t), t ∈ (0, T ], (1.1c)

f(u)−A(u)x
∣∣
x=L

= ψL(t), t ∈ (0, T ], (1.1d)

where A is an integrated diffusion coefficient, i.e.,

A(u) =
∫ u

0

a(s) ds, a(u) ≥ 0. (1.2)

The diffusion function a is assumed to be integrable and is allowed to vanish on u-intervals of positive length,
on which (1.1a) turns into a first-order hyperbolic conservation law, so that (1.1a) is strongly degenerate
parabolic. On the other hand, we assume that f is piecewise smooth and Lipschitz continuous. Under
suitable choices of the functions f , a, ψ0 and ψL the IBVP (1.1) may describe a variety of real processes.
We here focus on (1.1) as a model of the sedimentation-consolidation process of a solid-liquid suspension
[1, 2] and on a variant of this problem that describes the evolution of the local car density on a finite road
segment for a diffusively corrected kinematic traffic model [3, 4].
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Due to its strongly degenerate parabolic nature and the nonlinearity of the convective flux, solutions of
(1.1a) are, in general, discontinuous even if u0 is smooth, and need to be defined as weak solutions along
with an entropy condition to select the physically relevant solution, the entropy solution. For the definition,
existence and uniqueness of entropy solutions of (1.1) we refer to [5]. For a short general introduction to
the well-posedness analysis of strongly degenerate parabolic equations and an up-to-date list of references
we refer e.g. to the introductory parts of [6].

In the present work we are interested in methods of parameter identification that are based on repeated
numerical solutions of the direct problem (1.1) under successive variation of parameters appearing in the
coefficient functions f and a. A numerical scheme suitable for the solution of the direct problem is the
explicit, conservative monotone finite difference scheme first introduced by Evje and Karlsen in [7] for initial
value problems of (1.1a), and then adapted to initial-boundary value problems [1, 8].

To describe the essential advantage in using mollified versions of this scheme, assume that ∆t and ∆x are
the corresponding time step and meshwidth of a Cartesian grid introduced on ΩT , and define λ := ∆t/∆x
and µ := ∆t/∆x2 = λ/∆x. Then the scheme from [1, 7], henceforth called basic scheme, converges to the
unique entropy solution of (1.1) provided that the following CFL condition is satisfied:

λ ‖f ′‖∞ + 2µ ‖a‖∞ ≤ 1. (1.3)

In the basic scheme, the term A(u)xx is discretized conservatively by standard second finite differences
of A(u). The discrete mollification method provides an alternative conservative, centered discretization of
A(u)xx on a stencil of in total 2η + 1 points, where η is a parameter. It is shown in [9] that this device,
which defines what we call mollified scheme, preserves monotonicity and convergence of the basic scheme,
but that these properties hold under the CFL condition

λ ‖f ′‖∞ + 2µεη ‖a‖∞ ≤ 1, (1.4)

where εη < 1. (For the values η = 3, η = 5 and η = 8 and the particular mollification weights considered
herein, we get ε3 = 0.7130, ε5 = 0.3969 and ε8 = 0.1960, respectively.) Clearly, condition (1.4) is more
favorable than (1.3) since it shows that for a given value of ∆x, mollified schemes may proceed by larger
time steps. As was shown in [9], these schemes are even competitive in efficiency (compared with the basic
scheme) in terms of error reduction per CPU time despite the fact that additional effort for the evaluation
of wider stencils is involved, and slightly more numerical diffusion is introduced. For this reason, mollified
schemes are an attractive option for computations that are usually time consuming, such as parameter
identification problems since the same IBVP (but with varied parameters) has to be solved repeatedly. It is
the purpose of the present work to demonstrate that mollified schemes are indeed competitive for parameter
identification and give rise to savings in CPU time.

1.2. Related work. The discrete mollification method is a convolution-based filtering procedure suitable for
the regularization of ill-posed problems and for the stabilization of explicit schemes for the solution of PDEs.
With respect to numerical identification of coefficients, the mollification method has shown its advantages in
different settings, for instance, diffusion coefficients, linear [10] and nonlinear [11] and right-hand side forcing
terms in parabolic equations with time fractional derivatives [12].

Inverse problems for strongly degenerate parabolic equations are of particular interest in the context of
the sedimentation-consolidation model. In fact, in applications such as wastewater treatment and mineral
processing, the reliable extraction of material-specific parameters appearing in the model functions f and a
from laboratory experiments permits to simulate the operation and control of continuous clarifier-thickeners
handling the same material [13, 14]. The first approaches to solve this problem numerically were based
on the numerical solution of a suitable adjoint problem [15, 16]. In particular, these papers address the
theoretical issue of identifiability and partially prove the existence of solutions for the identification problem.
Furthermore, they include numerical schemes and numerically solved experiments which include either noisy
or simulated data. In [17], the authors introduce a numerical scheme for the simultaneous identification
of several parameters and include very well designed experiments to illustrate the quality of the recovery.
Likewise, reference [18] is focused on the numerical identification of unknown ingredients with the important
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feature of allowing noisy data in one of the examples. In all cases it turns out that the parameters appearing
in common semi-empirical formulas are associated with strongly differing sensitivities.

The present paper is focused on the numerical identification problem, and we do not address theoretical
issues related to identifiability of the coefficients. As in the references cited above, the identification problem
is formulated through the minimization of a suitable cost function. For the numerical solution of the direct
problem, we implement two explicit schemes, the basic scheme from [1, 7] and the mollified scheme introduced
in [9]. Our identification methodology is quite competitive in terms of suitability and CPU time. The
numerical experiments illustrate the quality of identifications even in the presence of noisy data.

1.3. Outline of the paper. The remainder of the paper is organized as follows. In Section 2 we recall the
definition and summarize some properties of the discrete mollification operator, which is the key ingredient of
the mollified scheme. In Section 3 we outline the sedimentation-consolidation and traffic models (Sects. 3.1
and 3.2, respectively), and introduce the basic and mollified numerical schemes for the approximation of
(1.1a) (Sect. 3.3). Section 4 describes the solution of the parameter identification problem. To this end, we
formulate in Sect. 4.1 the (continuous) inverse problem as a parameter identification problem in terms of a
cost functional which we seek to minimize, and which measures the distance between the observed data and
calculated portions of the solution of the direct problem. Then, in Sect. 4.2, we provide a discrete formulation
of this problem by replacing the exact solution of the direct problem by a numerical one, and in Sect. 4.3
the Nelder-Mead simplex method used to successively minimize the cost functional is addressed. Four
numerical examples are presented in Section 5 (Sects. 5.1–5.4), three of them related to the sedimentation-
consolidation model and one to the traffic model. Conclusions that can be derived from the numerical results
are summarized in Sect. 5.5.

2. The discrete mollification operator

The discrete mollification method [19, 20] is based on replacing a discrete set of data y = {yj}j∈Z, which
may consist of evaluations or cell averages of a real function y = y(x) at equidistant grid points xj = x0+j∆x,
∆x > 0, j ∈ Z, by its mollified version Jηy, where Jη is the discrete mollification operator defined by

[Jηy]j :=
η∑

i=−η
wiyj−i, j ∈ Z.

Here, the support parameter η ∈ N indicates the width of the mollification stencil, and the weights wi satisfy
wi = w−i and 0 ≤ wi ≤ wi−1 for i = 1, . . . , η along with w−η + · · · + wη−1 + wη = 1. The weights wi are
obtained by numerical integration of the truncated Gaussian kernel κpδ with parameters δ > 0 and p > 0:

κpδ(t) :=

{
Apδ

−1 exp(−t2/δ2) for |t| ≤ pδ,
0 otherwise,

where Ap :=
(∫ p

−p
exp(−s2) ds

)−1

.

This kernel satisfies κpδ ≥ 0, κpδ ∈ C∞(−pδ, pδ), κpδ = 0 outside [−pδ, pδ], and
∫

R κpδ = 1. Then we compute
the weights by

wi :=
∫ (i+1/2)∆x

(i−1/2)∆x

κpδ(−s) ds, i = −η, . . . , η. (2.1)

Usually p = 3 is taken and δ, whose role is to determine the shape of the Gaussian bell of the kernel,
is considered as regularization parameter, and it is estimated by methods like Generalized Cross Validation
(GCV) [20, 21]. In any case, in this work, as was done in previous papers [9, 22, 23, 30, 31], the main
relationship between δ and η is given by δ = (η+ 1/2)∆x/p. This choice generates weights w−η, . . . , wη that
are independent of ∆x. The resulting values of wi for several values of η and p = 3 are given in Table 1.

We conclude this section with some approximation and stability results. In what follows, we denote by ∆+,
∆− and ∆0 the spatial forward, backward, and centered difference operators defined by ∆+zj := zj+1 − zj ,
∆−zj := zj − zj−1, and ∆0zj := (zj+1 − zj−1)/2, respectively.
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η i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
0 1

1 0.84272 0.07864

2 0.60387 0.19262 5.4438e-3

3 0.45556 0.23772 3.3291e-2 1.2099e-3

4 0.36266 0.24003 6.9440e-2 8.7275e-3 4.7268e-4

5 0.30028 0.22625 9.6723e-2 2.3430e-2 3.2095e-3 2.4798e-4

6 0.25585 0.20831 0.11241 4.0192e-2 9.5154e-3 1.4905e-3 1.5434e-4

7 0.22270 0.19058 0.11942 5.4793e-2 1.8403e-2 4.5234e-3 8.1342e-4 1.0697e-4

8 0.19708 0.17444 0.12097 6.5725e-2 2.7973e-2 9.3255e-3 2.4348e-3 4.9782e-4 7.9691e-5

Table 1. Discrete mollification weights wi = w−i, i = 0, . . . , η, given by (2.1) with p = 3.

Lemma 1. The discrete mollification operator is conservative. Specifically, it can be written in the form
[Jηy]j = yj + (ψj − ψj−1), where we define

ρk :=
η∑
i=k

wi, k = −η, . . . , η; ψj :=
η∑
k=1

ρk (yj+k − yj−k+1) .

Assume that g is a sufficiently smooth real function, and set yj = g(xj). Then, by using Taylor expansions
of yj+i with respect to yj one can show that

[Jηy]j =
η∑

i=−η
w−iyj+i = yj +

∆x2

2Cη
g′′(xj) +

∆x4

24

η∑
i=−η

i4w−ig
(4)(ξj,i) (2.2)

(see [23] for details), where ξj,i is a real number between xj and xj+i and we define

Cη :=

(
η∑

i=−η
i2w−i

)−1

.

Theorem 1. Let g ∈ C4(R) with g(4) bounded on R, and set yj := g(xj). Assume that the data {yεj}j∈Z
satisfy |yεj − yj | ≤ ε for all j ∈ Z. Then |[Jηyε]j − [Jηy]j | ≤ ε for all j ∈ Z. Additionally, for each compact
set K = [a, b] there exists a constant C = C(K) such that∣∣∣∣[Jηy]j − g(xj)−

∆x2

2Cη
g′′(xj)

∣∣∣∣ ≤ C∆x4 for all j ∈ Z. (2.3)

Moreover, the following inequalities hold for all j ∈ Z, where C is a different constant in each inequality:∣∣[Jηy]j − g(xj)
∣∣ ≤ C∆x2,∣∣∆+ [Jηy]j −∆xg′(xj)
∣∣ ≤ C∆x2,

∣∣∆0 [Jηy]j −∆xg′(xj)
∣∣ ≤ C∆x3,∣∣∆−∆+ [Jηy]j −∆x2g′′(xj)
∣∣ ≤ C∆x4.

(2.4)

Details of the proofs of Lemma 1 and of (2.4) can be found in [23], while (2.3) is a way of rewriting (2.2).

3. Applicative models and discretization of the direct problem

3.1. Sedimentation-consolidation model. According to a well-known sedimentation-consolidation model
(see, e.g., [2, 13, 24] and references cited in these works), (1.1) can be understood as a model for the settling
of a flocculated suspension of small solid particles dispersed in a viscous fluid, where the solution of (1.1),
u = u(x, t), is the local solids concentration as a function of x and t. For batch settling in a closed column of
height L we set ψ0 ≡ 0 and ψL ≡ 0, and u0 denotes the initial concentration. The material specific function f
describes the effect of hindered settling. We employ here the following typical parametric expression:

f(u) =

{
v∞u(1− u/umax)C for 0 < u < umax,
0 otherwise,

with parameters v∞ < 0 and C > 1, (3.1)
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where v∞ is the settling velocity of a single particle in an unbounded fluid and 0 < umax ≤ 1 is a (nominal)
maximal solids concentration. The function A is given by (1.2), where we define

a(u) = − f(u)σ′e(u)
(%s − %f)gu

, (3.2)

where %s and %f are the solid and fluid density, respectively, g is the acceleration of gravity, and σ′e(u) = dσe/du
is the derivative of the material-specific effective solid stress function σe = σe(u), which is usually assumed
to satisfy σ′e(u) = 0 for u ≤ uc and σ′e(u) > 0 for u > uc, where 0 ≤ uc ≤ umax is a citical concentration at
which the solid particles start to touch each other. Clearly, A(u) = 0 for 0 ≤ u ≤ uc, so (1.1a) degenerates
to first-order hyperbolic type on [0, uc].

Among several proposed semi-empirical approaches for σe we focus here on the power-law-type function

σe(u) =

{
0 for 0 ≤ u ≤ uc,

σ0[(u/uc)β − 1] for u > uc

(3.3)

with material-dependent parameters σ0 > 0 and β > 1. The values of β, σ0 and uc characterize the
compressibility of the sediment formed by a given material.

Values of the primitive A(u) usually have to be determined by numerical quadrature. However, if f and a
are given by (3.1)–(3.3) and β is an integer, then A(u) can be evaluated in closed form by A(u) = 0 for
0 ≤ u ≤ uc and A(u) = A(u)−A(uc) for u > uc, where the function A is defined by

A(u) :=
v∞σ0

∆%gu
β
c uCmax

β∑
k=1

(
k∏
l=1

β + 1− l
C + l

)
(umax − u)C+k

uβ−k.

3.2. Traffic model. The strongly degenerate parabolic PDE (1.1a) also arises as a model of traffic flow on
the segment [0, L] of a one-directional, single-lane highway. This model is a diffusively corrected version of the
well-known Lighthill-Whitham-Richards kinematic traffic model, see [3, 4]. Within that model, u = u(x, t)
denotes the local density of cars (measured e.g. in cars per mile), and the function f is given by one of the
many semi-empirical approaches that relate traffic velocity V = V (u) to the local density u via f(u) = uV (u).
We employ the Dick-Greenberg expression [25, 26]

V (u) = vmax ·min{1, C ln(umax/u)} = vmax ·

{
1 for 0 ≤ u ≤ u∗ := umax exp(−1/C),
C ln(umax/u) for u∗ < u ≤ umax,

(3.4)

where C > 0 is a parameter, umax is a maximal density and vmax is the preferential (maximal) velocity a
vehicle would attain on a free highway, which yields

f(u) =


u for 0 ≤ u ≤ u∗,
Cu ln(umax/u) for u∗ < u ≤ umax,
0 otherwise.

(3.5)

Assume now that τ is a reaction time and Lreact is a reaction length, where the latter may depend on V (u).
To be definite, we employ here, as in [3], the following formula due to Nelson [27]:

Lreact(u) = max
{

(V (u))2

2α
,Lmin

}
, (3.6)

where Lmin is a minimal anticipation distance and α denotes a deceleration, so that the first argument in
(3.6) denotes the distance required to decelerate from speed V (u) to full stop at deceleration α. One may
then argue that the velocity of a vehicle position x at time t does not depend on the density seen at the
same point (x, t), as in the LWR model, but rather on the density at position x+Lreact − V τ at time t− τ .
An appropriate expansion of u evaluated at this displaced argument around (x, t) (see [3, 27, 28] for details)
leads to the conclusion that to within an O(τ2 + L2

react) error in consistency, u = u(x, t) is given by (1.1a)
(instead of the first-order conservation law ut + f(u)x = 0 of the LWR model) with A given by (1.2), where

a(u) = −uV ′(u)
(
Lreact(u) + τuV ′(u)

)
. (3.7)
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Since the function V given by (3.4) satisfies V ′(u) = 0 for 0 ≤ u ≤ u∗, the function a given by (3.7) in
combination with (3.4) satisfies a(u) = 0 for u < uc := u∗ and u = umax, and therefore (1.1a) is indeed
strongly degenerate parabolic. Other functions V still give rise to a strongly degenerate parabolic equation
if we assume that reaction time and reaction length are effective only whenever the local traffic density u
exceeds a critical value uc. This explanation is advanced in [4].

If the expressions (3.4) and (3.6) are employed, then the function A obtained via (1.2) can be expressed in
closed form [3]. We here obtain A(u) = 0 for 0 ≤ u ≤ uc and A(u) = vmax(R(u)−R(uc)) for uc < u ≤ umax,
where the function R is defined as follows. Fix a bound of integration ũ0 ∈ (0, uc), and let L0 = v2

maxC
2/(2α)

and u∗ = umax exp(−(Lmin/L0)1/2). If u∗ > uc, then

R(u) =

{
K(u) for uc ≤ u ≤ u∗,
K(u∗) + (CLmin − C2τvmax)(u− u∗) for u > u∗,

where we define the function

K(u) = CL0

{[
(lnumax)2 + 2 lnumax + 2

]
s− 2(lnumax + 1)s ln s+ s(ln s)2

}∣∣s=uc

s=ũ0
− C2τvmax(u− ũ0).

3.3. Discretization of the direct problem. The domain ΩT is discretized by a standard Cartesian grid
by setting xj := j∆x, j = 0, . . . ,N , where N∆x = L, and tn := n∆t, n = 0, . . . ,M, where M∆t = T .
We assume that ∆x and ∆t satisfy the respective CFL conditions (1.3) and (1.4) of the methods to be
introduced. We denote by unj an approximate value of the cell average of u = u(x, t) over the cell [xj , xj+1]
at time t = tn, and correspondingly set

u0
j =

1
∆x

∫ xj+1

xj

u0(x) dx, j = 0, . . . ,N − 1.

For the numerical solution of (1.1) we consider two convergent finite difference methods, namely the basic
scheme [1, 7] and alternatively, its mollified version introduced in [9]. The first one has the following form,
where we recall that λ = ∆t/∆x and µ = ∆t/∆x2:

un+1
j = unj − λ∆+F

EO
(
unj−1, u

n
j

)
+ µ

(
A
(
unj+1

)
− 2A

(
unj
)

+A
(
unj
))
. (3.8)

The scheme (3.8) is monotone and convergent under the CFL condition (1.3). Here FEO stands for the
well-known Engquist-Osher flux [29].

The mollified scheme is also monotone and convergent and takes the form

un+1
j = unj − λ∆+F

EO
(
unj−1, u

n
j

)
+ 2µCη

([
JηA(un)

]
j
−A

(
unj
))
. (3.9)

This is an explicit method, however, it is enhanced with the convenient CFL condition (1.4), where εη :=
Cη(1 − w0). The values of ε3, ε5 and ε8 mentioned in Section 1.1 correspond to the parameter p = 3. For
this value, εη is a decreasing function of η; for instance, we also have ε12 = 0.0988 and ε20 = 0.0392.

The basic scheme is taken as a reference scheme, for comparison purposes. The computations at the
boundaries, i.e., the implementation of the boundary conditions, will be explained in Section 5 for each of
the numerical examples.

4. Parameter identification

4.1. Inverse Problem. The inverse problem can be formulated as follows: given observation data uobs(x)
at a time T > 0 and the functions u0, ψ1 and ψ2, find the flux f and the diffusion function a of the form
(3.1)–(3.3) such that the entropy solution u(x, T ) at time T of the problem (1.1) is as close as possible to
uobs(x) in some suitable norm. Thus, the inverse problem consists in minimizing a cost function J which
measures the distance between u(·, T ) and uobs. The inverse problem can then be formulated as follows:

minimize J(u(·, T )) with respect to the functions f and a, (4.1)
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where u is the entropy solution to (1.1) corresponding to a particular choice of the flux f and the diffusion
function a. A common choice for the cost function J is

J (u (·, T )) =
1
2

∫ L

0

∣∣u(x, T )− uobs(x)
∣∣2 dx. (4.2)

In both the sedimentation and traffic models the functions f and a are given in semi-empirical parametric
forms via (3.1), (3.3) and (3.5)–(3.7), respectively, so that the inverse problem is reduced to that of finding a
vector p of a finite number of parameters such that the solution u of (1.1) calculated for the corresponding
functions f and a minimizes J(u(·, T )). In other words, the inverse problem is replaced by the parameter
identification problem “minimize J(u(·, T )) with respect to the parameter vector p”, where p is the vector
of unknown parameters and u is the entropy solution of (1.1) found with the functions f and a associated
to the current values of p. In what follows, we will write J(p) instead of J(u(·, T )), so that the parameter
identification problem reads

minimize J(p) with respect to the parameter vector p. (4.3)

4.2. Discretization of the parameter identification problem. We define the piecewise constant func-
tion u∆ on ΩT by

u∆(x, t) = unj for x ∈ [xj , xj+1), t ∈ [tn, tn+1), j = 0, . . . ,N − 1, t = 0, . . . ,M− 1,

and replace uobs by a piecewise constant function uobs,∆ formed by cell averages of uobs as follows:

uobs,∆(x) = uobs
j :=

1
∆x

∫ xj+1

xj

uobs(x) dx for x ∈ [xj , xj+1), j = 0, . . . ,N − 1.

We define the following discrete analogue of the cost function defined in (4.2):

J∆(p) :=
1
2

∫ L

0

∣∣u∆(x, T )− uobs,∆(x)
∣∣dx =

∆x
2

N−1∑
j=0

∣∣uMj − uobs
j

∣∣2 . (4.4)

The discrete version of the parameter identification problem (4.3) can now be formulated as follows:

minimize J∆(p) with respect to the parameter vector p,

where the discrete cost function J∆(p) is defined by (4.4) and the numerical solution u∆ is calculated by
using the functions f and a obtained from the current values of the parameter vector p. Note that each
evaluation of J∆(p) (for one value of p) requires the numerical solution of the direct problem (1.1).

Similarly, if instead of uobs(x) given at time T > 0, we have a time-dependent observation uobs = uobs(t)
at a fixed position x = xM , then we replace uobs by cell averages of the form

u∆
obs(t) = unobs :=

1
∆x

∫ tn+1

tn

uobs(t) dt for t ∈ [tn, tn+1).

In this way we can define an alternative cost function of the form

J∆(p) :=
1
2

∫ T

0

∣∣u∆(xM , t)− u∆
obs(t)

∣∣2 dt =
∆t
2

M−1∑
n=0

|unM − unobs| . (4.5)

4.3. Nelder-Mead simplex method. The optimization process of (4.4) and (4.5) is carried out by a
restarted version of the Nelder-Mead simplex method (fminsearch in MATLAB). This is a derivative-free
optimization method that is widely used by researchers in different fields, is very well documented but with
convergence limitations [32]. Due to the lack of convergence in some cases, many modifications have been
proposed. For instance, Kelley [33], Luersen et al. [34] and Zhao et al. [35] consider different ways of updating
the current simplex and different restarting procedures for obtaning a descendent and deterministic method.

Our restarted strategy ends when no substantial variation of the values of the parameters is achieved. It
takes the following form, where we assume that pj = (p1

j , . . . , p
K
j ), i.e., we assume that K different parameters

are sought:
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Figure 1. Examples 1–3: (a) reference solution, (b) profile used as uobs in Examples 1
and 2 (numerical solution at transient time T = 800 s), (c) sample of noisy final profile for
Example 3 with ε = 0.05.

(1) Input p0, ε
(2) for j = 1 to M

(a) pj = fminsearch(J∆,pj−1)
(b) if max

1≤k≤K
|(pkj − pkj−1)/pkj−1| 6 ε then break, end

(3) end

Finally, we note that only an initial value p0 for the parameter vector p is needed as input, from which
the fminsearch routine builds the initial simplex following a criterion developed by L. Pfeffer, see [36].

5. Numerical Examples

For each method, the basic scheme (3.8) and its mollified version (3.9), the functionals (4.4) and (4.5) can
be computed. So, we compare the performance of the restarted optimization procedure for each method.
The reference solution is generated by the corresponding numerical scheme (3.8) or (3.9) on a very fine
grid. In the case of the temporal observation, we choose a suitable CFL for working on a whole set of
parameter values. So, the solutions can be computed with the same discretization parameters (∆x,∆t). In
all examples, we effectively solve a parameter recognition problem, which means that the observation uobs or
uobs is generated “synthetically” not from real-world experimental data, but by a numerical solution with
known parameters, possibly perturbed by the addition of some “noise”.

5.1. Example 1: sedimentation model, effect of the mollification parameter. Examples 1, 2 and 3
deal with the sedimentation model. We consider batch settling in a column of height L = 0.16 m and the
parameter values umax = 0.5, g = 9.81 m/s2, %s− %f = 1660 kg/m3, v∞ = −2.7× 10−4 m/s, C = 21.5, β = 5,
uc = 0.07 and σ0 = 1.2 Pa. The objective will be to obtain an accurate identification of the parameters uc, σ0

and C in eight different instances described in Table 2. Our experiments include clean and noisy observation
data. Data at the instant T = 800 s will play the role of uobs. Figures 1 (a) and (b) show the reference
solution on the whole computational domain and the profile at T = 800 s, respectively. The restarting
parameter and the tolerance parameter for the optimization are M = 10 and ε = 10−4 respectively.

In this case, the boundary flux functions ψ0 and ψL are both zero. So, following [1, Sect. 3.2], we discretize
the boundary condition at x = 0 as follows. We replace the expression FEO(un−1, u

n
0 )− (An0 −An−1)/∆x by

zero, so that from the marching formula for the basic scheme, (3.8), we obtain the following “boundary



PARAMETER IDENTIFICATION FOR DEGENERATE PARABOLIC EQUATIONS 9

initial guess parameter values initial guess parameter values
A (0.7uc, 0.7σ0, 0.7C) E (1.3uc, 0.7σ0, 0.7C)
B (0.7uc, 0.7σ0, 1.3C) F (1.3uc, 0.7σ0, 1.3C)
C (0.7uc, 1.3σ0, 0.7C) G (1.3uc, 1.3σ0, 0.7C)
D (0.7uc, 1.3σ0, 1.3C) H (1.3uc, 1.3σ0, 1.3C)

Table 2. Example 1: initial guesses used for identification experiments.

IG j pj EJ e∞ cpu [s] j pj EJ e∞ cpu [s]
Basic scheme (3.8) Mollified scheme (3.9) with η = 3

A 2 (0.0697, 1.1219, 21.4706) 290 0.0651 79.863 2 (0.0695, 1.1104, 21.5067) 356 0.0746 89.43

B 4 (0.0696, 1.1111, 21.4700) 517 0.0741 90.310 4 (0.0695, 1.1105, 21.5067) 490 0.0746 89.77

C 5 (0.0697, 1.1324, 21.4700) 616 0.0564 163.74 2 (0.0695, 1.1104, 21.5067) 296 0.0747 103.1

D 3 (0.0696, 1.1252, 21.4699) 669 0.0623 127.96 5 (0.0695, 1.1103, 21.5067) 797 0.0747 155.8

E 3 (0.0696, 1.1179, 21.4700) 367 0.0684 59.662 3 (0.0696, 1.1259, 21.5075) 332 0.0617 58.19

F 6 (0.0696, 1.1117, 21.4700) 674 0.0736 108.77 3 (0.0696, 1.1294, 21.5066) 358 0.0588 61.25

G 3 (0.0696, 1.1114, 21.4700) 421 0.0738 71.391 3 (0.0695, 1.1104, 21.5068) 402 0.0747 73.08

H 2 (0.0696, 1.1180, 21.4700) 391 0.0684 64.747 5 (0.0695, 1.1104, 21.5065) 676 0.0747 119.7

Mollified scheme (3.9) with η = 5 Mollified scheme (3.9) with η = 8
A 5 (0.0500, 0.1486, 21.5456) 685 0.8762 152.8 2 (0.0696, 1.1174, 21.5777) 293 0.0688 49.008

B 5 (0.0697, 1.1651, 21.5465) 664 0.0291 105.8 3 (0.0697, 1.1530, 21.5776) 461 0.0391 64.792

C 3 (0.0695, 1.1124, 21.5466) 486 0.0730 103.6 4 (0.0697, 1.1531, 21.5776) 649 0.0391 107.35

D 3 (0.0696, 1.1301, 21.5465) 639 0.0582 107.1 2 (0.0697, 1.1530, 21.5777) 418 0.0391 60.759

E 3 (0.0696, 1.1301, 21.5466) 445 0.0583 69.26 3 (0.0697, 1.1531, 21.5776) 535 0.0391 74.026

F 6 (0.0695, 1.0945, 21.5466) 697 0.0879 107.7 3 (0.0696, 1.1174, 21.5777) 543 0.0688 73.858

G 3 (0.0696, 1.1299, 21.5466) 485 0.0584 78.23 4 (0.0697, 1.1531, 21.5776) 576 0.0391 80.604

H 4 (0.0696, 1.1472, 21.5465) 807 0.0440 128.4 2 (0.0697, 1.1531, 21.5776) 640 0.0391 89.225

Table 3. Example 1: results for the basic scheme (3.8) and the mollified scheme (3.9) with
η = 3, 5 and 8.

scheme” for un0 , which is utilized for j = 0 instead of (3.8):

un+1
0 = un0 − λFEO(un0 , u

n
1 ) + µ

(
A(un1 )−A(un0 )

)
.

A similar formula holds at x = L. To compute the discrete mollification of A(u), for instance at x = 0, we take
advantage of the knowledge of A(un0 ) and its slope ∂A(u)/∂x|x=0 = f(u(0, t)) to build a linear extrapolation
of A(u) at x = 0 beyond the boundary x = 0 of ΩT . With this extension we compute [JηA(un)]0. We
proceed for [JηA(un)]N in a similar way.

In Example 1 we employ the cost function (4.4), working with clean observation data (no noise added) and
∆x = L/256. The results are summarized in Table 3. Here, j denotes the number of calls of the fminsearch
algorithm, pj is the found vector of parameter values, EJ is the required number of computed solutions of
the direct problem, e∞ is the maximum relative error in the result for each parameter (usually due to σ0),
and cpu denotes the total CPU time of each run.

5.2. Example 2: sedimentation model, sensitivity to the choice of the initial guess. In this exam-
ple we check the sensitivity of the procedure to the choice of the initial guess. For this purpose we randomly
generate 100 initial guesses and carry out the identification task. Each initial guess p0 = (u0

c , σ
0
0 , C

0)Tis gener-
ated in the form u0

c = (1 + 0.3ξ1)uc, σ0
0 = (1 + 0.3ξ2)σ0 and C0 = (1 + 0.3ξ3)C, where ξ = (ξ1, ξ2, ξ3)T ∈ R3

is a uniformly distributed random vectorial variable whose components are between −1 and 1. The results
are indicated in Table 4. Here, the average ē∞ of e∞, its standard deviation σ and its confidence interval I∞,
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Figure 2. Example 2: one and two-parameter cost functional for each parameter set: (a)
uc, (b) (C, uc), (c) C, (d) (C, σ0), (e) σ0, (f) (uc, σ0).

with a probability of 95% computed with a t-Student distribution of 99 freedom degrees, are included. Ad-
ditionally, the column “# restarts” stands for the number of calls of fminsearch and EJ for the number of
solutions of the direct problem. The corresponding total time for the 100 identifications is also indicated.
The behaviour of the restarting during this test is illustrated in Figure 3. The need of less restarts when
working with the mollified scheme could indicate less presence of local minima in that case.
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∆x/L Scheme η # restarts EJ e∞ ± σ I∞ cpu [min]
1/128 basic (3.8) — 387 53693 0.1400± 0.0329 [0.1345, 0.1455] 49.17

mollified (3.9) 3 340 49274 0.1295± 0.0338 [0.1239, 0.1351] 53.92

mollified (3.9) 5 333 50659 0.0909± 0.0315 [0.0856, 0.0961] 50.91

mollified (3.9) 8 276 41263 0.0534± 3.7182e-05 [0.0534, 0.0534] 39.36

1/256 basic (3.8) — 388 48842 0.0696± 0.0096 [0.0680, 0.0712] 136.03

mollified (3.9) 3 398 53513 0.0739± 0.0081 [0.0725, 0.0752] 160.74

mollified (3.9) 5 355 48280 0.0587± 0.0174 [0.0558, 0.0616] 125.46

mollified (3.9) 8 326 48392 0.0431± 0.0190 [0.0399, 0.0463] 114.35

1/512 basic (3.8) — 334 38879 0.0312± 0.0038 [0.0305, 0.0318] 440.91

mollified (3.9) 3 352 40416 0.0332± 0.0049 [0.0324, 0.0340] 439.55

mollified (3.9) 5 346 41128 0.0278± 0.0057 [0.0269, 0.0288] 352.47

mollified (3.9) 8 374 47250 0.0195± 0.0072 [0.0183, 0.0207] 335.24

Table 4. Example 2: results for the basic scheme (3.8) and the mollified scheme (3.9) for
different values of ∆x and η.
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Figure 3. Example 2: (a) iterations of the restarted optimization algorithm, (b) resulting
final relative error, for each realization of ϕ = (ϕ0, . . . , ϕN−1).

5.3. Example 3: sedimentation model, effect of noisy observation data. Now we study the effect
of working with noisy observation data. We randomly generate 100 final profiles and associate them to the
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∆x/L Scheme η # restarts EJ e∞ ± σ I∞ cpu [min]
1/128 basic (3.8) — 359 50263 0.1360± 0.0476 [0.1280, 0.1439] 46.67

mollified (3.9) 3 348 51086 0.1269± 0.0469 [0.1190, 0.1347] 55.57

mollified (3.9) 5 327 47515 0.0936± 0.0428 [0.0864, 0.1007] 48.04

mollified (3.9) 8 253 38949 0.0745± 0.0474 [0.0666, 0.0825] 37.13

1/256 basic (3.8) — 385 50310 0.0661± 0.0264 [0.0617, 0.0705] 140.63

mollified (3.9) 3 367 50489 0.0674± 0.0238 [0.0634, 0.0713] 152.60

mollified (3.9) 5 368 52214 0.0533± 0.0256 [0.0490, 0.0575] 135.85

mollified (3.9) 8 331 47153 0.0401± 0.0260 [0.0358, 0.0445] 110.56

1/512 basic (3.8) — 346 39464 0.0308± 0.0163 [0.0281, 0.0335] 452.16

mollified (3.9) 3 340 39954 0.0334± 0.0166 [0.0307, 0.0362] 436.76

mollified (3.9) 5 366 43215 0.0274± 0.0150 [0.0249, 0.0299] 367.66

mollified (3.9) 8 384 48706 0.0217± 0.0141 [0.0193, 0.0240] 346.08

Table 5. Example 3 with ε = 0.01: results for the basic scheme (3.8) and the mollified
scheme (3.9) for different values of ∆x and η.

ε Scheme η # restarts EJ e∞ ± σ I∞ cpu [min]
0 basic (3.8) — 388 48842 0.0696± 0.0096 [0.0680, 0.0712] 136.03

mollified (3.9) 3 398 53513 0.0739± 0.0081 [0.0725, 0.0752] 160.74

mollified (3.9) 5 355 48280 0.0587± 0.0174 [0.0558, 0.0616] 125.46

mollified (3.9) 8 326 48392 0.0431± 0.0190 [0.0399, 0.0463] 114.35

0.01 basic (3.8) — 385 50310 0.0661± 0.0264 [0.0617, 0.0705] 140.63

mollified (3.9) 3 367 50489 0.0674± 0.0238 [0.0634, 0.0713] 152.60

mollified (3.9) 5 368 52214 0.0533± 0.0256 [0.0490, 0.0575] 135.85

mollified (3.9) 8 331 47153 0.0401± 0.0260 [0.0358, 0.0445] 110.56

0.03 basic (3.8) — 376 49025 0.0801± 0.0554 [0.0709, 0.0894] 137.65

mollified (3.9) 3 364 48447 0.0807± 0.0533 [0.0718, 0.0896] 146.72

mollified (3.9) 5 374 50622 0.0760± 0.0528 [0.0672, 0.0848] 132.10

mollified (3.9) 8 353 49136 0.0710± 0.0524 [0.0622, 0.0797] 115.31

0.05 basic (3.8) — 378 49716 0.1163± 0.0913 [0.1011, 0.1316] 140.31

mollified (3.9) 3 376 51246 0.1149± 0.0897 [0.0999, 0.1298] 156.50

mollified (3.9) 5 359 50344 0.1129± 0.0902 [0.0979, 0.1280] 131.10

mollified (3.9) 8 332 49139 0.1084± 0.0915 [0.0931, 0.1237] 115.54

Table 6. Example 3 with ∆x = L/256: results for the basic scheme (3.8) and the mollified
scheme (3.9) for different values of ε and η.

previously generated initial guesses. The corrupted profile is generated as follows:

uεj = (1 + εϕj)uobs(xj), j = 0, . . . ,N − 1,

where ε = 0.01, 0.03 and 0.05, and ϕj is a uniformly distributed random variable assuming values between −1
and 1. The results are presented in Tables 5 and 6 and Figure 4.

5.4. Example 4: traffic model, effect of a time-dependent observation. We consider a traffic “pla-
toon” with density of 50 cars/mi, entering an initially empty road segment of length L = 3.5 mi at x = 0.
At arriving to de point x = 1 a traffic light changes to red. From that instant, we assume the traffic obeys
(1.1) with a flux function f and the diffusion function a of the respective forms (3.5) and (3.7). The pa-
rameter values used are the same as those used in [3] and references cited therein, namely C = e/7, τ = 2 s,
Lmin = 0.05 mi, umax = 200 cars/mi and α = 0.1g, where g = 9.81 m/s2 is the acceleration of gravity. The
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Figure 4. Example 3: (a) mean ē∞ and standard deviation σ of the relative error versus
spatial resolution ζ = log2(1/∆x) for ε = 0.03, (b) mean ē∞ and standard deviation σ of
the relative error versus level of noise in the final profile at ∆x = 1/256.

targets for our identification procedure are C and τ . Again the parameters for the optimization are M = 10
and ε = 10−4.

The traffic light changes from red to green and vice-versa every 30 seconds. When the light shows “red”, we
will consider the road divided into the segments [0, 1] and [1, 3.5]. The traffic light works as an impermeable
boundary condition between these two regions. At the point x = 0 we assume that the platoon continues
entering with the same density. Beyond the point x = 3.5 we suppose the road continues empty. When
the light changes to green we work with the whole domain [0, 3.5]. Finally, for computing JA(un) with red
light, on [0, 1] we extend the density beyond 1.0 by the constant umax, so the drivers cannot advance. On
the domain [1, 3.5] we extend the density by zero to the left of x = 1.0 because the drivers will feel nobody
is coming from there. All these assumptions rely on the framework of (1.1) with ψ0 = 0 and ψL = 0.

For the experiments the temporal observation is done at x = 1.25 from 0 to 2 seconds, starting with the
red light. The selected spatial resolution was ∆x = 1/128 and by A, B, C and D we denote the choices of
the initial parameters (0.7uc, 0.7τ), (0.7uc, 1.3τ), (1.3uc, 0.7τ) and (1.3uc, 1.3τ), respectively. The results are
summarized in Table 7, following the notation in Example 1.

5.5. Conclusions. Concerning Example 1, we observe that according to Table 3, the identifications based on
the basic scheme and the mollified scheme produce good approximations of the parameter values. However,
clearly the best performance is obtained by the mollified scheme with η = 8, not only with respect to CPU
time, but also in terms of the regularity of approximation found and the error level. The behaviour with
η = 3 is also very consistent. For the basic scheme and the mollified scheme for η = 5 we obtain more
variability. In fact, for the initial guess A the method for η = 5 does not converge, but it does converge when
started with initial guesses close to A.

The results in Table 4, corresponding to Example 2, illustrate how by improving the spatial resolution
(i.e., reducing ∆x) the quality of the identification result is increased. Note that, for each method, when
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IG j pj EJ e∞ cpu [s] j pj EJ e∞ cpu [s]
Basic scheme Mollified scheme with η = 3

A 2 (0.3883,0.0006) 87 2.2682e-3 1063 2 (0.3883,0.0006) 84 3.9249e-3 920

B 3 (0.3883,0.0006) 100 1.9572e-3 1101 3 (0.3883,0.0006) 100 1.9572e-3 1110

C 2 (0.3883,0.0006) 91 1.7986e-3 894 2 (0.3883,0.0006) 87 9.1335e-4 947

D 2 (0.3883,0.0006) 94 4.7792e-3 884 2 (0.3883,0.0006) 93 4.7792e-3 790

Mollified scheme with η = 5 Mollified scheme with η = 8
A 2 (0.3883,0.0006) 84 3.9249e-3 581 2 (0.3884,0.0006) 89 9.2882e-4 294

B 2 (0.3883,0.0006) 75 4.3762e-3 577 2 (0.3883,0.0006) 83 1.5402e-3 330

C 3 (0.3884,0.0006) 114 2.8443e-3 705 2 (0.3883,0.0006) 70 3.2157e-3 229

D 2 (0.3883,0.0006) 92 4.7792e-3 601 2 (0.3883,0.0006) 79 2.0756e-3 292

Table 7. Example 4: results for the basic scheme (3.8) and the mollified scheme (3.9) with
η = 3, 5 and 8.

∆x is decreased, the resulting values of the average ē∞ of e∞ and its standard deviation σ are also reduced.
Again, the best results are for η = 8, this is evident in Figure 3 where its requirements of restarting and final
errors are not only smaller but also more regular (less sensitive to the initial guess).

On the other hand, Example 3 illustrates the robustness of the proposed parameter identification procedure
with respect to the presence of noise in the data. Table 5 shows how for a fixed level of noise by improving
the spatial resolution the quality of the results improve. Figure 4 clearly indicates that the level of noise
influences the quality of the recovery, but that in no case stability is lost.

Example 4 illustrates the applicability of the proposed identification procedure to an alternative strongly
degenerate problem of great interest. The results endorse our previous remarks. But now, all the mollified
versions produce better results than the basic version, not only in CPU time but also in the quality of the
identification (error level).

Summarizing, we can say that the parameter identification procedure yields good results for both the
basic scheme and its mollified versions. In particular, the mollification device leads to numerical results that
are consistent between the spatial resolution, the noise level, the width of the mollification stencil and the
quality of the identification results. Moreover, the mollified approach returned advantages not only in CPU
time, but also in the error level and the sensitivity to the initial guess and to the noise in the data.
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