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Abstract. We study the inverse source problem for the eddy current approximation

of Maxwell equations. As for the full system of Maxwell equations, we show that a

volume current source cannot be uniquely identified by the knowledge of the tangential

components of the electromagnetic fields on the boundary, and we characterize the

space of non-radiating sources. On the other hand, we prove that the inverse source

problem has a unique solution if the source is supported on the boundary of a

subdomain or if it is the sum of a finite number of dipoles. We address the applicability

of this result for the localization of brain activity from electroencephalography and

magnetoencephalography measurements.

1. Introduction

Electroencephalography (EEG) and magnetoencephalography (MEG) are two non-

invasive techniques used to localize electric activity in the brain from measurements

of external electromagnetic signals. EEG measures the scalp electric potential, while

MEG measures the external magnetic flux. From the mathematical point of view the

goal is to solve an inverse problem for determining the source current distribution in a

heterogeneous media from boundary measurements of the fields.

The frequency spectrum for electrophysiological signals in EEG and MEG is

typically below 1000 Hz, most frequently between 0.1 and 100 Hz. For this reason

most theoretical works on biomedical applications focus on the static approximation of

the Maxwell equations, in which the time variation of both electric and magnetic fields

is disregarded.

Recently He and Romanov [1], Ammari et al. [2] and Albanese and Monk [3]

investigate the localization of brain activity through the inverse source problem for

the full Maxwell system of equations. In this paper we analyze the inverse source

problem for an alternative model: the eddy current (or low frequency approximation)

of Maxwell equations. In the eddy current model the time variation of the electric field

is disregarded, while time variation of the magnetic field is kept.
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Let us consider electromagnetic phenomena at frequency ω 6= 0. The time-harmonic

full Maxwell system of equations read

curl H− iωεE = σE + Je (Maxwell–Ampère equation)

curl E + iωµH = 0 (Faraday equation).
(1)

Here E, H denote the electric and magnetic fields, respectively; Je is the applied current

density; ε is the electric permittivity, µ the magnetic permeability and σ the electric

conductivity.

The eddy current model is formally obtained by neglecting the displacement current

term:

curl H = σE + Je
curl E + iωµH = 0 .

(2)

Let us consider a conductor ΩC ⊂ R3, say, the human head. We assume that ΩC is a

bounded domain with a Lipschitz and connected boundary Γ. In ΩC the conductivity σ is

a symmetric and uniformly positive definite matrix with entries in L∞(ΩC). We consider

also a computational domain Ω ⊂ R3, say, the room where the problem is studied. We

assume that Ω is a bounded simply-connected domain, completely containing ΩC and

with Lipschitz boundary ∂Ω. Moreover we assume that ΩI := Ω \ ΩC is connected.

ΩI is an insulator, the air surrounding the head, hence σ is vanishing in ΩI . We also

assume that the electric permeability µ and the electric permittivity ε are symmetric

and uniformly positive definite matrices with entries in L∞(Ω).

On the boundary ∂Ω we can impose magnetic boundary condition H × n = 0 on

∂Ω or electric boundary condition E× n = 0 on ∂Ω. (Here n denotes the unit outward

normal vector on ∂Ω.)

Since σ is equal zero in insulators, equations (2) do not completely determine the

electric field in ΩI . In that region one has to add div(εE) = 0 because there are no

charges in an insulator. This is a “gauge” condition necessary for having uniqueness.

When imposing magnetic boundary condition the additional “gauge” condition εE·n = 0

on ∂Ω is also necessary.

From Faraday law µ−1 curl E = −iωH and inserting this result in Ampère law one

has curl(µ−1 curl E) = −iω(σE + Je). So the E-based formulation of the eddy current

model reads 
curl(µ−1 curl E) + iωσE = −iωJe in Ω

div(εE) = 0 in ΩI

(µ−1 curl E)× n = 0 on ∂Ω

εE · n = 0 on ∂Ω

(3)

for the magnetic boundary condition, and
curl(µ−1 curl E) + iωσE = −iωJe in Ω

div(εE) = 0 in ΩI

E× n = 0 on ∂Ω

(4)

for the electric boundary condition. In this paper we will focus on problem (3); the

same results can be proved for problem (4).
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In the static approximation also the time variation of the magnetic field is

disregarded, thus one has:

curl H = σE + Je
curl E = 0

(5)

(where Je can still depend on time, which has to be regarded as a parameter). From the

second equation in (5) the electric field is the gradient of a scalar potential E = − gradV

and then from the first equation in (5) we obtain div(σ gradV ) = div Je in ΩC . On the

other hand σE + Je is divergence free in Ω, hence we have (σ gradV − Je|ΩC ) · nΓ =

−Je|ΩI ·nΓ on Γ, nΓ being the unit normal vector on Γ pointing outwards ΩC . Since we

are interested in electric sources located in the conductor, namely, supp Je ⊂ ΩC , the

boundary condition for the static approximation is the homogeneous Neumann boundary

condition σ gradV · nΓ = 0 on Γ. The static problem thus reads{
div(σ gradV ) = div Je in ΩC

σ gradV · nΓ = 0 on Γ ,
(6)

and the related magnetic field is computed in terms of the primary current Je and the

return current σE = −σ gradV using the Biot–Savart law in R3:

H(x) =
1

4π

∫
ΩC

[Je(y)− σ gradV (y)]× x− y

|x− y|3
dy . (7)

The inverse source problem consists in the determination of the current source

Je from boundary measurements of the electromagnetic fields. It is well-known since

Helmholtz that in general this problem has not a unique solution. For instance, if the

source is a radial dipole the magnetic field given by (7) vanishes outside a spherical

conductor ΩC (see, e.g., Sarvas [4]), hence when using the static model the knowledge

of the magnetic field on Γ does not contribute to the localization of radial dipoles.

The characterization of the source currents that can be reconstructed from suitable

measurements on the boundary is not an easy task and depends on the model considered.

For the static model in Kress et al. [5] the authors prove that the Biot–Savart operator

has a non-trivial null space. Fokas et al. [6] characterize which part of a volume

current source in a spherical conductor can be reconstructed from the knowledge of

the magnetic field on the boundary. In the same framework, Dassios and Hadjiloizi [7]

determine which part of the source can be reconstructed from the electric potential.

Instead, concerning dipole sources, He and Romanov [1] show that the measurement of

the electric potential on the boundary of the conductor is enough for identifying their

location and polarization; a similar result is given in El Badia and Nara [8], assuming

the knowledge of the tangential component of the electric field only in a part of the

boundary.

When considering the full Maxwell system the existence of non-radiating sources

has been proved in Bleistein and Cohen [9]. On the other hand, He and Romanov [1]

show that the location and the polarization of a current dipole in a conducting object

can be uniquely determined by measuring at a fixed frequency the magnetic field and its
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normal derivative on the whole surface. The same result has been obtained by Ammari

et al. [2] from the knowledge of the tangential component of either the electric or the

magnetic field on Γ. Albanese and Monk [3] have characterized which part of a volume

source confined in ΩC can be uniquely identified from measurements of the tangential

component of the electric field on Γ. Moreover, they also prove uniqueness of the inverse

source problem if the source is supported on the surface of a-priori known subdomain

contained in ΩC or if it is the sum a finite number of dipole sources. In the last case

the tangential component of the electric field uniquely determines the number, position

and polarization of the dipoles.

The aim of this paper is to study the uniqueness of the solution of the inverse source

problem for the eddy current approximation of Maxwell equations, mainly following the

approach proposed by Albanese and Monk [3] for the full Maxwell system of equations.

The outline of the paper is as follows. Section 2 is devoted to volume source currents.

We prove that when looking for Je ∈ (L2(ΩC))3 the inverse problem has not a unique

solution and we characterize the space of non-radiating sources. In Section 3 we obtain

the uniqueness result for a source current supported on the boundary of a subdomain

of ΩC : it is worth noting that the support of the surface source is not assumed to

be known, but it is uniquely determined from the boundary data. In Section 4 we

consider the case of dipole sources. First we study the well-posedness of the direct

problem, that is, the existence and uniqueness of the solution for the eddy current

model assuming that the source is a finite sum of dipoles. Then we prove uniqueness of

the inverse source problem, determining the number, the location and the polariziation

of the dipole source. We present also an algebraic algorithm for the determination of a

dipole source assuming that the tangential component of the electric field on Γ is known.

In the last section we study how to recover the tangential component of the electric field

on Γ, the data that we use in the inverse problem, from the data that are measured in

magnetoenecephalography and electroencephalography.

To conclude this section let us introduce some notation that will be used in

the following. The space H(curl; Ω) indicates the set of real or complex vector

valued functions v ∈ (L2(Ω))3 such that curl v ∈ (L2(Ω))3. We also use the

spaces H−1/2(curlτ ; Γ) :=
{

(nΓ × v × nΓ)|Γ |v ∈ H(curl; ΩC)
}

and H−1/2(divτ ; Γ) :={
(v × nΓ)|Γ |v ∈ H(curl; ΩC)

}
. These two spaces are in duality and the following

formula of integration by parts holds true:∫
ΩC

(w · curl v − curl w · v) =

∫
Γ

(w × nΓ) · v ∀w, v ∈ H(curl; ΩC) .

The last integral is indeed the duality paring between w × nΓ ∈ H−1/2(divτ ; Γ) and

nΓ × v × nΓ ∈ H−1/2(curlτ ; Γ).

2. Non-uniqueness of volume currents

In this section we investigate the uniqueness of the inverse source problem assuming

that the unknown source Je is a function in (L2(ΩC))3. First we will prove that without
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additional information, the source cannot be reconstructed from the knowledge of the

tangential component of the electric field on Γ. We then characterize the space of non-

radiating sources (those sources in (L2(ΩC))3 that generate an electric field normal to

the surface Γ) and prove that sources Je ∈ (L2(ΩC))3 that are orthogonal to the space

of non-radiating sources are uniquely determined by the tangential component on Γ of

the electric field. The result is analogous to the one obtained by Albanese and Monk

[3] for the full Maxwell system.

If Je ∈ (L2(ΩC))3 it is known that problems (3) has a unique solution E and the

magnetic field can be computed from Faraday law: H = −(iωµ)−1 curl E in Ω.

Multiplying the first equation in (3) by a regular enough test function z, integration

by parts in ΩC easily yields

−iω
∫

ΩC

Je ·z =

∫
ΩC

E · [curl(µ−1 curl z)+ iωσz]−
∫

Γ

[E×nΓ · (µ−1 curl z)− iωH×nΓ ·z] .

Therefore, if z ∈ H(curl; ΩC) is such that

curl(µ−1 curl z)− iωσz = 0 in ΩC ,

the current density Je satisfies the representation formula∫
ΩC

Je · z = (iω)−1
∫

Γ
E× nΓ · (µ−1 curl z)−

∫
Γ

H× nΓ · z . (8)

The right hand term in (8) has been called reciprocity functional, taking the name

from the Lorentz reciprocity principle in electromagnetism, or else the Maxwell–Betti

reciprocity principle in elastostatics (see, e.g., Andrieux and Ben Abda [10], El Badia

and Ha-Duong [11]). It is often used in the analysis of inverse source problems (see,

e.g., Novikov [12], Isakov [13]).

Let us define

W = {z ∈ H(curl; ΩC) | curl(µ−1 curl z)− iωσz = 0 in ΩC} .

It is clear that W is not a trivial subspace of (L2(ΩC))3: since both µ and σ are

bounded and uniformly positive definite in Ω, for each ξ ∈ H
−1/2
div,τ (Γ) there exists a

unique u(ξ) ∈ H(curl; ΩC) such that u(ξ) ∈ W and u(ξ)× nΓ = ξ on Γ.

Denoting by W the closure of W in (L2(ΩC))3 we have the orthogonal splitting

(L2(ΩC))3 = W ⊕W⊥ .

Lemma 2.1 Consider η ∈ (C∞0 (ΩC))3 and set φ = curl(µ−1 curlη) + iωση. Then

φ ∈ W⊥ (and W⊥ is not a trivial subspace).

Proof. Take z ∈ W . Then∫
ΩC

φ · z =
∫

ΩC
[curl(µ−1 curlη) + iωση] · z

=
∫

ΩC
η · [curl(µ−1 curl z) + iωσz] = 0 ,

and a density argument shows that φ ∈ W⊥.
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Note that, if η is a non-vanishing real vector field, one obtains Imφ 6= 0, hence W⊥

is not a trivial subspace. �
Let us split the current density Je as

Je = J]e + J⊥e , J]e ∈ W , J⊥e ∈ W⊥ .

Theorem 2.1 (i) Let us assume that Je = J]e ∈ W and that E] is the corresponding

solution of the eddy current problem. Then the knowledge of E] × nΓ on Γ uniquely

determines J]e.

(ii) Let us assume that Je = J⊥e ∈ W⊥ and that E⊥ is the corresponding solution

of the eddy current problem. Then E⊥ × nΓ = 0 and H⊥ × nΓ = 0 on Γ, namely, J⊥e is

a non-radiating source.

Proof. (i) The electric field in the insulator satisfy

curl(µ−1 curl E]) = 0 in ΩI

div(εE]) = 0 in ΩI

(µ−1 curl E])× n = 0 on ∂Ω

εE] · n = 0 on ∂Ω .

If E] × nΓ = 0 on Γ, multiplying the first equation by E] and integrating by parts one

easily finds curl E] = 0, then E] = 0 in ΩI . Consequently, H] = −(iωµ)−1 curl E] = 0 in

ΩI and in particular H]× nΓ = 0 on Γ. Therefore from (8) we know that
∫

ΩC
J]e · z = 0

for each z ∈ W , hence, by a density argument, for each z ∈ W . Taking z = J]e ∈ W ,

the thesis follows.

(ii) Since J⊥e ∈ W⊥ from (8) we have that for all z ∈ W∫
Γ

E⊥ × nΓ · (µ−1 curl z)− iω
∫

Γ

H⊥ × nΓ · z = 0 . (9)

For each η ∈ H−1/2
div,τ (Γ) we denote by Z ∈ H(curl; Ω) the solution to

curl(µ−1 curl Z)− iωσZ = 0 in ΩC ∪ ΩI

div(εZ) = 0 in ΩI

(µ−1 curl Z)× n = 0 on ∂Ω

εZ · n = 0 on ∂Ω

(µ−1 curl Z)|ΩC × nΓ = (µ−1 curl Z)|ΩI × nΓ + η on Γ ,

(10)

which in weak form reads

find Z ∈ V :

∫
Ω

(µ−1 curl Z · curl v − iωσZ · v) =

∫
Γ

η · v ∀ v ∈ V ,

where V := {v ∈ H(curl; Ω) : div(εv) = 0 in ΩI and εZ · n = 0 on ∂Ω}. It is well-

known that the sesquilinear form at the left hand side is coercive in V (see Alonso

Rodŕıguez and Valli [14], Theorem 2.3), therefore the problem is uniquely solvable.

As a test function in (9) we can thus select Z|ΩC ∈ W , obtaining∫
Γ

E⊥ × nΓ · µ−1 curl Z|ΩC = −
∫

Γ
E⊥ · η −

∫
Γ

E⊥ · (µ−1 curl Z|ΩI × nΓ)

= −
∫

Γ
E⊥ · η +

∫
ΩI
µ−1 curl E⊥ · curl Z|ΩI



Inverse source problems for eddy current equations 7

−iω
∫

Γ
H⊥ × nΓ · Z|ΩC = −

∫
Γ
µ−1 curl E⊥ · Z|ΩI × nΓ

= −
∫

ΩI
µ−1 curl E⊥ · curl Z|ΩI .

In conclusion, we have found ∫
Γ

E⊥ · η = 0

for each η ∈ H−1/2
div,τ (Γ), hence nΓ × E⊥ × nΓ = 0 on Γ.

Proceeding as in the proof of (i) we show that E⊥×nΓ = 0 on Γ implies H⊥×nΓ = 0

on Γ, and the proof is complete. �

3. Uniqueness of surface currents

In this section we prove that if the source current is known to be supported on the

surface of a subdomain contained in ΩC , then both the surface and the value of the

surface current are uniquely determined by the tangential component of the electric

field on Γ. A similar result, but assuming that the surface is a-priori known, has been

previously obtained for the full Maxwell systems (see Albanese and Monk [3]).

First, we start by considering a surface current J∗ ∈ H−1/2(divτ ; ∂B), where B is

an open connected set with Lipschitz boundary ∂B and satisfying B ⊂ ΩC .

The direct problem reads

curl E∗ + iωµH∗ = 0 in Ω

curl H∗ = σE∗ in B ∪ (Ω \B)

div(εE∗) = 0 in ΩI

H∗ × n = 0 on ∂Ω

εE∗ · n = 0 on ∂Ω

H∗|B × nB −H∗|Ω\B × nB = J∗ on ∂B ,

(11)

where nB is the unit normal vector on ∂B, pointing outward B. It is easy to see that

its weak formulation in terms of the electric field is:

find E∗ ∈ V :

∫
Ω

(µ−1 curl E∗ · curl v + iωσE∗ · v) = −iω
∫
∂B

J∗ · v ∀ v ∈ V ,

being V the space introduced for the weak formulation of (10). Since the sesquilinear

form at the left hand side is coercive, for each given J∗ ∈ H−1/2(divτ ; ∂B) the direct

problem has a unique solution.

Our first result in this section is the following.

Theorem 3.1 Assume that the coefficients µ and σ are Lipschitz continuous and

piecewise C1 scalar functions in ΩC, and that the discontinuity surfaces of their gradients

are Lipschitz surfaces. Let (E∗,H∗) be the solution of the eddy current problem driven

by the surface current J∗ ∈ H−1/2(divτ ; ∂B). The knowledge of E∗ × nΓ on Γ uniquely

determines J∗.
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Proof. It is enough to show that if E∗ × nΓ = 0 on Γ then J∗ = 0 on ∂B. As in

the preceding case, by solving the problem in ΩI we easily show that E∗× nΓ = 0 on Γ

also gives E∗ = 0 in ΩI , H∗ = 0 in ΩI and in particular H∗ × nΓ = 0 on Γ. By virtue

of the assumptions on the coefficients µ and σ we can apply the unique continuation

principle in ΩC \B (see Ōkaji [15]) and deduce that E∗ = 0 and H∗ = 0 in Ω \B.

Multiplying the second equation in (11) by a function z ∈ H(curl;B) with

curl(µ−1 curl z) ∈ (L2(B))3 and integrating by parts we have∫
B

σE∗ · z =

∫
B

curl H∗ · z = −
∫
∂B

H∗|B × nB · z +

∫
B

H∗ · curl z .

Since H∗ = −(iωµ)−1 curl E, taking into account that E∗ × nB = 0 on ∂B another

integration by parts gives∫
B

σE∗ · z = −
∫
∂B

H∗|B × nB · z− (iω)−1

∫
B

E∗ · curl(µ−1 curl z) .

Hence for each z ∈ H(curl;B) such that curl(µ−1 curl z) − iωσz = 0 in B one finds∫
∂B

H∗|B × nB · z = 0. Therefore∫
∂B

J∗ · z =

∫
∂B

[
H∗|B × nB −H∗|Ω\B × nB

]
· z = 0

for each z ∈ H(curl;B) such that curl(µ−1 curl z)− iωσz = 0 in B.

Given ρ ∈ H−1/2(curlτ ; Γ), we can choose z ∈ H(curl;B), the solution to{
curl(µ−1 curl z)− iωσz = 0 in B

z× nB = ρ× nB on ∂B .

Hence
∫
∂B

J∗ · ρ = 0 for each ρ ∈ H−1/2(curlτ ; Γ), and this space is the dual space of

H−1/2(divτ ; Γ). This ends the proof. �

Remark 3.1 Proceeding as in Section 2 we can obtain a representation formula similar

to (8), namely,∫
∂B

J∗ · z = (iω)−1

∫
Γ

E∗ × nΓ · (µ−1 curl z)−
∫

Γ

H∗ × nΓ · z (12)

for each z ∈ H(curl; ΩC) satisfying

curl(µ−1 curl z)− iωσz = 0 in ΩC .

It is also possible to prove a deeper result, showing that also the discontinuity

surface of H∗ × n can be uniquely determined from the knowledge of the tangential

component of the electric field on Γ. Suppose that supp(J∗) =: Σ is a connected

Lipschitz surface and that J∗ ∈ H
−1/2
0 (divτ ; Σ), that is, for any Lipschitz domain B

such that Σ ⊂ ∂B it holds J̃∗ ∈ H−1/2(divτ ; ∂B), where J̃∗ denotes the extension of J∗
by the value 0 on ∂B \ Σ.

We can prove the following result.
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Theorem 3.2 Assume that the coefficients µ and σ are Lipschitz continuous and

piecewise C1 scalar functions in ΩC, and that the discontinuity surfaces of their gradients

are Lipschitz surfaces. Let (E∗,H∗) be the solution of the eddy current problem driven

by the surface current J∗ ∈ H−1/2
0 (divτ ; Σ), where Σ = supp(J∗) is a connected Lipschitz

surface. Then the knowledge of E∗ × nΓ on Γ uniquely determines both Σ and J∗.

Proof. Let us denote by Σ1 and Σ2 two different surfaces where the sources J∗,1
and J∗,2 are supported, and by E∗,1, H∗,1 and E∗,2, H∗,2 the corresponding solutions,

with the same value E∗×n on Γ. Solving the problem in ΩI with datum E∗×n on Γ we

obtain that E∗,1 = E∗,2 and H∗,1 = H∗,2 in ΩI and then from the unique continuation

principles it follows that E∗,1 = E∗,2 and H∗,1 = H∗,2 in Ω \ (Σ1 ∪ Σ2).

Assume by contradiction that there exists a regular open subset of one of the two

surfaces that is not contained in the other one, for instance Σ̃ ⊂ Σ1 such that Σ̃∩Σ2 = ∅.
Since Σ̃ ⊂ supp(J∗,1) we have that the tangential component of H∗,1 has a jump across

Σ̃ equal to J∗,1 6= 0. On the other hand, the tangential component of H∗,2 is continuous

across Σ̃, therefore we have reached a contradiction, as H∗,1 = H∗,2 arbitrarily close to

Σ̃.

After having showed that Σ = supp(J∗) is uniquely determined, one can consider

any Lipschitz domain B such that Σ ⊂ ∂B and extend J∗ by 0 on ∂B \ Σ. Denoting

this extension by J̃∗ ∈ H−1/2(divτ ; ∂B), the unique identification of J̃∗, and thus of J∗,

follows from Theorem 3.1. �
It is easy to verify that the same result holds if supp(J∗) = ∪Kk=1Σk, with Σk∩Σl = ∅

for k 6= l and each Σk is a connected Lipschitz surface.

4. Uniqueness for dipole sources

Let us consider now the eddy current problem with a dipole source
curl(µ−1 curl E) + iωσE = −iωp0δx0 in Ω

div(εE) = 0 in ΩI

(µ−1 curl E)× n = 0 on ∂Ω

εE · n = 0 on ∂Ω ,

(13)

where p0 6= 0, x0 ∈ ΩC and δx0 denotes the Dirac delta distribution centered at x0.

First we study the well-posedness of this problem. We will assume that the

conductivity σ satisfy the homogeneity condition: there exist r0 > 0, µ0 > 0 and σ0 > 0

such that

µ(x) = µ0I and σ(x) = σ0I for each x ∈ Br0(x0) , (14)

where I is the identity matrix and Br0(x0) := {x ∈ Ω : |x− x0| < r0}.
We set κ2 = −iωµ0σ0 and q0 = −iωµ0p0. The following result can be found in

Ammari et al. [2], and we report the proof for the sake of completeness.
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Theorem 4.1 The fundamental solution K of the operator curl curl−κ2I, that is, the

solution to

curl curl K− κ2K = q0δ0 ,

is given by

K(x) = q0
eiκ|x|

4π|x|
+

1

κ2
(q0 · grad) grad

eiκ|x|

4π|x|
. (15)

Proof. We start from the fundamental solution Φ of the Helmholtz operator

−∆Φ− κ2Φ = δ0 ,

which, as it is well-known, is given by

Φ(x) =
eiκ|x|

4π|x|
.

From this we get at once

−∆(q0Φ)− κ2(q0Φ) = q0δ0 .

Then we look for K in the form

K = q0Φ + q ,

and we have

curl curl K− κ2K

= −∆(q0Φ) + grad div(q0Φ)− κ2(q0Φ) + curl curl q− κ2q

= q0δ0 + grad div(q0Φ) + curl curl q− κ2q .

Hence q has to satisfy

curl curl q− κ2q = − grad div(q0Φ) ,

and we easily find

q =
1

κ2
grad div(q0Φ) .

In conclusion, we have obtained

K(x) = q0Φ(x) + 1
κ2

grad div(q0Φ(x))

= q0
eiκ|x|

4π|x|
+

1

κ2
(q0 · grad) grad

eiκ|x|

4π|x|
,

namely, the representation formula (15). �

Note that the fundamental solution K is much more singular than the fundamental

solution of the Laplace or the Helmholtz operator: while the first term belongs to

L2
loc, the second one has a singularity like |x|−3. It can be also remarked that, setting

K̂(x) := K(x − x0) we have K̂ ∈ H−2(Ω), the dual space of H2
0 (Ω); however, K̂ is a

regular function far from x = x0, in particular it is regular in ΩI .
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Theorem 4.2 Assuming that condition (14) is satisfied, there exists a solution E ∈
H−2(Ω) to (13), satisfying (E − K̂) ∈ H(curl; Ω). It is unique among all the solutions

E∗ such that (E∗ − K̂) ∈ H(curl; Ω).

Proof. We split the solution to (13) in the following way: E(x) = K̂(x) + Q(x). It is

easily seen that we have to look for the solution Q ∈ H(curl; Ω) to
curl(µ−1 curl Q) + iωσQ = J in Ω

div(εQ) = −div(εK̂) in ΩI

(µ−1 curl Q)× n = −(µ−1 curl K̂)× n on ∂Ω

εQ · n = −εK̂ · n on ∂Ω ,

(16)

where

J(x) :=

{
0 if x ∈ Br0(x0)

− curl(µ−1 curl K̂)(x)− iωσK̂(x) if x ∈ Ω \Br0(x0) .

We introduce now the solution ηI ∈ H1(ΩI) of the mixed problem
div(ε grad ηI) = −div(εK̂) in ΩI

ε grad ηI · n = −εK̂ · n on ∂Ω

ηI = 0 on Γ ,

which exists and is unique since K̂|ΩI ∈ (L2(ΩI))
3; we also define

η(x) :=

{
0 if x ∈ ΩC

ηI(x) if x ∈ ΩI ,

and we see at once that η ∈ H1(Ω).

We are now in a position to finish the construction of the solution to (13). The

solution Q to (16) will be found in the form Q = Q∗ + grad η, where Q∗ ∈ H(curl; Ω)

is the solution to 
curl(µ−1 curl Q∗) + iωσQ∗ = J in Ω

div(εQ∗) = 0 in ΩI

(µ−1 curl Q∗)× n = −(µ−1 curl K̂)× n on ∂Ω

εQ∗ · n = 0 on ∂Ω ,

The existence and uniqueness of such a solution follows from the fact that the

compatibility conditions

div J|ΩI = − div[curl(µ−1 curl K̂|ΩI )] = 0 in ΩI

J · n = − curl(µ−1 curl K̂) · n = −divτ (µ
−1 curl K̂× n) on ∂Ω

are satisfied (see Alonso Rodŕıguez and Valli [14], Chap. 3).

We have thus found a solution E = K̂+grad η+Q∗ of (13). Concerning uniqueness,

suppose that we have another solution E∗ such that (E∗ − K̂) ∈ H(curl; Ω). We can

write it as E∗ = K̂+(E∗−K̂), and it is readily verified that E∗−K̂ is a solution to (16),
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a problem for which uniqueness holds in H(curl; Ω). Therefore E∗ − K̂ = Q = E− K̂,

and uniqueness is proved. �
Concerning the uniqueness of the inverse problem, suppose that the source is a finite

sum of dipoles, in different positions and with non-vanishing polarizations, namely,

J† =
M∑
k=1

pkδxk , (17)

where xk ∈ ΩC , xk 6= xj for k 6= j, pk 6= 0.

Theorem 4.3 Assume that µ and σ are Lipschitz continuous and piecewise C1 scalar

functions in ΩC and that the discontinuity surfaces of their gradients are Lipschitz

surfaces. Assume also that there exists the solution E† of the eddy current problem (3)

driven by the surface current J† introduced in (17), with the same properties reported

in Theorem 4.2. The knowledge of E† × nΓ on Γ uniquely determines J†, namely, the

number, the position and the polarization of the dipoles.

Proof. We start proving that the number and the position of the dipoles are

uniquely determined.

By contradiction, let us denote by Q1 and Q2 two different sets of points where the

dipoles are located, and by E†,1, H†,1 and E†,2, H†,2 the corresponding solutions, with

the same value E† × nΓ on Γ. As in the preceding cases, by solving the problem in ΩI

with datum E† × nΓ on Γ we obtain that E†,1 = E†,2 and H†,1 = H†,2 in ΩI .

From the unique continuation principle it follows E†,1 = E†,2 in Ω \ (Q1 ∪Q2). Let

x∗ a point belonging, say, to Q1 but not to Q2. We have that E†,2 is bounded in a

neighborhood of x∗, while E†,1 is unbounded there, a contradiction since E†,1 and E†,2
coincide around x∗. Therefore Q1 = Q2.

Let us prove now that the polarizations are uniquely determined. It is not restrictive

to assume that M = 1 and that x1 = 0. We can write E†,1 = K1 + Ê†,1 and

E†,2 = K2+Ê†,2, where K1 and K2 are defined as in (15), with two different polarizations

q0,1 and q0,2; in particular, we know that Ê†,1 and Ê†,2 belong to H(curl; Ω). Proceeding

as before, the unique continuation principle yields E†,1 = E†,2 in Ω\Br(0) for each r > 0,

therefore K1−K2 = Ê†,2−Ê†,1 in Ω\Br(0). Since (Ê†,2−Ê†,1) ∈ (L2(Ω))3, it follows that

K1−K2 ∈ (L2(Ω))3, and this is not possible, due to the singularity of the fundamental

solution, unless K1 = K2, namely, q0,1 = q0,2. �

Remark 4.1 In Theorem 4.2 we have proved the existence and uniqueness of the

solution E† under the homogeneity assumption (14). We have not a similar result under

the assumption of Theorem 4.3.

4.1. Explicit determination of the dipole source

For the sake of simplicity, consider a source given by only one dipole: Je = p∗δx∗ .

Proceeding as in the proof of (8), one obtains the representation formula

p∗ · z(x∗) = (iω)−1
∫

Γ
E∗ × nΓ · (µ−1 curl z)−

∫
Γ

H∗ × nΓ · z , (18)
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for each z ∈ H(curl; ΩC), continuous around x∗ and satisfying

curl(µ−1 curl z)− iωσz = 0 in ΩC . (19)

To determine the source, we have to find the polarization p∗ and the position x∗:

therefore, six parameters. The natural idea is to choose in a suitable way six functions

z in (18), and solve the corresponding nonlinear system.

Let us assume that µ and σ are constants. The usual choice is to take z(x) = beiκd·x,

with κ ∈ C, b ∈ R3, d ∈ R3. In order that z is a solution to (19) we need

κ2 = iωµσ , b · d = 0 .

hence κ =
√

ωµσ
2

(1 + i) if ω > 0 and κ =
√
|ωµσ|

2
(1− i) if ω < 0. It is not restrictive to

assume |d| = |b| = 1.

The values of p∗ and x∗ are uniquely determined by solving the nonlinear system

(18) obtained by suitable selections of b and d. For instance taking b = e1, d = e2, or

b = e2, d = e3, or b = e3, d = e2, where ei represents the standard euclidean basis,

one has

−iωp∗1e−iκx
∗
2 = A1,2 , −iωp∗2e−iκx

∗
3 = A2,3 , −iωp∗3e−iκx

∗
2 = A3,2 . (20)

Here Ai,j denotes the right hand side in equation (18), hence a computable complex

number, corresponding to the choice z(x) = beiκd·x, with b = ei, d = ej. Since p∗ 6= 0,

at least one of its components is different from 0, hence at least one of the values A1,2,

A2,3 or A3,2 is different from 0. Let us assume for instance that p∗1 6= 0, A1,2 6= 0. Taking

b = e1, d = e3 and b = e1, d = 1√
2
(e2 + e3) one has

−iωp∗1e−iκx
∗
3 = A1,3 , −iωp∗1e

−iκ 1√
2

(x∗2+x∗3)
= A1,23 ,

where A1,23 is obtained as before from the latter choice of b and d. Hence

e−iκ(x∗3−x∗2) =
A1,3

A1,2

, e
−iκ

[
1√
2

(x∗2+x∗3)−x∗2
]

=
A1,23

A1,2

,

For the sake of simplicity let us assume ω > 0, so that −iκ = −
√

ωµσ
2

(1 + i) and

|e−iκ(x∗3−x∗2)| = e−
√

ωµσ
2

(x∗3−x∗2) =
∣∣∣A1,3

A1,2

∣∣∣
|e−iκ

[
1√
2

(x∗2+x∗3)−x∗2
]
| = e

−
√

ωµσ
2

[
1√
2

(x∗2+x∗3)−x∗2
]

=
∣∣∣A1,23

A1,2

∣∣∣ .
Therfore one has the following linear system for x∗2 and x∗1

x∗3 − x∗2 = −
√

2
ωµσ

log
∣∣∣A1,3

A1,2

∣∣∣ ,
1√
2
(x∗2 + x∗3)− x∗2 = −

√
2

ωµσ
log
∣∣∣A1,23

A1,2

∣∣∣ ,
obtaining

x∗2 =
√

2+1√
ωµσ

[
log
∣∣∣A1,3

A1,2

∣∣∣−√2
∣∣∣A1,23

A1,2

∣∣∣]
x∗3 = 1√

ωµσ

[
log
∣∣∣A1,3

A1,2

∣∣∣− (2 +
√

2)
∣∣∣A1,23

A1,2

∣∣∣] .
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Replacing in (20) we can compute the three components of p∗.

It remains to compute x∗1. If p∗ has two components different from zero, say, p∗1 6= 0

and p∗2 6= 0, taking b = e2 and d = e1 we have the equation

−iωp∗2e−iκx
∗
1 = A2,1 ,

from which we determine x∗1. Otherwise, taking b = 1√
2
(e1 + e2) and d = 1√

2
(e1 − e2)

we obtain

−iω 1√
2
p∗1e
−iκ 1√

2
(x∗1−x∗2)

= A12,12 ,

with the usual notation for A12,12.

5. Application to EEG/MEG

Magnetoencephalography measures the magnetic induction along a certain direction

depending of the magnetometer. Typically it measures the normal component of the

magnetic induction, namely, µH · nΓ. On the other hand, electroencephalography

measures the electric potential on the surface of the head. We have obtained some

explicit relations between the source and the tangential component of the electric field

and the magnetic field on Γ (equations (8), (12), and (18)). We will show that, when

using the eddy current model, both (E × nΓ)|Γ and (H × nΓ)|Γ can be computed from

the normal component of the magnetic induction (µH · nΓ)|Γ and the electric potential

V|Γ.

First of all, notice that in the eddy current model, if we are given with (µH ·nΓ)|Γ,

the magnetic field in the insulator is the unique solution of

curl HI = 0 in ΩI

div(µHI) = 0 in ΩI

µHI · nΓ = µH · nΓ on Γ

HI × n = 0 on ∂Ω

HI ⊥ Hµ(∂Ω,Γ; ΩI) ,

(21)

where Hµ(∂Ω,Γ; ΩI) denotes the space of harmonic fields

Hµ(∂Ω,Γ; ΩI) := {vI ∈ (L2(ΩI))
3 | curl vI = 0 , div(µvI) = 0 ,

vI × n on ∂Ω , µvI · nΓ on Γ} .

Hence (H× nΓ)|Γ can be computed if we know (µH · nΓ)|Γ.

Now we need some preliminaries concerning tangential differential operators. The

standard definition of the tangential gradient and the tangential curl on the flat surface

{x3 = 0} with unit normal vector n = (0, 0, 1) is

gradτφ = (∂1φ, ∂2φ, 0) Curlτφ = gradτφ× n = (∂2φ,−∂1φ, 0) .

Using local coordinates it is possible to define the operators gradτ and Curlτ for function

belonging to H1(Γ). By a duality argument the adjoint operators divτ and curlτ are also

introduced, as well as the Laplace–Beltrami operator ∆τ := divτgradτ = −curlτCurlτ .



Inverse source problems for eddy current equations 15

On Γ one has the following Hodge decomposition of the electric field (see Buffa et

al. [16]):

nΓ × E× nΓ = gradτ v + Curlτ q , (22)

with q ∈ H1(Γ)/C such that

∆τq = −curlτ Curlτ q = −curlτ (nΓ × E× nΓ)

= −divτ (E× nΓ) = − curl E · nΓ = iωµH · nΓ ,

and v ∈ H1/2(Γ), v = V|Γ with V ∈ H1(ΩC) and gradτ v = nΓ × gradV × nΓ. Hence

nΓ × E× nΓ can be obtained from the knowledge of µH · nΓ and V on Γ.

Remark 5.1 Though it could sound strange, it is not completely clear what we say

when we speak about the measure of the scalar electric potential (see, e.g., Nicholson

[17], Bossavit [18], and the references therein). In fact, with the exception of the static

case, the electric field is not irrotational, therefore it has not a scalar potential.

As it is well-known, the electric field E can be split into the sum of a gradient and a

solenoidal field, but this can be done in several different way (see, e.g., Alonso Rodŕıguez

and Valli [14], Sect. A.3). Hence, here we are saying that, if the measure obtained by a

voltmeter is the scalar v appearing in (22) (up to an additive constant) and the measure

obtained by a magnetometer is µH ·nΓ, then we can reconstruct the value of nΓ×E×nΓ

on Γ.

In real-life applications the measurements are only made on a subset of the

boundary Γm ⊂ Γ. Also in this case it is possible to obtain a representation formula

for the source in term of the tangential components of the electric and the magnetic

fields on Γm. Following Albanese and Monk [3] it is easy to show formally that for any

z ∈ H(curl; Ω\Γm) such that curl(µ−1 curl z)−iωσz = 0 in Ω\Γm and (µ−1 curl z)×n = 0

on ∂Ω, we have

〈Je, z〉 = (iω)−1
∫

Γm
E× nΓ · [[µ−1 curl z]]T −

∫
Γm

H× nΓ · [[z]]T , (23)

where [[v]]T denotes the jump of the tangential trace of v ∈ H(curl; Ω \ Γm) across Γm
and 〈Je, z〉 =

∫
ΩC

Je ·z for volume currents Je ∈ (L2(ΩC))3, 〈Je, z〉 =
∫
∂B

Je ·z for surface

currents Je ∈ H−1/2(divτ ; ∂B), and 〈Je, z〉 = p∗ · z(x∗) for a dipole source Je = p∗δx∗ .

Also in this case the tangential component of the electric field on Γm can be obtained

form the electric potential and the normal component of the magnetic induction,

provided that the measured electric potential V is such that

grad V · t = E · t on ∂Γm ,

where t is the unit tangent vector on ∂Γm. In this way q ∈ H1(Γm)/C is the solution of{
∆τq = iωµH · nΓ in Γm
Curlτ q · t = 0 on ∂Γm .

However, if we know E×nΓ only on Γm and not in the whole boundary Γ, it is not possible

to obtain (H× nΓ)|Γm from (21). So in order to use the representation formula (23) in

an inversion scheme it would be necessary to measure also the tangential component of

the magnetic field on Γm.
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