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SETTLING TANKS: A RELIABLE NUMERICAL METHOD
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Abstract. The Consistent Modelling Methodology (CMM) for Secondary Settling Tanks
(SSTs) [Bürger, Diehl and Nopens, Water Res. 45 (2011) 2247–2260] leads to a partial differ-
ential equation (PDE) of non-linear convection-diffusion type for the solids concentration as
a function of depth and time. The model PDE includes a flux that depends discontinuously
on spatial position modelling hindered settling and bulk flows, a singular source term de-
scribing the feed mechanism, a degenerating term accounting for sediment compressibility,
and a dispersion term for the turbulence around the feed inlet. In addition, the solution
itself is discontinuous. A consistent, reliable and robust numerical method that properly
handles these difficulties is derived and presented in detail. Many constitutive relations for
hindered settling, compression and dispersion can be used within the model, allowing the
user to switch on and off effects of interest. The method is based on a sound layer-wise spa-
tial discretization and a method-of-lines formulation, which eventually gives rise to a fully
discrete numerical scheme. Simulations show the effect of the dispersion term on effluent
suspended solids and total sludge mass in the SST.

Keywords: wastewater treatment, continuous sedimentation, secondary clarifier, simulation
model, partial differential equation

Nomenclature

A cross-sectional area of SST [m2]
B depth of thickening zone [m]
C concentration [kg/m3]

Ĉ maximum point of fbk [kg/m3]
Cc critical concentration [kg/m3]
Cj concentration in layer j (3.1) [kg/m3]
Cmax maximum concentration [kg/m3]
Cmin parameter in double-exponential settling velocity function (2.7) [kg/m3]
D primitive of dcomp (3.2) [kg/(ms)]

D̃ approximate value of D [kg/(ms)]
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F (convective) flux function [kg/(m2s)]
G Godunov numerical flux (3.6) [kg/(m2s)]
H height of clarification zone [m]
Jcomp compressive flux (3.4) [kg/(m2s)]
Jdisp dispersive flux (3.3) [kg/(m2s)]
M parameter controlling discretization of C-axis (3.10)
N number of layers of SST [−]
Q volumetric flow rate [m3/s]
S Stenstrom numerical flux (4.1) [kg/(m2s)]
dcomp compression function (2.8) [m2/s]
ddisp dispersion function (2.13) [m2/s]
fbk Kynch batch flux density function (2.4) [kg/(m2s)]
g acceleration of gravity [m/s2]
i index of concentrations along C-axis
j layer index [−]
k parameter in effective solids stress function (2.11) [−]
rp parameter in double-exponential settling velocity function (2.7) [m3/kg]
rh parameter in double-exponential settling velocity function (2.7) [m3/kg]
rV parameter in Vesilind hindered settling function (2.6) [m3/kg]
t time [s]
v0 settling velocity of a single particle in unbounded fluid [m/s]
ṽ0 parameter in double-exponential settling velocity function (2.7) [m/s]
vhs hindered settling velocity
z depth from feed level in SST [m]

Greek letters.

∆C stepsize of discretization of C-axis (3.10) [kg/m3]
∆t time step of numerical method [s]
∆z layer width of numerical method [m]
Φ (total) flux (2.2) [kg/(m2s)]
α parameter in effective solid stress function (2.10) [Pa]
α1 parameter in dispersion coefficient (2.14) [m−1]
α2 parameter in dispersion coefficient (2.14) [s/m2]
β parameter in effective solid stress function (2.10) [kg/m3]
γ characteristic function (2.5), equals 1 inside and 0 outside SST
δ Dirac delta distribution [m−1]
ρf density of fluid [kg/m3]
ρs density of solids [kg/m3]
σ0 parameter in effective solid stress function (2.11) [Pa]
σe effective solid stress [Pa]

Subscripts.

e effluent
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f feed
u underflow

Superscripts.

num numerical (convective, compressive or dispersive) flux function

1. Introduction

1.1. Scope. In a recent paper (Bürger et al., 2011) the authors advanced a consistent mod-
elling methodology (CMM) for the simulation of secondary settling tanks (SSTs) in wastew-
ater treatment (WWT). The CMM is based on the conservation of mass and can be cast
into the following one-dimensional (1D) partial differential equation (PDE) of nonlinear
convection-diffusion type for the solids concentration C as a function of depth z and time t:

∂C

∂t
+

∂

∂z
F (C, z, t)

=
∂

∂z

({
γ(z)dcomp(C) + ddisp(z,Qf(t))

}∂C
∂z

)

+
Qf(t)Cf(t)

A
δ(z).

(1.1)

The second term on the left-hand side models hindered settling combined with transport
by bulk flows that diverge due to feed, underflow and overflow operations. The expression
in curled brackets models sediment compressibility and dispersion, and finally, there is a
singular source term modelling the feed mechanism. The different coefficient functions are
given in later parts of the paper. The numerical solution of Equation (1.1) is difficult,
and cannot be handled by standard engineering-mathematics-textbook methods, since the
flux F (C, z, t) is a discontinuous function of z, and the compression coefficient dcomp(C)
degenerates, i.e., vanishes over a range of concentration values. These assumptions are
intrinsic to 1D SST models.

Since discontinuities may appear in the solution C = C(z, t) of (1.1), this PDE cannot
be interpreted in the classical pointwise sense. Instead, it has to be interpreted in the weak
sense. Therefore, the conservation law written in integral form in space is a suitable starting
point for deriving numerical methods since for any numerical simulation, one has to discretize
the model, i.e. compute the concentration only at a finite number of layers of the SST and
at discrete time points. Besides the conservation law, discontinuities in the solution should
satisfy another physical principle, namely a so-called entropy condition.

It is the purpose of this contribution to launch a numerical method for simulation of
SSTs, which is consistent, reliable and robust. Consistency requires that the numerical flux
(i.e., the flux of the numerical scheme) should approximate the physical flux such that both
coincide when discretization parameters tend to zero. A method is said to be reliable if the
numerical solution is a good approximation of the exact solution of the model PDE. Thus,
the numerical method should automatically take the entropy condition into account. Note
that consistency alone does not ensure reliability. Furthermore, a numerical method is robust
if it can handle all physically possible initial conditions and input dynamics. In particular,
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the method should be able to handle situations far from normal operating conditions, such
as storm weather.

The most commonly used simulation method in the WWT community is the one by
Takács et al. (1991). For normal operating conditions, it behaves reasonably, but several
shortcomings have been reported; see Jeppsson and Diehl (1996a,b), David et al. (2009a),
Plósz et al. (2011), Bürger et al. (2011). One feature of the present simulation method is
that the numerical flux update can be seen as an extension of that of the Takács method.

A consistent, reliable and robust numerical method for the simulation of clarifier-thickener
units has been advanced by Bürger et al. (2005) and used for the simulation of SSTs by
De Clercq et al. (2005a, b, 2008). It utilizes the so-called Engquist-Osher numerical flux
(Engquist and Osher, 1981). The numerical method presented here is based on the Godunov
numerical flux (Godunov, 1959) along with a new algorithm for its computation. This
method is slightly less accurate than the Engquist-Osher method, however, it is easier to
implement and requires fewer computations, which might be preferable to engineers. We refer
to Bürger et al. (2012) for thorough comparisons between these two methods and further
discussion. This contribution presents all implementation details necessary to numerically
approximate the exact solution of (1.1), and thereby to simulate the response of the SST to
various operating conditions. In doing so, we advance a method-of-lines description so that
the simulation model could be used in conjunction with ODE (ordinary differential equation)
solvers typically used for the biokinetic model equations for the biological reactor.

1.2. Related work. The kinematic sedimentation theory (Kynch, 1952) postulates that
the solids settling velocity is a function of the local solids concentration only. This turns
the conservation of mass equation into a nonlinear, first-order hyperbolic PDE for which a
specialized mathematical and numerical theory is necessary. Available SST simulators can
roughly be divided into two categories. One contains the traditional layer models where
certain rules control the flux between neighbouring layers and/or additional heuristic as-
sumptions have been included directly into the numerical method (Stenstrom, 1976; Attir
and Denn, 1978; Vitasovic, 1989; Takács et al., 1991; Otterpohl and Freund, 1992; Härtel
and Pöpel, 1992; Koehne et al., 1995; Watts et al., 1996; Chatellier and Audic, 2000; Quein-
nec and Dochain, 2001; Giokas et al., 2002; Verdickt et al., 2005; Plósz et al., 2007, 2011;
Abusam and Keesman, 2009; David et al., 2009a, 2009b; Guo et al., 2010). In the other
category, the simulator is derived from the governing PDE (Anderson and Edwards, 1981;
Lev et al., 1986; Chancelier et al., 1997; Diehl and Jeppsson, 1998; De Clercq et al., 2003;
Wett, 2002; Martin, 2004; Bürger et al., 2005).

In parallel to the development of simulation models, engineering operating charts are used
for the prediction and design of SSTs. The construction of such charts have been based on
the classical solids flux theory, closely connected to the PDE theory by Kynch (1952). In this
theory, compressive and dispersive effects are ignored, which makes it possible to construct
exact solutions (Diehl, 1996, 2008).

1.3. Outline of the paper. We first recall in Section 2 the mathematical model in detail,
where we adhere to the notation of Bürger et al. (2011). In Section 3, we discretize the
model. To this end, we first specify (in Sect. 3.1) how the 1D SST is subdivided into
computational cells, which we from now on call layers, and formulate the conservation law
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for each layer (Sect. 3.2). We then outline in Sections 3.3 and 3.4 the (spatial) discretization of
the convective, dispersive and compressive fluxes. This yields a method-of-lines formulation,
which is stated in Sect. 3.5, and which consists in one ODE for each layer. We then derive
a fully discrete numerical method by introducing (in Sect. 3.6) a time discretization, and
explicitly state the restriction of the time step (Sect. 3.7).

Of particular interest is the relation of the Godunov numerical flux with the method by
Takács et al. (1991). In fact, it is well known that Takács’ method yields incorrect results,
for example under wet weather conditions. We demonstrate in Section 4 how to convert an
existing implementation of Takács’ simulation method into the present method. Simulations
and conclusions can be found in Sections 5 and 6, respectively.

2. Mathematical model

Consider an idealized SST outlined in Figure 1. The height of the clarification zone is
denoted by H, and the depth of the thickening zone by B. The volumetric flows leaving the
SST at the underflow and effluent levels (z = B and z = −H, respectively) are denoted by
Qu and Qe, respectively, where Qu, Qe ≥ 0. We assume that there is either an upward (Qe)
or a downward (Qu) volumetric flow at each point of the downward-pointing z-axis, except
for z = 0, where the feed source is located. The assumption of one-dimensionality implies
that horizontal currents, wall effects, raking, and other features are neglected. Moreover, we
assume that the SST is cylindrical with a constant cross-sectional area A (a 1D formulation
where A depends on depth z is discussed by Bürger et al. (2010)).

The z-axis can be divided into the effluent zone (z < −H), the clarification zone (−H <
z < 0), the thickening zone (0 < z < B), and the underflow zone (z > B).

Consider an arbitrary interval of the depth axis: (z1, z2). The conservation law of mass
states that the increase of mass per time unit in the interval (z1, z2) equals the flux in (Φ|z=z1)
minus flux out (Φ|z=z2) plus the production inside the interval:

d

dt

z2∫

z1

AC(z, t) dz = A (Φ|z=z1 − Φ|z=z2) +

z2∫

z1

Qf(t)Cf(t)δ(z) dz, (2.1)

where Qf = Qe +Qu is the volumetric feed flow, Cf is the feed concentration and

Φ

(
C,
∂C

∂z
, z, t

)

= F (C, z, t)−
((
γ(z)dcomp(C) + ddisp(z,Qf(t))

)∂C
∂z

) (2.2)

is the total flux. Here,

F (C, z, t) =





−Qe(t)C/A for z < −H,

−Qe(t)C/A+ fbk(C) for −H ≤ z < 0,

Qu(t)C/A+ fbk(C) for 0 < z ≤ B,

Qu(t)C/A for z > B

(2.3)
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Figure 1. Schematic illustration of the SST.

is the convective flux function, which involves the Kynch batch flux density function

fbk(C) := Cvhs(C), (2.4)

where vhs(C) is the hindered settling velocity (Kynch, 1952). The parameter γ = γ(z)
indicates whether z is a height in the interior or the exterior of the SST, i.e.,

γ(z) =

{
1 for −H ≤ z ≤ B,

0 for z < −H or z > B.
(2.5)

Moreover, dcomp = dcomp(C) is a concentration-dependent function accounting for sediment
compressibility, and ddisp = ddisp(z,Qf(t)) is a dispersion coefficient that incorporates mixing
of lower and higher sludge concentrations by “lumping” several mechanisms related to density
and turbulent currents together.

We emphasize that Equation (2.1) is the model in integral form. It can be expressed
as the PDE (1.1); however, this equation cannot be interpreted pointwise, but only in the
so-called weak sense. Note that the model equations (2.1)–(2.3) do not contain the actual
cross-sectional areas of the outlet pipes. We are only interested in the concentrations in the
outlet pipes and not the bulk velocities. Under the assumption that the particles follow the
water streams in the outlet pipes, the concentrations are independent on the sizes of the
pipes. For a comprehensive analysis on this, we refer to Diehl (2000).
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One choice of vhs common in SST modelling is the hindered settling expression proposed
by Vesilind (1968),

vhs(C) = v0e−rVC , (2.6)

where v0 is the settling velocity for a single particle and rV > 0 is a parameter. Another
popular expression is the double exponential function by Takács et al. (1991) (rewritten by
Diehl and Jeppsson (1998) so that vhs(C) ≥ 0):

vhs(C) = max

{
0,min

{
ṽ0, v0

(
e−rh(C−Cmin) − e−rp(C−Cmin)

)}}
, (2.7)

where ṽ0 and v0 are the maximal practical and theoretical settling velocities, respectively, rh

and rp are settling parameters, and Cmin is the concentration below which vhs = 0.
The compression function dcomp is given by (Bürger et al., 2005)

dcomp(C) =
ρsvhs(C)

g(ρs − ρf)
σ′e(C) (2.8)

where ρs and ρf < ρs are the (constant) solid and fluid mass densities, g is the acceleration
of gravity, and σe = σe(C) is the so-called effective solid stress function, which satisfies

σ′e(C)

{
= 0 for 0 ≤ C < Cc,

> 0 for C > Cc,
(2.9)

where Cc is a material-dependent critical concentration or gel point at which the solid parti-
cles start to physically touch each other, so that solids stress can be transmitted. Common
semi-empirical formulas for σe(C) include the function by De Clercq et al. (2008),

σe(C) =





0 for C < Cc,

α ln

(
1 +

C − Cc

β

)
for C ≥ Cc.

(2.10)

with parameters α > 0 and β > 0, and the power-law-type expression (Tiller and Leu, 1980)

σe(C) =

{
0 for C < Cc,

σ0

(
(C/Cc)

k − 1
)

for C ≥ Cc.
(2.11)

with parameters σ0 > 0 and k > 0. Empirical functions with model parameters have been
suggested for dcomp directly (Vaccari and Uchrin, 1989; Cacossa and Vaccari, 1994). We
prefer, however, the physically motivated formula (2.8), which involves both constitutive
relations vhs and σe. In the simulations in Section 5, we will use (2.6) and (2.10), which
together with the property (2.9) means that

dcomp(C) =





0 for 0 ≤ C < Cc,

ρsαv0e−rVC

g(ρs − ρf)(β + C − Cc)
for C ≥ Cc.

(2.12)

The dispersion function ddisp is often set as the product of the fluid velocity and some
characteristic length scale (Anderson and Edwards, 1981; Lee et al., 2006). For our purpose,
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ddisp should capture mixing phenomena in three dimensions caused by the feed inlet. It is
therefore reasonable to set

ddisp

(
z,Qf(t)

)
=
Qf(t)

A
L(z,Qf(t)),

where L is a continuous function, which is zero some distance away from the inlet. Once a
portion of suspended sludge has left the SST through one of the outlets, it cannot return.
To guarantee that the model captures this property, we restrict the effect of dispersion to
the interior of the tank by setting

ddisp

(
z,Qf(t)

)
{

= 0 for z ≤ −H and z ≥ B,

≥ 0 for −H < z < B.
(2.13)

One may use a cosine function:

ddisp

(
z,Qf

)
=




α1Qf cos

(
πz

2α2Qf

)
for |z| < α2Qf ,

0 for |z| ≥ α2Qf ,

where α1 and α2 are positive parameters (and α1 contains A). In particular, α2Qf determines
the width of the region where dispersion occurs. In view of (2.13), we require that

α2 <
min(H,B)

maxt≥0Qf(t)
.

An alternative and smooth function is the following:

ddisp(z,Qf) =




α1Qf exp

( −z2/(α2Qf)
2

1− |z|/(α2Qf)

)
for |z| < α2Qf ,

0 for |z| ≥ α2Qf .

(2.14)

The ingredients dcomp and ddisp are independent from each other, and are optional in the
sense that we may set dcomp ≡ 0 or ddisp ≡ 0 for materials and SSTs that are not assumed to
exhibit sludge compressibility or dispersion, providing high flexibility in model use. In the
numerical method to be developed, both options are explicitly included and not lumped like
in other proposed methods.

Let us for a moment set ddisp ≡ 0 and assume that dcomp is given by (2.8). For ease of
discussion, consider only the thickening zone, 0 < z < B. Then (1.1) reduces to

∂C

∂t
+

∂

∂z

(
fbk(C) +

Qu(t)

A
C

)
=

∂

∂z

(
dcomp(C)

∂C

∂z

)
. (2.15)

In view of (2.8) we see that (2.15) is a first-order conservation law whenever 0 ≤ C < Cc

and a second-order parabolic equation for C > Cc. Since (2.15) degenerates to first-order
hyperbolic type on a solution interval [0, Cc) of positive length, this equation is called strongly
degenerate parabolic. The location of the type-change interface C = Cc, corresponding to the
sludge blanket level, is unknown a priori. The numerical method has, however, the property
that it is unnecessary to explicitly track this interface. Analogous observations hold, of
course, for the full equation (1.1) at any position where ddisp(z,Qf(t)) = 0.
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Figure 2. Schematic illustration of the subdivision of the computational do-
main into layers.

Given initial data at t = 0, we call the (entropy-satisfying) solution of Equation (1.1),
interpreted in the weak sense, the exact solution of the model. A numerical solution is
always an approximation of the exact solution. No boundary conditions are needed, since
(1.1) is defined on the whole real line.

3. Discretization of the mathematical model

3.1. Subdivision into layers. We subdivide the tank into N internal layers, so that each
layer has the depth ∆z = (B + H)/N . We assume that the boundaries between the layers
are located at positions (Figure 2)

zj := j∆z −H, j = 0, . . . , N.

Thus, the effluent and underflow levels precisely coincide with layer boundaries, i.e., z0 = −H
and zN = B. We will refer to “layer j” as the interval [zj−1, zj], and adopt further notation
correspondingly. Define jf := dH/∆ze, which is equal to the smallest integer larger or
equal to H/∆z. Then the feed inlet (z = 0) is located in the interval (zjf−1, zjf ] and the
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corresponding layer is called the “feed layer”. In the formulation of the numerical scheme
we add two layers to both the top and bottom corresponding to the effluent and underflow
zones, respectively. Thus, the computational domain is composed of N + 4 intervals of
length ∆z, enclosed by the points zj, j = −2, . . . , N + 2. These four layers are necessary
for a correct numerical implementation. This ingredient differs from most of the published
SST simulators, which make the generally erroneous assumption that the concentration is
continuous over the outlet locations, i.e., the outlet concentrations are the same as in layer
1 and N , respectively. In the present method, the effluent and underflow concentrations (Ce

and Cu) are those found in layers 0 and N + 1, respectively. Further discussion on this point
can be found in Bürger et al. (2012).

3.2. The conservation law for each layer. Motivated by the particular form of the left-
hand side of (2.1), we define Cj = Cj(t) as the average of the exact solution C over layer j
at time t (see Figure 2):

Cj(t) :=
1

∆z

zj∫

zj−1

C(z, t) dz. (3.1)

The numerical method is derived by first rewriting the governing equation (2.1) in a slightly
different form. We define the primitive of dcomp,

D(C) :=

C∫

Cc

dcomp(s) ds, (3.2)

so that we may write

dcomp(C)
∂C

∂z
=

∂

∂z
D(C).

We can then write the total flux in (2.2) as

Φ = F − Jdisp − Jcomp,

where

Jdisp(z, t) := ddisp

(
z,Qf(t)

)∂C
∂z

, (3.3)

Jcomp(z, t) := γ(z)
∂D(C)

∂z
. (3.4)

Of course, Jdisp and Jcomp are functions of z and t also via the derivatives of C(z, t) and
D(C(z, t)), however, we choose the easier notation of dependence (z, t). Equation (2.1) can
now be rewritten, for each layer j, in the following way by dividing by the constants A
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and ∆z:
dCj

dt
= −F (C(zj, t), zj, t)− F (C(zj−1, t), zj−1, t)

∆z

+
Jdisp(zj, t)− Jdisp(zj−1, t)

∆z

+
Jcomp(zj, t)− Jcomp(zj−1, t)

∆z

+
1

∆z

zj∫

zj−1

Qf(t)Cf(t)

A
δ(z) dz.

(3.5)

This equation is an exact version of the conservation law. In particular, the finite differ-
ence quotient of the convective flux function F (and likewise for Jdisp and Jcomp) is not an
approximation of a derivative; it is a consequence of the conservation law for a layer.

To convert (3.5) into a numerical scheme, we express the right-hand side of (3.5) in terms
of the layer concentration Cj and its neighbours only.

3.3. Approximation of the convective flux. The convective flux F (C(zj, t), zj, t) in (3.5)
at the boundary between layers j and j + 1 should be replaced by a numerical convective
flux F num

j associated with position zj. Such a numerical flux will in general depend on the
adjacent layer concentrations Cj(t) and Cj+1(t), i.e.,

F num
j

(
Cj(t), Cj+1(t), t

)
≈ F

(
C(zj, t), zj, t

)
.

There are several reasonable choices of the numerical flux F num
j , and several restrictions that

must be met to ensure convergence to the exact solution. We have discussed this, compared
different numerical methods for the present type of PDE (Bürger et al., 2012) and pointed
out some pitfalls.

Since a simulator of the SST should eventually be included in a model of an entire WWT
plant, the simulation speed is important. Therefore, we choose here the Godunov numerical
flux (Godunov, 1959) on fbk as an approximation of fbk(C(zj, t)):

Gj = Gj(Cj, Cj+1) =





min
Cj≤C≤Cj+1

fbk(C) if Cj ≤ Cj+1,

max
Cj≥C≥Cj+1

fbk(C) if Cj > Cj+1.
(3.6)

The evaluation of Gj is greatly simplified in the common situation that fbk has precisely
one local maximum at a value Ĉ. (For example, with the Vesilind settling velocity (2.6), fbk

has a unique local maximum at Ĉ = 1/rV.) In that case, after a straightforward systematic

evaluation of (3.6) with all possible orderings of Cj, Cj+1 and Ĉ, the value of Gj can be
computed by the following simple algorithm:

Algorithm 3.1 (Computation of Gj).

Input: concentrations Cj and Cj+1, function fbk with exactly one local maximum at

Ĉ
Output: value of Gj

if Cj < Cj+1 then
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Gj ← min{fbk(Cj), fbk(Cj+1)}
else

if (Ĉ − Cj) · (Ĉ − Cj+1) < 0 then

Gj ← fbk(Ĉ)
else

Gj ← max{fbk(Cj), fbk(Cj+1)}
endif

endif

Summarizing, we obtain the following explicit formula for the numerical flux:

F num
j = F num

j (Cj, Cj+1, t)

:=





−(Qe(t)/A)Cj+1 for j = −2,−1,

−(Qe(t)/A)Cj+1 +Gj for j = 0, . . . , jf − 1,

(Qu(t)/A)Cj +Gj for j = jf , . . . , N ,

(Qu(t)/A)Cj for j = N + 1, N + 2,

(3.7)

where Gj is given by (3.6) or Algorithm 3.1.

3.4. Approximation of the dispersion and compression fluxes. Using the shorter
notation

ddisp,j := ddisp

(
zj, Qf(t)

)
,

we approximate the dispersion flux (3.3) by a difference approximation

Jdisp(zj, t) ≈ Jnum
disp,j := ddisp,j

Cj+1 − Cj

∆z
. (3.8)

Analogously, we approximate the compression flux (3.4) as

Jcomp(zj, t) ≈ Jnum
comp,j := γ(zj)

Dnum
j+1 −Dnum

j

∆z
, (3.9)

where Dnum
j is either the exact or an approximate integrated compression coefficient (3.2).

For some choices of the constitutive functions vhs and σe, the primitive D of dcomp defined by
(3.2) can be found as a closed-form expression (see, e.g., Bürger and Karlsen, 2001). Then
we can simply define

Dnum
j := D(Cj) (exact primitive).

If an exact primitive cannot be found, D(Cj) has to be approximated by numerical integra-
tion. To obtain fast simulations, one can avoid calculating the quadrature in (3.2) at every
time step during the simulation. This technique involves two steps. Before the simulation
starts, use the trapezoidal rule to compute approximate values D̃i of D(i∆C) on a finely
discretized C-axis at the concentrations

Cc + i∆C, i = 0, 1, . . . ,M, (3.10)

where M∆C = Cmax−Cc should hold, and where Cmax is a chosen maximum concentration;
see Section 3.7. During the simulation, we use linear interpolation to get the approximate
value Dnum

j of D(Cj). This two-step procedure introduces an error, which depends on the
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choice of ∆C or, equivalently, M . Without going into details, one should choose ∆C pro-
portional to (∆z)3/2 (M proportional to N3/2) in order not to destroy the overall order of
convergence when the approximation (3.9) is made. Since we are dealing with precomputa-
tions that do not influence the running simulation time, we reduce the error more by setting
M = N2. Furthermore, if dcomp(C) is discontinuous at C = Cc, make sure that dcomp(Cc) > 0
in Algorithm 3.2; cf. (2.12).

Algorithm 3.2 (Precomputation of D̃i).

Inputs: number of layers N , critical concentration Cc, maximum concentration Cmax,
function dcomp

Outputs: value ∆C, values D̃i, i = 0, 1, . . . ,M
M ← N2

∆C ← (Cmax − Cc)/M
D̃0 ← 0
d0 ← dcomp(Cc)
for i = 1, . . . ,M

di ← dcomp(Cc + i∆C)

D̃i ← D̃i−1 + ∆C
2

(di−1 + di)
end

During the simulation, given a layer concentration Cj > Cc, we use linear interpolation
between D̃i and D̃i+1 for a suitable index i to define Dnum

j . This index i thus satisfies
Cc + i∆C ≤ Cj < Cc + (i+ 1)∆C. The algorithm is the following, where bxc is the nearest
integer below the real number x.

Algorithm 3.3 (Computation of Dnum
j ).

Inputs: values j, ∆C, Cj and D̃i, i = 0, 1, . . . ,M
Output: value Dnum

j

if Cj ≤ Cc

Dnum
j ← 0

else
i← b(Cj − Cc)/∆Cc
Dnum

j ←
(
Cj

∆C
− i
)
D̃i+1 +

(
i+ 1− Cj

∆C

)
D̃i

end

3.5. Method of lines. The feed term in the last line of (3.5) can be handled directly; we
just add Qf(t)Cf(t)/(A∆z) to the right-hand side of the equation for j = jf . Consequently,
we obtain the method-of-lines formula

dCj

dt
= −F

num
j − F num

j−1

∆z

+
1

∆z

(
Jnum

disp,j − Jnum
disp,j−1 + Jnum

comp,j − Jnum
comp,j−1

)

+
QfCf

A∆z
δj,jf , j = −1, . . . , N + 2,

(3.11)
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where δj,jf is the standard Kronecker symbol with δj,jf = 1 if j = jf and δj,jf = 0 otherwise.
(Recall that j = −1 and j = 0 correspond to the layers of the effluent zone, [z−2, z−1] and
[z−1, z0].) The expressions F num

j , Jnum
disp,j and Jnum

comp,j are defined by (3.7), (3.8) and (3.9),
respectively. Formula (3.11) is an approximation of the exact conservation law formulation
(3.5).

Note that not all of the terms in (3.11) are present in every layer. Explicitly, we obtain
for the layer with j = −1 completely located in the effluent zone:

dC−1

dt
=

Qe

A∆z
(C0 − C−1), (3.12)

for the layer with j = 0 in the effluent zone adjacent to the effluent level z0 = −H:

dC0

dt
=

Qe

A∆z
(C1 − C0)− G0

∆z
+
Dnum

1 −Dnum
0

(∆z)2
, (3.13)

for layer 1 within the SST:

dC1

dt
=

Qe

A∆z
(C2 − C1)− G1 −G0

∆z

+
1

(∆z)2

(
ddisp,1(C2 − C1)

+Dnum
2 − 2Dnum

1 +Dnum
0

)
,

(3.14)

for layers j = 2, . . . , jf − 1:

dCj

dt
=

Qe

A∆z
(Cj+1 − Cj)−

Gj −Gj−1

∆z

+
1

(∆z)2

(
ddisp,j(Cj+1 − Cj)− ddisp,j−1(Cj − Cj−1)

+Dnum
j+1 − 2Dnum

j +Dnum
j−1

)
,

(3.15)

for the feed layer j = jf :

dCjf

dt
= −Qu +Qe

A∆z
Cjf −

Gjf −Gjf−1

∆z

+
1

(∆z)2

(
ddisp,jf (Cjf+1 − Cjf )− ddisp,jf−1

(Cjf − Cjf−1)

+Dnum
jf+1 − 2Dnum

jf
+Dnum

jf−1

)

+
QfCf

A∆z
,

(3.16)
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for the layers with j = jf + 1, . . . , N − 1 in the thickening zone:

dCj

dt
= − Qu

A∆z
(Cj − Cj−1)− Gj −Gj−1

∆z

+
1

(∆z)2

(
ddisp,j(Cj+1 − Cj)− ddisp,j−1(Cj − Cj−1)

+Dnum
j+1 − 2Dnum

j +Dnum
j−1

)
,

(3.17)

for the bottom layer in the thickening zone:

dCN

dt
= − Qu

A∆z
(CN − CN−1)− GN −GN−1

∆z

+
1

(∆z)2

(
−ddisp,N−1(CN − CN−1)

+Dnum
N+1 − 2Dnum

N +Dnum
N−1

)
,

(3.18)

for the two layers that form the underflow zone:

dCN+1

dt
= − Qu

A∆z
(CN+1 − CN) +

GN

∆z
− Dnum

N+1 −Dnum
N

(∆z)2
, (3.19)

and

dCN+2

dt
= − Qu

A∆z
(CN+2 − CN+1). (3.20)

3.6. Time discretization. The method-of-lines equations (3.12)–(3.20) can be implemented
when solvers for the layer-wise defined ODEs are available. This is particularly handy when
the SST should be simulated together with several other ODEs modelling the biological
reactors of an activated sludge process. However, since the spatial accuracy of the scheme
is only of first order, there is probably not much to gain in terms of speed by using any
high-order-in-time ODE solver. A simple explicit Eulerian time step is sufficient. To this
end we select a time step ∆t > 0 according to the CFL (Courant-Friedrichs-Lewy) condition;
see Section 3.7, and let tn := n∆t. We denote by Cn

j the value of the layer concentration at
time tn, cf. (3.1),

Cn
j := Cj(tn) =

1

∆z

zj∫

zj−1

C(z, tn) dz,

j = −1, . . . , N + 2, n = 0, 1, 2, . . . .

In the method-of-lines ODEs (3.12)–(3.20), we approximate the time derivative by the ex-
plicit Euler step

dCj

dt
(tn) ≈

Cn+1
j − Cn

j

∆t
,
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evaluate the right-hand side of (3.11) at t = tn and replace Cj(tn) by Cn
j . Multiplying the

resulting equation by ∆t, adding Cn
j to both sides we obtain the fully discrete method

Cn+1
j = Cn

j −
∆t

∆z

(
F num,n
j − F num,n

j−1

)

+
∆t

∆z

(
Jnum,n

disp,j − Jnum,n
disp,j−1 + Jnum,n

comp,j − Jnum,n
comp,j−1

)

+
∆t

∆z

Qf(tn)Cf(tn)

A
δj,jf , j = −1, . . . , j = N + 2,

(3.21)

where F num,n
j := F num

j (Cj, Cj+1, tn), etc. We leave to the reader to write out this algorithm
for each layer.

3.7. CFL condition. Suppose that we want to use the fully discrete method (3.21) to
simulate an SST over a time interval [0, T ]. Given the chosen layer depth ∆z, the time step
∆t must be chosen such that the following condition is satisfied:

∆t ≤
[

1

∆z

(
max

0≤t≤T

Qf(t)

A
+ max

0≤C≤Cmax

∣∣f ′bk(C)
∣∣
)

+
2

(∆z)2

(
max

0≤C≤Cmax

dcomp(C) + max
−H≤z≤B,

0≤t≤T

ddisp

(
z,Qf(t)

)
)]−1

.

(3.22)

Observe that for a given spatial discretization ∆z, inequality (3.22) yields an upper limit
of the time step ∆t that must be submitted into any ODE solver for the method-of-lines
equations (3.11). A condition like (3.22) is known in numerical analysis as a “CFL condition”.
It is a necessary condition to ensure stability of the numerical scheme. For computational
purposes, the maximum concentration Cmax should be set to a sufficiently large value (above
Cc), where the function value and derivative of fbk is almost zero. Then dcomp(C) is also
small. Whether Cmax is set to, for example, 20 or 30 kg/m3 has no impact on the simulation
time.

4. How to convert the Takács method to a reliable one

4.1. Upgrade the numerical flux. The simulation method by Takács et al. (1991) is
implemented in many simulators for the SST. The method is roughly the one by Vitaso-
vic (1989) with the specific constitutive relation given by the double exponential settling
velocity function (2.7). The key ingredient is, however, the numerical flux update, which
comes from Stenstrom (1976):

Sj = min
{
fbk(Cj), fbk(Cj+1)

}
. (4.1)

This expression should be compared with the Godunov flux Gj in (3.6), which contains a
minimum function, however over an entire interval instead of only at the two concentration
values Cj and Cj+1. When the function fbk has precisely one local maximum (which is the
only realistic case known to the authors), the computation of Godunov’s flux can be done by
Algorithm 3.1. In this algorithm, (4.1) can be found in the first if-then statement. Hence,
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Stenstrom’ flux (4.1) can easily be upgraded to the reliable Godunov flux by adding a few
more lines in the simulation program.

A fundamental principle for any consistent modelling methodology (Bürger et al., 2011), is
that all model parameters should be included in the physical constitutive assumptions only,
so that they appear in the model PDE and then are carried over to any numerical method.
No parameters should be introduced in the numerical algorithm itself. Consequently, the
threshold parameter in the clarification zone layers in Takács’ model should be removed.

4.2. Upgrade the outlet concentrations. The Takács method assumes that the concen-
tration in the top layer is the same as the one in the effluent. In some situations, this is an
unphysical assumption which the present simulation method avoids. The physically correct
approach is that the conservation of mass should hold also across the outlets, i.e., the flux of
particles leaving the top layer should be equal to what the effluent pipe receives. The effluent
concentration is a part of the solution of the model equation (1.1), namely in z < −H. (The
analogous situation holds at the bottom of the SST.) Recall that the assumption is that
there is only bulk transport (neither settling, compression nor dispersion) outside the SST;
cf. (2.3). In the numerical method, correct outlet concentrations are automatically obtained
by means of the extra layers outside the SST.

4.3. Add compression and dispersion effects. To be able to calculate approximations
of the second-order spatial derivative effects, two extra layers have to be added at the top
and bottom, respectively, outside the SST. The dispersion flux (3.8) is straightforwardly
included when a constitutive relation for ddisp(z,Qf) has been chosen.

The compression flux needs some more care to include, and there are in addition pitfalls;
see Bürger et al. (2012). Once a constitutive function for dcomp has been chosen, it is
important to first find the primitive of this, which often has to be done numerically with the
precomputation in Algorithm 3.2.

4.4. Implement the CFL condition. After an implementation of the CFL condition
(3.22), the method-of-lines formulas in Section 3.5 or the fully discrete method in Section 3.6
can be used.

5. Simulations

A demonstration of the possibilities of turning on and off the optional effects of compression
and dispersion with the proposed method has already been presented by Bürger et al. (2011).
Here, we investigate further the effect of dispersion on the outlet concentrations and on
the transient behaviour between different steady states. For a detailed comparison with a
proved reliable numerical method as well as discussions on pitfalls and comparisons with
other simulation models, we refer to Bürger et al. (2012). In that paper and here we use
the same constitutive functions vhs, σe and ddisp, namely the Vesilind settling velocity (2.6),
the logarithmic effective solids stress function (2.10) and the exponential dispersion function
(2.14). This implies that the function dcomp is given by (2.12). For the constants in those
functions, we set v0 = 3.47 m/h, rV = 0.37 m3/kg, α = 4.00 Pa, β = 4.00 kg/m3, ρs =
1050 kg/m3, ∆ρ = 52 kg/m3, g = 9.81 m/s2 and Cc = 6.00 kg/m3. The constants α1 and
α2 in the dispersion function (2.14), will be varied to illustrate their respective effect. The
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maximum concentration for the CFL condition (3.22) is chosen as Cmax = 20 kg/m3. We
consider an SST with H = 1 m, B = 3 m and A = 400 m2, and let the number of internal
layers (within the SST) be N = 90 (i.e. a total of 94 layers for the numerical method).

In the first three simulations the volumetric flows are kept constant: Qf(t) = 250 m3/h,
Qu(t) = 80 m3/h, and hence Qe(t) = 170 m3/h for 0 ≤ t ≤ 800 h. The feed concentration is
chosen as

Cf(t) =





4.0 kg/m3, 0 ≤ t < 50 h,

3.7 kg/m3, 50 ≤ t < 250 h,

4.1 kg/m3, 250 ≤ t < 800 h.

The SST is initially in a steady state with a sludge blanket level at the depth 0.6 m obtained
from a simulation without dispersion, i.e. α1 = 0 m−1, and with Cf = 4.0 kg/m3.

To illustrate the CFL condition (3.22), we get the following for Simulations 2 and 3 (where
all effects are included):

∆t ≤
[

4.0972 m/h

∆z
+

1.5525 m2/h

(∆z)2

]−1

.

Since ∆z = (4 m)/N , we get for N = 90: ∆z = 0.0444 m ≈ 4 cm and ∆t ≤ 0.00114 h
≈ 4 s, which is reasonable for this type of spatial detail. A more detailed investigation of
this condition is beyond the scope of this paper.

Simulation 1, no dispersion. When α1 = 0 m−1 there is no dispersion. The simulation
shown in Figure 3a shows that the initial steady state is kept the first 50 hours and the
other two steady states some time after the change in the feed concentration. The third
(and final) steady state (Cf = 4.1) has a sludge blanket level slightly higher in the SST and
the underflow concentration is higher than in the initial state (Cf = 4.0). During the entire
simulation, a discontinuity can be noticed at the feed level.

Simulation 2, dispersion in |z| < 0.4 m. We now introduce some dispersion around the
inlet by setting α1 = 0.001 m−1 and α2 = 0.0016 h/m2, which means that α2Qf = 0.4 m
is the distance from the inlet where dispersion is present; see Figure 3b. The (previous)
discontinuity at the feed level is now smoothed. In the first part of the simulation where
the sludge blanket is quite low, no effect different from Figure 3a can be observed. After
about 300 hours when the sludge blanket rises up into the region of dispersion, the solution
is clearly smoothed and the sludge blanket rises up into the clarification zone.

Simulation 3, dispersion in |z| < 0.8 m. With α1 = 0.001 m−1 and α2 = 0.0032 h/m2,
the region of dispersion is now doubled; α2Qf = 0.8 m. As Figure 3c shows, the initial steady
state is smoothed slightly, since the location of the initial sludge blanket is z = 0.6 < 0.8 m.
As in Figure 3b, the third steady state contains a sludge blanket in the clarification zone
but now at a higher level. Thus, the more dispersion, the more total sludge mass in the
SST at steady state. This is clearly seen in Figure 3d, where the concentration profiles of
Simulations 1 and 3 at the end time t = 800 h are shown. The effluent concentration is
Ce(t) = 0 for 0 ≤ t ≤ 800 h for all three simulations. In the final steady state, the underflow
concentration Cu is therefore uniquely determined by the feed mass flow via the steady-state
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Figure 3. Three simulations of the same scenario (a-c) with different amount
of dispersion. The last two plots show details of Simulations 1 and 3.

mass balance QfCf = QuCu. Given Cu, the steady-state profile is uniquely given by the
solution of an ODE; see Bürger and Narváez (2007). Consequently, the steady-state profiles
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for Simulations 1 and 3 are the same from the bottom up to z = −0.8 m, above which
there is dispersion in Simulation 3; see Figure 3d. As Figure 3e shows, the difference in the
underflow concentration during transients explains the difference in mass in the final steady
states.

Simulation 4, higher Qf , no dispersion. We apply the same conditions as in Simu-
lation 1, except for the feed volumetric flow, which is now increased to Qf = 270 m3/h.
Figure 4a shows a transient with the sludge blanket rising up into the clarification zone. As
Cf = 3.7 kg/m3, an almost stationary sludge blanket at about z = 0.6 m appears before
t = 250 h. In the final steady state, the clarification zone is filled with sludge and the
flocs are moving only slowly upwards since the bulk flow upwards (Qe/A) is only slightly
higher than the settling velocity downwards. Hence, only a small amount of sludge is actu-
ally leaving through the effluent at the concentration Ce(800 h) = 358 mg/l. Thus, this is
an example of a discontinuity arising at the effluent level. The underflow concentration is
Cu(800 h) = 12.99 kg/m3 and the steady-state mass conservation is fulfilled:

QuCu +QeCe = 1038.94 + 68.06 = 1107.00 = QfCf [kg/h].

Simulation 5, higher Qf , dispersion in |z| < 0.8 m. The same conditions as in Simu-
lation 4 are used, but with α1 = 0.001 m−1 and α2 = 0.8/270 h/m2, which implies that the
region of dispersion is |z| ≤ α2Qf = 0.8 m; see Figure 4b. In the final steady state there
is a higher effluent concentration, Ce(800 h) = 419 mg/l, than in Simulation 4. This is an
increase of 17% for the same feed load. The dispersion term can thus be used to simulate
SSTs that are identical except for different inlet works. To date, we have not seen this
feature in literature. This opens perspectives to include other processes such as flocculation.
The underflow concentration Cu(800 h) = 12.84 kg/m3 is lower than in Simulation 4; see
Figure 4c. The steady-state mass conservation is again satisfied:

QuCu +QeCe = 1027.44 + 79.56 = 1107.00 = QfCf [kg/h]

Note that the mass flow through the effluent is higher, 79.56 − 68.06 = 11.50 kg/h, with
dispersion than without. The different underflow concentrations during Simulations 4 and 5
are shown in Figure 4d.

6. Conclusions

The derivation and implementation of a numerical method for 1D simulation of SSTs is
presented. The simulation method has the following features:

• It is derived from the conservation law of mass supported by PDE theory and adherent
numerical analysis. No heuristic parameters are introduced in the numerical method
and no assumptions on the solution are made; e.g. the concentration is continuous over
the outlets. In Simulation 4, we have demonstrated that there may be a concentration
discontinuity at the effluent level as part of the solution.
• It is reliable in the sense that it produces correct numerical approximations of the

exact solution of the model PDE. This means that it is also robust, since it can
handle all possible situations and choices of number of layers. Necessary ingredients
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Figure 4. Simulations 4 and 5 show an overloaded situation without disper-
sion (a) and with (b).

are the extra layers outside the SST, the time step limitation (CFL condition) and
careful discretizations of the convection and compression terms.
• According to consistent modelling methodology, all model parameters are introduced

only in the physical constitutive relations, which comprise hindered sedimentation,
compression of particles at high concentrations and dispersion that depends on depth
and volumetric feed flow.
• It is more general than previously published 1D simulation methods, since reliable

simulations are obtained irrespective of whether the modelling phenomena of com-
pression and dispersion are turned on or off, separately.
• Simulations indicate that although dispersion is localized around the inlet, it influ-

ences all concentrations in the SST during transient situations and in overloaded
steady states. In other steady states (Ce = 0), dispersion around the inlet only influ-
ences the concentrations locally, so that the underflow concentration is not influenced.
However, the total sludge mass in the SST is increased.
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• The physically correct Godunov numerical flux is computed in a fast and simple
way (Algorithm 3.1). This flux can be seen as a direct extension of the well-known
Stenstrom-Vitasovic-Takács flux.
• The Takács simulation model, which has served the community for over 20 years and

still is in use in many commercial simulators, can now fairly easily be upgraded to
the presented reliable simulation model, which includes additional effects that can be
customarily chosen.
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Plósz, B.G., Weiss, M., Printemps, C., Essemiani, K., Meinhold, J., 2007. One-dimensional
modelling of the secondary clarifier — factors affecting simulation in the clarification
zone and the assessment of the thickening flow dependence. Wat. Res. 41, 3359–3371.
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