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Centro de Investigación en
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Abstract

Here we consider the transmission problem with localized Kelvin Voigt’s vis-
coelastic damping. Our main result is to show that the corresponding semigroup
eAt is not exponentially stable, but the solution decays polynomially to zero as
1/(1+ t)2, when the initial data is taken over the Domain D(A). Moreover we prove
that this rate of decay is optimal. Finally using a second order scheme that ensures
the decay of energy (Newmark-β method), we give some numerical examples which
demonstrate this polynomial asymptotic behavior.
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1 Introduction

Localized frictional damping was studied for several authors in one and several space

dimension, as can be seem in [24, 26, 27, 28, 29, 30] to quote but a few. The main result of

the above articles is that localized frictional damping produce exponential decay in time of

the solution. The more general result occurs in one dimensional space where the solution

always decays exponentially to zero for any localized frictional damping effective over

any open subset of the domain. This result is no longer valid for materials configurated

over bounded domains Ω ⊂ Rn for n ≥ 2 where the possition of the frictional effect is

important. See for example [31], where necessary and sufficient conditions are given to

get stabilization of the wave equation with localized frictional damping. That is to say,
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to get the exponential stability the damping mechanism must be effective in a sufficient

large neighborhood of the boundary, see also [28].

On the other hand, it is very well know that the viscoelastic Kelvin Voigt’s damping

when effective in the whole domain is stronger than the frictional damping. This damp-

ing mechanism not only produce exponential stability but also turns the corresponding

semigroup into an analityc semigroup, which in particular implies that the system is

exponentially stable among other important properties, see Zheng-Liu’s book [15]. But

contradictorily when localized the Kelvin Voigt’s damping is weaker than the frictional

damping, in the sense that the corresponding semigroup is not exponentially stable as

proved in [13].

In this paper we will consider the transmission problem of the wave equation with

localized viscoelasticity of Kelvin Voigt type configured as in the following picture.
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Here we consider the system

ρ1 utt − κ1 uxx − κ2 uxxt = 0 in ]− L, 0[×]0, ∞[ (1.1)

ρ2 vtt − κ3 vxx = 0 in ]0, L[×]0, ∞[, (1.2)

where the functions u = u(x, t) and v = v(x, t) represents the fraction field of a con-

stituent. κ1, κ2 and κ3 are positive constants. ρ1, ρ2 are the mass density functions.

The boundary conditions

u(−L, t) = 0, v(L, t) = 0, t ≥ 0

u(0, t) = v(0, t), κ1 ux(0, t) + κ2 uxt(0, t) = κ3 vx(0, t)
(1.3)

and initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x) in ]− L, 0[

v(x, 0) = v0(x), vt(x, 0) = v1(x) in ]0, L[
(1.4)
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Denoting by E the energy

E(t) = 1

2

[
ρ1

∫ 0

−L

u2
t dx+ ρ2

∫ L

0

v2t dx+ κ1

∫ 0

−L

u2
x dx+ κ3

∫ L

0

v2x dx

]
.

It is not difficult to see that

d

dt
E(t) = −κ2

∫ 0

−L

u2
xt dx (1.5)

Our main result is that the solution decays exponentially to zero as t−2. Moreover we

will prove that this rate of decay is optimal when we take initial data over the domain of

the infinitesimal operator A associated to the semigroup SA(t) that defines the solution

of the transmission problem. That is we will prove that there exists a positive constant

ck such that

‖S(t)U0‖ ≤ ck
t2k

‖U0‖D(Ak), ∀k ∈ N

The remain part of this article is defined as follows. In the next section 2 we show

the existence result in the framework of semigroup. In section 3 we show the polynomial

decays as well as the optimality. Finally in section 4, using a second order scheme that

ensures the decay of energy (Newmark-β method), we give some numerical examples

which demonstrate this polynomial asymptotic behavior.

2 The semigroup setting

In this section, we use the semigroup approach to show the well-posedness of system

(1.1)-(1.3). Let us denote by

H
m = Hm(−L, 0)×Hm(0, L), L

2 = L2(−L, 0)× L2(0, L).

H
1
L =

{
(u, v) ∈ H

1; u(−L) = v(L) = 0, u(0) = v(0)
}

Under the above conditions we have that the phase space is given by

H = H
1
L × L

2

Note that this space equipped with the inner product

〈(u1, v1, η1, µ1), (u2, v2, η2, µ2)〉H = κ1

∫ 0

−L

u1x u2x dx+ κ3

∫ L

0

v1x v2x dx

+ ρ1

∫ 0

−L

η1 η2 dx+ ρ2

∫ L

0

µ1 µ2 dx
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Is a Hilbert space. We also consider the linear operator A : D(A) ⊂ H → H

A




u
v
η
µ


 =




η
µ

1
ρ1
(κ1 uxx + κ2 ηxx)

κ3

ρ2
vxx


 ,

whose domain D(A) is given by

D(A) =
{
U ∈ H; (η, µ) ∈ HL (κ1u+ κ2η, v) ∈ H

2, κ1ux(0) + κ2ηx(0) = κ3vx(0)
}

where U = (u, v, η, µ)T . Taking ut = η and vt = µ, (1.1)-(1.2) can be reduced to the

following abstract initial value problem for a first-order evolution equation

d

dt
U(t) = AU(t), U(0) = U0, ∀ t > 0

with U(t) = (u, v, ut, vt)
T and U0 = (u0, v0, u1, v1)

T . Next, we show that the operator

A generates a C0-semigroup of contractions over H.

Proposition 2.1 The operator A generates a C0-semigroup SA(t) of contractions on the

space H.

Proof. We will show that A is a dissipative operator and 0 ∈ ̺(A), the resolvent set

of A. Then our conclusion will follow using the well known Lumer-Phillips theorem (see

[19]). We observe that if U = (u, v, η, µ) ∈ D(A) then

〈AU, U〉
H
= κ1

∫ 0

−L

ηx ux dx+ κ3

∫ L

0

µx vx dx+

∫ 0

−L

(κ1 u+ κ2 η)xx η dx+ κ3

∫ L

0

vxx µdx.

Integrating by parts, using (1.3), and performing straightforward calculations we obtain

Re 〈AU, U〉
H
= −κ2

∫ 0

−L

|ηx|2 dx. (2.1)

Hence A is a dissipative operator. To show that 0 ∈ ̺(A) let us take F = (f, g, p, q) ∈ H.

We will show that there exists a unique U = (u, v, η, µ) in D(A) such that AU = F, that

is,

η = f in H1(−L, 0) (2.2)

µ = g in H1(0, L) (2.3)

κ1 uxx + κ2 ηxx = ρ1 p in L2(−L, 0) (2.4)

κ3 vxx = ρ2 q in L2(0, L). (2.5)

4



Replacing (2.2) in (2.4) we have

κ1 uxx = κ2 fxx + ρ1 p ∈ H−1(−L, 0). (2.6)

It is not difficult to see that the trasmission problem given by (2.5)-(2.6) is well posed

Therefore, we conclude that 0 ∈ ̺(A).

Theorem 2.2 For any U0 ∈ H there exists a unique solution U(t) = (u, v, ut, vt) of

(1.1)-(1.4) satisfying

(u, v, ut, vt) ∈ C([0, ∞[: H1
L × L

2)

If U0 ∈ D(A), then

(u, v, ut, vt) ∈ C1([0, ∞[: H1
L × L

2) ∩ C([0, ∞[: D(A))

3 Polynomial decay and optimality

In this section we will show the polynomial decay of the solutions. To do so we will use

the characterization due to A. Borichev and Y. Tomilov [2].

Theorem 3.1 Let S(t) be a bounded C0-semigroup on a Hilbert space H with generator

A such that iR ⊂ ̺(A). Then

1

|λ|α ‖(i λ I −A)−1‖L(H) ≤ C, ∀λ ∈ R ⇐⇒ ‖S(t)A−1‖D(A) ≤
C

t1/α
.

In fact, given λ ∈ R and F = (f, g, p, q) ∈ H, there exist U = (u, v, η, µ) ∈ D(A), such

that i λ U −AU = F, that is,

i λ u− η = f in H1(−L, 0) (3.1)

i λ v − µ = g in H1(0, L) (3.2)

i λ η − κ1 uxx − κ2 ηxx = ρ1 p in L2(−L, 0) (3.3)

i λ µ− κ3 vxx = ρ2 q in L2(0, L). (3.4)

From (2.1), note that

Re 〈(i λ I −A)U, U〉
H
= Re 〈AU, U〉

H
= κ2

∫ 0

−L

|ηx|2 dx = Re 〈F, U〉
H
.
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Thus

κ2

∫ 0

−L

|ηx|2 dx ≤ ‖U‖H ‖F‖H. (3.5)

From (3.1) and (3.5) we obtain

|λ|2
∫ 0

−L

|ux|2 dx ≤ C ‖U‖H ‖F‖H + C ‖F‖2H. (3.6)

Theorem 3.2 Under the above notations we have that the semigroup associated to the

transmission problem, decays polynomially as

‖eA t U0‖H ≤ Ck

t2k
‖U0‖D(Ak).

Proof. From (3.3) we have

|λ| ‖η‖−1 ≤ C ‖ux‖+ C ‖ηx‖+ C ‖F‖H ≤ C ‖U‖1/2
H

‖F‖1/2
H

+ C ‖F‖H.

Using interpolation and inequality (3.5) we get

‖η‖2L2(−L, 0) ≤ C ‖η‖−1 ‖η‖1 ≤
C

|λ|
[
‖U‖1/2

H
‖F‖1/2

H
+ ‖F‖H

]
‖η‖1

≤ C

|λ|
[
‖U‖H ‖F‖H + ‖U‖1/2

H
‖F‖3/2

H

]
. (3.7)

Multiplying equation (3.3) by (x+ L) (κ1 ux + κ2 ηx) and taking real part we have

Re i λ

∫ 0

−L

η (x+ L) (κ1 ux + κ2 ηx) dx− 1

2

∫ 0

−L

(x+ L)
d

dx
|κ1 ux + κ2 ηx|2 dx

= ρ1Re

∫ 0

−L

p (x+ L) (κ1 ux + κ2 ηx) .

Using (3.1), note that

κ1Re i λ

∫ 0

−L

η (x+ L) ux dx = − L

2
κ1 |η(0)|2 +

1

2
κ1

∫ 0

−L

|η|2 dx− κ1

∫ 0

−L

(x+ L) η f dx.

We denote the functional

Iu =
1

2

[
κ1 |η(0)|2 + |κ1 ux(0) + κ2 ηx(0)|2

]
.

From where it follows that

Iu = κ2Re i λ

∫ 0

−L

(x+ L) η ηx dx+
1

2
κ1

∫ 0

−L

|η|2 dx+
1

2

∫ 0

−L

|κ1 ux + κ2 ηx|2 dx

− ρ1Re

∫ 0

−L

p (x+ L) (κ1 ux + κ2 ηx) dx− κ1

∫ 0

−L

(x+ L) η f dx

≤ C

∫ 0

−L

(
|λ| |ηx| |η|+ η2x + u2

x

)
dx+ C ‖U‖H ‖F‖H

≤ C |λ|1/2
∫ 0

−L

|ηx|
(
|λ|1/2 |η|

)
dx+ C ‖U‖H ‖F‖H.
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Using (3.7) we get

Iu ≤ C |λ|1/2
(
‖U‖H ‖F‖H + ‖U‖3/4

H
‖F‖5/4

H

)
, (3.8)

for λ large enough. On the other hand, multiplying equation (3.4) by (x− L) vx we get

i λ ρ2

∫ L

0

µ (x− L) vx dx− κ3

∫ L

0

vxx (x− L) vx dx = ρ2

∫ L

0

(x− L) q vx dx.

Taking the real part and using (3.2) we obtain

1

2
ρ2

∫ L

0

(
|µ|2 + κ3

ρ2
|vx|2

)
dx =

1

2
ρ2 L

(
|µ(0)|2 + κ3

ρ2
|vx(0)|2

)
+ ρ2Re

∫ L

0

(x− L) q vx dx

+ ρ2Re

∫ L

0

(x− L)µ gx dx

Using (1.3), and performing straightforward estimates follows that

1

2

∫ L

0

(
ρ2 |µ|2 + κ3 |vx|2

)
dx ≤ 1

2
ρ2 L

(
|µ(0)|2 + κ3

ρ2
|vx(0)|2

)
+ C ‖U‖H ‖F‖H

≤ C
[
η(0)|2 + |κ1 ux(0) + κ2 ηx(0)|2

]
+ C ‖U‖H ‖F‖H.

Using inequality (3.6) we get

∫ L

0

(|µ|2 + |vx|2) dx ≤ C |λ|1/2
(
‖U‖H ‖F‖H + ‖U‖3/4

H
‖F‖5/4

H

)
.

From (3.5)-(3.8) we conclude that

‖U‖2H ≤ C |λ|1/2
(
‖U‖H ‖F‖H + ‖U‖3/4

H
‖F‖5/4

H

)
.

Thus

‖U‖H ≤ C |λ|1/2 ‖F‖H

for λ large enough. The theorem follows.

Finally we prove the optimality result obtained in section 3.

Theorem 3.3 The rate of decay obtained in Theorem 3.2 is optimal over the domain of

D(A).
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Proof. Given λ ∈ R and F = (0, 0, 0, q) ∈ H, there exist U = (u, v, η, µ) ∈ D(A) such

that, (i λ I −A)U = F, that is,

i λ u− η = 0 in ]− l, 0[ (3.9)

i ρ1 λ η − κ1 uxx − κ2 ηxx = 0 in ]− l, 0[ (3.10)

i λ v − µ = 0 in ]0, l[ (3.11)

i ρ2 λµ− κ3 vxx = q in ]0, l[. (3.12)

Replacing (3.9) in (3.10) we have

uxx + α2 u = 0, u(−l) = 0. (3.13)

where

α2 =
ρ1 λ

2

κ1 + i κ2 λ
.

It is easy to see that

u(x) =
u(0)

sinh(iα(l))
sinh(iα(x+ l))

Note that

α2 =
ρ1 λ

2

√
κ2
1 + κ2

2 λ
2

(
κ1√

κ2
1 + κ2

2 λ
2
− i

κ2λ√
κ2
1 + κ2

2 λ
2

)
:=

ρ1 λ
2

√
κ2
1 + κ2

2 λ
2
(cos θ + i sin θ) .

Therefore

sin θ → −1, cos θ → 0

So we have that

α =
ρ
1/2
1 λ

4
√

κ2
1 + κ2

2 λ
2
eiθ/2 with eiθ/2 →

√
2

2
− i

√
2

2
.

as λ → ∞. Similarly we have

vxx + β2 v = q, v(l) = 0. (3.14)

β2 =
ρ2
κ3

λ2, λ ∈ R

From where we have that

v(x) = u(0)
sin β(l − x)

sin βl
− sin β(l − x)

β sin βl

∫ l

0

q(s) sin β(l − s) ds+
1

β

∫ x

0

q(s) sin β(x− s) ds
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Using the trasnmission conditions

κ1 ux(0) + κ2 ηx(0) = κ3 vx(0)

From where it follows that

(κ1 + iκ2λ)ux(0) = κ3 vx(0)

from where it follows that

α(κ1 + iκ2λ)u(0)

sinh(iα(l))
cosh(iαl) = βu(0)

cosβl

sinβl
− cos βl

sin βl

∫ l

0

q(s) sin β(l − s) ds

αu(0)(κ1 + iκ2λ) coth(iαl) = βu(0)
cosβl

sinβl
− cos βl

sin βl

∫ l

0

q(s) sin β(l − s) ds

αu(0)(κ1 + iκ2λ) coth(iαl) sin βl = βu(0) cosβl − cos βl

∫ l

0

q(s) sinβ(l − s) ds

u(0)[α(κ1 + iκ2λ) coth(iαl) sin βl − β cos βl] = − cos βl

∫ l

0

q(s) sinβ(l − s) ds

u(0) = − cos βl

α(κ1 + iκ2λ) coth(iαl) sin βl − β cos βl

∫ l

0

q(s) sinβ(l − s) ds

Let us take

βl = 2nπ +
1√
n

So we have that

β ≈ 2

lπ
n, sin βl ≈ 1√

n
, α sin βl ≈ c0, coth(iαl) ≈ 1

as n → ∞ and 0 6= c0 ∈ C. This implies that

cos βl

α(κ1 + iκ2λ) coth(iαl) sin βl − β cos βl
≈ c1

λ

For 0 6= c1 ∈ C. Note that the expression

βv(x) = βu(0)
sinβ(l − x)

sin βl
− sin βx

sin βl

∫ l

0

q(s) sin β(l − s) ds+

∫ x

0

q(s) sinβ(x− s) ds
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can be written as

βv(x) =

(
c2
sin β(l − x)

sin βl
− sin βx

sin βl

)∫ l

0

q(s) sinβ(l − s) ds+

∫ x

0

q(s) sin β(x− s) ds

βv(x) =
c2 sin β(l − x)− sin βx

sin βl

∫ l

0

q(s) sinβ(l − s) ds+

∫ x

0

q(s) sin β(x− s) ds

︸ ︷︷ ︸
:=Q(x)

βv(x) =

[
c2 cos βx− (c2 cos βl + 1)

sin βx

sin βl

]
Q(l) +Q(x)

Taking q(s) = sin βs and squaring and integrating we have

Q(x) =

∫ x

0

sin βs sin βx cos βs− sin2 β(s) cosβx ds

= sin βx

∫ x

0

sin βs cos βs ds− cos βx

∫ x

0

sin2 βs ds

= −sin3 βx

2βl
− cos βx

∫ x

0

sin2 βx ds

= −sin3 βx

2βl
− x cos βx

2
+

cos βx sin(2βx)

2β
(3.15)

Therefore

Q(l) = − π

n5/2
− l cos β

2
+

cos βl

n3/2
≈ − l

2

Note that ∫ l

0

|Q(s)|2 ds ≥
∫ l

0

x2 cos2 βx

8
dx− c

β2
≥ l3

48
− c

|β| (3.16)

Finally,

∫ l

0

∣∣∣∣c2 cos βx− (c2 cos βl + 1)
sin βx

sin βl

∣∣∣∣
2

ds

≥ |c2 cos βl + 1|
2 sin2 βl

∫ l

0

sin2 βx dx− c0

≈ c1n− c0 (3.17)

Inserting inequalities (3.16) and (3.17) into (3.15) we get that tehre exists a positive

constant C such that

∫ l

0

|βv(x)|2 dx ≥ −C + Cn

10



for n large, that is

1

n

∫ l

0

|βv(x)|2 dx ≥ C0 (3.18)

In particular we have that

‖U‖2 ≥
∫ l

0

|βv(x)|2

If the rate of decay can be improved then we have that 1
n1−ǫ ‖U‖2 must be bounded. Using

the two above inequalities we get

1

n1−ǫ
‖U‖2 ≥

∫ l

0

|βv(x)|2 ≥ C0n
ǫ

Which is contradictory to our assumption. From where our conclusion follows

4 Numerical approximations

In this section we show the polynomial decay numerically proved in the previous sections.

It is important to note that any numerical approximation is a finite-dimensional simpli-

fication of the original problem. Thus, any numerical method used, decay exponentially

for large enough times, and this because of its restrictive nature of the finite dimensional

space approach. In this regard, we have a robust numerical method of high order which in

turn ensures a natural way (without additional artificial viscosity for example) the decay

of energy with the same terms prescribed in identity (1.5).

4.1 Linear equation of Motion

First, we approximate the displacement vector [u, v]⊤ in space using a conservative finite

difference method (called also Finite Volume Method [4]). For J ∈ N and δx = L/J ,

we define xj+ 1

2

, with j = −J, . . . , J , as a uniform discretization of the interval (−L, L).

Then, we define xj =
x
j+1

2

+x
j− 1

2

2
, the points of approximation [u, v]⊤, for j = −J−1, . . . , J ,

obtaining a vector [uδ(t),vδ(t)]
⊤ approximation of [u, v]⊤ in RJ × RJ . Additionally, let

us define [ηδ(t), µδ(t)]
⊤ the approximation of the velocity [η, µ]⊤, where ηδ(t) = u̇δ(t) and

µδ(t) = v̇δ(t). Integrating (1.1) and (1.2) in each interval (xj− 1

2

, xj+ 1

2

) (called control

volumes in the context of finite volumes method), using the boundary and transmission
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condition, we easily obtain the linear equation of motion

M

[
η̇h
µ̇h

]
+

1

δx2
C

[
ηh
µh

]
+

1

δx2
K

[
uh

vh

]
= 0, (4.1)

whereM, C andK are the mass, damping and stiffness matrices of the system inM2J(R).

Using standard finite differences to approximate the flows on the edges of control volumes,

and since the discretization is uniform, we get easily thatM =




ρ1
. . .

ρ1
ρ2

. . .

ρ2




,

K =




2κ1 −κ1

. . .
. . .

−κ1 κ1 + κ3 −κ3

−κ3 2κ3 −κ3

. . .
. . .

2κ3




, and C =




2κ2 −κ2

. . .

−κ2 κ2

0
. . .

0




.

On the other hand, and in the context now of finite differences, we know that to be a

centered scheme is of second order in space.

4.2 Time discretization

Regarding now to the time discretization, it is desirable that the algorithm has at least

second-order accuracy too, and because the spatial discretization used in structural dy-

namics often leads to inclusion of high-frequency modes in the model, it is also desirable to

have unconditional stability. The method consists of updating the displacement, velocity

and acceleration vectors at current time tn = nδt to the time tn+1 = (n + 1)δt, a small

time interval δt later. The Newmark algorithm [18] is based on a set of two relations

expressing the forward displacement [un+1
δ ,vn+1

δ ]⊤ and velocity [ηn+1
δ , µn+1

δ ]⊤ in terms of

their current values and the forward and current values of the acceleration,

ηn+1
δ = ηnδ + (1− γ)δt η̇nδ + γδt η̇n+1

δ (4.2)

un+1
δ = un

δ +

(
1

2
− β

)
δt2 η̇nδ + βδt2 η̇n+1

δ (4.3)

µn+1
δ = µn

δ + (1− γ)δt µ̇n
δ + γδt µ̇n+1

δ (4.4)

vn+1
δ = vn

δ +

(
1

2
− β

)
δt2 µ̇n

δ + βδt2 µ̇n+1
δ , (4.5)

12



where β and γ are parameters of the methods that will be fixed later. Replacing (4.2)-(4.5)

in the equation of motion (4.1), we obtain

(
M+ γδtC+ βδt2K

) [ η̇n+1
δ

µ̇n+1
δ

]
= −C

([
ηnδ
µn
δ

]
+ (1− γ)δt

[
η̇nδ
µ̇n
δ

])

−K

([
un
δ

vn
δ

]
+ δt

[
ηnδ
µn
δ

]
+

(
1

2
− β

)
δt2
[
η̇nδ
µ̇n
δ

])
. (4.6)

The acceleration [η̇n+1
δ , µ̇n+1

δ ]⊤ is found from (4.6), and the velocity [ηn+1
δ , µn+1

δ ]⊤ follow

from (4.2) and (4.4), respectively, and finally displacement [un+1
δ ,vn+1

δ ]⊤ follow from (4.3)

and (4.5), respectively by simple vector operations.

4.3 Energy balance of the Newmark algorithm

We define the discrete energy as

En
δ :=

1

2

[
η⊤δ , µ

⊤

δ

]
M

[
ηδ
µδ

]
+

1

2

[
u⊤

δ ,v
⊤

δ

]
K

[
uδ

vδ

]

which is an approximation of that defined in (1.5) for the continuous case. The increment

of this energy can be expressed in terms of mean values and increments of the displacement

and velocity by the following identity:

En+1
δ − En

δ =

[
1

2

[
η⊤δ , µ

⊤

δ

]
M

[
ηδ
µδ

]
+

1

2

[
u⊤

δ ,v
⊤

δ

]
K

[
uδ

vδ

]]n+1

n

=

[
η
n+ 1

2

δ

µ
n+ 1

2

δ

]⊤
M

[
∆ηδ
∆µδ

]
+

[
u
n+ 1

2

δ

v
n+ 1

2

δ

]⊤
K

[
∆uδ

∆vδ

]

where un+ 1

2 = u
n+1+u

n

2
and ∆u = un+1 −un. Now, in order to derive the required energy

estimates, we rely on calculations and notations similar to S. Krenk [9] to finally obtain

[
1

2

[
ηh
µh

]⊤
M∗

[
ηh
µh

]
+

1

2

[
uh

vh

]⊤
K

[
uh

vh

]
+

(
β − 1

2
γ

)
δt2

2

[
η̇h
µ̇h

]⊤
M∗

[
η̇h
µ̇h

]]n+1

n

=

(
γ − 1

2

){[
∆uh

∆vh

]⊤
K

[
∆uh

∆vh

]
+

(
β − 1

2
γ

)
δt2
[
∆η̇h
∆µ̇h

]⊤
M∗

[
∆η̇h
∆µ̇h

]}

−1

2
δt



δt−2

[
∆uh

∆vh

]⊤
C

[
∆uh

∆vh

]
+

[
η
n+ 1

2

h

µ
n+ 1

2

h

]⊤
C

[
η
n+ 1

2

h

µ
n+ 1

2

h

]


+
1

2

(
β − 1

2
γ

)2

δt3
[

∆η̇h
∆µ̇h

]⊤
C

[
∆η̇h
∆µ̇h

]

13



10
0

10
1

10
2

10
3

10
4

10
5

10
−20

10
−15

10
−10

10
−5

10
0

10
5

 

 
n=1 (α=1.1594)
n=2 (α=2.2419)
n=3 (α=2.6687)
n=4 (α=3.1570)

Figure 1: Energy decay for initial conditions with different smoothness. For a graph in
log-log scale, there is a decay in order t−α.

where M∗ = M +
(
γ − 1

2

)
δtC. Then, we choose γ = 1

2
and β = γ

2
, reducing the above

expression to

[
1

2

[
ηh
µh

]⊤
M

[
ηh
µh

]
+

1

2

[
uh

vh

]⊤
K

[
uh

vh

]]n+1

n

= −1

2
δt

{
∆u⊤

h

δt
C̃
∆uh

δt
+ η

n+ 1

2
,⊤

h C̃η
n+ 1

2

h

}
6 0 (4.7)

where C̃ ∈ MJ(R) represents de reduced matrix of C ∈ M2J(R) does not take into

account the null rows and null columns, that is C̃ =




2κ2 −κ2

−κ2 2κ2 −κ2

. . .

−κ2 κ2


. We remark

that (4.7) corresponds to the discrete version of (2.4), but more than that, the term on

the right is precisely the expected amount, corresponding to a discretization of the right

side of (2.3). With this, we expect the rate of decay of energy in the discrete case is an

accurate reflection of what happens in the continuous case.

4.4 Numerical examples

Now we present two examples to illustrate graphically the polynomial energy decay.
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4.4.1 Example 1. Initial conditions with different smoothness

Let us suppose here that L = 2 and T = 100000. We will study the asymptotic behavior

for a family of initial conditions of the form

u0 =

{
10(x+ 1)nxn if x ∈ (−1, 0)
0 otherwise

(4.8)

at rest, that is v0 = η0 = µ0 = 0. We suppose additionally that κ1 = κ3 = 10, κ2 = 1.

Finally, the discretization is given by J = 10000 and N = 100000, that is δx = L/J =

2.10−4 and δt = T/N = 1. Figure 1 shows the asymptotic behavior of the energy plotted

in log-log scale, so that all behavior expressed graphically displayed polynomial with

straight lines. In this case we see that such polynomial behavior is reinforced from time

t = 1000, which actually represents 99% of total time (100000 [sec]).

By simple linear regression (least squares) rates obtained numerically for each case.

For every exponent n of the initial condition (4.8), we have a rate α different (which

would normally be optimal 2 according to the theory). First we see in Figure 1 that the

rate α increases as the initial condition becomes more and more regular (n grows), which

is expected. But on the other hand, we observe in the same Figure 1 that for n = 1,

we have a value of α less than 2 (α = 1.1594). This does not contradict the theory, and

the background is not so surprising, if we observe that the case n = 1 corresponds to

an initial condition which is definitely not in D(A), hypotheses need to have the optimal

polynomial decay. This put into evidence that the hypothesis of belonging of the initial

condition in the domain D(A) is relevant is clearer in the second example.

4.4.2 Example 2. When initial condition U0 6∈ D(A) and when U0 ∈ D(A)

Here, we take again L = and T = 100000. In this second case, we see the importance that

the initial condition is in D(A) to obtain expected polynomial decay of rate t−2. We look

at two initial conditions that are on the brink of this situation, which they are described

in Figure 2. In the picture on the left it is described the case when U0 ∈ D(A) is not

verified. Indeed, at x = −1, the function u0 is continuous but not of class C1, and hence,

it is not in H2(−L, 0). Regarding the transmission term, the initial condition is of class

C1, but not of class C2 at x = 0, considering v0, as an extension of u0 at this point. On

the other hand, in the picture on the right, the solution is entirely in D(A), but without
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u0 =

{
10(x+ 1)x if x ∈ (−1, 0)
0 otherwise

v0 =

{
5(2− x)x if x ∈ (0, 2)
0 otherwise

η0 = µ0 = 0

u0 =

{
10(x+ 1)3x if x ∈ (−1, 0)
0 otherwise

v0 =

{
5

16
(2 − x)2x(−x2 + 32x+ 8) if x ∈ (0, 2)

0 otherwise

η0 = µ0 = 0

Figure 2: Comparison between two initial conditions. Picture on the left: U0 6∈ D(A);
picture on the right: U0 ∈ D(A).

additional regularity beyond that. In fact, the function u0 is of class C1 on x = −1 but

no more than that. However, the transmission term is regular enough.

The result is not expected. Under the same conditions of discretization of the previous

example, we see that there is an effective polynomial decay, with rate t−α and α = 2.022

when the initial condition satisfies the hypothesis (see green curve in Figure 3). On the

other hand, when the initial condition does not meet the hypothesis of belonging to D(A),

the rate is polynomial with α = 0.6611, obtaining this value by least squares, and even

being questioned according to the graph if it is actually polynomial (blue curve , in Figure

3).

The fact that the discretization is a finite dimensional problem, unlike the original

semigroup, which in theory makes an exponential decay should be observed for all cases

for large enough times. Aware of this finite-dimensional restriction, our examples were

made for times large but reasonable in the framework of what we wanted to highlight.

Finally in Figure 4, we see the evolution of displacement behavior of (u, v) and veloc-

ities (η, µ) when the decay energy is polynomial, with rate t−2. It is observed that the

critical point of decay (in which the left side, although very fast decay, affects the right

side that does not decay as quickly) is the transmission term, which is consistent with the
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estimate (3.3) which is key to the proof of Theorem 3.2 of our Section 3.
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Figure 4: Solution behaviour in space and time. Case of energy with polinomial decaying
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