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Abstract

It has been proved, for several classes of continuous and discrete dy-

namical systems, that the presence of a positive (resp. negative) circuit
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in the interaction graph of a system is a necessary condition for the pres-

ence of multiple stable states (resp. a cyclic attractor). A positive (resp.

negative) circuit is then said to be functional when it “generates” several

stable states (resp. a cyclic attractor). However, there are no mathe-

matical frameworks translating the underlying meaning of “generates”.

Focusing on Boolean networks, we recall and propose some definitions

around the notion of functionality and state associated mathematical re-

sults.

Keywords: Boolean network, Interaction graph, Feedback circuit, Fixed

point.

1 Introduction

Interactions between components of a dynamical system are often very roughly

described by an interaction graph: Vertices represent components, and arcs are

signed in order to denote positive or negative influences between components.

It becomes natural to study what kind of information on the dynamics of a

system can be deduced from its interaction graph. Thomas’ conjectures [1],

stated in the context of gene networks, provide a partial answer to this question:

The presence of a positive (resp. negative) circuit is a necessary condition for

the presence of multiple stable states (resp. a cyclic attractor); the sign of a

circuit being defined as the product of the signs of its arcs. These conjectures

have been proved for differential systems [2, 3, 4, 5, 6, 7] and discrete ones
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[8, 9, 10, 11, 12, 13]. They lead to think that the essential role of circuits is

to ensure the presence of multiple stable states (if positive) or cyclic attractors

(if negative). Thomas and coworkers then said that a circuit is functional (or

effective, operative) if it actually “fulfills this role” [14, 15]). Moreover, Snoussi

and Thomas [16] connected this notion of functionality with conditions on the

functioning of the interactions of circuits (stationarity of a singular characteristic

state of a circuit).

In this paper we propose different notions of functionality in terms of nec-

essary conditions - on the functioning of the interactions of circuits - for the

presence of multiple stable states or cyclic attractors. The class of dynamical

systems we choose for these definitions is the class of asynchronous Boolean net-

works which has been introduced by Thomas [17] as a model for the dynamics

of gene networks: On the one hand, these systems are elementary instances of

complex systems and are largely used, and on the other hand, for these systems,

there exists a large number of results about Thomas’ ideas.

This paper is organized as follows: Section 2 recalls classical notions as-

sociated with Boolean networks. In Sections 3, 4, 5 and 6, we define different

kinds of functionality depending on the localization, in the phase space, of states

where interactions are functioning. Section 7 summarizes the results associated

with these definitions and the relationships between them. Section 8 is devoted

to discussion.
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Remark This paper results from a collective discussion that took place dur-

ing the workshop Logical formalism, gains and challenges for the modeling of

regulatory networks, held at Rabat, Maroc, from 12th to 15th of April 2011 .

2 Preliminaries

Let B = {0, 1}, and let I be a finite set. We denote by BI the set of functions

from I to B, seen as points of the |I|-dimensional Boolean hypercube. For i ∈ I

and x ∈ BI , we denote by xi the image of i by x, and we denote by xi the point

of BI such that xi
i = 1− xi and xi

j = xj for all j 6= i. The Hamming distance d

between points of BI is defined by: For all x, y ∈ BI , d(x, y) =
∑

i∈I |xi − yi|.

A Boolean network is a function f : BI → BI . Set I is the set of network

components and BI is the set of possible states (or configurations). Hence, at a

given state each component is either present or absent. For all i ∈ I, we denote

by fi the function from BI to B defined by fi(x) = f(x)i. We say that f is non-

expansive if d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ BI . For i, j ∈ I, the partial

discrete derivative of fi with respect to xj is the function fij : BI → {−1, 0, 1}

defined by

fij(x) =
fi(xj)− fi(x)

xj
j − xj

.

The matrix of these partial derivatives at a given point may be seen as the

Jacobian matrix of the system at this point. In the following, we use graphs

instead of matrices to handle these partial derivatives.

An interaction graph G consists in a set of vertices V and a set of signed
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arcs A ⊆ V × {+,−} × V . In such a graph, a positive (resp. negative)

circuit is an elementary directed cycle with an even (resp. odd) number of

negative arcs. If G and H are two interaction graphs, we write G ⊆ H to mean

that G is a subgraph of H (i.e. each vertex of G is a vertex of H and each arc

of G is an arc of H).

Let f : BI → BI and X ⊆ BI . We denote by Gf(X) the interaction graph

whose the vertex set is I and that contains a positive (resp. negative) arc from

j to i if there exists x ∈ X such that fij(x) > 0 (resp. fij(x) < 0). Clearly

if X ⊆ Y then Gf(X) ⊆ Gf(Y ). For each x ∈ BI , we write Gf(x) instead of

Gf({x}); this graph Gf(x) is usually called the local interaction graph of

f evaluated at point x, and it contains the same information as the Jacobian

matrix of f at point x. We use G(f) as an abbreviation of Gf(BI); this graph

G(f) is usually called the global interaction graph of f .

The asynchronous state graph of f is the directed graph Γ(f) defined

by: The vertex set is BI , and for all x, y ∈ BI , there exists an arc from x to y if

there exists i ∈ I such that y = xi and fi(x) 6= xi. The graph Γ(f) can be seen

as a (undeterministic) dynamical system in which each transition of a trajectory

changes a unique component. The attractors of Γ(f) are defined as its terminal

strongly connected components (i.e. strongly connected components without

out-going arc). The attractors of size 1 correspond to the fixed points of f : {x}

is an attractor of Γ(f) if and only if f(x) = x. Attractors of size at least 2 are

said cyclic.
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3 Functionality of type 1

If G(f) has an arc from j to i then fij 6= cst, i.e. the function fi depends

on variable xj . This dependency is visible only at points x where fij(x) 6= 0.

Then, a positive (resp. negative) arc from j to i is said functional at point x

if fij(x) > 0 (resp. fij(x) < 0). The first type of functionality we consider

requires that all the arcs of a circuit C of G(f) are functional at the same point.

Definition 1 Let C be a circuit of G(f) and x ∈ BI . C is functional of

type 1 at x if C ⊆ Gf(x). C is functional of type 1 if it is functional of

type 1 for at least one x ∈ BI .

Theorem 1 (Shih-Dong’ theorem [18]) If f has no functional circuits of

type 1, then f has a unique fixed point x. Furthermore, Γ(f) describes a weak

convergence toward x: For all y ∈ BI , Γ(f) has a path from y to x of length

d(x, y).

The converge is said weak since, under the conditions of the statement, Γ(f)

may have cycles. Note that the following theorem gives the uniqueness part of

Theorem 1 under weaker conditions.

Theorem 2 (Thomas’ rule - type-1-functional positive circuits [10,

12]) If f has no functional positive circuits of type 1, then Γ(f) has a unique

attractor, in particular f has at most one fixed point.

We don’t know if Thomas’ rule holds for functional negative circuits of type 1:
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Question 1 (Thomas’ rule - type-1-functional negative circuits) Is it

true that if f has no functional negative circuits of type 1 then Γ(f) has no

cyclic attractors?

This question has a positive answer in the non-expansive case (see Proposi-

tion 1 and Theorem 3 below). Moreover, since the absence of cyclic attractor

implies the existence of at least one fixed point, the question has a weak form of

interest: Is it true that if f has no functional negative circuits of type 1 then f

has at least one fixed point? A positive answer to this weak form would provide

the existence part of Theorem 1 under weaker conditions.

4 Functionality of type 2

For this type of functionality, we need additional definitions about functions

resulting from f by fixing some coordinates. Let J ⊆ I and z ∈ BI\J . For

all x ∈ BJ , we denote by x ∪ z the point y ∈ BI defined by: yi = xi if i ∈ J

and yi = zi if i ∈ I \ J . The sub-function of f induced by z is the function

h : BJ → BJ defined by:

∀x ∈ BJ , ∀i ∈ J, hi(x) = fi(x ∪ z).

Hence, h is the function that we obtain from f by fixing to zi the value of

each component i ∈ I \ J . Note that Γ(h) has an arc from x to xi if and

only if Γ(f) has an arc from x ∪ z to x ∪ z
i. Hence, Γ(h) is isomorphic to the

subgraph of Γ(f) induced by the vertex set {x ∪ z |x ∈ BJ} (the isomorphism
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is x 7→ x∪ z). Furthermore, Gh(x) has a positive (resp. negative) arc from j to

i if and only if this arc is in Gf(x ∪ z), that is: For all x ∈ BJ and i, j ∈ J , we

have hij(x) = fij(x ∪ z). Hence, Gh(x) is the subgraph of Gf(x ∪ z) induced

by J .

Definition 2 Let C be a circuit of G(f), let J be the vertices of C, let z ∈ BI\J

and let h be the sub-function of f induced by z. C is functional of type 2

at z if C = G(h). C is functional of type 2 if it is functional of type 2 for

at least one z ∈ BI\J .

Note that functions h whose the global interaction graph G(h) is a cycle C

have been deeply study (see [19, 20] for example); in particular, it is well known

that if C is positive then h has exactly two fixed points and that if C is negative

then h has no fixed points (so Γ(f) has a cyclic attractor). Hence, an isolated

circuit C effectively generates two fixed points in the positive case and a cyclic

attractor in the negative case, and functionality of type 2 allows C to behave

locally in the same way, in a sub-cube BJ of BI .

The following proposition shows that type-2-functionality can be defined in

terms of type-1-functionality:

Proposition 1 C is functional of type 2 at z if and only if C is functional of

type 1 at x ∪ z for all x ∈ BJ .

Proof Suppose that C = G(h) and that C has a positive (resp. negative) arc

from j to i. Then for all x ∈ BJ , we have hi(x) = xj (resp. hi(x) = 1 − xj)

so hij(x) > 0 (resp. hij(x) < 0). Hence, for all x ∈ BJ , we have C = G(h) =
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Gh(x). We deduce that C = Gh(x) ⊆ Gf(x ∪ z) for all x ∈ BJ . This proves

one direction. For the other one, suppose that C ⊆ Gf(x ∪ z) for all x ∈ BJ .

If C has a positive arc from j to i then, for all x ∈ BJ , we have fij(x ∪ z) > 0

so fi(x ∪ z) = xj and so hi(x) = xj . So in G(h), i has a unique predecessor

j, and the arc from j to i is positive. Similarly, if C has a negative arc from j

to i then, for all x ∈ BJ , we have fij(x ∪ z) < 0 so fi(x ∪ z) = 1 − xj and so

hi(x) = 1− xj . So in G(h), i has a unique predecessor j, and the arc from j to

i is negative. We deduce that G(h) = C. �

Another relationship between type-1- and type-2-functionalities has been

established by Remy and Ruet [21]: If a cycle C is type-1-functional and if C

has no chord in G(f) then C is type-2-functional (a chord of C is an arc that is

not in C and whose initial and terminal vertices are in C).

Theorem 3 (Thomas’ rules - type-2-functional circuits - non-expansive

case) Suppose that f is non-expansive. If f has no functional positive circuits

of type 2, then Γ(f) has a unique attractor, and if f has no functional negative

circuits of type 2, then Γ(f) has no cyclic attractors.

Proof (sketch) Suppose that f is non-expansive and that G(f) has a circuit C

with vertex set J . Let x ∈ BJ and z ∈ BI\J . Assume that Gf(x∪z) contains C.

Let h be the sub-function of f induced by z. Then C is an Hamiltonian circuit

of Gh(x) and since h is non-expansive too, it can be proved that Gh(x) = C for

all x ∈ BJ , so that C is functional of type 2 at z. Hence we have the following

property P: If C is functional of type 1 at x ∪ z then it is functional of type 2
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at z. If Γ(f) has multiple attractors, then by Theorem 2, f has a functional

positive circuit of type 1, and by P it has a functional positive circuit of type

2. If Γ(f) has a cyclic attractor, it has been proved in [22] (see also [23]) that f

has a functional negative circuit of type 1, so by P it has a functional negative

circuit of type 2. �

The two following examples shows that Theorem 3 is false in the expansive

case. It also shows that functionality of type 1 does not imply the one of type 2.

Remark In all examples, I is an interval {1, 2, . . . , n}, and each point x ∈ BI

is seen as a string x = x1x2 . . . xn. Also, interaction graphs are represented with

T-end arrows for negative arcs and normal arrows for positive ones.

Example 1 I = {1, 2, 3} and f : BI → BI is defined by:

f1(x) = (x1 ∧ (x2 ∨ x3)) ∨ (x2 ∧ x3)

f2(x) = (x2 ∧ (x3 ∨ x1)) ∨ (x3 ∧ x1)

f3(x) = (x3 ∧ (x1 ∨ x2)) ∨ (x1 ∧ x2)

The global interaction graph of f and the asynchronous state graph of f are:

G(f) =

1 2

3
Γ(f) =

000

010

100

110

001

011

101

111
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f has two fixed points, 000 and 111, but one can check that it has no functional

positive circuits of type 2. According to Theorem 2, f has at least one functional

positive circuit of type 1 (so, for positive circuits, functionality of type 1 does

not imply functionality of type 2). The only points for which the local interac-

tion graph has a positive circuit are 000 and 111; for these two points the local

interaction graph of f has actually 5 positive circuits:

Gf(000) = Gf(111) =

1 2

3

Example 2 I = {1, 2, 3} and f : BI → BI is defined by:

f1(x) = x2

f2(x) = x3

f3(x) = (x3 ∧ (x1 ∨ x2)) ∨ (x1 ∧ x2)

The global interaction graph of f and the asynchronous state graph of f are:

G(f) =

1 2

3
Γ(f) =

000

010

100

110

001

011

101

111

Γ(f) has a unique attractor, {010, 011, 001, 101, 100, 110}, which is cyclic, but
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one can check that f has no functional negative circuits of type 2. At each

point excepted 011 and 100, the local interaction graph contains at least one

negative circuit (so, for negative circuits, functionality of type 1 does not imply

functionality of type 2). For instance, at 010 and 101 the local interaction graph

has two negative circuits:

Gf(010) = Gf(101) =

1 2

3

5 Functionality of type 3

Recall that an arc from j to i is functional at point x if fij(x) 6= 0, that is,

when fi(x) 6= fi(x̄j). We then say that the arc is “visible” between the adjacent

points x and x̄j . We now associate to each X ⊆ BI an interaction graph Gf [X]

(slightly different from Gf(X)) which contains all visible arcs between adjacent

points that belong both to X.

Formally, for all X ⊆ BI , we denote by Gf [X] the interaction graph defined

by: The vertex set is I, and there exists a positive (resp. negative) arc from j to

i if there exists x ∈ X such that fij(x) is positive (resp. negative) and xj ∈ X.

Clearly, G(f) = Gf [BI ], and if Y ⊆ X then Gf [Y ] ⊆ Gf [X]. Furthermore,

because of the condition “and xj ∈ X”, Gf [X] ⊆ Gf(X), and for all x ∈ BI ,

Gf [x] has no arcs.

For all x ∈ BI , we denote by Γ(f)[x] the reachability set of x, that is, the

set of points y ∈ BI such that Γ(f) has a path from x to y (by convention,

12



x ∈ Γ(f)[x]). Note that if X is an attractor of Γ(f), then Γ(f)[x] = X for all

x ∈ X (since X is strongly connected and has no out-going arcs).

Definition 3 Let C be a circuit of G(f) and x ∈ BI . C is functional of type

3 at x if C ⊆ Gf [Γ(f)[x]]. C is functional of type 3 if it is functional of

type 3 for at least one x ∈ BI .

The following theorem shows that type-3-functional negative circuits are

necessary for the presence of cyclic attractors.

Theorem 4 (Thomas’ rule - type-3-functional negative circuits [10,

13]) If X is a cyclic attractor of Γ(f), then Gf [X] has a negative circuit C,

which is thus functional of type 3 at each point x ∈ X (since X = Γ(f)[x]).

Proposition 2 Let C be a negative circuit of G(f) with vertex set J , and let

z ∈ BI\J . If C is functional of type 2 at z, then it is functional of type 3 at

x ∪ z for all for all x ∈ BJ .

Proof Suppose that C is functional of type 2 at z, and let h be the sub-

function of f induced by z. Let x ∈ BJ . As showed in [19], for every x ∈

BJ , Γ(h)[x] contains a cyclic attractor, and we deduce from Theorem 4 that

G(h)[Γ(h)[x]] = C. Since Γ(h)[x] is isomorphic to the subgraph of Γ(f) induced

by X = {y ∪ z | y ∈ Γ(h)[x]}, we have X ⊆ Γ(f)[x ∪ z], and since Gh(y) is

a subgraph of Gf(y ∪ z) for all y ∈ BJ , we deduce that C = Gh[Γ(h)[x]] ⊆

Gf [X] ⊆ Gf [Γ(f)[x ∪ z]]. So C is functional of type 3. �

Theorem 4 shows that functionality of type 3 of a negative circuit is necessary

for the presence of a cyclic attractor. However, the following example shows that
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functionality of type 3 of a positive circuit is not necessary for the presence of

multiple attractors. It also shows that functionality of type 1 does not imply

functionality of type 3, and that Proposition 2 does not hold for positive circuits.

Example 3 I = {1, 2} and f : BI → BI is defined by:

f1(x) = x1 ∧ x2

f2(x) = x1 ∧ x2

The global interaction graph of f and the asynchronous state graph of f are:

G(f) = 1 2 Γ(f) =
00

01

10

11

Note that f has two fixed points. The local interaction graph of f at 11 is:

Gf(11) = 1 2

So f has positive and negative functional positive circuits of type 1. Further-

more, the sub-function of f induced by x1 = 1 or by x2 = 0 is the identity

on B. Since the global interaction graph of the identity on B is a positive cir-

cuit of length one, we deduce that f has functional positive circuits of type 2.

However, f has no functional circuits of type 3. Indeed, there are no arcs in

the following three graphs: Gf [Γ(f)[00]] = Gf [00], Gf [Γ(f)[10]] = Gf [10] and

Gf [Γ(f)[01]] = Gf [{01, 00}]. Then, Gf [Γ(f)[11]] = Gf [{11, 01, 00}] contains

only an arc from vertex 1 to vertex 2. So for positive and negative circuits,

14



functionality of type 1 does not imply functionality of type 3. For positive cir-

cuits, functionality of type 2 does not imply functionality of type 3. Finally,

type-3-functionality of a positive circuit is not necessary for the presence of

multiple fixed points.

The following example shows that, in the positive case, functionality of type

3 does not imply functionality of type 1 (thus it does not imply functionality of

type 2).

Example 4 I = {1, 2, 3} and f : BI → BI is defined by:

f1(x) = x3

f2(x) = x1 ∧ x3

f3(x) = x1 ∧ x2 ∧ x3

The global interaction graph of f and the asynchronous state graph of f are:

G(f) =

1 2

3
Γ(f) =

000

010

100

110

001

011

101

111

G(f) has a positive circuit of length 2 and a positive circuit of length 3. If

x = 111 or 110 then Γ(f)[x] = BI so Gf [Γ(f)[x]] = G(f) and we deduce

that both positive circuits are functional of type 3. However, f has no type-1-

functional positive circuits. Indeed, for all x ∈ BI , if Gf(x) contains the arc
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from 2 to 3 (resp. from 3 to 2) then x1 = 1 (resp. x1 = 0), so Gf(x) cannot

contain these two arcs. Thus the positive circuit of length 2 is not functional of

type 1. Similarly, for all x ∈ BI , if Gf(x) contains the arc from 1 to 2 (resp.

from 2 to 3) then x3 = 1 (resp. x3 = 0), so Gf(x) cannot contain these two

arcs. Thus the positive circuit of length 3 is not functional of type 1.

The following example gives the same conclusion for negative circuits.

Example 5 I = {1, 2, 3} and f : BI → BI is defined by:

f1(x) = x2 ∧ x3

f2(x) = x1 ∧ x3

f3(x) = x1 ∧ x2 ∧ x3

The global interaction graph of f and the asynchronous state graph of f are:

G(f) =

1 2

3
Γ(f) =

000

010

100

110

001

011

101

111

G(f) has a negative circuit of length 2 and a negative circuit of length 3. If

x = 110 then Γ(f)[x] = BI so Gf [Γ(f)[x]] = G(f) and we deduce that both

negative circuits are functional of type 3. However, f has no type-1-functional

negative circuits. Indeed, for all x ∈ BI , if Gf(x) contains the arc from 1 to 3

(resp. from 3 to 1) then x2 = 0 (resp. x2 = 1), so Gf(x) cannot contain these
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two arcs. Thus the negative circuit of length 2 cannot be functional of type 1.

Similarly, for all x ∈ BI , if Gf(x) contains the arc from 1 to 2 (resp. from 2 to

3) then x3 = 0 (resp. x3 = 1), so Gf(x) cannot contain these two arcs. Thus

the positive circuit of length 3 cannot be functional of type 1.

6 Functionality of type 4

Functionality of type 4, the last considered here, is a relaxation of type-1- and

type-3-functionalities.

Definition 4 Let C be a circuit of G(f) and x ∈ BI . C is functional of type

4 at x if C ⊆ G(f)(Γ(f)[x]). C is functional of type 4 if it is functional of

type 4 for at least one x ∈ BI .

Proposition 3 If C is functional of type 1 or 3 at x, then C is functional of

type 4 at x.

Proof Let X = Γ(f)[x]. Since x ∈ X we have Gf(x) ⊆ Gf(X), so if C

is functional of type 1 at x then it is functional of type 4 at x. Then, since

Gf [X] ⊆ Gf(X), if C is functional of type 3 at x then it is functional of type

4 at x. �

From this proposition, Theorem 2 and Theorem 4 we obtain:

Theorem 5 (Thomas’ rules - type-4-functional circuits) If f has no

functional positive circuits of type 4 then Γ(f) has a unique attractor, and if
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f has no functional negative circuits of type 4 then Γ(f) has no cyclic attrac-

tors.

Note that a positive answer to Question 1 would provide a strong general-

ization of the second assertion of this theorem. Note also that Example 3 shows

that, in the positive and negative cases, functionality of type 4 does not imply

functionality of type 3: In this example f has type-1-functional positive and

negative circuits, thus it has type-4-functional positive and negative circuits,

but no type-3-functional circuits. Finally note that Examples 4 and 5 shows

that, in the positive and negative cases, functionality of type 4 does not imply

functionality of type 1 (and thus it does not imply functionality of type 2): In

Example 4 (resp. Example 5), f has type-3-functional positive (resp. negative)

circuits, thus it has type-4-functional positive (resp. negative) circuits, but no

type-1-functional positive (resp. negative) circuits.

7 Summary

In the following diagram, there is an arrow from a “box type k” to a “box type

l” if and only if functionality of type k of a circuit C implies functionality of C

of type l; there is a dashed arrow if and only if this implication holds only for

negative circuits. In each “box type k”, the mention “Positive case: T (resp.

F)” means that functionality of type k of a positive circuit is necessary (resp.

not necessary) for the presence of multiple attractors. The mention “Negative

case: T (resp. F)” means that functionality of type k of a negative circuit is
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necessary (resp. not necessary) for the presence of a cyclic attractor.

Type 1
Positive case: T (Theorem 2)
Negative case: ? (Question 1)

Type 2
Positive case: F (Example 1)
Negative case: F (Example 2)
See however Theorem 3

Type 3
Positive case: F (Example 3)
Negative case: T (Theorem 4)

Type 4
Positive case: T (Theorem 5)
Negative case: T (Theorem 5)

(only in the negative case)

8 Discussion

Recall the starting point: A positive (resp. negative) circuit is said functional

when it “generates” multiple attractors (resp. a cyclic attractor), but it is rather

difficult to formalize the underlying meaning of “generate”. The approach pre-

sented here consists in exhibiting necessary conditions − on the functioning of

the interactions of a circuit − for the presence of multiple attractors (positive

case) or cyclic attractors (negative case). Then we obtain weak notions of func-

tionality. For instance, Theorem 2 states that in the absence of type-1-functional

positive circuit, there are no multiple attractors. The set of all type-1-functional
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positive circuits can then be seen as “responsible” for the presence of multiple

attractors, but this “responsibility” cannot be assigned to one particular circuit.

All the proposed notions of functionality are based on functionality of an

arc: A positive (resp. negative) arc from j to i is said functional at point x if

fij(x) is positive (resp. negative); this functionality is then “visible” between

the adjacent points x and xj . A circuit is functional of type 1 when all its

arcs are functional at the same point (this functionality may be called local or

punctual), and it is functional of type 2 if all its arcs are functional in all points

of a sub-cube of BI (Proposition 1). A circuit is said functional of type 4, if each

arc is functional somewhere in the set of states reachable from a given point. If

in addition, the adjacent points revealing the functionality of each arc belong

to this set, then the circuit is functional of type 3.

An “ideal” notion of functionality should correspond to conditions, as strong

as possible, that work in both positive and negative cases (i.e. that are nec-

essary for multiple attractors in the positive case, and for cyclic attractors in

the negative case). As shown by the previous diagram, the only functionality

working in both cases is of type 4. Unfortunately, it is the weakest type of

functionality proposed here. Type 3 is stronger but it works only in the nega-

tive case, and the type 1, which is stronger too, is proved to work only in the

positive case (the negative case remains an open question). Type 2, which is

the strongest one, works in both cases only under very strong conditions on f .

Type 1 is the strongest working in the positive case, and a positive answer to

Question 1, showing that this type works also in the negative case, would lead
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to a satisfactory notion of functionality. However, while all the theorems have

natural extensions in the non Boolean discrete case, Question 1 has a negative

answer in the non Boolean discrete case [13]. A positive answer to the question

would also lead to a nice proof of Theorem 1: The uniqueness of the fixed point

would be given by the positive case, and the existence by the negative case.

We addressed the functionality of circuits in a particular way by focusing on

asynchronous Boolean networks with the associations positive circuit / multiple

attractors and negative circuit / cyclic attractor. We choose this setting be-

cause it led to a large number of results about Thomas’ ideas. Another way to

address the functionality of a circuit would consist in looking for consequences

of suppression of this circuit. Several non-straightforward questions arise: How

to suppress a circuit? By removing an arc? But which arc? And what would

be the dynamical system resulting from the suppression of an arc?
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analysis for the mixed formulation of the elasticity equations

2012-07 Ana I. Garralda Guillem, Gabriel N. Gatica, Antonio Marquez, Manuel
Ruiz Galan: A posteriori error analysis of twofold saddle point variational formula-
tions for nonlinear boundary value problems
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


